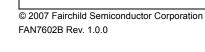


Is Now Part of



ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

March 2007

FAN7602B Green Current-Mode PWM Controller

Features

- Green Current-Mode PWM Control
- Fixed 65kHz Operation

FAIRCHILD SEMICONDUCTOR

- Internal High-Voltage Start-up Switch
- Burst-Mode Operation
- Line Voltage Feedforward to Limit Maximum Power
- Line Under-Voltage Protection
- Latch Protection & Internal Soft-Start (10ms) Function
- Overload Protection
- Over-Voltage Protection
- Low Operation Current: 1mA Typical
- 8-pin DIP/SOP

Applications

- Adapter
- LCD Monitor Power
- Auxiliary Power Supply

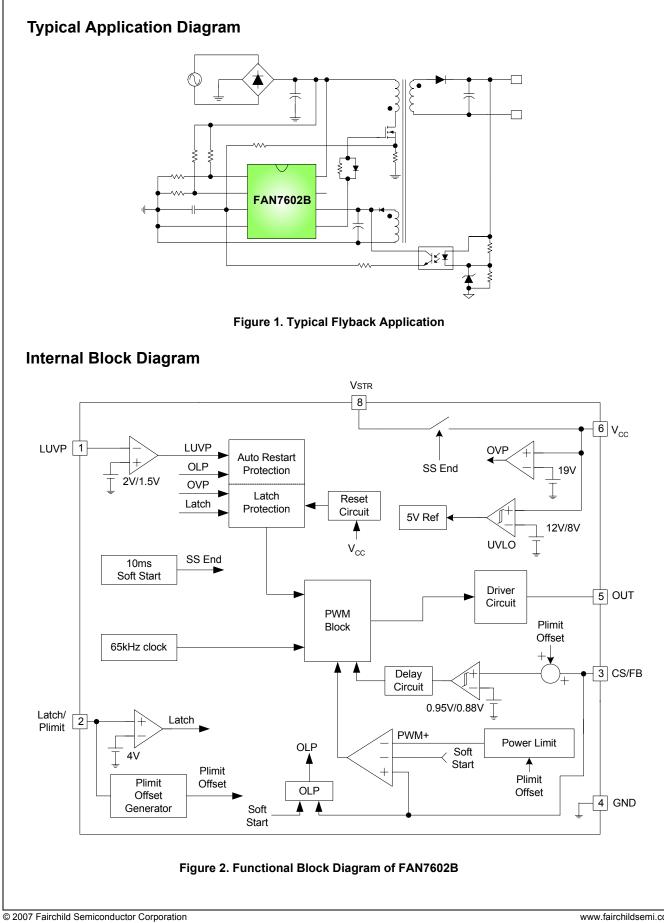
Related Application Notes

AN6014 - Green Current Mode PWM Controller FAN7602

Description

The FAN7602B is a green current-mode PWM controller. It is specially designed for off-line adapter applications; DVDP, VCR, LCD monitor applications; and auxiliary power supplies.

The internal high-voltage start-up switch and the burstmode operation reduce the power loss in standby mode. As a result, it is possible to supply 0.5W load, limiting the input power under 1W when the input line voltage is 265V_{AC}. On no-load condition, input power is under 0.3W.


The maximum power can be limited constantly, regardless of the line voltage change, using the power limit function.

The switching frequency is internally fixed at 65kHz.

The FAN7602B includes various protections for the system reliability and the internal soft-start prevents the output voltage over-shoot at start-up.

Ordering Information

Part Number	Operating Temp. Range	Pb-Free	Package	Packing Method	Marking Code
FAN7602BN			8-DIP	Rail	FAN7602B
FAN7602BM	-25°C to +125°C	Yes	8-SOP	Rail	FAN7602B
FAN7602BMX			0-30P	Tape & Reel	FAN7602B

Pin Assignments

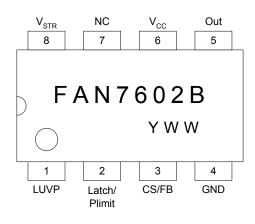


Figure 3. Pin Configuration (Top View)

Pin Definitions

Pin #	Name	Description
1	LUVP	Line Under-Voltage Protection Pin . This pin is used to protect the set when the input voltage is lower than the rated input voltage range.
2	Latch/Plimit	Latch Protection and Power Limit Pin . When the pin voltage exceeds 4V, the latch protection works; the latch protection is reset when the V_{CC} voltage is lower than 5V. For the power limit function, the OCP level decreases as the pin voltage increases.
3	CS/FB	Current Sense and Feedback Pin . This pin is used to sense the MOSFET current for the current mode PWM and OCP. The output voltage feedback information and the current sense information are added using an external RC filter.
4	GND	Ground Pin . This pin is used for the ground potential of all the pins. For proper oper- ation, the signal ground and the power ground should be separated.
5	OUT	Gate Drive Output Pin. This pin is an output pin to drive an external MOSFET. The peak sourcing current is 450mA and the peak sinking current is 600mA. For proper operation, the stray inductance in the gate driving path must be minimized.
6	V _{CC}	Supply Voltage Pin . IC operating current and MOSFET driving current are supplied using this pin.
7	NC	No Connection.
8	V _{STR}	Start-up Pin. This pin is used to supply IC operating current during IC start-up. After start-up, the internal JFET is turned off to reduce power loss.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	20	V
I _{OH} , I _{OL}	Peak Drive Output Current	+450/-600	mA
V _{CS/FB}	CS/FB Input Voltage	-0.3 to 20	V
V _{LUVP}	LUVP Input Voltage	-0.3 to 10	V
V _{Latch}	Latch/Plimit Input Voltage	-0.3 to 10	V
V _{STR}	V _{STR} Input Voltage	600	V
TJ	Operating Junction Temperature	150	°C
T _A	Operating Temperature Range	-25 to 125	°C
T _{STG}	Storage Temperature Range	-55 to 150	°C
PD	Power Dissipation	1.2	W
V _{ESD_HBM}	ESD Capability, Human Body Model	2.0	kV
V _{ESD_MM}	ESD Capability, Machine Model	200	V
V _{ESD_CDM}	ESD Capability, Charged Device Model	500	V

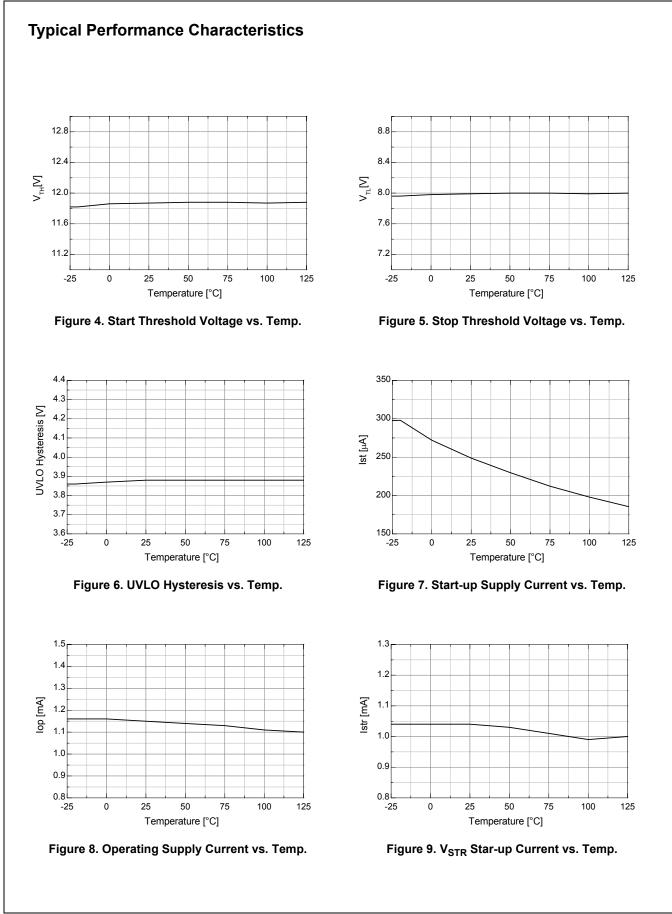
Thermal Impedance

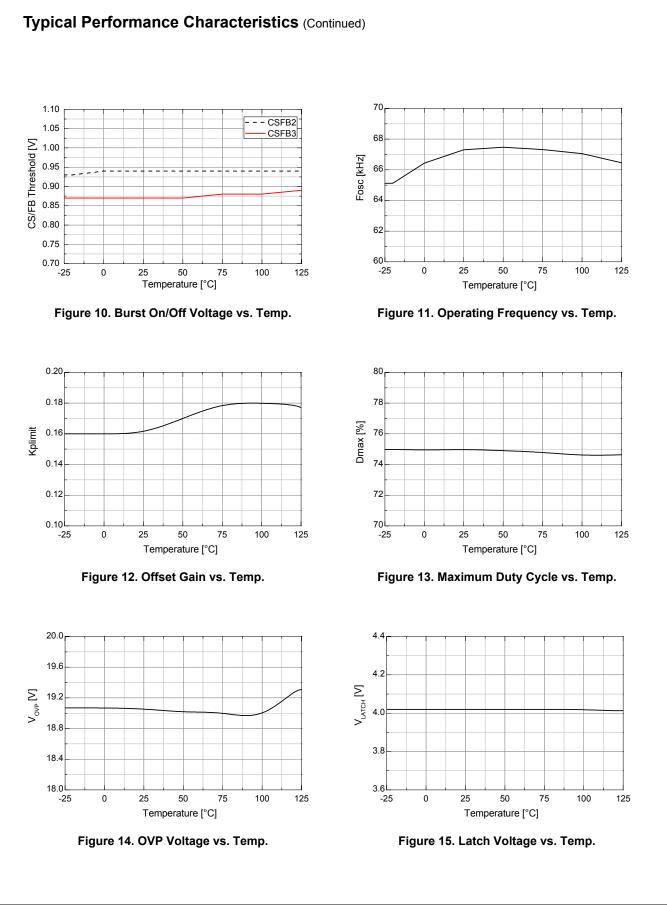
Symb	loc	Parameter		Value	Unit
θ_{JA}	۱.	Thermal Resistance, Junction-to-Ambient	8-DIP	100	°C/W

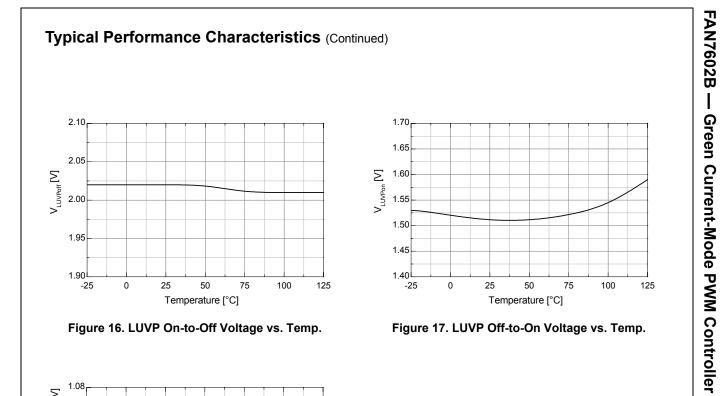
Note:

1. Regarding the test environment and PCB type, please refer to JESD51-2 and JESD51-10.

FAN7602B
- Green C
Current-Mode
PWM C
Controller


Electrical Characteristics


 V_{CC} = 14V, T_A = -25°C~125°C, unless otherwise specified


Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
START UP	SECTION					
I _{STR}	V _{STR} Start-up Current	V _{STR} = 30V, T _A = 25°C	0.7	1.0	1.4	mA
UNDER VO	DLTAGE LOCK OUT SECTION		•			•
V _{th} (start)	Start Threshold Voltage	V _{CC} increasing	11	12	13	V
V _{th} (stop)	Stop Threshold Voltage	V _{CC} decreasing	7	8	9	V
HY(uvlo)	UVLO Hysteresis		3.6	4.0	4.4	V
SUPPLY C	URRENT SECTION					
I _{STR}	Start-up Supply Current	T _A = 25°C		250	320	μA
I _{CC}	Operating Supply Current	Output no switching		1.0	1.5	mA
SOFT-STA	RT SECTION					
t _{SS}	Soft-Start Time ⁽¹⁾		5	10	15	ms
PWM SEC	TION					
f _{OSC}	Operating Frequency	$V_{CS/FB}$ = 0.2V, T_A = 25°C	59	65	73	kHz
V _{CS/FB1}	CS/FB Threshold Voltage	T _A = 25°C	0.9	1.0	1.1	V
t _D	Propagation Delay to Output ⁽¹⁾			100	150	ns
D _{MAX}	Maximum Duty Cycle		70	75	80	%
D _{MIN}	Minimum Duty Cycle				0	%
BURST MO	DDE SECTION		•			•
V _{CS/FB2}	Burst On Threshold Voltage	T _A = 25°C	0.84	0.95	1.06	V
V _{CS/FB3}	Burst Off Threshold Voltage	T _A = 25°C	0.77	0.88	0.99	V
POWER LI	MIT SECTION		•			•
K _{Plimit}	Offset Gain	$V_{\text{Latch/Plimit}}$ = 2V, T_A = 25°C	0.12	0.16	0.20	
OUTPUT S	ECTION					
V _{OH}	Output Voltage High	$T_A = 25^{\circ}C$, $I_{source} = 100mA$	11.5	12.0	14.0	V
V _{OL}	Output Voltage Low	T _A = 25°C, I _{sink} = 100mA		1.0	2.5	V
t _R	Rising Time ⁽¹⁾	T _A = 25°C, C _L = 1nF		45	150	ns
t _F	Falling Time ⁽¹⁾	T _A = 25°C, C _L = 1nF		35	150	ns
PROTECT	ION SECTION		•			•
V _{Latch}	Latch Voltage		3.6	4.0	4.4	V
t _{OLP}	Overload Protection Time (1)		20	22	24	ms
t _{OLP_ST}	Overload Protection Time at Start- up		30	37	44	ms
V _{OLP}	Overload Protection Level			0	0.1	V
V _{LUVPoff}	Line Under-Voltage Protection On to Off	T _A = 25°C	1.9	2.0	2.1	V
V _{LUVPon}	Line Under-Voltage Protection Off to On	T _A = 25°C	1.4	1.5	1.6	V
V _{OVP}	Over-Voltage Protection	T _A = 25°C	18	19	20	V

Note:

1. These parameters, although guaranteed by design, are not tested in production.

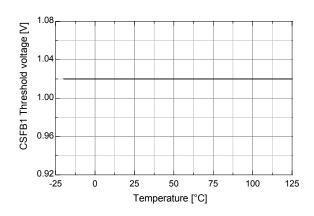


Figure 18. CS/FB Threshold Voltage vs. Temp.

8

Applications Information

1. Start-up Circuit and Soft Start Block

The FAN7602B contains a start-up switch to reduce the power loss of the external start-up circuit of the conventional PWM converters. The internal start-up circuit charges the V_{CC} capacitor with 0.9mA current source if the AC line is connected. The start-up switch is turned off 15ms after IC starts up, as shown in Figure 19. The softstart function starts when the $V_{\mbox{\scriptsize CC}}$ voltage reaches the start threshold voltage of 12V and ends when the internal soft-start voltage reaches 1V. The internal start-up circuit starts charging the V_{CC} capacitor again if the Vcc voltage is lowered to the minimum operating voltage, 8V. The UVLO block shuts down the output drive circuit and some blocks to reduce the IC operating current and the internal soft-start voltage drops to zero. If the V_{CC} voltage reaches the start threshold voltage, the IC starts switching again and the soft-start block works as well.

During the soft-start, the pulse-width modulated (PWM) comparator compares the CS/FB pin voltage with the soft-start voltage. The soft-start voltage starts from 0.5V and the soft-start ends when it reaches 1V and the soft-start time is 10ms. The start-up switch is turned off when the soft-start voltage reaches 1.5V.

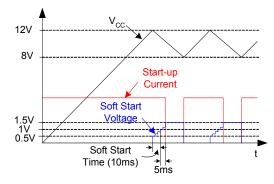
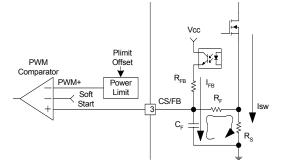


Figure 19. Start-up Current and V_{CC} Voltage

2. Oscillator Block

The oscillator frequency is set internally. The switching frequency is 65kHz.


3. Current Sense and Feedback Block

The FAN7602B performs the current sensing for the current-mode PWM and the output voltage feedback with only one pin, pin3. To achieve the two functions with one pin, an internal leading edge blanking (LEB) circuit to filter the current-sense noise is not included because the external RC filter is necessary to add the output voltage feedback information and the current-sense information. Figure 20 shows the current-sense and feedback circuits. R_S is the current-sense resistor to sense the switch current. The current-sense information is filtered by an RC filter composed of R_F and C_F. According to the output voltage feedback information, I_{FB} charges or stops

charging C_F to adjust the offset voltage. If I_{FB} is zero, C_F is discharged through R_F and R_S to lower offset voltage.

Figure 21 shows typical voltage waveforms of the CS/FB pin. The current-sense waveform is added to the offset voltage, as shown in Figure 21. The CS/FB pin voltage is compared with PWM+ that is 1V - Plimit offset. If the CS/FB voltage meets PWM+, the output drive is shut off. If the feedback offset voltage is low, the switch on time is increased. If the feedback offset voltage is high, the switch on time is decreased. In this way, the duty cycle is controlled according to the output load condition. In general, the maximum output power increases as the input voltage increases because the current slope during switch on-time increases.

To limit the output power of the converter constantly, a power-limit function is included. Sensing the converter input voltage through the Latch/Plimit pin, the Plimit offset voltage is subtracted from 1V. As shown in Figure 21, the Plimit offset voltage is subtracted from 1V and the switch on-time decreases as the Plimit offset voltage increases, the switch on-time decreases, keeping the output power constant. The offset voltage is proportional to the Latch/Plimit pin voltage and the gain is 0.16; if the Latch/Plimit voltage is 1V, the offset voltage is 0.16V.

Figure 20. Current-Sense and Feedback Circuits

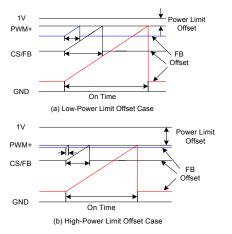
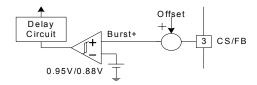



Figure 21. CS/FB Pin Voltage Waveforms

4. Burst-Mode Block

The FAN7602B contains the burst-mode block to reduce the power loss at a light load and no load. A hysteresis comparator senses the offset voltage of the Burst+ for the burst mode, as shown in Figure 22. The Burst+ is the sum of the CS/FB voltage and Plimit offset voltage. The FAN7602B enters burst mode when the offset voltage of the Burst+ is higher than 0.95V and exits the burst mode when the offset voltage is lower than 0.88V. The offset voltage is sensed during the switch off time.


Figure 22. Burst-Mode Block

5. Protection Block

The FAN7602B contains several protection functions to improve system reliability.

5.1 Overload Protection (OLP)

The FAN7602B contains the overload protection function. If the output load is higher than the rated output current, the output voltage drops and the feedback error amplifier is saturated. The offset of the CS/FB voltage representing the feedback information is almost zero. As shown in Figure 23, the CS/FB voltage is compared with 50mV reference when the internal clock signal is high and, if the voltage is lower than 50mV, the OLP timer starts counting. If the OLP condition persists for 22ms, the timer generates the OLP signal. This protection is reset by the UVLO. The OLP block is enabled after the soft-start finishes.

5.2 Line Under-Voltage Protection

If the input voltage of the converter is lower than the minimum operating voltage, the converter input current increases too much, causing component failure. Therefore, if the input voltage is low, the converter should be protected. In the FAN7602B, the LUVP circuit senses the input voltage using the LUVP pin and, if this voltage is lower than 2V, the LUVP signal is generated. The comparator has 0.5V hysteresis. If the LUVP signal is generated, the output drive block is shut down, the output voltage feedback loop is saturated, and the OLP initiates if the LUVP condition persists more than 22ms.

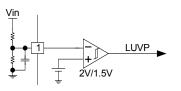


Figure 24. Line UVP Circuit

5.3 Latch Protection

The latch protection is provided to protect the system against abnormal conditions using the Latch/Plimit pin. The Latch/Plimit pin can be used for the output overvoltage protection and/or other protections. If the Latch/Plimit pin voltage is made higher than 4V by an external circuit, the IC is shut down. The latch protection is reset when the V_{CC} voltage is lower than 5V.

5.4 Over-Voltage Protection (OVP)

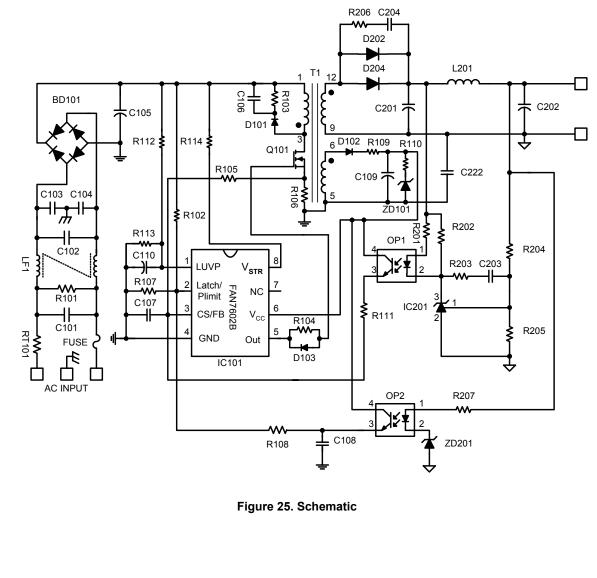
If the V_{CC} voltage reaches 19V, the IC shuts down and the OVP protection is reset when the V_{CC} voltage is lower than 5V.

6. Output Drive Block

The FAN7602B contains a single totem-pole output stage to drive a power MOSFET. The drive output is capable of up to 450mA sourcing current and 600mA sinking current with typical rise and fall time of 45ns and 35ns, respectively, with a 1nF load.

Typical Application Circuit

Application	Output Power	Input Voltage	Output Voltage
Adapter	48W	Universal input (85~265V _{AC})	12V


Features

- Low stand-by power (<0.3W at 265V_{AC})
- Constant output power control

Key Design Notes

- All the IC-related components should be placed close to IC, especially C107 and C110.
- If R106 value is too low, there can be subharmonic oscillation.
- R109 should be designed carefully to make V_{CC} voltage higher than 8V when the input voltage is 265V_{AC} at no load.
- R110 should be designed carefully to make V_{CC} voltage lower than OVP when the input voltage is 85V_{AC} at full load.
- R103 should be designed to keep the MOSFET V_{DS} voltage lower than maximum rating when the output is shorted.

1. Schematic

2. Inductor Schematic Diagram

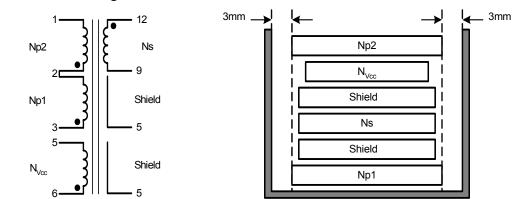
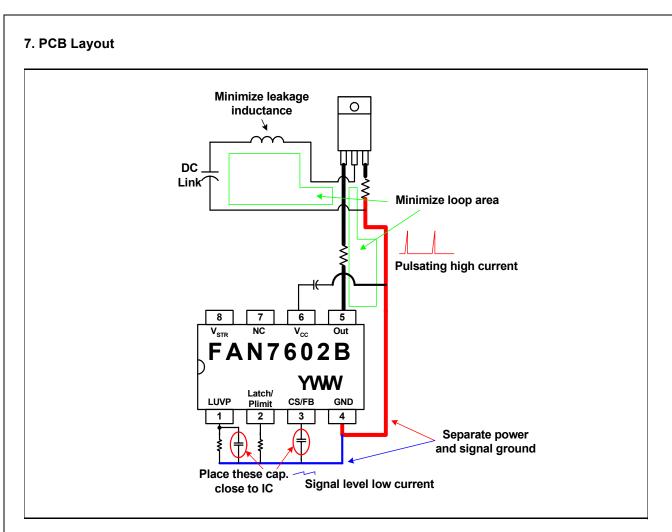


Figure 26. Inductor Schematic Diagram

3. Winding Specification

No	Pin (s→f)	Wire	Turns	Winding Method
Np1	$3 \rightarrow 2$	$0.3^{\varphi}\times 2$	31	Solenoid Winding
Insulation: P	olyester Tape t = 0.03r	nm, 2 Layers	· ·	
Shield	5	Copper Tape	0.9	Not Shorted
Insulation: P	olyester Tape t = 0.03r	nm, 2 Layers	·	
Ns	$12 \rightarrow 9$	$0.65^{\varphi}\times 3$	10	Solenoid Winding
Insulation: P	olyester Tape t = 0.03r	nm, 2 Layers	· · · · ·	
Shield	5	Copper Tape	0.9	Not Shorted
Insulation: Po	olyester Tape t = 0.03n	nm, 2 Layers	· · · · ·	
N _{Vcc}	$6 \rightarrow 5$	$0.2^{\phi} imes 1$	10	Solenoid Winding
Insulation: Po	olyester Tape t = 0.03n	nm, 2 Layers	· · · · ·	
Np2	$2 \rightarrow 1$	$0.3^{\varphi}\times 2$	31	Solenoid Winding
Outer Insulat	tion: Polyester Tape t =	0.03mm, 2 Layers	· ·	

4. Electrical Characteristics

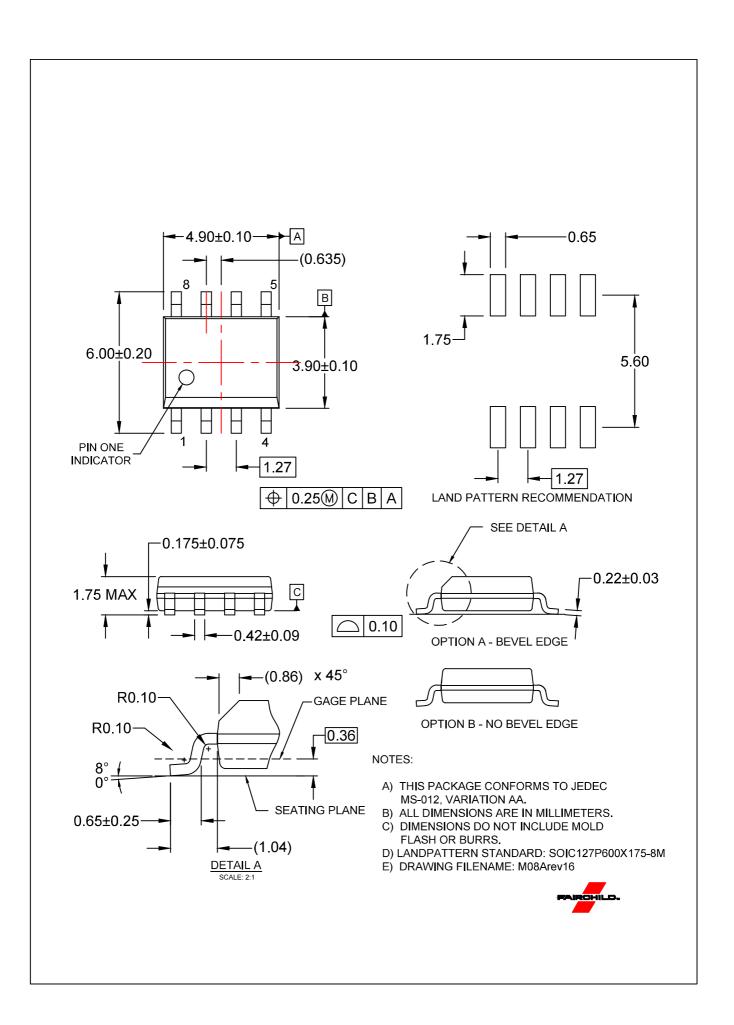

	Pin	Specification	Remarks
Inductance	1 - 3	607µH	100kHz, 1V
Inductance	1 - 3	15µH	9 - 12 shorted

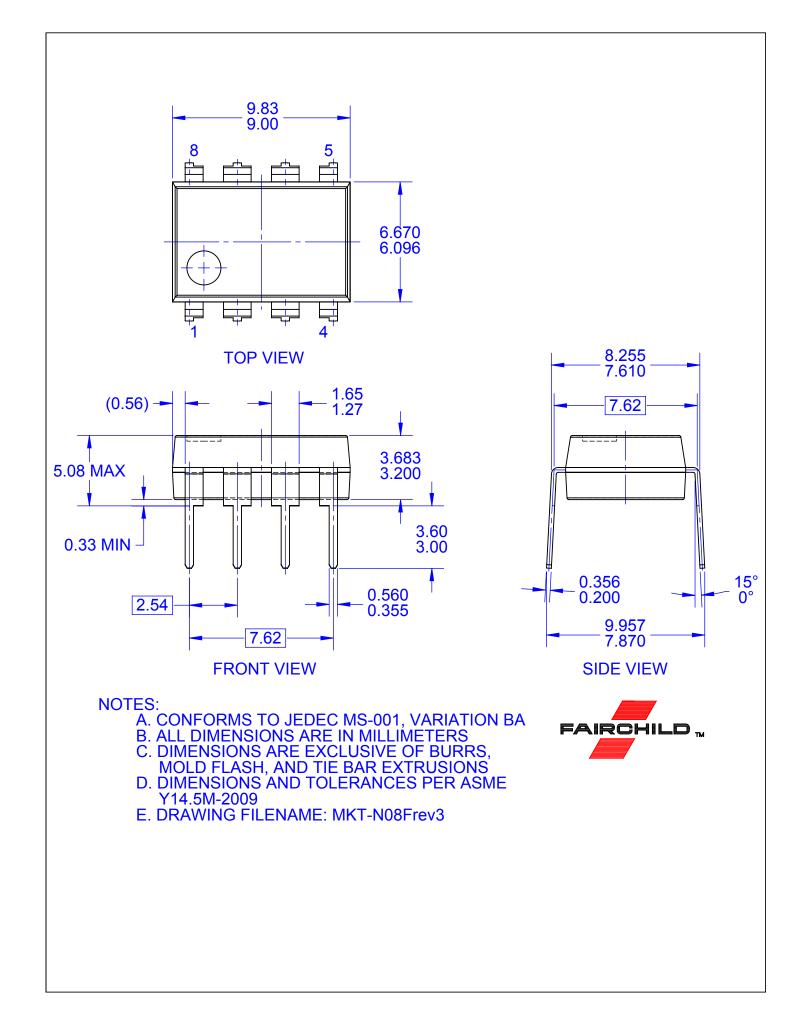
5. Core & Bobbin

- Core: EER2828
- Bobbin: EER2828
- Ae(mm²): 82.1

6. Demo Circuit Part List

Part	Value	Note	Part	Value	Note
	Fuse			Capaci	tor
FUSE	1A/250V		C101	220nF/275V	Box Capacitor
		NTC	C102	150nF/275V	Box Capacitor
RT101	5D-9		C103, C104	102/1kV	Ceramic
	R	esistor	C105	150μF/400V	Electrolytic
R102, R112	10MΩ	1/4W	C106	103/630V	Film
R103	56k Ω	1/2W	C107	271	Ceramic
R104	150Ω	1/4W	C108	103	Ceramic
R105	1kΩ	1/4W	C109	22µF/25V	Electrolytic
R106	0.5Ω	1/2W	C110	473	Ceramic
R107	56k Ω	1/4W	C201, C202	1000μF/25V	Electrolytic
R108	10kΩ	1/4W	C203	102	Ceramic
R109	0Ω	1/4W	C204	102	Ceramic
R110	1kΩ	1/4W	C222	222/1kV	Ceramic
R111	6kΩ	1/4W		MOSF	ET
R113	180kΩ	1/4W	Q101	FQPF8N60C	Fairchild Semiconductor
R114	50k Ω	1/4W		Diod	9
R201	1.5kΩ	1/4W	D101, D102	UF4007	Fairchild Semiconductor
R202	1.2kΩ	1/4W	D103	1N5819	Fairchild Semiconductor
R203	20k Ω	1/4W	D202, D204	FYPF2010DN	Fairchild Semiconductor
R204	27 kΩ	1/4W	ZD101, ZD201	1N4744	Fairchild Semiconductor
R205	7kΩ	1/4W	BD101	KBP06	FairchildSemiconductor
R206	10Ω	1/2W		TNR	
R207	10kΩ	1/4W	R101	471	470V
		IC	Filter		
IC101	FAN7602B	Fairchild Semiconductor	LF101	23mH	0.8A
IC201	KA431	Fairchild Semiconductor	L201	10µH	4.2A
OP1, OP2	H11A817B	Fairchild Semiconductor			





8. Performance Data

	85V _{AC}	110V _{AC}	220V _{AC}	265V _{AC}
Input Power at No Load	105.4mW	119.8mW	184.7mW	205.5mW
Input Power at 0.5W Load	739.4mW	761.4mW	825.4mW	872.2mW
OLP Point	4.42A	4.66A	4.60A	4.40A

FAN7602B — Green Current-Mode PWM Controller

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FAN7602BM FAN7602CN FAN7602BN FAN7602BMX

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.