# 54AC244,54ACT244

54AC244/54ACT244 Octal Buffer/Line Driver with TRI-STATE Outputs



Literature Number: SNOS098B

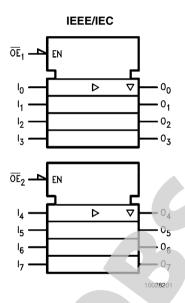


## 54AC244/54ACT244

**OBSOLETE** 

July 29, 2011

# Octal Buffer/Line Driver with TRI-STATE® Outputs


### **General Description**

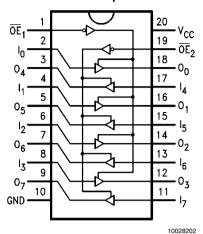
The 'AC/'ACT244 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus-oriented transmitter/receiver which provides improved PC board density.

### **Features**

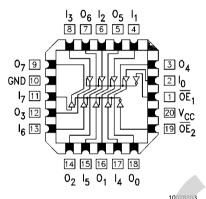
- I<sub>CC</sub> and I<sub>OZ</sub> reduced by 50%
- TRI-STATE outputs drive bus lines or buffer memory address registers
- Outputs source/sink 24 mA
- 'ACT244 has TTL-compatible inputs
- Standard Microcircuit Drawing (SMD)
  - \_\_ 'AC244: 5962-87552
  - 'ACT244: 5962-87760
- 54AC244 now qualified to 300Krad RHA designation, refer to the SMD for more information

# **Logic Symbol**




| Pin Names                         | Description                    |  |  |  |  |
|-----------------------------------|--------------------------------|--|--|--|--|
| $\overline{OE}_1,\overline{OE}_2$ | TRI-STATE Output Enable Inputs |  |  |  |  |
| I <sub>0</sub> -I <sub>7</sub>    | Inputs                         |  |  |  |  |
| O <sub>0</sub> -O <sub>7</sub>    | Outputs                        |  |  |  |  |

TRI-STATE® is a registered trademark of National Semiconductor Corporation.


FACT™ is a trademark of Fairchild Semiconductor

# **Connection Diagrams**

# Pin Assignment for DIP and Flatpak



#### Pin Assignment for LCC



### **Truth Table**

| Inputs          |                | Outputs               |  |  |  |
|-----------------|----------------|-----------------------|--|--|--|
| OE <sub>1</sub> | I <sub>n</sub> | (Pins 12, 14, 16, 18) |  |  |  |
| L               | L              | L                     |  |  |  |
| L               | Н              | н                     |  |  |  |
| Н               | Х              | Z                     |  |  |  |

H = HIGH Voltage Level L = LOW Voltage Level

| Inputs          |                | Outputs           |  |  |
|-----------------|----------------|-------------------|--|--|
| OE <sub>2</sub> | I <sub>n</sub> | (Pins 3, 5, 7, 9) |  |  |
| L               | L              | L                 |  |  |
| L               | Н              | Н                 |  |  |
| Н               | Х              | Z                 |  |  |

X = Immaterial Z = High Impedance

### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| Supply Voltage (V <sub>CC</sub> )          | -0.5V to +7.0V             |
|--------------------------------------------|----------------------------|
| DC Input Diode Current (I <sub>IK</sub> )  |                            |
| $V_1 = -0.5V$                              | -20 mA                     |
| $V_I = V_{CC} + 0.5V$                      | +20 mA                     |
| DC Input Voltage (V <sub>I</sub> )         | $-0.5V$ to $V_{CC} + 0.5V$ |
| DC Output Diode Current (I <sub>OK</sub> ) |                            |
| $V_{O} = -0.5V$                            | -20 mA                     |
| $V_O = V_{CC} + 0.5V$                      | +20 mA                     |
| DC Output Voltage (V <sub>O</sub> )        | $-0.5V$ to $V_{CC} + 0.5V$ |
| DC Output Source                           |                            |
| or Sink Current (I <sub>O</sub> )          | ±50 mA                     |
| DC V <sub>CC</sub> or Ground Current       |                            |
| per Output Pin ( $I_{CC}$ or $I_{GND}$ )   | ±50 mA                     |
| Storage Temperature (T <sub>STG</sub> )    | -65°C to +150°C            |
| Junction Temperature $(T_J)$               |                            |
| CDIP                                       | 175°C                      |

# Recommended Operating Conditions

| Supply Voltage (V <sub>CC</sub> )                  |                       |
|----------------------------------------------------|-----------------------|
| 'AC                                                | 2.0V to 6.0V          |
| 'ACT                                               | 4.5V to 5.5V          |
| Input Voltage (V <sub>I</sub> )                    | 0V to V <sub>CC</sub> |
| Output Voltage (V <sub>O</sub> )                   | 0V to V <sub>CC</sub> |
| Operating Temperature (T <sub>A</sub> )            |                       |
| 54AC/ACT                                           | -55°C to +125°C       |
| Minimum Input Edge Rate (ΔV/Δt)                    |                       |
| 'AC Devices                                        |                       |
| $V_{\text{IN}}$ from 30% to 70% of $V_{\text{CC}}$ |                       |
| V <sub>CC</sub> @ 3.3V, 4.5V, 5.5V                 | 125 mV/ns             |
| Minimum Input Edge Rate (ΔV/Δt)                    |                       |
| 'ACT Devices                                       |                       |
| V <sub>IN</sub> from 0.8V to 2.0V                  |                       |
| V <sub>CC</sub> @ 4.5V, 5.5V                       | 125 mV/ns             |

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT™ circuits outside databook specifications.

# **DC Characteristics for 'AC Family Devices**

|                 |                 |                 | 54AC              |       |                               |  |
|-----------------|-----------------|-----------------|-------------------|-------|-------------------------------|--|
| Symbol          | Parameter       | V <sub>cc</sub> | T <sub>A</sub> =  | Units | Conditions                    |  |
|                 |                 | (V)             | -55°C to +125°C   | _     |                               |  |
|                 |                 |                 | Guaranteed Limits |       |                               |  |
| $V_{IH}$        | Minimum High    | 3.0             | 2.1               |       | V <sub>OUT</sub> = 0.1V       |  |
|                 | Level Input     | 4.5             | 3.15              | V     | or V <sub>CC</sub> – 0.1V     |  |
|                 | Voltage         | 5.5             | 3.85              |       |                               |  |
| V <sub>IL</sub> | Maximum Low     | 3.0             | 0.9               |       | $V_{OUT} = 0.1V$              |  |
|                 | Level Input     | 4.5             | 1.35              | V     | or V <sub>CC</sub> – 0.1V     |  |
|                 | Voltage         | 5.5             | 1.65              |       |                               |  |
| V <sub>OH</sub> | Minimum High    | 3.0             | 2.9               |       | I <sub>OUT</sub> = -50 μA     |  |
|                 | Level Output    | 4.5             | 4.4               | V     |                               |  |
|                 | Voltage         | 5.5             | 5.4               |       |                               |  |
|                 |                 |                 |                   |       | (Note 2)                      |  |
|                 |                 |                 |                   |       | $V_{IN} = V_{IL}$ or $V_{IH}$ |  |
|                 |                 | 3.0             | 2.4               |       | –12 mA                        |  |
|                 |                 | 4.5             | 3.7               | V     | I <sub>OH</sub> –24 mA        |  |
|                 |                 | 5.5             | 4.7               |       | –24 mA                        |  |
| $V_{OL}$        | Maximum Low     | 3.0             | 0.1               |       | I <sub>OUT</sub> = 50 μA      |  |
|                 | Level Output    | 4.5             | 0.1               | V     |                               |  |
|                 | Voltage         | 5.5             | 0.1               |       |                               |  |
|                 |                 |                 |                   |       | (Note 2)                      |  |
|                 |                 |                 |                   |       | $V_{IN} = V_{IL}$ or $V_{IH}$ |  |
|                 |                 | 3.0             | 0.50              |       | 12 mA                         |  |
|                 |                 | 4.5             | 0.50              | V     | I <sub>OL</sub> 24 mA         |  |
|                 |                 | 5.5             | 0.50              |       | 24 mA                         |  |
| I <sub>IN</sub> | Maximum Input   | 5.5             | ±1.0              | μA    | $V_I = V_{CC}$ , GND          |  |
|                 | Leakage Current |                 |                   |       |                               |  |

|                  |                           |                     | 54AC                                |       |                                                |
|------------------|---------------------------|---------------------|-------------------------------------|-------|------------------------------------------------|
| Symbol           | Parameter                 | V <sub>cc</sub> (V) | T <sub>A</sub> =<br>-55°C to +125°C | Units | Conditions                                     |
|                  |                           |                     | Guaranteed Limits                   | _     |                                                |
| I <sub>OZ</sub>  | Maximum                   |                     |                                     |       | $V_{I}$ (OE) = $V_{IL}$ , $V_{IH}$             |
|                  | TRI-STATE                 | 5.5                 | ±5.0                                | μA    | $V_I = V_{CC}, V_{GND}$<br>$V_O = V_{CC}, GND$ |
|                  | Current                   |                     |                                     |       | $V_O = V_{CC}$ , GND                           |
| I <sub>OLD</sub> | (Note 3) Minimum          | 5.5                 | 50                                  | mA    | V <sub>OLD</sub> = 1.65V Max                   |
| I <sub>OHD</sub> | Dynamic Output<br>Current | 5.5                 | -50                                 | mA    | V <sub>OHD</sub> = 3.85V Min                   |
| I <sub>cc</sub>  | Maximum Quiescent         | 5.5                 | 80.0                                | μA    | $V_{IN} = V_{CC}$                              |
|                  | Supply Current            |                     |                                     |       | or GND                                         |

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4:  $I_{\rm IN}$  and  $I_{\rm CC}$  @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V  $V_{\rm CC}$ .

Note 5:  $I_{CC}$  for 54AC @ 25°C is identical to 74AC @ 25°C.

# **DC Characteristics for 'ACT Family Devices**

| Symbol           | Parameter                        | v <sub>cc</sub> | 54ACT             | Units | Conditions                                                                |
|------------------|----------------------------------|-----------------|-------------------|-------|---------------------------------------------------------------------------|
|                  |                                  | (V)             | -55°C to +125°C   |       |                                                                           |
|                  |                                  |                 | Guaranteed Limits |       |                                                                           |
| V <sub>IH</sub>  | Minimum High Level               | 4.5             | 2.0               | V     | V <sub>OUT</sub> = 0.1V                                                   |
|                  | Input Voltage                    | 5.5             | 2.0               |       | or V <sub>CC</sub> – 0.1V                                                 |
| V <sub>IL</sub>  | Maximum Low Level                | 4.5             | 0.8               | V     | V <sub>OUT</sub> = 0.1V                                                   |
|                  | Input Voltage                    | 5.5             | 0.8               |       | or V <sub>CC</sub> – 0.1V                                                 |
| V <sub>OH</sub>  | Minimum High Level               | 4.5             | 4.4               | V     | I <sub>OUT</sub> = -50 μA                                                 |
|                  | Output Voltage                   | 5.5             | 5.4               |       |                                                                           |
|                  |                                  |                 |                   |       | (Note 6)                                                                  |
|                  |                                  |                 |                   |       | $V_{IN} = V_{IL}$ or $V_{IH}$                                             |
|                  |                                  | 4.5             | 3.70              | V     | I <sub>OH</sub> –24 mA                                                    |
|                  |                                  | 5.5             | 4.70              |       | –24 mA                                                                    |
| $V_{OL}$         | Maximum Low Level                | 4.5             | 0.1               | V     | I <sub>OUT</sub> = 50 μA                                                  |
|                  | Output Voltage                   | 5,5             | 0.1               |       |                                                                           |
|                  |                                  |                 |                   |       | ( <i>Note 6</i> )<br>V <sub>IN</sub> = V <sub>IL</sub> or V <sub>IH</sub> |
|                  |                                  | 4.5             | 0.50              | V     | I <sub>OL</sub> 24 mA                                                     |
|                  |                                  | 5.5             | 0.50              |       | 24 mA                                                                     |
| I <sub>IN</sub>  | Maximum Input Leakage Current    | 5.5             | ±1.0              | μΑ    | $V_I = V_{CC}$ , GND                                                      |
| I <sub>OZ</sub>  | Maximum TRI-STATE                | 5.5             | ±5.0              | μA    | $V_{I} = V_{IL}, V_{IH}$                                                  |
|                  | Current                          |                 |                   |       | $V_O = V_{CC}$ , GND                                                      |
| I <sub>CCT</sub> | Maximum I <sub>CC</sub> /Input   | 5.5             | 1.6               | mA    | $V_I = V_{CC} - 2.1V$                                                     |
| I <sub>OLD</sub> | (Note 7) Minimum                 | 5.5             | 50                | mA    | V <sub>OLD</sub> = 1.65V Max                                              |
| I <sub>OHD</sub> | Dynamic Output<br>Current        | 5.5             | -50               | mA    | V <sub>OHD</sub> = 3.85V Min                                              |
| I <sub>cc</sub>  | Maximum Quiescent Supply Current | 5.5             | 80.0              | μΑ    | V <sub>IN</sub> = V <sub>CC</sub><br>or GND                               |

Note 6: All outputs loaded; thresholds on input associated with output under test.

Note 7: Maximum test duration 2.0 ms, one output loaded at a time.

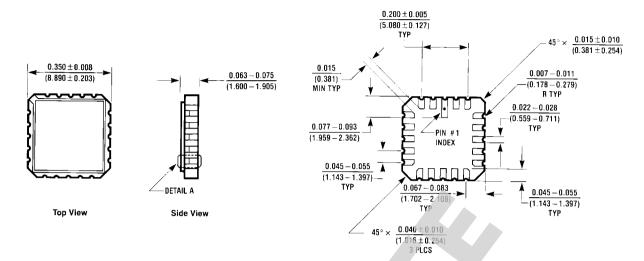
Note 8:  $I_{CC}$  for 54ACT @ 25°C is identical to 74ACT @ 25°C.

### **AC Electrical Characteristics**

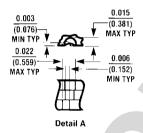
|                  |                     |                 | 54AC<br>T <sub>A</sub> = -55°C |       |       |      |
|------------------|---------------------|-----------------|--------------------------------|-------|-------|------|
|                  |                     | V <sub>cc</sub> |                                |       | ]     | Fig. |
| Symbol           | Parameter           | (V)             | to +1                          | 25°C  | Units | No.  |
|                  |                     | (Note 9)        | C <sub>L</sub> =               | 50 pF |       |      |
|                  |                     |                 | Min                            | Max   |       |      |
| t <sub>PLH</sub> | Propagation Delay   | 3.3             | 1.0                            | 12.5  | ns    |      |
|                  | Data to Output      | 5.0             | 1.0                            | 9.5   |       |      |
| t <sub>PHL</sub> | Propagation Delay   | 3.3             | 1.0                            | 12.0  | ns    |      |
|                  | Data to Output      | 5.0             | 1.0                            | 9.0   |       |      |
| t <sub>PZH</sub> | Output Enable Time  | 3.3             | 1.0                            | 11.5  | ns    |      |
|                  |                     | 5.0             | 1.0                            | 9.0   |       |      |
| t <sub>PZL</sub> | Output Enable Time  | 3.3             | 1.0                            | 13.0  | ns    |      |
|                  |                     | 5.0             | 1.0                            | 10.5  |       |      |
| t <sub>PHZ</sub> | Output Disable Time | 3.3             | 1.0                            | 12.5  | ns    |      |
|                  |                     | 5.0             | 1.0                            | 10.5  |       |      |
| t <sub>PLZ</sub> | Output Disable Time | 3.3             | 1.0                            | 13.0  | ns    |      |
|                  |                     | 5.0             | 1.0                            | 11.0  |       |      |

Note 9: Voltage Range 3.3 is 3.3V ±0.3V Voltage Range 5.0 is 5.0V ±0.5V

### **AC Electrical Characteristics**


|                  |                     |                 | 54                 | ACT   |       |      |
|------------------|---------------------|-----------------|--------------------|-------|-------|------|
|                  |                     | V <sub>cc</sub> | T <sub>A</sub> = - | -55°C |       | Fig. |
| Symbol           | Parameter           | (V)             | to +1              | 25°C  | Units | No.  |
|                  |                     | (Note 10)       | C <sub>L</sub> =   | 50 pF |       |      |
|                  |                     |                 | Min                | Max   |       |      |
| t <sub>PLH</sub> | Propagation Delay   | 5.0             | 1.0                | 10.0  | ns    |      |
|                  | Data to Output      |                 |                    |       |       |      |
| t <sub>PHL</sub> | Propagation Delay   | 5.0             | 1.0                | 10.0  | ns    |      |
|                  | Data to Output      |                 |                    |       |       |      |
| t <sub>PZH</sub> | Output Enable Time  | 5.0             | 1.0                | 9.5   | ns    |      |
| t <sub>PZL</sub> | Output Enable Time  | 5.0             | 1.0                | 11.0  | ns    |      |
| t <sub>PHZ</sub> | Output Disable Time | 5.0             | 1.0                | 11.0  | ns    |      |
| t <sub>PLZ</sub> | Output Disable Time | 5.0             | 1.0                | 11.5  | ns    |      |

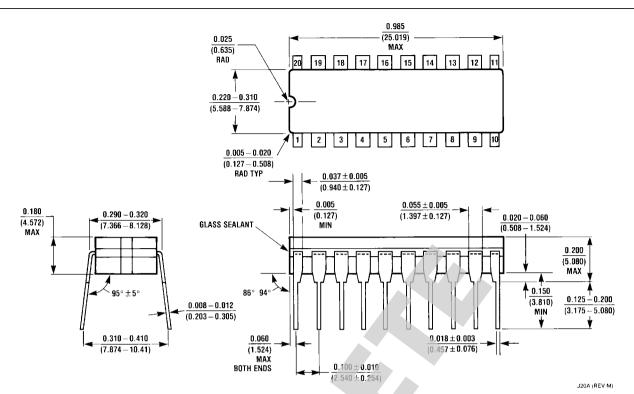
Note 10: Voltage Range 5.0 is  $5.0V \pm 0.5V$ 


# **Capacitance**

| Symbol          | Parameter         | Тур  | Units | Conditions             |
|-----------------|-------------------|------|-------|------------------------|
| C <sub>IN</sub> | Input Capacitance | 4.5  | pF    | V <sub>CC</sub> = OPEN |
| C <sub>PD</sub> | Power Dissipation | 45.0 | pF    | V <sub>CC</sub> = 5.0V |
|                 | Capacitance       |      |       |                        |

# Physical Dimensions inches (millimeters) unless otherwise noted




Bottom View



E20A (REVID:

20-Terminal Ceramic Leadless Chip Carrier (L) NS Package Number E20A

www.national.com 6



#### 20-Lead Ceramic Dual-In-Line Package (D) NS Package Number J20A



### **Notes**

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

| Pr                             | oducts                       | Design Support                  |                                |  |
|--------------------------------|------------------------------|---------------------------------|--------------------------------|--|
| Amplifiers                     | www.national.com/amplifiers  | WEBENCH® Tools                  | www.national.com/webench       |  |
| Audio                          | www.national.com/audio       | App Notes                       | www.national.com/appnotes      |  |
| Clock and Timing               | www.national.com/timing      | Reference Designs               | www.national.com/refdesigns    |  |
| Data Converters                | www.national.com/adc         | Samples                         | www.national.com/samples       |  |
| Interface                      | www.national.com/interface   | Eval Boards                     | www.national.com/evalboards    |  |
| LVDS                           | www.national.com/lvds        | Packaging                       | www.national.com/packaging     |  |
| Power Management               | www.national.com/power       | Green Compliance                | www.national.com/quality/green |  |
| Switching Regulators           | www.national.com/switchers   | Distributors                    | www.national.com/contacts      |  |
| LDOs                           | www.national.com/ldo         | Quality and Reliability         | www.national.com/quality       |  |
| LED Lighting                   | www.national.com/led         | Feedback/Support                | www.national.com/feedback      |  |
| Voltage References             | www.national.com/vref        | Design Made Easy                | www.national.com/easy          |  |
| PowerWise® Solutions           | www.national.com/powerwise   | Applications & Markets          | www.national.com/solutions     |  |
| Serial Digital Interface (SDI) | www.national.com/sdi         | Mil/Aero                        | www.national.com/milaero       |  |
| Temperature Sensors            | www.national.com/tempsensors | SolarMagic™                     | www.national.com/solarmagic    |  |
| PLL/VCO                        | www.national.com/wireless    | PowerWise® Design<br>University | www.national.com/training      |  |

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com



National Semiconductor **Americas Technical** Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products | Applications |
|----------|--------------|
|----------|--------------|

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated



Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

#### Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.



#### Как с нами связаться

**Телефон:** 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.