- Phase-Locked Loop-Based Zero-Delay Buffer
- Operating Frequency: 8 MHz to 200 MHz
- Low Jitter (Cycle-Cycle): ±100 ps Over the Range 66 MHz to 200 MHz
- Distributes One Clock Input to Two Banks of Four Outputs
- Auto Frequency Detection to Disable Device (Power Down Mode)
- Consumes Less Than 20 μA in Power Down Mode
- Operates From Single 3.3-V Supply
- Industrial Temperature Range –40°C to 85°C
- 25-Ω On-Chip Series Damping Resistors
- No External RC Network Required
- Spread Spectrum Clock Compatible (SSC)
- Available in 16-Pin TSSOP or 16-Pin SOIC Packages

D PACKAGE (SOIC) PW PACKAGE (TSSOP) (TOP VIEW)

CLKIN \Box	10	16	☐ FBIN
1Y0 🗀	2	15	1Y3
1Y1 🗀	3	14	1Y2
V _{DD} \square	4	13	\square V_{DD}
GND □□	5	12	
2Y0 🗀	6	11	□□ 2Y3
2Y1 🗀	7	10	2Y2
S2 🗀	8	9	S1

description

The CDCVF25081 is a high-performance, low-skew, low-jitter, phase-lock loop clock driver. It uses a PLL to precisely align, in both frequency and phase, the output clocks to the input clock signal. The CDCVF25081 operates from a nominal supply voltage of 3.3 V. The device also includes integrated series-damping resistors in the output drivers that make it ideal for driving point-to-point loads.

Two banks of four outputs each provide low-skew, low-jitter copies of CLKIN. All outputs operate at the same frequency. Output duty cycles are adjusted to 50%, independent of duty cycle at CLKIN. The device automatically goes into power-down mode when no input signal is applied to CLKIN and the outputs go into a low state. Unlike many products containing PLLs, the CDCVF25081 does not require an external RC network. The loop filter for the PLL is included on-chip, minimizing component count, space, and cost.

Because it is based on a PLL circuitry, the CDCVF25081 requires a stabilization time to achieve phase lock of the feedback signal to the reference signal. This stabilization is required following power up and application of a fixed-frequency signal at CLKIN and any following changes to the PLL reference.

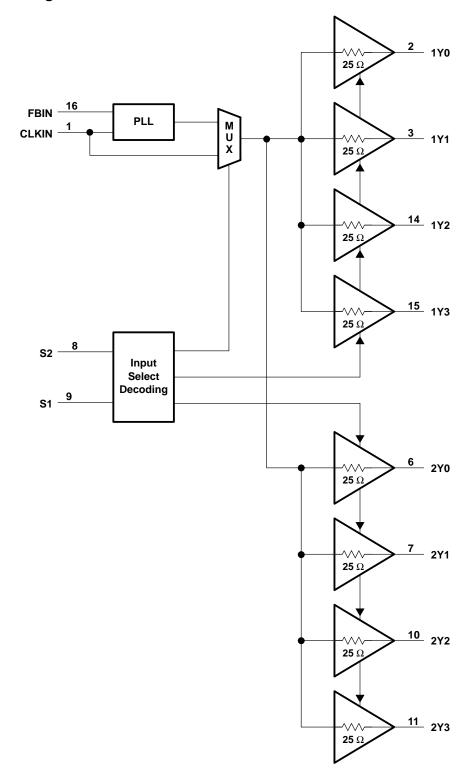
The CDCVF25081 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

S2	S1	1Y0-1Y3	2Y0-2Y3	OUTPUT SOURCE	PLL SHUTDOWN
0	0	Hi-Z	Hi-Z	N/A.	Yes
0	1	Active	Hi-Z	PLL [†]	No
1	0	Active	Active	Input clock (PLL bypass)	Yes
1	1	Active	Active	PLL [†]	No

† CLK input frequency < 2 MHz switches the outputs to low level

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



Terminal Functions

TE	RMINAL		
NAME	PIN NO.	TYPE	DESCRIPTION
1Y[0:3]	2, 3, 14, 15	0	Bank 1Yn clock outputs. These outputs are low-skew copies of CLKIN. Each output has an integrated $25-\Omega$ series-damping resistor.
2Y[0:3]	6, 7, 10, 11	0	Bank 2Yn clock outputs. These outputs are low-skew copies of CLKIN. Each output has an integrated $25-\Omega$ series-damping resistor.
CLKIN	1	I	Clock input. CLKIN provides the clock signal to be distributed by the CDCVF25081 clock driver. CLKIN is used to provide the reference signal to the integrated PLL that generates the output signal. CLKIN must have a fixed frequency and phase in order for the PLL to acquire lock. Once the circuit is powered up and a valid signal is applied, a stabilization time is required for the PLL to phase lock the feedback signal to CLKIN.
FBIN	16	_	Feedback input. FBIN provides the feedback signal to the internal PLL. FBIN must be wired to one of the outputs to complete the feedback loop of the internal PLL. The integrated PLL synchronizes the FBIN and output signal so there is nominally zero-delay from input clock to output clock.
GND	5, 12	Ground	Ground
S1, S2	9, 8	I	Select pins to determine mode of operation. See the FUNCTION TABLE for mode selection options.
V_{DD}	4, 13	Power	Supply voltage. The supply voltage range is 3 V to 3.6 V

functional block diagram

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage range, V _{DD}	–0.5 V to 4.6 V
Input voltage range, V _I (see Notes 1 and 2)	0.5 V to 4.6 V
Output voltage range, V _O (see Notes 1 and 2)	\dots -0.5 V to V _{DD} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA
Continuous total output current, $I_O(V_O = 0 \text{ to } V_{DD})$	
Package thermal impedance, θ _{IA} (see Note 3): PW package	
D package	112°C/W
Storage temperature range, T _{sto}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}	3	3.3	3.6	V
Low level input voltage, V _{IL}			8.0	V
High level input voltage, V _{IH}	2			V
Input voltage, V _I	0		3.6	V
High-level output current, IOH			-12	mA
Low-level output current, I _{OL}			12	mA
Operating free-air temperature, T _A	-40		85	°C

timing requirements over recommended ranges of supply voltage, load and operating free-air temperature

		MIN	NOM MAX	UNIT
Clash framus and f	$C_L = 25 pF$	8	10	0
Clock frequency, f _{Clk}	C _L = 15 pF	66	20	MHz

NOTES: 1. The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

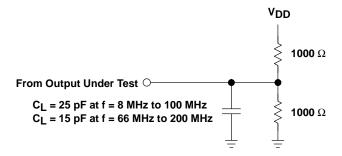
	PARAMETER	TEST CO	ONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	Input voltage	$V_{DD} = 3 V$,	I _I = -18 mA			-1.2	V
Ц	Input current	$V_I = 0 \text{ V or } V_{DD}$				±5	μΑ
I _{PD} ‡	Power down current	f _{CLKIN} = 0 MHz,	V _{DD} = 3.3 V			20	μΑ
loz	Output 3-state	$V_0 = 0 \text{ V or } V_{DD}$	V _{DD} = 3.6 V			±5	μΑ
Cl	Input capacitance at FBIN, CLKIN	$V_I = 0 V \text{ or } V_{DD}$			4		pF
Cl	Input capacitance at S1, S2	$V_I = 0 V \text{ or } V_{DD}$			2.2		pF
CO	Output capacitance	$V_I = 0 V \text{ or } V_{DD}$			3		pF
		$V_{DD} = min to max,$	I _{OH} = -100 μA	V _{DD} – 0.2			
∨он	High-level output voltage	$V_{DD} = 3 V$,	I _{OH} = -12 mA	2.1			V
		$V_{DD} = 3 V$,	I _{OH} = -6 mA	2.4			
		$V_{DD} = min to max,$	I _{OL} = 100 μA			0.2	
VOL	Low-level output voltage	$V_{DD} = 3 V$,	I _{OL} = 12 mA			8.0	V
		$V_{DD} = 3 V$,	$I_{OL} = 6 \text{ mA}$			0.55	
		$V_{DD} = 3 V$,	V _O = 1 V	-24			
lOH	High-level output current	$V_{DD} = 3.3 V$,	V _O = 1.65 V		-30		mA
		$V_{DD} = 3.6 V$,	V _O = 3.135 V			-15	
		$V_{DD} = 3 V$,	V _O = 1.95 V	26			
lOL	Low-level output current	$V_{DD} = 3.3 V$,	V _O = 1.65 V		33		mA
		$V_{DD} = 3.6 V$,	V _O = 0.4 V			14	

[†] All typical values are at respective nominal V_{DD}.

[‡] For IDD over frequency see Figure 7.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TES	MIN	TYP†	MAX	UNIT	
t(lock)	PLL lock time	f = 100 MHz		10		μs	
	Disease (feet (OLIVIN) & EDIN)	f = 8 MHz to 66 MHz, Vth = V _{DD} /2 (see Note 5)				200	
^t (phoffset)	Phase offset (CLKIN to FBIN)	$f = 66 \text{ MHz to } 20 \text{ Vth} = V_{DD}/2 (see$,	-150		150	ps
^t PLH	Low-to-high level output propagation delay	S2 = High,	S1 = Low (PLL bypass)	2.5		6	ns
^t PHL	High-to-low level output propagation delay	f = 1 MHz,	$C_L = 25 pF$				
t _{sk(o)}	Output skew (Yn to Yn) (see Note 4)					150	ps
	B	S2 = high,	S1 = high (PLL mode)			600	
^t sk(pp)	Part-to-part skew	S2 = high,	S1 = low (PLL bypass)			700	ps
		f = 66 MHz to 20			±100		
^t jit(cc)	Jitter (cycle-to-cycle)		0 MHz, C _L = 25 pF MHz (see Figure 6)			±150	ps
odc	Output duty cycle	f = 8 MHz to 200	MHz	43%		57%	
t _{sk(p)}	Pulse skew	S2 = High, f = 1 MHz,	S1 = low (PLL bypass) C _L = 25 pF			0.7	ns
	5 1 11 1	C _L = 15 pF,	See Figure 4	0.8		3.3	.,,
t _r	Rise time rate	C _L = 25 pF,	See Figure 4	0.5		2	V/ns
	= ""	C _L = 15 pF,	See Figure 4	0.8		3.3	.,,
t _f	Fall time rate	$C_L = 25 pF$,	See Figure 4	0.5		2	V/ns



[†] All typical values are at respective nominal V_{DD}.

NOTES: 4. The t_{sk(0)} specification is only valid for equal loading of all outputs.

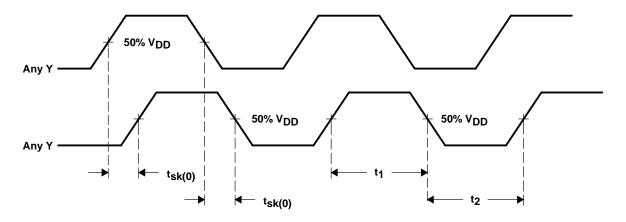
5. Similar waveform at CLKIN and FBIN are required. For phase displacement between CLKIN and Y-outputs see Figure 5.

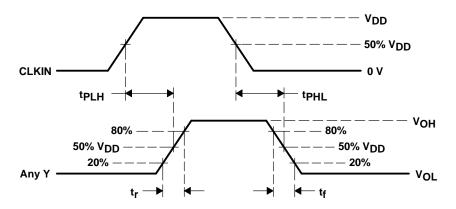
PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

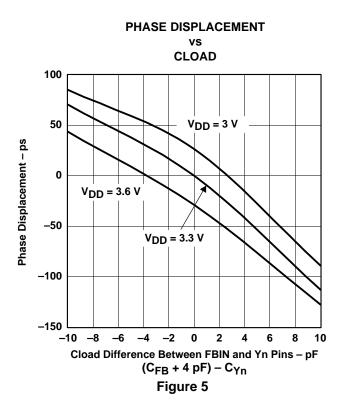
- B. All input pulses are supplied by generators having the following characteristics: $Z_Q = 50 \Omega$, $t_f < 1.2 \text{ ns}$, $t_f < 1.2 \text{ ns}$.
- C. The outputs are measured one at a time with one transition per measurement.

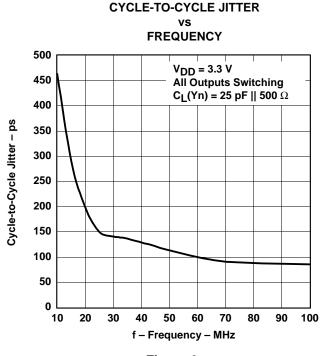
Figure 1. Test Load Circuit


Figure 2. Voltage Thresholds for Measurements, Phase Offset (PLL Mode)

NOTE: odc = $t_1/(t_1 + t_2) \times 100\%$


Figure 3. Output Skew and Output Duty Cycle (PLL Mode)


PARAMETER MEASUREMENT INFORMATION

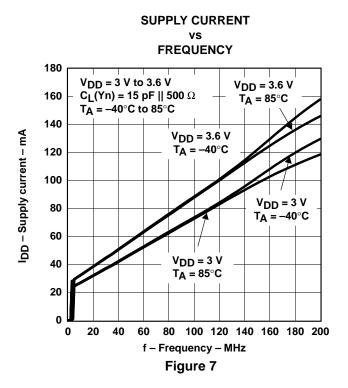

NOTE: $t_{Sk(p)}=|t_{PLH}-t_{PHL}|$

Figure 4. Propagation Delay and Pulse Skew (Non-PLL Mode)

PARAMETER MEASUREMENT INFORMATION

.com 11-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CDCVF25081D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CDCVF25081DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CDCVF25081DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CDCVF25081DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CDCVF25081PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CDCVF25081PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CDCVF25081PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CDCVF25081PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

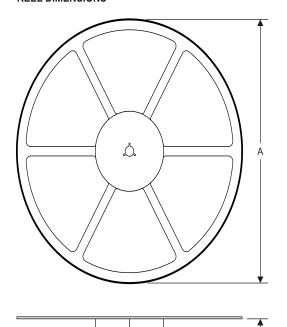
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

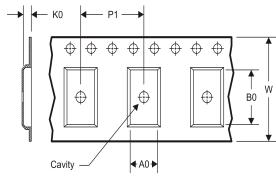
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

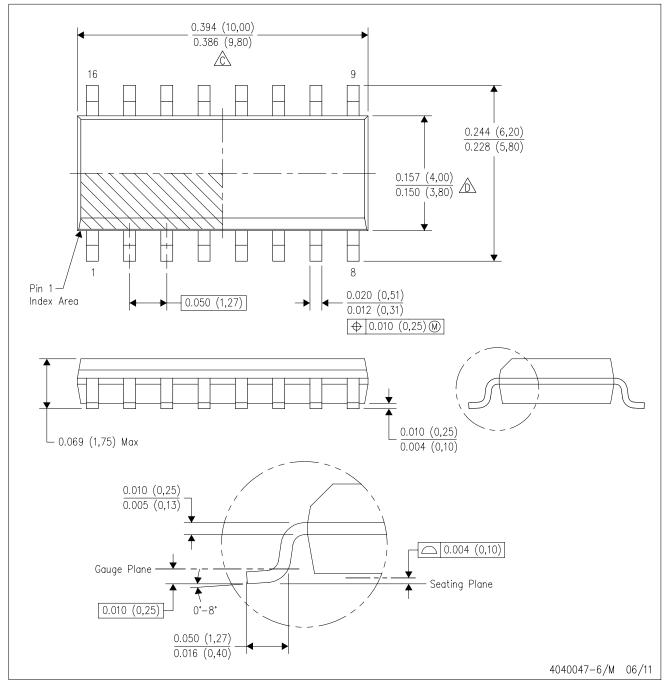
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCVF25081DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CDCVF25081PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 14-Jul-2012

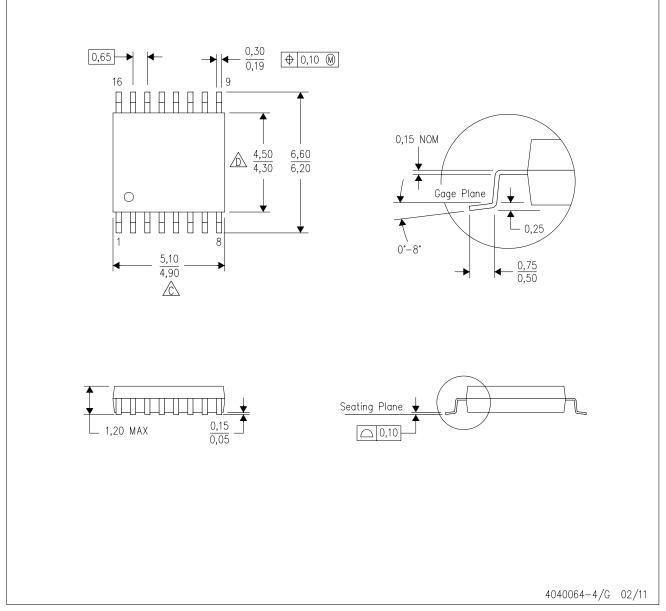


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCVF25081DR	SOIC	D	16	2500	367.0	367.0	38.0
CDCVF25081PWR	TSSOP	PW	16	2000	367.0	367.0	35.0

D (R-PDS0-G16)

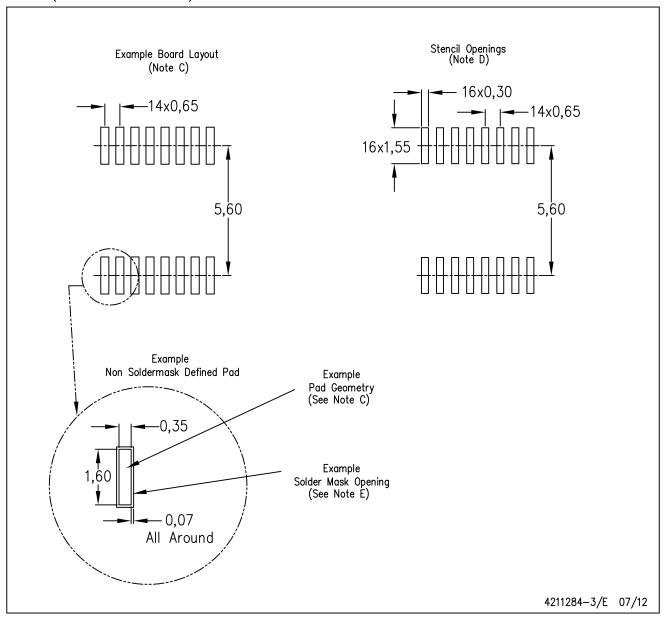
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
udia	ununu ti com/ou dio	Automotivo on

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti-rfid.com

Pr

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.