Atmel

Atmel 8-bit AVR Microcontroller with 2/4/8K Bytes In-System Programmable Flash

ATtiny25/V / ATtiny45/V / ATtiny85/V Summary

Features

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 120 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
- Non-volatile Program and Data Memories
 - 2/4/8K Bytes of In-System Programmable Program Memory Flash
 - Endurance: 10,000 Write/Erase Cycles
 - 128/256/512 Bytes In-System Programmable EEPROM
 - Endurance: 100,000 Write/Erase Cycles
 - 128/256/512 Bytes Internal SRAM
 - Programming Lock for Self-Programming Flash Program and EEPROM Data Security
- Peripheral Features
 - 8-bit Timer/Counter with Prescaler and Two PWM Channels
 - 8-bit High Speed Timer/Counter with Separate Prescaler
 - 2 High Frequency PWM Outputs with Separate Output Compare Registers
 - Programmable Dead Time Generator
 - USI Universal Serial Interface with Start Condition Detector
 - 10-bit ADC
 - 4 Single Ended Channels
 - 2 Differential ADC Channel Pairs with Programmable Gain (1x, 20x)
 - Temperature Measurement
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
- Special Microcontroller Features
 - debugWIRE On-chip Debug System
 - In-System Programmable via SPI Port
 - External and Internal Interrupt Sources
 - Low Power Idle, ADC Noise Reduction, and Power-down Modes
 - Enhanced Power-on Reset Circuit
 - Programmable Brown-out Detection Circuit
 - Internal Calibrated Oscillator
- I/O and Packages
 - Six Programmable I/O Lines
 - 8-pin PDIP, 8-pin SOIC, 20-pad QFN/MLF, and 8-pin TSSOP (only ATtiny45/V)
- Operating Voltage
 - 1.8 5.5V for ATtiny25V/45V/85V
 - 2.7 5.5V for ATtiny25/45/85
- Speed Grade
 - ATtiny25V/45V/85V: 0 4 MHz @ 1.8 5.5V, 0 10 MHz @ 2.7 5.5V
 - ATtiny25/45/85: 0 10 MHz @ 2.7 5.5V, 0 20 MHz @ 4.5 5.5V
- Industrial Temperature Range
- Low Power Consumption
 - Active Mode:
 - 1 MHz, 1.8V: 300 μA
 - Power-down Mode:
 - 0.1 µA at 1.8V

Rev. 2586OS-AVR-02/13

1. Pin Configurations

Figure 1-1. Pinout ATtiny25/45/85

DNC: Do Not Connect

1.1 Pin Descriptions

1.1.1 VCC

Supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB5:PB0)

Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny25/45/85 as listed in "Alternate Functions of Port B" on page 59.

On ATtiny25, the programmable I/O ports PB3 and PB4 (pins 2 and 3) are exchanged in ATtiny15 Compatibility Mode for supporting the backward compatibility with ATtiny15.

1.1.4 **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 21-4 on page 164. Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) I/O pin.

2. Overview

The ATtiny25/45/85 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny25/45/85 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny25/45/85 provides the following features: 2/4/8K bytes of In-System Programmable Flash, 128/256/512 bytes EEPROM, 128/256/256 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers, one 8-bit Timer/Counter with compare modes, one 8-bit high speed Timer/Counter, Universal Serial Interface, Internal and External Interrupts, a 4-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core.

The ATtiny25/45/85 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits.

3. About

3.1 Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

3.2 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in the extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically, this means "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR". Note that not all AVR devices include an extended I/O map.

3.3 Capacitive Touch Sensing

Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel AVR microcontrollers. The QTouch Library includes support for QTouch[®] and QMatrix[®] acquisition methods.

Touch sensing is easily added to any application by linking the QTouch Library and using the Application Programming Interface (API) of the library to define the touch channels and sensors. The application then calls the API to retrieve channel information and determine the state of the touch sensor.

The QTouch Library is free and can be downloaded from the Atmel website. For more information and details of implementation, refer to the QTouch Library User Guide – also available from the Atmel website.

3.4 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F	SREG	I	Т	Н	S	V	Ν	Z	С	page 8
0x3E	SPH	-	-	-	-	-	-	SP9	SP8	page 11
0x3D	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 11
0x3C	Reserved				-	_				
0x3B	GIMSK	-	INT0	PCIE	-	-	-	-	-	page 50
0x3A	GIFR	-	INTF0	PCIF	-	-	-	_	-	page 51
0x39	TIMSK	-	OCIE1A	OCIE1B	OCIE0A	OCIE0B	TOIE1	TOIE0	-	pages 80, 101
0x38	TIFR	-	OCF1A	OCF1B	OCF0A	OCF0B	TOV1	TOV0	-	page 80
0x37	SPMCSR	-	-	RSIG	CTPB	RFLB	PGWRT	PGERS	SPMEN	page 144
0x36	Reserved		-	-	-	-				
0x35	MCUCR	BODS	PUD	SE	SM1	SM0	BODSE	ISC01	ISC00	pages 36, 50, 63
0x34	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	page 43,
0x33	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	page 78
0x32	TCNT0				Timer/0	Counter0				page 79
0x31	OSCCAL				Oscillator Calib	pration Register			-	page 30
0x30	TCCR1	CTC1	PWM1A	COM1A1	COM1A0	CS13	CS12	CS11	CS10	pages 88, 99
0x2F	TCNT1				Timer/C	Counter1				pages <mark>90</mark> , 101
0x2E	OCR1A			Timer	/Counter1 Output	ut Compare Reg	ister A			pages 90, 101
0x2D	OCR1C			Timer	/Counter1 Outpu	ut Compare Reg	ister C			pages 90, 101
0x2C	GTCCR	TSM	PWM1B	COM1B1	COM1B0	FOC1B	FOC1A	PSR1	PSR0	pages 76, 89, 100
0x2B	OCR1B			Timer	/Counter1 Output	ut Compare Reg	ister B	_		page 91
0x2A	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	_		WGM01	WGM00	page 76
0x29	OCR0A			Timer/	Counter0 – Outp	out Compare Re	gister A			page 79
0x28	OCR0B			Timer/	Counter0 - Outp	out Compare Re	gister B			page 80
0x27	PLLCSR	LSM	-	-	-	_	PCKE	PLLE	PLOCK	pages 93, 102
0x26	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	page 31
0x25	DT1A	DT1AH3	DT1AH2	DT1AH1	DT1AH0	DT1AL3	DT1AL2	DT1AL1	DT1AL0	page 106
0x24	DT1B	DT1BH3	DT1BH2	DT1BH1	DT1BH0	DT1BL3	DT1BL2	DT1BL1	DT1BL0	page 106
0x23	DTPS1	-	-	-	-	-	-	DTPS11	DTPS10	page 105
0x22	DWDR				DWD	R[7:0]		•	•	page 139
0x21	WDTCR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	page 44
0x20	PRR	-				PRTIM1	PRTIM0	PRUSI	PRADC	page 35
0x1F	EEARH								EEAR8	page 20
0x1E	EEARL	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	page 20
0x1D	EEDR		•	•	•	ata Register				page 20
0x1C	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	page 20
0x1B	Reserved					-				
0x1A	Reserved				-	_				
0x19	Reserved					_				
0x18	PORTB	-	-	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 63
0x17	DDRB	_	_	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 63
0x16	PINB	_	_	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 63
0x15	PCMSK	-	_	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	page 51
0x14	DIDR0	_	_	ADCOD	ADC2D	ADC3D	ADC1D	AIN1D	AINOD	pages 120, 137
0x13	GPIOR2					e I/O Register 2				page 10
0x10	GPIOR1					e I/O Register 1				page 10
0x12 0x11	GPIOR0	1				e I/O Register 0				page 10
0x10	USIBR	1			I	er Register				page 10 page 114
0x10	USIDR	1				a Register				page 114
0x0F	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	page 114
0x0D	USICR	USISIE	USIOIE	USIWM1	USIWMO	USICS1	USICS0	USICLK	USITC	page 115
0x0C	Reserved	COICE	COOL			-	00.000	COLOCIA	00110	Pago i io
0x0B	Reserved					_				
0x0B 0x0A	Reserved					_				
0x0A 0x09	Reserved									
0x09 0x08	ACSR	ACD	ACBG	ACO	ACI	ACIE	_	ACIS1	ACIS0	page 119
0x08 0x07	ADMUX	REFS1	REFS0	ACO	REFS2	MUX3	MUX2	MUX1	MUX0	page 133
0x07 0x06	ADCSRA	ADEN	ADSC	ADLAR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 133 page 135
0x06 0x05	ADCSRA	ADEN	ADOC	ADATE		jister High Byte	ADF 32	AUF31	ADP 30	page 135 page 136
		+								
0×04	ADCL	DIN	ACME	IPR	ADC Data Reg	gister Low Byte	ADTOO		ADTEO	page 136
0x04	ADCODD			1 125	-	_	ADTS2	ADTS1	ADTS0	pages 119, 136
0x03	ADCSRB	BIN	Addite							
	ADCSRB Reserved Reserved	BIN	Admit		-	_				

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses

should never be written.

- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTION	S		·	
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \lor R$	Z,N,V	1
ORI	Rd, K		$Rd \leftarrow Rd \lor K$	Z,N,V Z,N,V	1
		Logical OR Register and Constant			
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	$Rd \leftarrow 0x00 - Rd$	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
BRANCH INSTRUC	TIONS				
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	INONE	4
CPSE	Rd,Rr			None	1/2/3
	-	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$		
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then $PC \leftarrow PC+k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC+k + 1$	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
	k	Branch if Greater or Equal, Signed			
BRGE			if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
BIT AND BIT-TEST	INSTRUCTIONS				
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left		Z,C,N,V	1
			$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$		
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	

Mnemonics	Operands	Description	Operation	Flags	#Clocks
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	c	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
				Z	
SEZ		Set Zero Flag	Z ← 1	Z Z	1
CLZ		Clear Zero Flag	Z ← 0		1
SEI		Global Interrupt Enable	←1	1	1
CLI		Global Interrupt Disable		-	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD					2
	Rd, Y+	Load Indirect and Post-Inc.	$\frac{Rd\leftarrow(Y),Y\leftarrowY+1}{Y\leftarrowY+1}$	None	
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, (X) $\leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, (Y) $\leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(k) \leftarrow Rr$	None	2
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM		Load Program Memory Load Program Memory and Post-Inc			
	Rd, Z+		$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM	D.I.D.	Store Program Memory	(z) ← R1:R0	None	
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	$P \leftarrow Rr$	None	1
PUSH	Rr	Push Register on Stack		None	2
POP	Rd	Pop Register from Stack	$Rd \leftarrow STACK$	None	2
MCU CONTROL INS	STRUCTIONS	1			
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/Timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

6. Ordering Information

6.1 ATtiny25

Speed (MHz) ⁽¹⁾	Supply Voltage (V)	Temperature Range	Package ⁽²⁾	Ordering Code ⁽³⁾
			8P3	ATtiny25V-10PU
	1.8 - 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	8S2	ATtiny25V-10SU ATtiny25V-10SUR ATtiny25V-10SH ATtiny25V-10SHR
10			S8S1	ATtiny25V-10SSU ATtiny25V-10SSUR ATtiny25V-10SSH ATtiny25V-10SSHR
			20M1	ATtiny25V-10MU ATtiny25V-10MUR
		Industrial	8S2	ATtiny25V-10SN ATtiny25V-10SNR
		(-40°C to +105°C) ⁽⁵⁾	S8S1	ATtiny25V-10SSN ATtiny25V-10SSNR
		Industrial (-40°C to +125°C) ⁽⁶⁾	20M1	ATtiny25V-10MF ATtiny25V-10MFR
		Industrial (-40°C to +85°C) ⁽⁴⁾	8P3	ATtiny25-20PU
			8S2	ATtiny25-20SU ATtiny25-20SUR ATtiny25-20SH ATtiny25-20SHR
20	2.7 – 5.5		S8S1	ATtiny25-20SSU ATtiny25-20SSUR ATtiny25-20SSH ATtiny25-20SSHR
20			20M1	ATtiny25-20MU ATtiny25-20MUR
		Industrial	8S2	ATtiny25-20SN ATtiny25-20SNR
		(-40°C to +105°C) ⁽⁵⁾	S8S1	ATtiny25-20SSN ATtiny25-20SSNR
		Industrial (-40°C to +125°C) ⁽⁶⁾	20M1	ATtiny25-20MF ATtiny25-20MFR

Notes: 1. For speed vs. supply voltage, see section 21.3 "Speed" on page 162.

2. All Pb-free, halide-free, fully green, and comply with European directive for Restriction of Hazardous Substances (RoHS).

3. Code indicators: H = NiPdAu lead finish, U/N = matte tin, R = tape & reel.

4. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities.

5. For characteristics, see "Appendix A – Specification at 105°C".

6. For characteristics, see "Appendix B – Specification at 125°C".

	Package Types
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S2	8-lead, 0.208" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)
S8S1	8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)
20M1	20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

6.2 ATtiny45

Speed (MHz) ⁽¹⁾	Supply Voltage (V)	Temperature Range	Package ⁽²⁾	Ordering Code ⁽³⁾
			8P3	ATtiny45V-10PU
10	1.8 – 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	8S2	ATtiny45V-10SU ATtiny45V-10SUR ATtiny45V-10SH ATtiny45V-10SHR
			8X	ATtiny45V-10XU ATtiny45V-10XUR
			20M1	ATtiny45V-10MU ATtiny45V-10MUR
			8P3	ATtiny45-20PU
20	2.7 – 5.5	Industrial	8S2	ATtiny45-20SU ATtiny45-20SUR ATtiny45-20SH ATtiny45-20SHR
		(-40°C to +85°C) ⁽⁴⁾	8X	ATtiny45-20XU ATtiny45-20XUR
			20M1	ATtiny45-20MU ATtiny45-20MUR

Notes: 1. For speed vs. supply voltage, see section 21.3 "Speed" on page 162.

2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).

- 3. Code indicators:
 - H: NiPdAu lead finish
 - U: matte tin
 - R: tape & reel
- 4. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

	Package Types
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S2	8-lead, 0.208" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)
8X	8-lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline Package (TSSOP)
20M1	20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

6.3 ATtiny85

Speed (MHz) ⁽¹⁾	Supply Voltage (V)	Temperature Range	Package ⁽²⁾	Ordering Code ⁽³⁾
			8P3	ATtiny85V-10PU
10	1.8 – 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	8S2	ATtiny85V-10SU ATtiny85V-10SUR ATtiny85V-10SH ATtiny85V-10SHR
			20M1	ATtiny85V-10MU ATtiny85V-10MUR
	2.7 – 5.5	Industrial (-40°C to +85°C) ⁽⁴⁾	8P3	ATtiny85-20PU
20			8S2	ATtiny85-20SU ATtiny85-20SUR ATtiny85-20SH ATtiny85-20SHR
			20M1	ATtiny85-20MU ATtiny85-20MUR

Notes: 1. For speed vs. supply voltage, see section 21.3 "Speed" on page 162.

2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).

3. Code indicators:

- H: NiPdAu lead finish

- U: matte tin

- R: tape & reel

4. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

	Package Types
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S2	8-lead, 0.208" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)
20M1	20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

7. Packaging Information

7.1 8P3

7.2 8S2

7.4 8X

8. Errata

8.1 Errata ATtiny25

The revision letter in this section refers to the revision of the ATtiny25 device.

8.1.1 Rev D – F

No known errata.

8.1.2 Rev B – C

• EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

8.1.3 Rev A

Not sampled.

8.2 Errata ATtiny45

The revision letter in this section refers to the revision of the ATtiny45 device.

8.2.1 Rev F – G

No known errata

8.2.2 Rev D – E

• EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

8.2.3 Rev B – C

- PLL not locking
- EEPROM read from application code does not work in Lock Bit Mode 3
- EEPROM read may fail at low supply voltage / low clock frequency
- Timer Counter 1 PWM output generation on OC1B- XOC1B does not work correctly

1. PLL not locking

When at frequencies below 6.0 MHz, the PLL will not lock

Problem fix / Workaround

When using the PLL, run at 6.0 MHz or higher.

2. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.

Problem Fix/Work around

Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.

3. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

4. Timer Counter 1 PWM output generation on OC1B – XOC1B does not work correctly

Timer Counter1 PWM output OC1B-XOC1B does not work correctly. Only in the case when the control bits, COM1B1 and COM1B0 are in the same mode as COM1A1 and COM1A0, respectively, the OC1B-XOC1B output works correctly.

Problem Fix/Work around

The only workaround is to use same control setting on COM1A[1:0] and COM1B[1:0] control bits, see table 14-4 in the data sheet. The problem has been fixed for Tiny45 rev D.

8.2.4 Rev A

- Too high power down power consumption
- DebugWIRE looses communication when single stepping into interrupts
- PLL not locking
- EEPROM read from application code does not work in Lock Bit Mode 3
- EEPROM read may fail at low supply voltage / low clock frequency

1. Too high power down power consumption

Three situations will lead to a too high power down power consumption. These are:

- An external clock is selected by fuses, but the I/O PORT is still enabled as an output.

- The EEPROM is read before entering power down.
- VCC is 4.5 volts or higher.

Problem fix / Workaround

- When using external clock, avoid setting the clock pin as Output.
- Do not read the EEPROM if power down power consumption is important.
- Use VCC lower than 4.5 Volts.

2. DebugWIRE looses communication when single stepping into interrupts

When receiving an interrupt during single stepping, debugwire will loose

communication.

Problem fix / Workaround

- When singlestepping, disable interrupts.
- When debugging interrupts, use breakpoints within the interrupt routine, and run into the interrupt.

3. PLL not locking

When at frequencies below 6.0 MHz, the PLL will not lock

Problem fix / Workaround

When using the PLL, run at 6.0 MHz or higher.

4. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.

Problem Fix/Work around

Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.

5. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterized. Guidelines are given for room temperature, only.

8.3 Errata ATtiny85

The revision letter in this section refers to the revision of the ATtiny85 device.

8.3.1 Rev B – C

No known errata.

8.3.2 Rev A

• EEPROM read may fail at low supply voltage / low clock frequency

1. EEPROM read may fail at low supply voltage / low clock frequency

Trying to read EEPROM at low clock frequencies and/or low supply voltage may result in invalid data.

Problem Fix/Workaround

Do not use the EEPROM when clock frequency is below 1MHz and supply voltage is below 2V. If operating frequency can not be raised above 1MHz then supply voltage should be more than 2V. Similarly, if supply voltage can not be raised above 2V then operating frequency should be more than 1MHz.

This feature is known to be temperature dependent but it has not been characterised. Guidelines are given for room temperature, only.

9. Datasheet Revision History

9.1 Rev. 2586O-02/13

Updated ordering codes on page 11, page 12, and page 13.

9.2 Rev. 2586N-04/11

- 1. Added:
 - Section "Capacitive Touch Sensing" on page 6.
- 2. Updated:
 - Document template.
 - Removed "Preliminary" on front page. All devices now final and in production.
 - Section "Limitations" on page 35.
 - Program example on page 48.
 - Section "Overview" on page 121.
 - Table 17-4 on page 134.
 - Section "Limitations of debugWIRE" on page 139.
 - Section "Serial Programming Algorithm" on page 150.
 - Table 21-7 on page 165.
 - EEPROM errata on pages 19, 19, 20, 21, and 22
 - Ordering information on pages 11, 12, and 13.

9.3 Rev. 2586M-07/10

- 1. Clarified Section 6.4 "Clock Output Buffer" on page 30.
- 2. Added Ordering Codes -SN and -SNR for ATtiny25 extended temperature.

9.4 Rev. 2586L-06/10

- 1. Added:
 - TSSOP for ATtiny45 in "Features" on page 1, Pinout Figure 1-1 on page 2, Ordering Information in Section 6.2 "ATtiny45" on page 12, and Packaging Information in Section 7.4 "8X" on page 17
 - Table 6-11, "Capacitance of Low-Frequency Crystal Oscillator," on page 28
 - Figure 22-36 on page 190 and Figure 22-37 on page 190, Typical Characteristics plots for Bandgap Voltage vs. V_{CC} and Temperature
 - Extended temperature in Section 6.1 "ATtiny25" on page 11, Ordering Information
 - Tape & reel part numbers in Ordering Information, in Section 6.1 "ATtiny25" on page 11 and Section 6.2 "ATtiny45" on page 12
- 2. Updated:
 - "Features" on page 1, removed Preliminary from ATtiny25
 - Section 8.4.2 "Code Example" on page 43
 - "PCMSK Pin Change Mask Register" on page 51, Bit Descriptions
 - "TCCR1 Timer/Counter1 Control Register" on page 88 and "GTCCR General Timer/Counter1 Control Register" on page 89, COM bit descriptions clarified
 - Section 20.3.2 "Calibration Bytes" on page 149, frequencies (8 MHz, 6.4 MHz)

- Table 20-11, "Minimum Wait Delay Before Writing the Next Flash or EEPROM Location," on page 152, value for t_{WD_ERASE}
- Table 20-16, "High-voltage Serial Programming Instruction Set for ATtiny25/45/85," on page 157
- Table 21-1, "DC Characteristics. $T_A = -40^{\circ}C$ to +85°C," on page 160, notes adjusted
- Table 21-11, "Serial Programming Characteristics, $T_A = -40^{\circ}C$ to +85°C, $V_{CC} = 1.8 5.5V$ (Unless Otherwise Noted)," on page 169, added t_{SLIV}
- Bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0].

9.5 Rev. 2586K-01/08

- 1. Updated Document Template.
- 2. Added Sections:
 - "Data Retention" on page 6
 - "Low Level Interrupt" on page 48
 - "Device Signature Imprint Table" on page 148
- 3. Updated Sections:
 - "Internal PLL for Fast Peripheral Clock Generation clkPCK" on page 23
 - "System Clock and Clock Options" on page 22
 - "Internal PLL in ATtiny15 Compatibility Mode" on page 23
 - "Sleep Modes" on page 33
 - "Software BOD Disable" on page 34
 - "External Interrupts" on page 48
 - "Timer/Counter1 in PWM Mode" on page 96
 - "USI Universal Serial Interface" on page 107
 - "Temperature Measurement" on page 132
 - "Reading Lock, Fuse and Signature Data from Software" on page 142
 - "Program And Data Memory Lock Bits" on page 146
 - "Fuse Bytes" on page 147
 - "Signature Bytes" on page 149
 - "Calibration Bytes" on page 149
 - "System and Reset Characteristics" on page 164
- 4. Added Figures:
 - "Reset Pin Output Voltage vs. Sink Current ($V_{CC} = 3V$)" on page 183
 - "Reset Pin Output Voltage vs. Sink Current (V_{CC} = 5V)" on page 184
 - "Reset Pin Output Voltage vs. Source Current (V_{CC} = 3V)" on page 184
 - "Reset Pin Output Voltage vs. Source Current ($V_{CC} = 5V$)" on page 185
- 5. Updated Figure:
 - "Reset Logic" on page 38
- 6. Updated Tables:
 - "Start-up Times for Internal Calibrated RC Oscillator Clock" on page 27
 - "Start-up Times for Internal Calibrated RC Oscillator Clock (in ATtiny15 Mode)" on page 27
 - "Start-up Times for the 128 kHz Internal Oscillator" on page 27
 - "Compare Mode Select in PWM Mode" on page 85

- "Compare Mode Select in PWM Mode" on page 97
- "DC Characteristics. $T_A = -40^{\circ}$ C to +85°C" on page 160
- "Calibration Accuracy of Internal RC Oscillator" on page 163
- "ADC Characteristics" on page 166
- 7. Updated Code Example in Section:
 - "Write" on page 17
- 8. Updated Bit Descriptions in:
 - "MCUCR MCU Control Register" on page 36
 - "Bits 7:6 COM0A[1:0]: Compare Match Output A Mode" on page 76
 - "Bits 5:4 COM0B[1:0]: Compare Match Output B Mode" on page 76
 - "Bits 2:0 ADTS[2:0]: ADC Auto Trigger Source" on page 137
 - "SPMCSR Store Program Memory Control and Status Register" on page 144.
- 9. Updated description of feature "EEPROM read may fail at low supply voltage / low clock frequency" in Sections:
 - "Errata ATtiny25" on page 19
 - "Errata ATtiny45" on page 19
 - "Errata ATtiny85" on page 22
- 10. Updated Package Description in Sections:
 - "ATtiny25" on page 11
 - "ATtiny45" on page 12
 - "ATtiny85" on page 13
- 11. Updated Package Drawing:
 - "S8S1" on page 16
- 12. Updated Order Codes for:
 - "ATtiny25" on page 11

9.6 Rev. 2586J-12/06

- 1. Updated "Low Power Consumption" on page 1.
- 2. Updated description of instruction length in "Architectural Overview" .
- 3. Updated Flash size in "In-System Re-programmable Flash Program Memory" on page 15.
- 4. Updated cross-references in sections "Atomic Byte Programming", "Erase" and "Write", starting on page 17.
- 5. Updated "Atomic Byte Programming" on page 17.
- 6. Updated "Internal PLL for Fast Peripheral Clock Generation clkPCK" on page 23.
- 7. Replaced single clocking system figure with two: Figure 6-2 and Figure 6-3.
- 8. Updated Table 6-1 on page 24, Table 6-13 on page 29 and Table 6-6 on page 26.
- 9. Updated "Calibrated Internal Oscillator" on page 26.
- 10. Updated Table 6-5 on page 25.
- 11. Updated "OSCCAL Oscillator Calibration Register" on page 30.
- 12. Updated "CLKPR Clock Prescale Register" on page 31.
- 13. Updated "Power-down Mode" on page 34.
- 14. Updated "Bit 0" in "PRR Power Reduction Register" on page 37.

- 15. Added footnote to Table 8-3 on page 45.
- 16. Updated Table 10-5 on page 62.
- 17. Deleted "Bits 7, 2" in "MCUCR MCU Control Register" on page 63.
- 18. Updated and moved section "Timer/Counter0 Prescaler and Clock Sources", now located on page 65.
- 19. Updated "Timer/Counter1 Initialization for Asynchronous Mode" on page 85.
- 20. Updated bit description in "PLLCSR PLL Control and Status Register" on page 93 and "PLLCSR PLL Control and Status Register" on page 102.
- 21. Added recommended maximum frequency in "Prescaling and Conversion Timing" on page 124.
- 22. Updated Figure 17-8 on page 128.
- 23. Updated "Temperature Measurement" on page 132.
- 24. Updated Table 17-3 on page 133.
- 25. Updated bit R/W descriptions in:
 "TIMSK Timer/Counter Interrupt Mask Register" on page 80,
 "TIFR Timer/Counter Interrupt Flag Register" on page 80,
 "TIFR Timer/Counter Interrupt Mask Register" on page 91,
 "TIFR Timer/Counter Interrupt Flag Register" on page 92,
 "PLLCSR PLL Control and Status Register" on page 93,
 "TIMSK Timer/Counter Interrupt Mask Register" on page 101,
 "TIFR Timer/Counter Interrupt Flag Register" on page 101,
 "TIFR Timer/Counter Interrupt Flag Register" on page 102,
 "PLLCSR PLL Control and Status Register" on page 102,
 "PLLCSR PLL Control and Status Register" on page 102 and
 "DIDR0 Digital Input Disable Register 0" on page 137.
- 26. Added limitation to "Limitations of debugWIRE" on page 139.
- 27. Updated "DC Characteristics" on page 160.
- 28. Updated Table 21-7 on page 165.
- 29. Updated Figure 21-6 on page 170.
- 30. Updated Table 21-12 on page 170.
- 31. Updated Table 22-1 on page 176.
- 32. Updated Table 22-2 on page 176.
- 33. Updated Table 22-30, Table 22-31 and Table 22-32, starting on page 187.
- 34. Updated Table 22-33, Table 22-34 and Table 22-35, starting on page 188.
- 35. Updated Table 22-39 on page 191.
- 36. Updated Table 22-46, Table 22-47, Table 22-48 and Table 22-49.

9.7 Rev. 2586I-09/06

- 1. All Characterization data moved to "Electrical Characteristics" on page 160.
- 2. All Register Descriptions are gathered up in seperate sections in the end of each chapter.
- 3. Updated Table 11-3 on page 77, Table 11-5 on page 78, Table 11-6 on page 79 and Table 20-4 on page 147.
- 4. Updated "Calibrated Internal Oscillator" on page 26.
- 5. Updated Note in Table 7-1 on page 33.
- 6. Updated "System Control and Reset" on page 38.
- 7. Updated Register Description in "I/O Ports" on page 52.
- 8. Updated Features in "USI Universal Serial Interface" on page 107.

- 9. Updated Code Example in "SPI Master Operation Example" on page 109 and "SPI Slave Operation Example" on page 110.
- 10. Updated "Analog Comparator Multiplexed Input" on page 118.
- 11. Updated Figure 17-1 on page 122.
- 12. Updated "Signature Bytes" on page 149.
- 13. Updated "Electrical Characteristics" on page 160.

9.8 Rev. 2586H-06/06

- 1. Updated "Calibrated Internal Oscillator" on page 26.
- 2. Updated Table 6.5.1 on page 30.
- 3. Added Table 21-2 on page 163.

9.9 Rev. 2586G-05/06

- 1. Updated "Internal PLL for Fast Peripheral Clock Generation clkPCK" on page 23.
- 2. Updated "Default Clock Source" on page 29.
- 3. Updated "Low-Frequency Crystal Oscillator" on page 28.
- 4. Updated "Calibrated Internal Oscillator" on page 26.
- 5. Updated "Clock Output Buffer" on page 30.
- 6. Updated "Power Management and Sleep Modes" on page 33.
- 7. Added "Software BOD Disable" on page 34.
- 8. Updated Figure 16-1 on page 118.
- 9. Updated "Bit 6 ACBG: Analog Comparator Bandgap Select" on page 119.
- 10. Added note for Table 17-2 on page 124.
- 11. Updated "Register Summary" on page 7.

9.10 Rev. 2586F-04/06

- 1. Updated "Digital Input Enable and Sleep Modes" on page 56.
- 2. Updated Table 20-16 on page 157.
- 3. Updated "Ordering Information" on page 11.

9.11 Rev. 2586E-03/06

- 1. Updated Features in "Analog to Digital Converter" on page 121.
- 2. Updated Operation in "Analog to Digital Converter" on page 121.
- 3. Updated Table 17-2 on page 132.
- 4. Updated Table 17-3 on page 133.
- 5. Updated "Errata" on page 19.

9.12 Rev. 2586D-02/06

- 1. Updated Table 6-13 on page 29, Table 6-10 on page 28, Table 6-3 on page 25, Table 6-9 on page 27, Table 6-5 on page 25, Table 9-1 on page 47, Table 17-4 on page 134, Table 20-16 on page 157, Table 21-8 on page 166.
- 2. Updated "Timer/Counter1 in PWM Mode" on page 85.
- 3. Updated text "Bit 2 TOV1: Timer/Counter1 Overflow Flag" on page 92.
- 4. Updated values in "DC Characteristics" on page 160.
- 5. Updated "Register Summary" on page 7.
- 6. Updated "Ordering Information" on page 11.
- 7. Updated Rev B and C in "Errata ATtiny45" on page 19.
- 8. All references to power-save mode are removed.
- 9. Updated Register Adresses.

9.13 Rev. 2586C-06/05

- 1. Updated "Features" on page 1.
- 2. Updated Figure 1-1 on page 2.
- 3. Updated Code Examples on page 18 and page 19.
- 4. Moved "Temperature Measurement" to Section 17.12 page 132.
- 5. Updated "Register Summary" on page 7.
- 6. Updated "Ordering Information" on page 11.

9.14 Rev. 2586B-05/05

1. CLKI added, instances of EEMWE/EEWE renamed EEMPE/EEPE, removed some TBD.

Removed "Preliminary Description" from "Temperature Measurement" on page 132.

- 2. Updated "Features" on page 1.
- 3. Updated Figure 1-1 on page 2 and Figure 8-1 on page 38.
- 4. Updated Table 7-2 on page 37, Table 10-4 on page 62, Table 10-5 on page 62
- 5. Updated "Serial Programming Instruction set" on page 152.
- 6. Updated SPH register in "Instruction Set Summary" on page 9.
- 7. Updated "DC Characteristics" on page 160.
- 8. Updated "Ordering Information" on page 11.
- 9. Updated "Errata" on page 19.

9.15 Rev. 2586A-02/05

Initial revision.

Atmel

Enabling Unlimited Possibilities®

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA Tel: (+1) (408) 441-0311 Fax: (+1) (408) 487-2600 www.atmel.com Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Roa Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY **Tel:** (+49) 89-31970-0 **Fax:** (+49) 89-3194621 Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku Tokyo 141-0032 JAPAN **Tel:** (+81) (3) 6417-0300 **Fax:** (+81) (3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 2586OS-AVR-02/13

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], AVR[®], tinyAVR[®], and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.