EtronTech

EM6AA160TS

16M x 16 bit DDR Synchronous DRAM (SDRAM)

Etron Confidential

(Rev. 0.7 July/ 2008)

Features

- Fast clock rate: 250/200MHz
- Differential Clock CK & CK
- Bi-directional DQS
- DLL enable/disable by EMRS
- Fully synchronous operation
- Internal pipeline architecture
- Four internal banks, 4M x 16-bit for each bank
- Programmable Mode and Extended Mode registers
- CAS Latency: 3
- Burst length: 2, 4, 8
- Burst Type: Sequential & Interleaved
- Individual byte write mask control
- DM Write Latency = 0
- Auto Refresh and Self Refresh
- 8192 refresh cycles / 64ms
- Precharge & active power down
- Power supplies:
 - VDD = 2.5V ± 5%

VDDQ = 2.5V ± 5%

- Interface: SSTL_2 I/O Interface
- Package: 66 Pin TSOP II, 0.65mm pin pitch
 - Pb and Halogen free

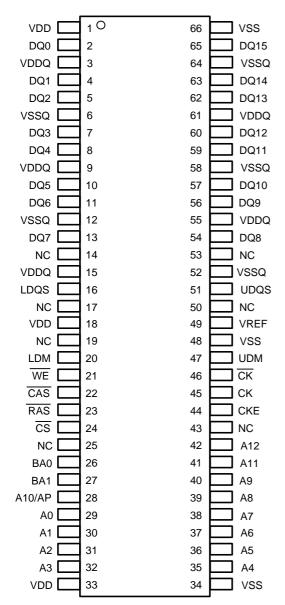
Overview

The EM6AA160 SDRAM is a high-speed CMOS double data rate synchronous DRAM containing 256 Mbits. It is internally configured as a quad 4M x 16 DRAM with a synchronous interface (all signals are registered on the positive edge of the clock signal, CK). Data outputs occur at both rising edges of CK and \overline{CK} d Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of a BankActivate command which is then followed by a Read or Write command. The EM6AA160 provides programmable Read or Write burst lengths of 2, 4, or 8. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst sequence. The refresh functions, either Auto or Self Refresh are easy to use. In addition, EM6AA160 features programmable DLL option. By having a programmable mode register and extended mode register, the system can choose the most suitable modes to maximize its performance. These devices are well suited for applications requiring high memory bandwidth, result in a device particularly well suited to high performance main memory and graphics applications.

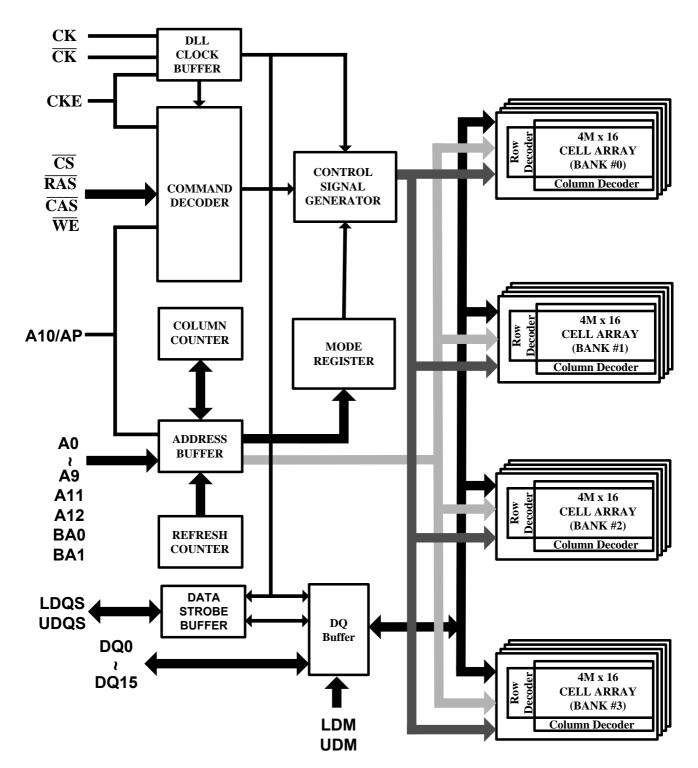
Table 1. Ordering Information

Part Number	Clock Frequency	Data Rate	Power Supply	Package
EM6AA160TS-4G	250MHz	500Mbps/pin	VDD 2.5V VDDQ 2.5V	TSOPII
EM6AA160TS-5G	200MHz	400Mbps/pin	VDD 2.5V VDDQ 2.5V	TSOPII

TS : indicates TSOPII package


G: indicates Pb and Halogen free

Etron Technology, Inc.


No. 6, Technology Rd. V, Hsinchu Science Park, Hsinchu, Taiwan 30078, R.O.C. TEL: (886)-3-5782345 FAX: (886)-3-5778671

EtronTech

Figure 1. Pin Assignment (Top View)

Figure 2. Block Diagram

Pin Descriptions

Table 2. Pin Details of EM6AA160

Symbol	Туре	Description
CK, CK	Input	Differential Clock: CK, \overline{CK} are driven by the system clock. All SDRAM input signals are sampled on the positive edge of CK. Both CK and \overline{CK} increment the internal burst counter and controls the output registers.
CKE	Input	Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CK signal. If CKE goes low synchronously with clock, the internal clock is suspended from the next clock cycle and the state of output and burst address is frozen as long as the CKE remains low. When all banks are in the idle state, deactivating the clock controls the entry to the Power Down and Self Refresh modes.
BA0, BA1	Input	Bank Activate: BA0 and BA1 define to which bank the BankActivate, Read, Write, or BankPrecharge command is being applied.
A0-A12	Input	Address Inputs: A0-A12 are sampled during the BankActivate command (row address A0-A12) and Read/Write command (column address A0-A8 with A10 defining Auto Precharge).
ĊS	Input	Chip Select: \overline{CS} enables (sampled LOW) and disables (sampled HIGH) the command decoder. All commands are masked when \overline{CS} is sampled HIGH. \overline{CS} provides for external bank selection on systems with multiple banks. It is considered part of the command code.
RAS	Input	Row Address Strobe: The \overline{RAS} signal defines the operation commands in conjunction with the \overline{CAS} and \overline{WE} signals and is latched at the positive edges of CK. When \overline{RAS} and \overline{CS} are asserted "LOW" and \overline{CAS} is asserted "HIGH," either the BankActivate command or the Precharge command is selected by the \overline{WE} signal. When the \overline{WE} is asserted "HIGH," the BankActivate command is selected and the bank designated by BA is turned on to the active state. When the \overline{WE} is asserted "LOW," the Precharge command is selected and the bank designated by BA is selected by BA is selected and the bank designated by BA is selected by BA is
CAS	Input	Column Address Strobe: The \overline{CAS} signal defines the operation commands in conjunction with the \overline{RAS} and \overline{WE} signals and is latched at the positive edges of CK. When \overline{RAS} is held "HIGH" and \overline{CS} is asserted "LOW," the column access is started by asserting \overline{CAS} "LOW." Then, the Read or Write command is selected by asserting \overline{WE} "HIGH" or "LOW".
WE	Input	Write Enable: The \overline{WE} signal defines the operation commands in conjunction with the \overline{RAS} and \overline{CAS} signals and is latched at the positive edges of CK. The \overline{WE} input is used to select the BankActivate or Precharge command and Read or Write command.
LDQS,	Input /	Bidirectional Data Strobe: Specifies timing for Input and Output data. Read Data
UDQS	Output	Strobe is edge triggered. Write Data Strobe provides a setup and hold time for data and DQM. LDQS is for DQ0~7, UDQS is for DQ8~15.
LDM, UDM	Input	Data Input Mask: Input data is masked when DM is sampled HIGH during a write cycle. LDM masks DQ0-DQ7, UDM masks DQ8-DQ15.
DQ0 - DQ15	Input / Output	Data I/O: The DQ0-DQ15 input and output data are synchronized with the positive edges of CK and \overline{CK} The I/Os are byte-maskable during Writes.
Vdd	Supply	Power Supply: 2.5∨ ± 5%.

EtronTech

Vddq	Supply	DQ Power: 2.5V ± 5% Provide isolated power to DQs for improved noise immunity.
Vssq	Supply	DQ Ground: Provide isolated ground to DQs for improved noise immunity.
Vref	Supply	Reference Voltage for Inputs: +0.5*VDDQ
NC	-	No Connect: These pins should be left unconnected.

Operation Mode

Fully synchronous operations are performed to latch the commands at the positive edges of CK. Table 3 shows the truth table for the operation commands.

Command	State	CKEn-1	CKEn	UDM	LDM	BA0,1	A10	A0-9, 11-12	CS	RAS	CAS	WE
BankActivate	Idle ⁽³⁾	Н	Х	Х	Х	V	Ro	w address	L	L	Н	Н
BankPrecharge	Any	Н	Х	Х	Х	V	L	Х	L	L	Н	L
PrechargeAll	Any	Н	Х	Х	Х	Х	Н	Х	L	L	Н	L
Write	Active ⁽³⁾	Н	Х	Х	Х	V	L	Column	L	Н	L	L
Write and AutoPrecharge	Active ⁽³⁾	Н	Х	Х	Х	V	Н	address (A0 ~ A8)	L	Н	L	L
Read	Active ⁽³⁾	Н	Х	Х	Х	V	L	Column	L	Н	L	Н
Read and Autoprecharge	Active ⁽³⁾	Н	Х	Х	Х	V	Н	address (A0 ~ A8)	L	Н	L	Н
Mode Register Set	Idle	Н	Х	Х	Х		OP o	code	L	L	L	L
Extended MRS	Idle	Н	Х	Х	Х		OP o	code	L	L	L	L
No-Operation	Any	Н	Х	Х	Х	Х	Х	Х	L	Н	Н	Н
Burst Stop	Active ⁽⁴⁾	Н	Х	Х	Х	Х	Х	Х	L	Н	Н	L
Device Deselect	Any	Н	Х	Х	Х	Х	Х	Х	Н	Х	Х	Х
AutoRefresh	Idle	Н	Н	Х	Х	Х	Х	Х	Ц	L	L	Н
SelfRefresh Entry	Idle	Н	L	Х	Х	Х	Х	Х	L	L	L	Н
SelfRefresh Exit	Idle	L	н	Х	Х	Х	Х	Х	н	Х	Х	Х
	(SelfRefresh)								Ц	Н	Н	Н
Precharge Power Down Mode Entry	Idle	Н	L	Х	Х	Х	Х	Х	Н	Х	Х	Х
Entry									L	Н	Н	Н
Precharge Power Down Mode Exit	Any	L	н	Х	Х	Х	Х	Х	Н	Х	Х	Х
	(PowerDown)								L	Н	Н	Н
Active Power Down Mode Entry	Active	Н	L	Х	Х	Х	Х	Х	Н	Х	Х	Х
Linuy									L	V	V	V
Active Power Down Mode Exit	Any	L	Н	Х	Х	Х	Х	Х	Н	Х	Х	Х
	(PowerDown)								L	Н	Н	Н
Data Input Mask Disable	Active	Н	Х	L	L	Х	Х	Х	Х	Х	Х	Х
Data Input Mask Enable(5)	Active	Н	Х	Н	Н	Х	Х	Х	Х	Х	Х	Х

Table 3. Truth Table (Note (1), (2))

Note: 1. V=Valid data, X=Don't Care, L=Low level, H=High level

2. CKEn signal is input level when commands are provided.

CKEn-1 signal is input level one clock cycle before the commands are provided.

3. These are states of bank designated by BA signal.

4. Device state is 2, 4, and 8 burst operation.

5. LDM and UDM can be enable respectively.

Mode Register Set (MRS)

The mode register is divided into various fields depending on functionality.

- Burst Length Field (A2~A0)
 - This field specifies the data length of column access using the A2~A0 pins and selects the Burst Length to be 2, 4, 8.

Table 4. Burst Length

A2	A1	A0	Burst Length
0	0	0	Reserved
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

• Addressing Mode Select Field (A3)

The Addressing Mode can be one of two modes, either Interleave Mode or Sequential Mode. Both Sequential Mode and Interleave Mode support burst length of 2, 4 and 8.

Table 5. Addressing Mode

A3	Addressing Mode
0	Sequential
1	Interleave

• Burst Definition, Addressing Sequence of Sequential and Interleave Mode

Table 6. Burst Address ordering

Puret Longth	Sta	rt Addr	ess	Sequential	Interleave				
Burst Length	A2	A1	A0	Sequential	intelleave				
2	Х	Х	0	0, 1	0, 1				
Z	Х	Х	1	1, 0	1, 0				
	Х	0	0	0, 1, 2, 3	0, 1, 2, 3				
4	Х	0	1	1, 2, 3, 0	1, 0, 3, 2				
4	Х	1	0	2, 3, 0, 1	2, 3, 0, 1				
	Х	1	1	3, 0, 1, 2	3, 2, 1, 0				
	0	0	0	0, 1, 2, 3, 4, 5, 6, 7	0, 1, 2, 3, 4, 5, 6, 7				
	0	0	1	1, 2, 3, 4, 5, 6, 7, 0	1, 0, 3, 2, 5, 4, 7, 6				
	0	1	0	2, 3, 4, 5, 6, 7, 0, 1	2, 3, 0, 1, 6, 7, 4, 5				
8	0	1	1	3, 4, 5, 6, 7, 0, 1, 2	3, 2, 1, 0, 7, 6, 5, 4				
0	1	0	0	4, 5, 6, 7, 0, 1, 2, 3	4, 5, 6, 7, 0, 1, 2, 3				
	1	0	1	5, 6, 7, 0, 1, 2, 3, 4	5, 4, 7, 6, 1, 0, 3, 2				
	1	1	0	6, 7, 0, 1, 2, 3, 4, 5	6, 7, 4, 5, 2, 3, 0, 1				
	1	1	1	7, 0, 1, 2, 3, 4, 5, 6	7, 6, 5, 4, 3, 2, 1, 0				

EtronTech

• CAS Latency Field (A6~A4)

This field specifies the number of clock cycles from the assertion of the Read command to the first read data. The minimum whole value of CAS Latency depends on the frequency of CK. The minimum whole value satisfying the following formula must be programmed into this field. $t_{CAC}(min) \leq CAS$ Latency X tck

Table 7. CAS Latency

A6	A5	A4	CAS Latency
0	0	0	Reserved
0	0	1	Reserved
0	1	0	Reserved
0	1	1	3 clocks
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

Test Mode field (A8~A7)

These two bits are used to enter the test mode and must be programmed to "00" in normal operation.

Table 8. Test Mode

A8	A7	Test Mode
0	0	Normal mode
1	0	DLL Reset

• (BA0, BA1)

Table 9. MRS/EMRS

BA1	BA0	A12 ~ A0
RFU	0	MRS Cycle
RFU	1	Extended Functions (EMRS)

Extended Mode Register Set (EMRS)

The Extended Mode Register Set stores the data for enabling or disabling DLL and selecting output driver strength. The default value of the extended mode register is not defined, therefore must be written after power up for proper operation. The extended mode register is written by asserting low on \overline{CS} , \overline{RAS} , \overline{CAS} , and \overline{WE} . The state of A0 ~ A12, BA0 and BA1 is written in the mode register in the same cycle as \overline{CS} , \overline{RAS} , \overline{CAS} , and \overline{WE} going low. The DDR SDRAM should be in all bank precharge with CKE already high prior to writing into the extended mode register. A1 is used for setting driver strength to normal, or weak. Two clock cycles are required to complete the write operation in the extended mode register. The mode register contents can be changed using the same command and clock cycle requirements during operation as long as all banks are in the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. Refer to the table for specific codes.

BA	I BAO	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
0	1		RFU must be set to "0"									DS0	DLL	
↓		ſ	,			_			_			_		
BA0	Mode	A	1 Dr	ive Stre	ngth	7							A0	DLL
0	MRS	0		Norma	al								0	Enable
1	EMRS	1		weak									1	Disable

Table 10. Extended Mode Resistor Bitmap

Symbol	Item	Rating	Unit
Vin, Vout	Input, Output Voltage	- 0.5~ V _{DD} + 0.5	V
Vdd, Vddq	Power Supply Voltage	- 0.5~3.7	V
TA	Ambient Temperature	0~70	°C
Tstg	Storage Temperature	- 65~150	°C
TSOLDER	Soldering Temperature	260	°C
Po	Power Dissipation	1	W
Іоит	Short Circuit Output Current	50	mA

Note: Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Table 12. Recommended D.C. Operating Conditions (TA = 0 ~ 70 °C)

-	-		•		
Parameter	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	Vdd	2.375	2.625	V	
Power Supply Voltage (for I/O Buffer)	Vddq	2.375	2.625	V	
Input Reference Voltage	Vref	0.49*V _{DDQ}	0.51* Vddq	V	
Input High Voltage (DC)	VIH (DC)	V _{REF} + 0.15	V _{DDQ} + 0.3	V	
Input Low Voltage (DC)	VIL (DC)	-0.3	Vref – 0.15	V	
Termination Voltage	Vtt	Vref - 0.04	Vref + 0.04	V	
Input Voltage Level, CLK and \overline{CLK} inputs	VIN (DC)	-0.3	Vddq + 0.3	V	
Input Different Voltage, CLK and CLK inputs	VID (DC)	-0.36	Vddq + 0.6	V	
Input leakage current	h	-2	2	μA	
Output leakage current	loz	-5	5	μA	
Output High Voltage	Vон	VTT + 0.76	-	V	IOH = -15.2 mA
Output Low Voltage	Vol	-	Vtt – 0.76	V	IOL = +15.2 mA
Note: All voltages are referenced to Ves					

Note: All voltages are referenced to Vss.

Table 13. Capacitance (VDD = 2.5V, f = 1MHz, T_A = 25 °C)

Symbol	Parameter	Min.	Max.	Unit
CIN	Input Capacitance (except for CK pin)	2.5	3.5	рF
	Input Capacitance (CK pin)	2.5	3.5	рF
Ci/O	DQ, DQS, DM Capacitance	4.0	5.0	рF

Note: These parameters are guaranteed by design, periodically sampled and are not 100% tested

Table 14. D.C.Characteristics (VDD = $2.5V \pm 5\%$, T_A = $0 \sim 70 \circ$ C)

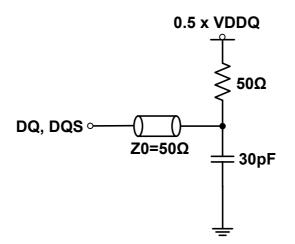
Parameter & Test Condition		-4	-5	Unit	Note
		Max			S
OPERATING CURRENT: One bank; Active-Precharge; tRC=tRC(min); tCK=tCK(min); DQ,DM and DQS inputs changing once per clock cycle; Address and control inputs changing once every two clock cycles.	IDD0	240	220	mA	
OPERATING CURRENT : One bank; Active-Read- Precharge; BL=4; CL=4; tRCDRD=4*tck; tRc=tRc(min); tck=tck(min); lout=0mA; Address and control inputs changing once per clock cycle	IDD1	270	250	mA	
PRECHARGE POWER-DOWN STANDBY CURRENT: All banks idle; power-down mode; tck=tck(min); CKE=LOW	IDD2P	40	40	mA	
IDLE STANDLY CURRENT : CKE = HIGH; CS =HIGH(DESELECT); All banks idle; tck=tck(min); Address and control inputs changing once per clock cycle; VIN=VREF for DQ, DQS and DM	IDD2N	80	70	mA	
ACTIVE POWER-DOWN STANDBY CURRENT : one bank active; power-down mode; CKE=LOW; tCK=tCK(min)	IDD3P	65	55	mA	
ACTIVE STANDBY CURRENT: \overline{CS} =HIGH;CKE=HIGH; one bank active ; tRC=tRC(max);tCK=tCK(min);Address and control inputs changing once per clock cycle; DQ,DQS,and DM inputs changing twice per clock cycle	IDD3N	110	100	mA	
OPERATING CURRENT BURST READ : BL=2; READS; Continuous burst; one bank active; Address and control inputs changing once per clock cycle; tCK=tCK(min); lout=0mA;50% of data changing on every transfer	IDD4R	450	420	mA	
OPERATING CURRENT BURST Write : BL=2; WRITES; Continuous Burst ;one bank active; address and control inputs changing once per clock cycle; tck=tck(min); DQ,DQS,and DM changing twice per clock cycle; 50% of data changing on every transfer	IDD4W	450	420	mA	
AUTO REFRESH CURRENT : tRC=tRFC(min); tCK=tCK(min)	IDD5	250	250	mA	
SELF REFRESH CURRENT: Sell Refresh Mode ; CKE 0.2V;tcк=tck(min)	IDD6	5	5	mA	1

Table 15.Electrical Characteristics and Recommended A.C.Operating Condition (VDD = $2.5V \pm 5\%$, T_A = $0 \sim 70 \circ$ C)

0	Demonster	-4		-5		1114	Nata
Symbol	Parameter	Min	Max	Min	Max	Unit	Note
tск	Clock cycle time CL = 3	4	10	5	10	ns	
tсн	Clock high level width	0.45	0.55	0.45	0.55	tск	
tc∟	Clock low level width	0.45	0.55	0.45	0.55	tск	
tнр	Clock half period	tCLMIN or tCHMIN	-	tCLMIN or tCHMIN	-	ns	2
tнz	Data-out-high impedance time from CK, \overline{CK}	-0.7	0.7	-0.7	0.7	ns	3
t∟z	Data-out-low impedance time from CK, \overline{CK}	-0.7	0.7	-0.7	0.7	ns	3
t DQSCK	DQS-out access time from CK, \overline{CK}	-0.7	0.7	-0.7	0.7	ns	
tac	Output access time from CK, \overline{CK}	-0.7	0.7	-0.7	0.7	ns	
tDQSQ	DQS-DQ Skew	-	0.4	-	0.45	ns	
trpre	Read preamble	0.9	1.1	0.9	1.1	tск	
t RPST	Read postamble	0.4	0.6	0.4	0.6	tск	
tDQSS	CK to valid DQS-in	0.8	1.2	0.8	1.2	tск	
twpres	DQS-in setup time	0	-	0	-	ns	4
twpre	DQS write preamble	0.35	-	0.35	-	tск	
twpst	DQS write postamble	0.4	0.6	0.4	0.6	tск	5
tdqsн	DQS in high level pulse width	0.35	-	0.35	-	tск	
t DQSL	DQS in low level pulse width	0.35	-	0.35	-	tск	
tis	Address and Control input setup time	0.9	-	1.0	-	ns	6
tıн	Address and Control input hold time	0.9	-	1.0	-	ns	6
tos	DQ & DM setup time to DQS	0.45	-	0.45	-	ns	
tон	DQ & DM hold time to DQS	0.45	-	0.45	-	ns	
tqн	DQ/DQS output hold time from DQS	tHP -0.5	-	tHP -0.55	-	ns	
trc	Row cycle time	60	-	60	-	ns	
t RFC	Refresh row cycle time	72	-	72	-	ns	
tras	Row active time	40	120K	40	120K	ns	
trcd	RAS to CAS Delay	20	-	20	-	ns	
t RP	Row precharge time	20	-	20	-	ns	
trrd	Row active to Row active delay	8	-	10	-	ns	
twr	Write recovery time	12	-	15	-	ns	
tw TR	Internal Write to Read Command Delay	2	-	2	-	tск	
t MRD	Mode register set cycle time	8	-	10	-	ns	
trefi	Average Periodic Refresh interval	-	7.8	-	7.8	μS	7
txsrd	Self refresh exit to read command delay	200	-	200	-	tcк	
txsnr	Self refresh exit to non-read command delay	75	-	75	-	ns	
t xpnr	Exit Power down to command	1	-	1	-	tск	
t xprd	Exit Power down to Read command	1	-	1	-	tск	8
t dal	Auto Precharge write recovery + precharge time	36	-	35	-	ns	
tdipw	DQ and DM input puls width	1.75	-	1.75	-	ns	

Table 16. Recommended A.C. Operating Conditions (VDD = 2.5V ± 5%, TA = 0~70 °C)

Parameter	Symbol	Min.	Max.	Unit	Note
Input High Voltage (AC)	Vih (AC)	Vref + 0.35	-	V	
Input Low Voltage (AC)	VIL (AC)	-	Vref – 0.35	V	
Input Different Voltage, CLK and \overline{CLK} inputs	VID (AC)	0.7	Vddq + 0.6	V	
Input Crossing Point Voltage, CLK and CLK inputs	VIX (AC)	0.5*Vddq-0.2	0.5*VDDQ+0.2	V	

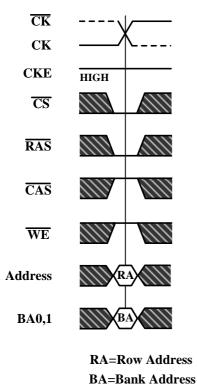

Note:

- 1) Enables on-chip refresh and address counters.
- 2) Min (t_{CL}, t_{CH}) refers to ther smaller of the actual clock low time and actual clock high time as provided to the device.
- t_{HZ} and t_{LZ} transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to a specific voltage level, but specify when the device output is no longer driving (HZ), or begins driving (LZ).
- 4) The specific requirement is that DQS be valid (High, Low, or at some point on a valid transition) on or before this CLK edge. A valid transition is defined as monotonic, and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from High-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS.
- 5) The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly.
- 6) For command/address and CK & CK slew rate 1.0V/ns.
- 7) A maximum of eight AUTO REFRESH commands can be posted to any given DDR SDRAM device.
- 8) txprd should be 200 tck in the condition of the unstable CLK operation during the power down mode.

A.C. Test Conditions Table 17. SSTL _2 Interface

Reference Level of Output Signals (VREF)	0.5 * Vddq
Output Load	Reference to the Under Output Load (A)
Input Signal Levels	Vref+0.35 V / Vref-0.35 V
Input Signals Slew Rate	1 V/ns
Reference Level of Input Signals	0.5 * VDDQ

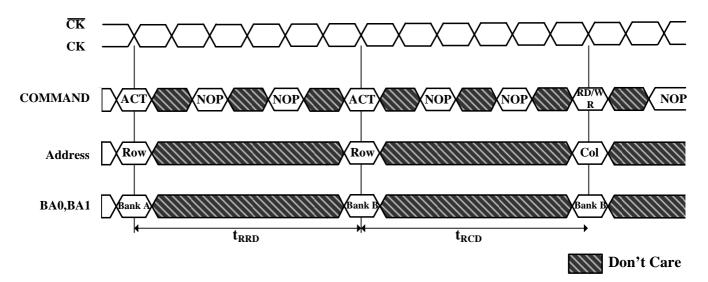
Figure 3. SSTL_2 A.C. Test Load


Power up Sequence

Power up must be performed in the following sequence.

- 1) Apply power to V_{DD} before or at the same time as V_{DDQ}, V_{TT} and V_{REF} when all input signals are held "NOP" state and maintain CKE "LOW".
- 2) Start clock and maintain stable condition for minimum $200\mu s$.
- 3) Issue a "NOP" command and keep CKE "HIGH"
- 4) Issue a "Precharge All" command.
- 5) Issue EMRS enable DLL.
- 6) Issue MRS reset DLL. (An additional 200 clock cycles are required to lock the DLL).
- 7) Precharge all banks of the device.
- 8) Issue two or more Auto Refresh commands.
- 9) Issue MRS with A8 to low to initialize the mode register.

Timing Waveforms


Figure 4. Activating a Specific Row in a Specific Bank

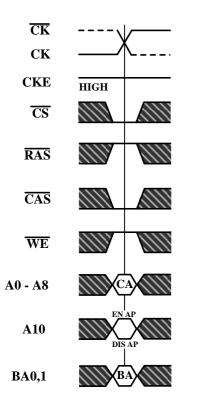
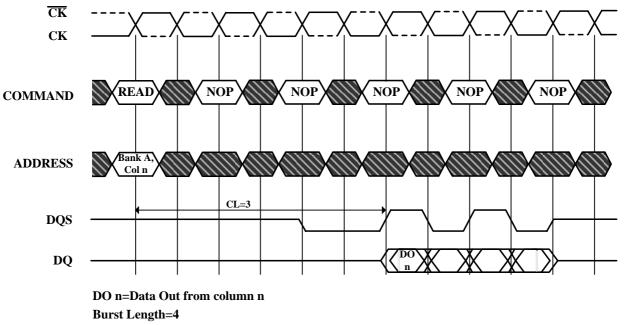
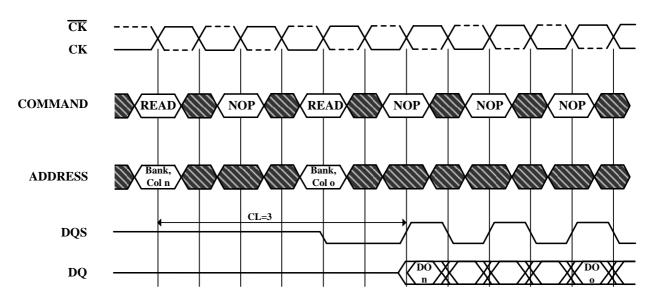

DA-Dalik Auuress

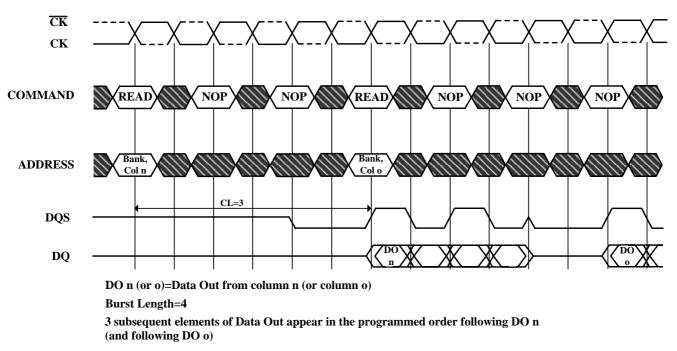
Figure 5. tRCD and tRRD Definition


Figure 6. READ Command

CA=Column Address BA=Bank Address EN AP=Enable Autoprecharge DIS AP=Disable Autoprecharge


Figure 7. Read Burst Required CAS Latencies (CL=3)

3 subsequent elements of Data Out appear in the programmed order following DO n


Figure 8. Consecutive Read Bursts Required CAS Latencies (CL=3)

DO n (or o)=Data Out from column n (or column o) Burst Length=4 or 8 (if 4, the bursts are concatenated; if 8, the second burst interrupts the first) 3 subsequent elements of Data Out appear in the programmed order following DO n 3 (or 7) subsequent elements of Data Out appear in the programmed order following DO o Read commands shown must be to the same device

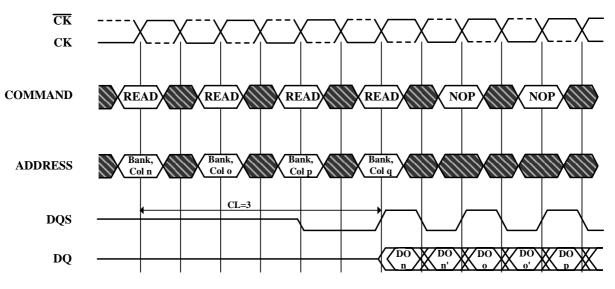
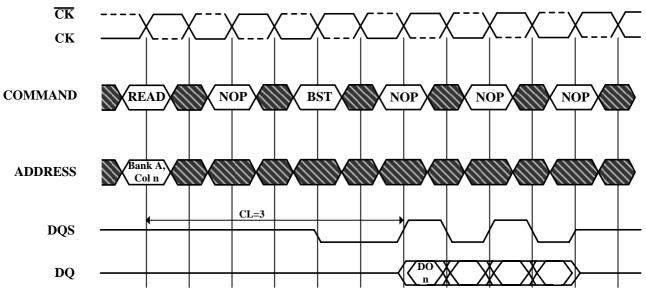


Figure 9. Non-Consecutive Read Bursts Required CAS Latencies (CL=3)

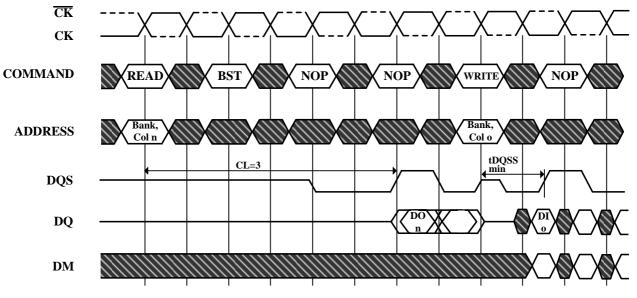
Figure 10. Random Read Accesses Required CAS Latencies (CL=3)



DO n, etc. =Data Out from column n, etc.

n', etc. =the next Data Out following DO n, etc. according to the programmed burst order Burst Length=2,4 or 8 in cases shown. If burst of 4 or 8, the burst is interrupted Reads are to active rows in any banks

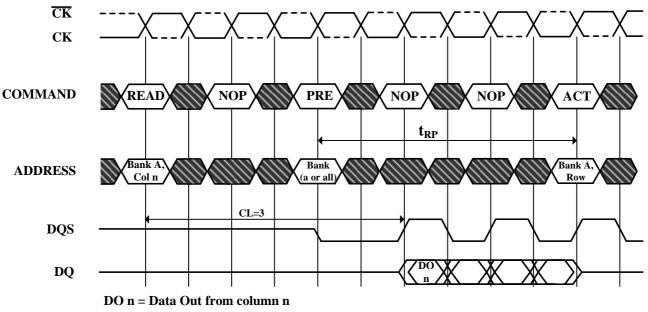
Figure 11. Terminating a Read Burst Required CAS Latencies (CL=3)


DO n = Data Out from column n

Cases shown are bursts of 8 terminated after 4 data elements

3 subsequent elements of Data Out appear in the programmed order following DO n

Figure 12. Read to Write Required CAS Latencies (CL=3)

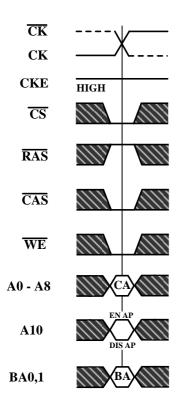

DO n (or o)= Data Out from column n (or column o)

Burst Length= 4 in the cases shown (applies for bursts of 8 as well; if burst length is 2, the BST command shown can be NOP)

1 subsequent element of Data Out appears in the programmed order following DO n Data in elements are applied following DI o in the programmed order

Figure 13. Read to Precharge Required CAS Latencies (CL=3)

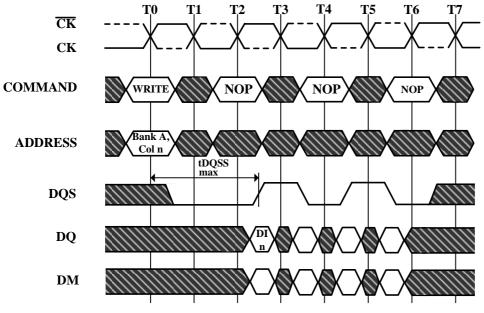
Cases shown are either uninterrupted bursts of 4, or interrupted bursts of 8 3 subsequent elements of Data Out appear in the programmed order following DO n


Precharge may be applied at (BL/2) tCK after the READ command

Note that Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks

The Active command may be applied if tRC has been met

Figure 14. Write Command



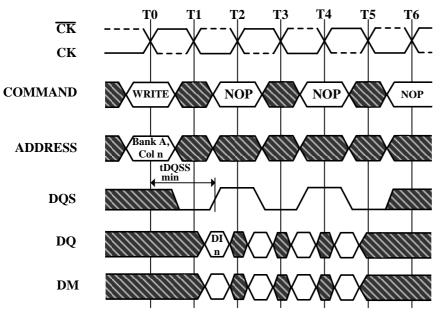
CA=Column Address BA=Bank Address EN AP=Enable Autoprecharge DIS AP=Disable Autoprecharge

EtronTech

Figure 15. Write Max DQSS

DI n = Data In for column n

3 subsequent elements of Data In are applied in the programmed order following DI n

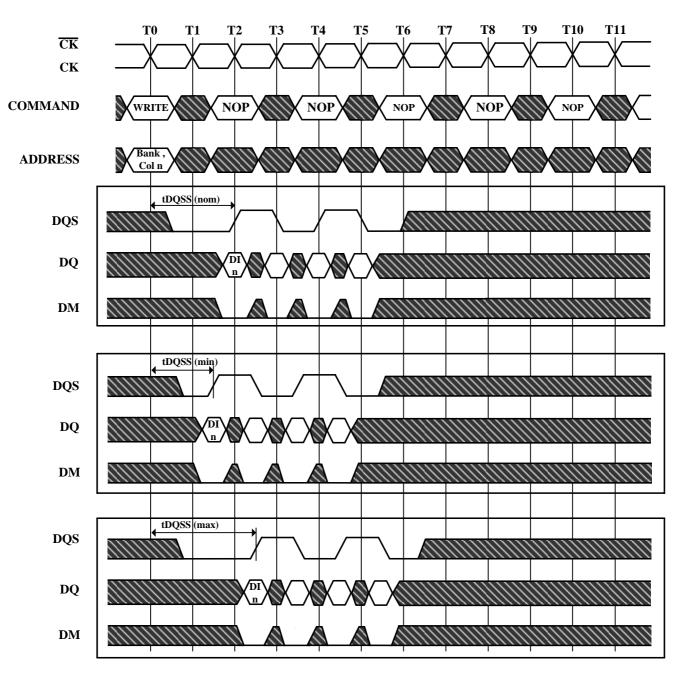

A non-interrupted burst of 4 is shown

A10 is LOW with the WRITE command (AUTO PRECHARGE disabled) $\label{eq:command}$

EtronTech

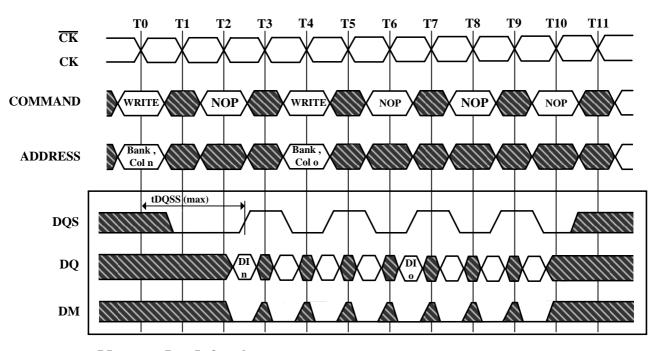
Figure 16. Write Min DQSS

DI n = **Data In for column n**


3 subsequent elements of Data In are applied in the programmed order following DI n

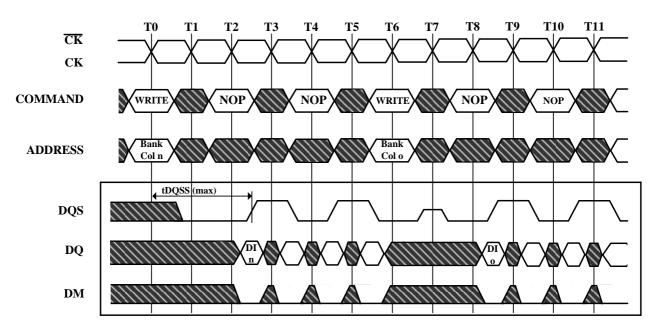
A non-interrupted burst of 4 is shown

A10 is LOW with the WRITE command (AUTO PRECHARGE disabled)


Figure 17. Write Burst Nom, Min, and Max tDQSS

DI n = Data In for column n 3 subsequent elements of Data are applied in the programmed order following DI n A non-interrupted burst of 4 is shown A10 is LOW with the WRITE command (AUTO PRECHARGE disabled) DM=UDM & LDM

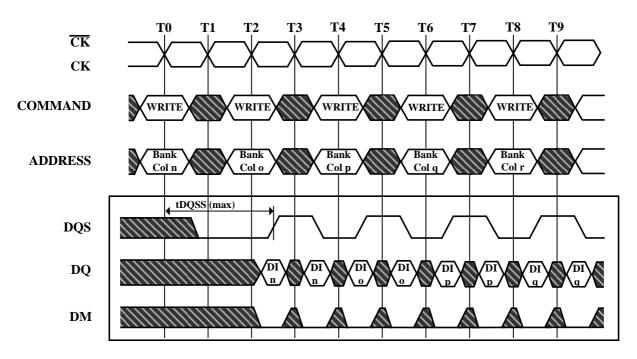
Figure 18. Write to Write Max tDQSS



DI n , etc. = Data In for column n,etc. 3 subsequent elements of Data In are applied in the programmed order following DI n 3 subsequent elements of Data In are applied in the programmed order following DI o Non-interrupted bursts of 4 are shown DM= UDM & LDM

Etron Confidential

Figure 19. Write to Write Max tDQSS, Non Consecutive

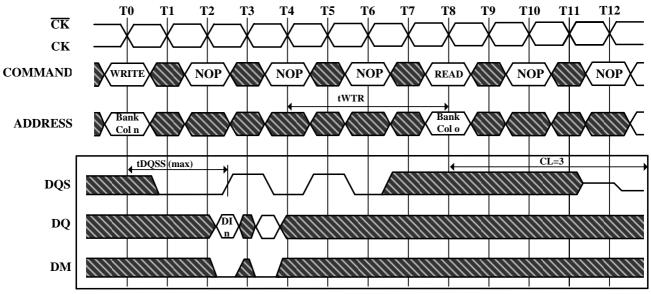


DI n, etc. = Data In for column n, etc.

3 subsequent elements of Data In are applied in the programmed order following DI n 3 subsequent elements of Data In are applied in the programmed order following DI o Non-interrupted bursts of 4 are shown DM= UDM & LDM

Figure 20. Random Write Cycles Max tDQSS

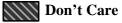
DI n, etc. = Data In for column n, etc.


n', etc. = the next Data In following DI n, etc. according to the programmed burst order Programmed Burst Length 2, 4, or 8 in cases shown

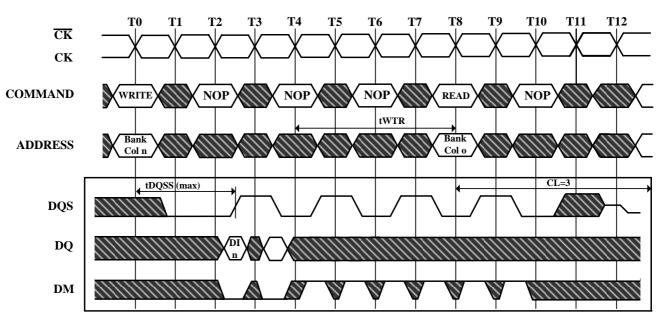
If burst of 4 or 8, the burst would be truncated

Each WRITE command may be to any bank and may be to the same or different devices DM= UDM & LDM

Figure 21. Write to Read Max tDQSS Non Interrupting


DI n, etc. = Data In for column n, etc.

1 subsequent elements of Data In are applied in the programmed order following DI n A non-interrupted burst of 4 is shown


tWTR is referenced from the first positive CK edge after the last Data In Pair

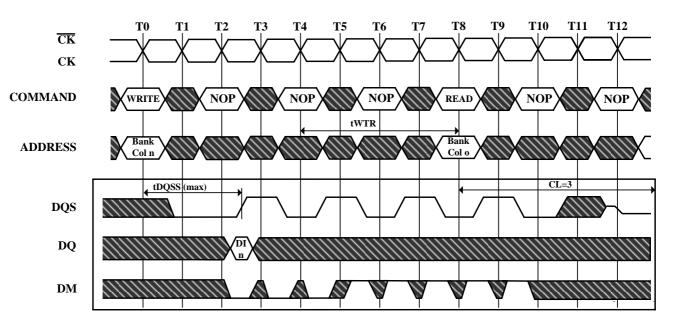
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)

The READ and WRITE commands are to the same devices but not necessarily to the same bank DM= UDM & LDM

Figure 22. Write to Read Max tDQSS Interrupting

DI n, etc. = Data In for column n, etc.

1 subsequent elements of Data In are applied in the programmed order following DI n An interrupted burst of 8 is shown, 2 data elements are written


tWTR is referenced from the first positive CK edge after the last Data In Pair

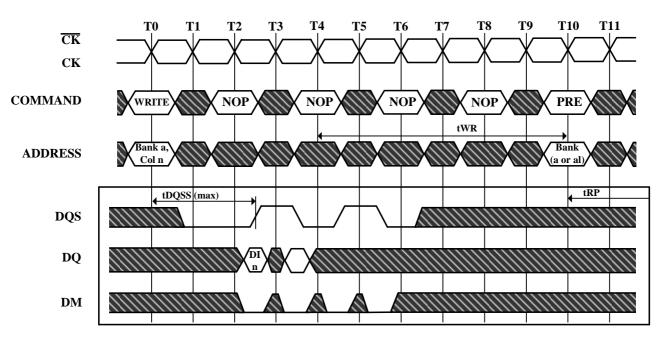
A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)

The READ and WRITE commands are to the same devices but not necessarily to the same bank DM= UDM & LDM

Figure 23. Write to Read Max tDQSS, ODD Number of Data, Interrupting

DI n = Data In for column n

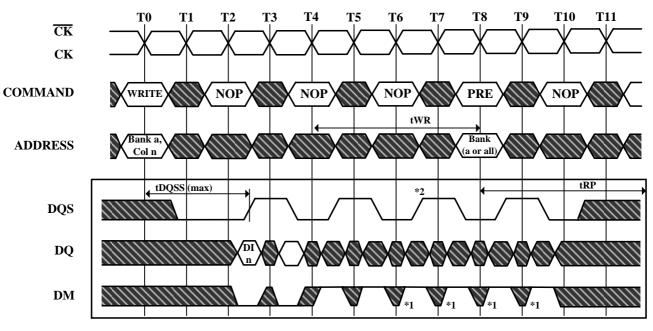
An interrupted burst of 8 is shown, 3 data elements are written


tWTR is referenced from the first positive CK edge after the last Data In Pair (not the last desired Data In element)

A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)

The READ and WRITE commands are to the same devices but not necessarily to the same bank DM= UDM & LDM

Figure 24. Write to Precharge Max tDQSS, NON- Interrupting


DI n = Data In for column n

1 subsequent elements of Data In are applied in the programmed order following DI n A non-interrupted burst of 4 is shown

tWR is referenced from the first positive CK edge after the last Data In Pair A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled) DM= UDM & LDM

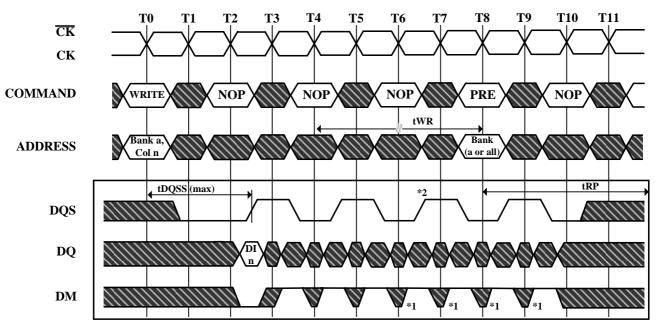
Figure 25. Write to Precharge Max tDQSS, Interrupting

DI n = **Data** In for column n

An interrupted burst of 4 or 8 is shown, 2 data elements are written

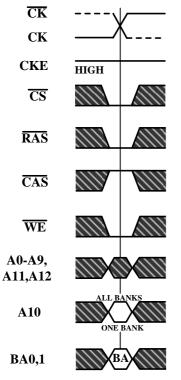
tWR is referenced from the first positive CK edge after the last Data In Pair

A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled)

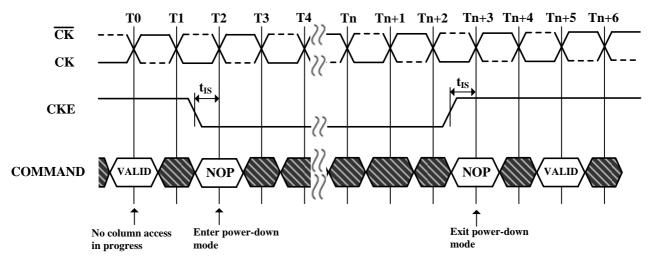

*1 = can be don't care for programmed burst length of 4

*2 = for programmed burst length of 4, DQS becomes don't care at this point

DM= UDM & LDM


Figure 26. Write to Precharge Max tDQSS ODD Number of Data Interrupting

DI n = Data In for column n An interrupted burst of 4 or 8 is shown, 1 data element is written tWR is referenced from the first positive CK edge after the last Data In Pair A10 is LOW with the WRITE command (AUTO PRECHARGE is disabled) *1 = can be don't care for programmed burst length of 4 *2 = for programmed burst length of 4, DQS becomes don't care at this point DM= UDM & LDM


Figure 27. Precharge Command

BA= Bank Address (if A10 is LOW, otherwise don't care)

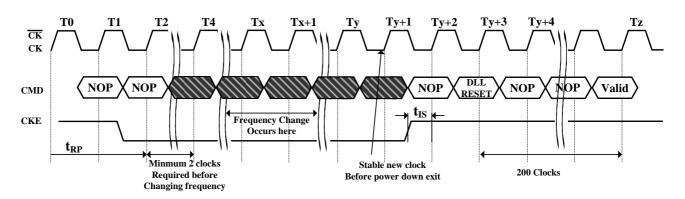


Figure 28. Power-Down

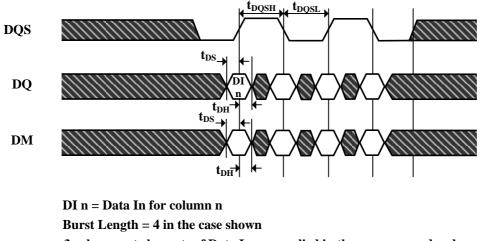
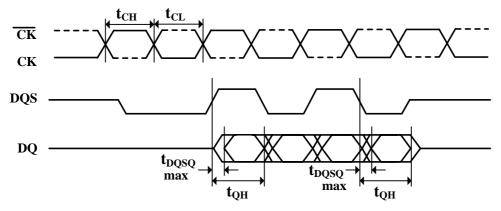


Figure 29. Clock Frequency Change in Precharge


Figure 30. Data input (Write) Timing

3 subsequent elements of Data In are applied in the programmed order following DI n

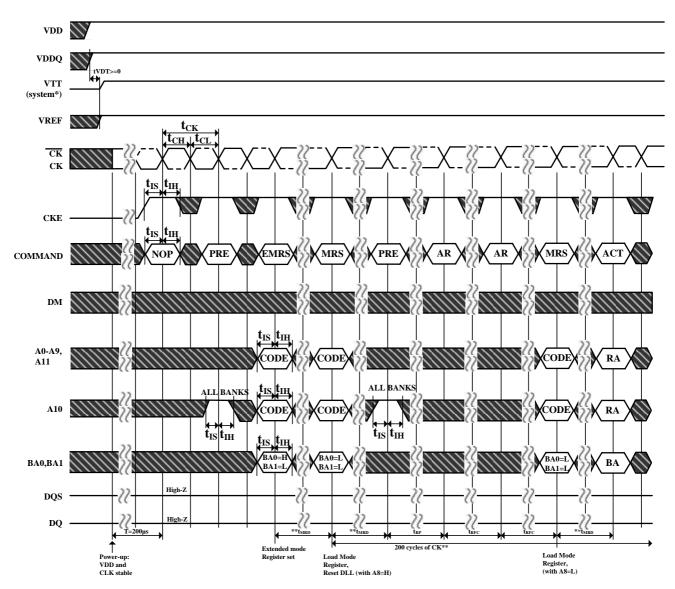
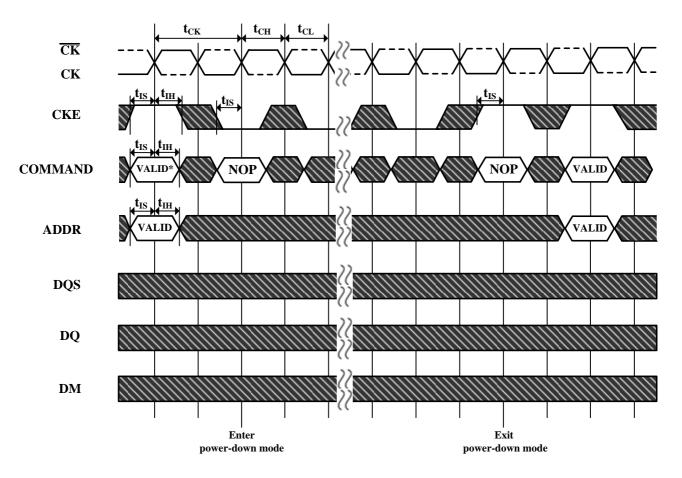
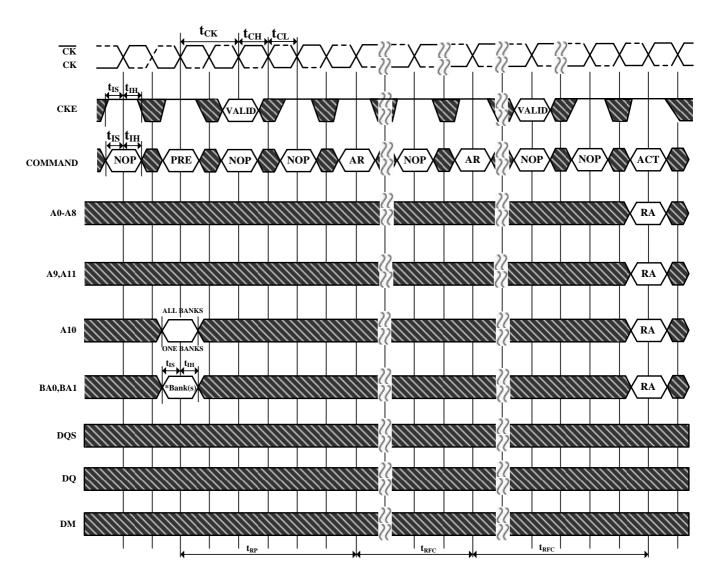


Figure 31. Data Output (Read) Timing

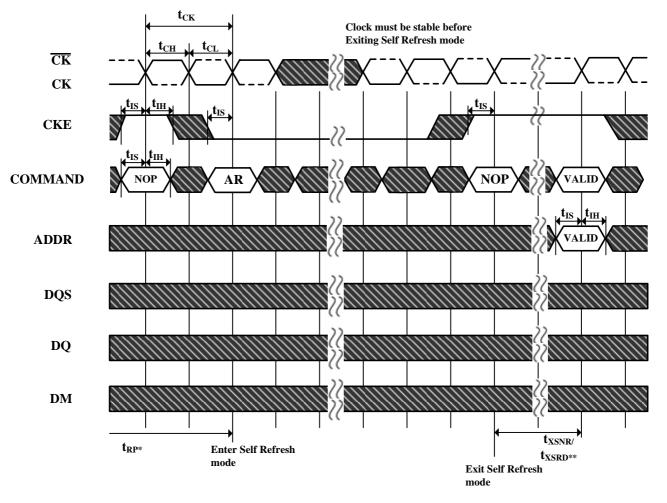
Burst Length = 4 in the case shown



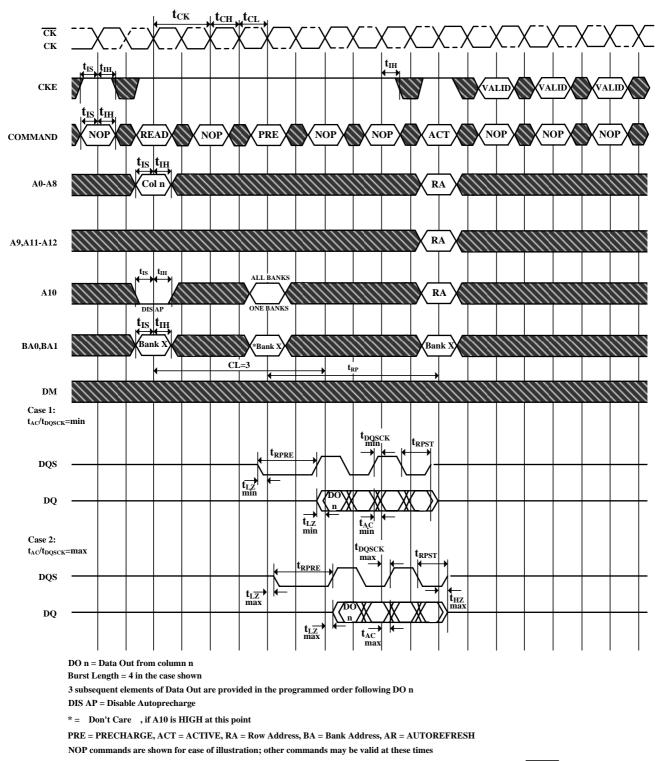
*=VTT is not applied directly to the device, however tVTD must be greater than or equal to zero to avoid device latch-up **=tMRD is required before any command can be applied, and 200 cycles of CK are required before any executable command can be applied The two Auto Refresh commands may be moved to follow the first MRS but precede the second PRECHARGE ALL command

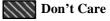

Figure 33. Power Down Mode

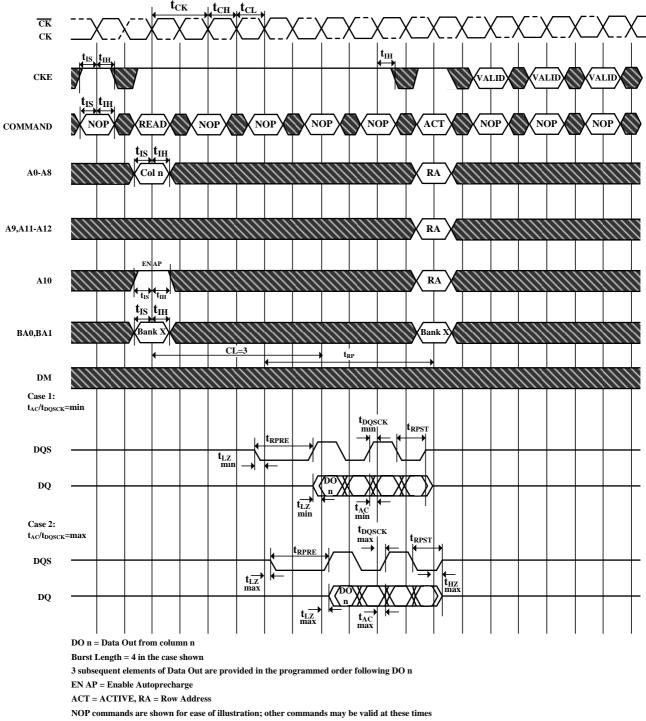
No column accesses are allowed to be in progress at the time Power-Down is entered *=If this command is a PRECHARGE ALL (or if the device is already in the idle state) then the Power-Down mode shown is Precharge Power Down. If this command is an ACTIVE (or if at least one row is already active) then the Power-Down mode shown is active Power Down.

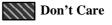

Figure 34. Auto Refresh Mode

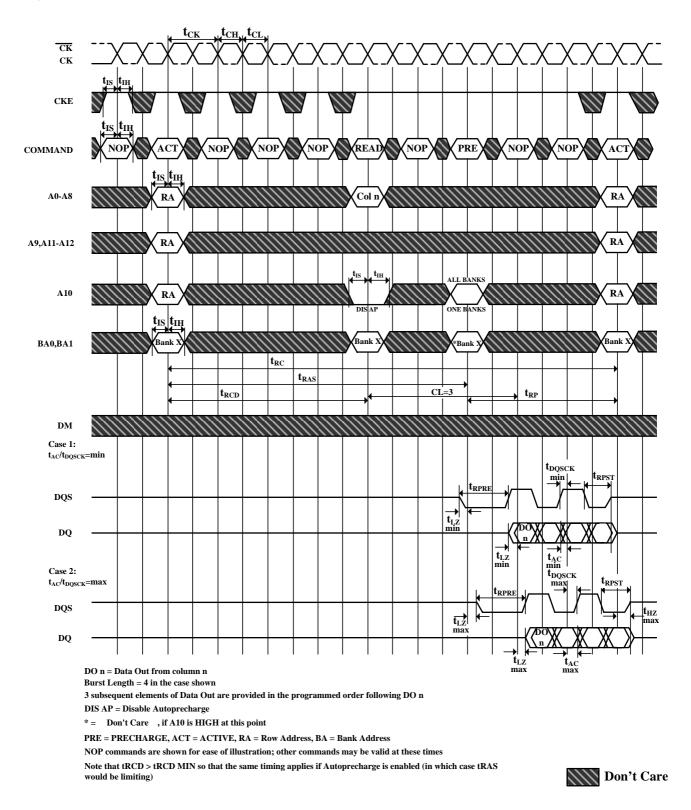
* = Don't Care , if A10 is HIGH at this point; A10 must be HIGH if more than one bank is active (i.e., must precharge all active banks) PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address, AR = AUTOREFRESH NOP commands are shown for ease of illustration; other valid commands may be possible after tRFC DM, DQ and DQS signals are all Don't Care /High-Z for operations shown


Figure 35. Self Refresh Mode


* = Device must be in the All banks idle state prior to entering Self Refresh mode ** = tXSNR is required before any non-READ command can be applied, and tXSRD (200 cycles of CK) is required before a READ command can be applied.


Figure 36. Read without Auto Precharge


Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks


Figure 37. Read with Auto Precharge

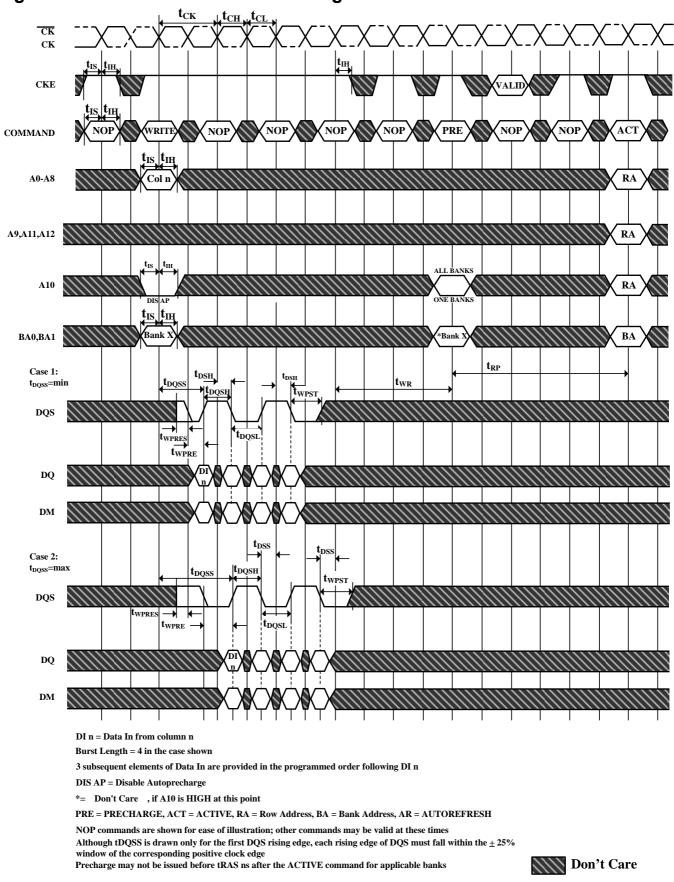
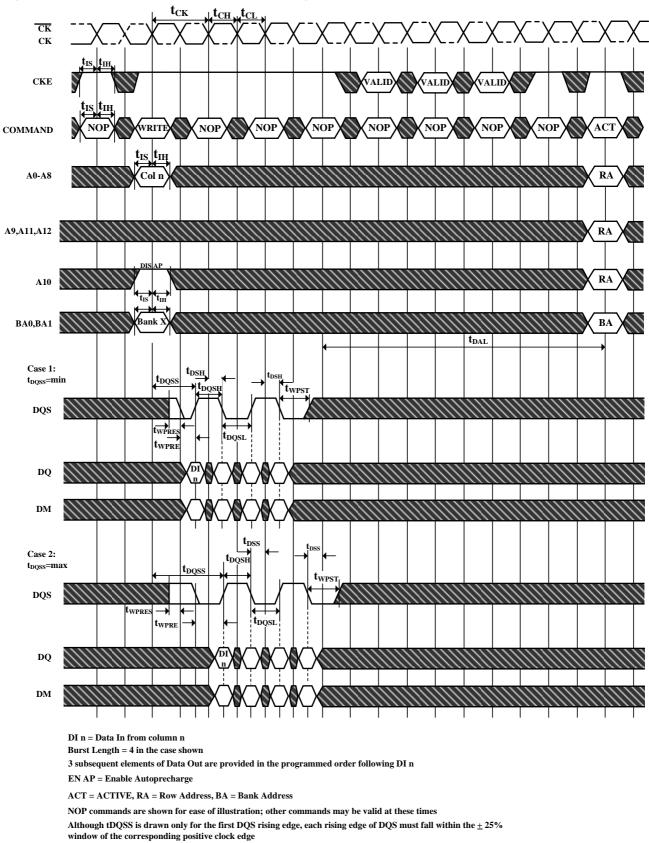

The READ command may not be issued until tRAP has been satisfied. If Fast Autoprecharge is supported, tRAP = tRCD, else the READ may not be issued prior to tRASmin (BL*tCK/2)

Figure 38. Bank Read Access



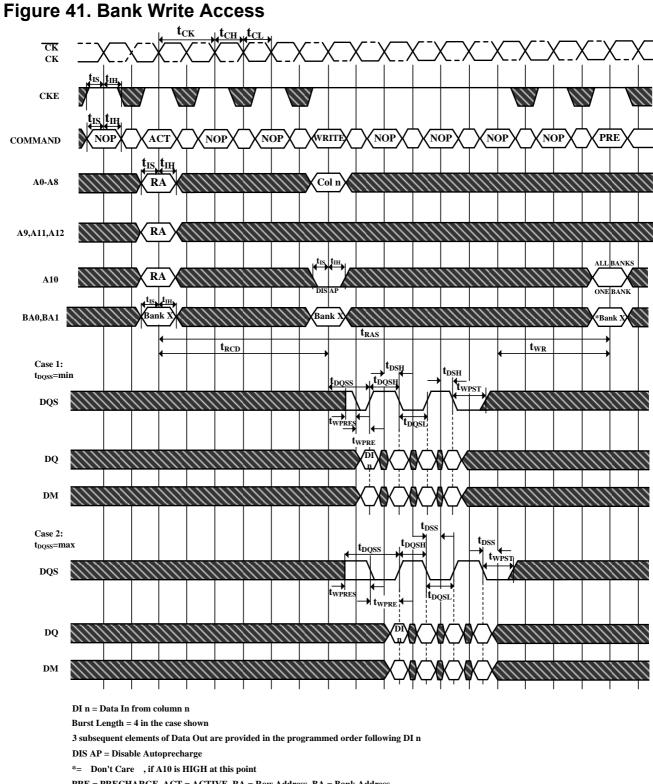
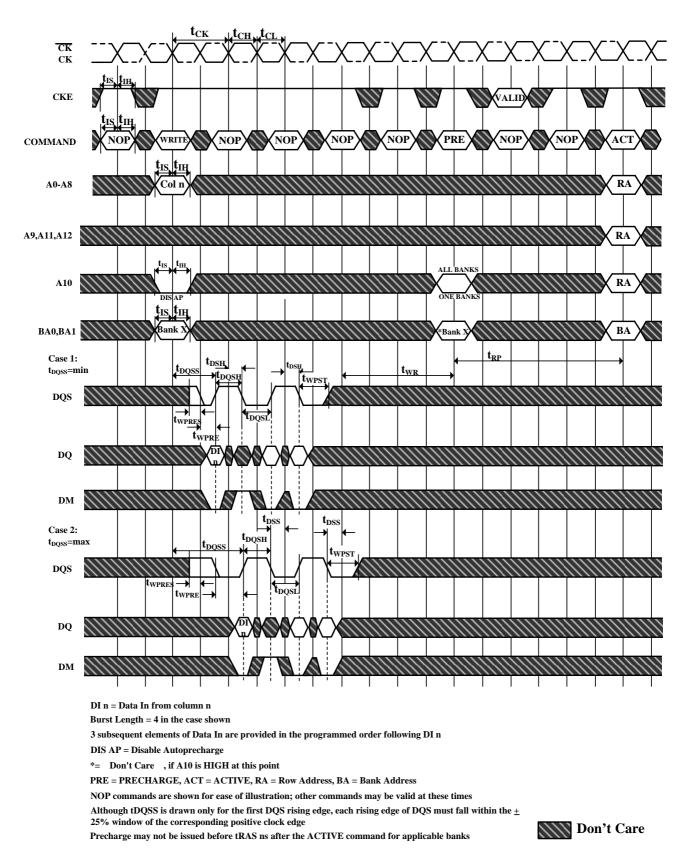


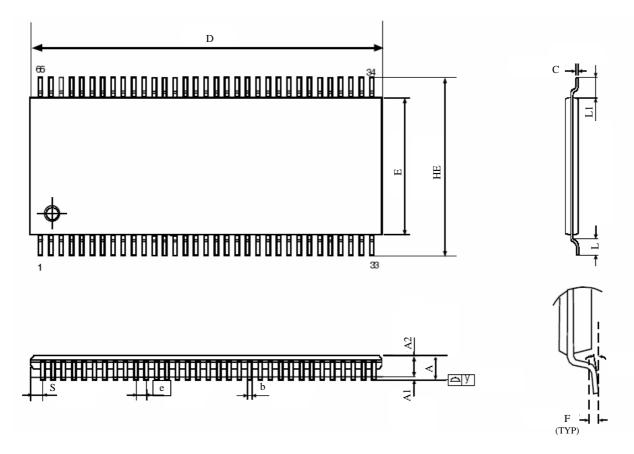
Figure 39. Write without Auto Precharge

Don't Care

PRE = PRECHARGE, ACT = ACTIVE, RA = Row Address, BA = Bank Address


NOP commands are shown for ease of illustration; other commands may be valid at these times Although tDQSS is drawn only for the first DQS rising edge, each rising edge of DQS must fall within the $\pm 25\%$ window of the corresponding positive clock edge

Precharge may not be issued before tRAS ns after the ACTIVE command for applicable banks


49

Don't Care

Figure 42. Write DM Operation

Figure 43. 66 Pin TSOP II Package Outline Drawing Information Units: mm

Symbol	Dimension in mm			Dimension in inch		
	Min	Nom	Max	Min	Nom	Max
Α			1.2			0.047
A1	0.05		0.2	0.002		0.008
A2	0.9	1.0	1.1	0.035	0.039	0.043
b	0.22		0.45	0.009		0.018
е		0.65			0.026	
С	0.095	0.125	0.21	0.004	0.005	0.008
D	22.09	22.22	22.35	0.87	0.875	0.88
E	10.03	10.16	10.29	0.395	0.4	0.405
HE	11.56	11.76	11.96	0.455	0.463	0.471
L	0.40		0.75	0.016		0.03
L1		0.8			0.032	
F		0.25			0.01	
	0°		8°	0°		8°
S		0.71			0.028	
QУ			0.10			0.004

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.