

Typical Applications

The HMC459 wideband driver is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military & Space
- Test Instrumentation

Functional Diagram

Features

P1dB Output Power: +25 dBm

Gain: 17 dB

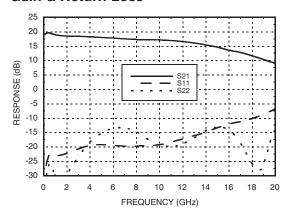
Output IP3: +31.5 dBm

Supply Voltage: +8V @ 290 mA 50 Ohm Matched Input/Output Die Size: 3.12 x 1.63 x 0.1 mm

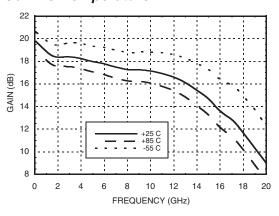
General Description

The HMC459 is a GaAs MMIC PHEMT Distributed Power Amplifier die which operates between DC and 18 GHz. The amplifier provides 17 dB of gain, +31.5 dBm output IP3 and +25 dBm of output power at 1 dB gain compression while requiring 290 mA from a +8V supply. Gain flatness is good making the HMC459 ideal for EW, ECM and radar driver amplifier applications. The HMC459 amplifier I/O's are internally matched to 50 Ohms facilitating easy integration into Multi-Chip-Modules (MCMs). All data is with the chip in a 50 Ohm test fixture connected via 0.025mm (1 mil) diameter wire bonds of minimal length 0.31mm (12 mils).

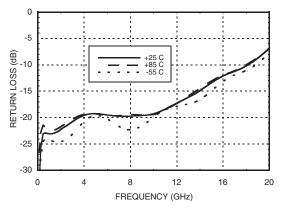
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd= 8V, Vgg2= 3V, Idd= 290 mA*

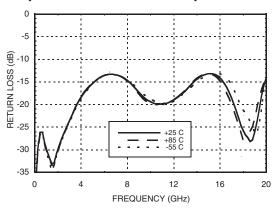

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min	Тур	Max	Units
Frequency Range	DC - 2.0		DC - 6.0		DC - 10.0		DC - 18.0		GHz				
Gain	16.5	18.5		15	18		14	17		9	12		dB
Gain Flatness		±0.5			±0.75			±0.75					dB
Gain Variation Over Temperature		0.02	0.03		0.02	0.03		0.03	0.04		0.035	0.045	dB/ °C
Input Return Loss		22			19.5			19			10		dB
Output Return Loss		27			15			14			14		dB
Output Power for 1 dB Compression (P1dB)	21	24		20.5	24.5		22	25		14	17		dBm
Saturated Output Power (Psat)		26.5			26.5			26.5			21		dBm
Output Third Order Intercept (IP3)		40			34			31.5			26		dBm
Noise Figure		4.0			4.0			3.0			6.5		dB
Supply Current (Idd) (Vdd= 8V, Vgg1= -0.5V Typ.)		290			290			290			290		mA

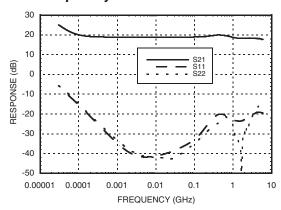
^{*} Adjust Vgg1 between -2 to 0V to achieve Idd= 290 mA typical.

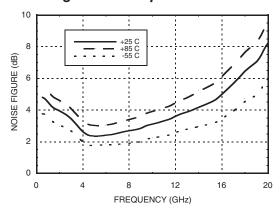


GaAs PHEMT MMIC POWER AMPLIFIER, DC - 18 GHz

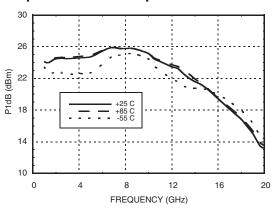

Gain & Return Loss


Gain vs. Temperature

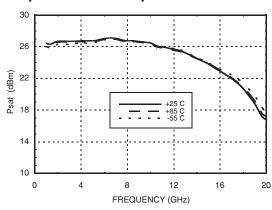

Input Return Loss vs. Temperature

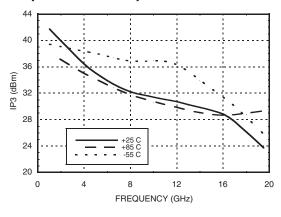

Output Return Loss vs. Temperature

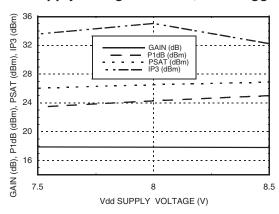
Low Frequency Gain & Return Loss

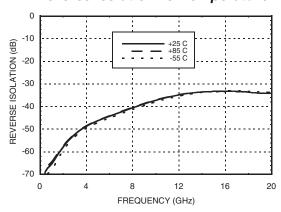


Noise Figure vs. Temperature




Output P1dB vs. Temperature


Output Psat vs. Temperature

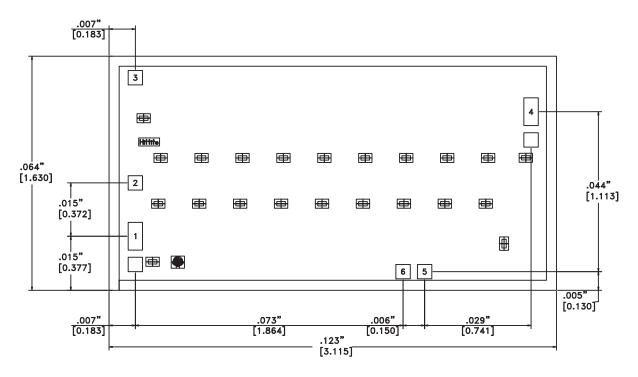

Output IP3 vs. Temperature

Gain, Power & Output IP3 vs. Supply Voltage @ 5 GHz, Fixed Vgg

Reverse Isolation vs. Temperature

GaAs PHEMT MMIC POWER AMPLIFIER, DC - 18 GHz

Absolute Maximum Ratings


Drain Bias Voltage (Vdd)	+9 Vdc
Gate Bias Voltage (Vgg1)	-2 to 0 Vdc
Gate Bias Voltage (Vgg2)	(Vdd -8) Vdc to Vdd
RF Input Power (RFIN)(Vdd = +8 Vdc)	+16 dBm
Channel Temperature	175 °C
Continuous Pdiss (T= 85 °C) (derate 51.5 mW/°C above 85 °C)	4.64 W
Thermal Resistance (channel to die bottom)	19.4 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C

Typical Supply Current vs. Vdd

ldd (mA)
292
290
288

Outline Drawing

Die Packaging Information [1]

Standard	Alternate		
GP-1 (Gel Pack)	[2]		

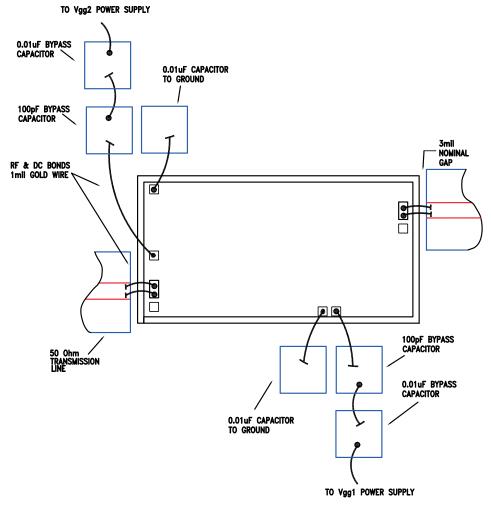
[1] Refer to the "Packaging Information" section for die packaging dimensions.

[2] For alternate packaging information contact Hittite Microwave Corporation.

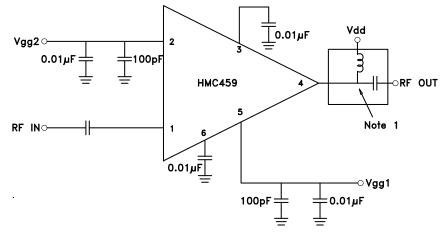
NOTES

- 1. ALL DIMENSIONS IN INCHES [MILLIMETERS]
- 2. NO CONNECTION REQUIRED FOR UNLABELED BOND PADS
- 3. DIE THICKNESS IS 0.004 (0.100)
- 4. TYPICAL BOND PAD IS 0.004 (0.100) SQUARE
- 5. BACKSIDE METALLIZATION: GOLD
- 6. BACKSIDE METAL IS GROUND 7. BOND PAD METALIZATION: GOLD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


Pad Descriptions

Pad Number	Function	Description	Interface Schematic			
1	RFIN	This pad is DC coupled and matched to 50 Ohms.	RFIN ACG2			
2	Vgg2	Gate Control 2 for amplifier. +3V should be applied to Vgg2 for nominal operation. Vgg2 may be adjusted between 0 to +5V to temperature compensate gain.	RFOUT			
4	RFOUT & Vdd	RF output for amplifier. Connect the DC bias (Vdd) network to provide drain current (Idd). See application circuit herein.	Vgg2 =			
5	Vgg1	Gate Control 1 for amplifier. Adjust between -2 to 0V to achieve Idd= 290 mA.	Vgg1			
3	ACG1	Low frequency termination. Attach bypass capacitor per application circuit here in.	ACG1 RFOUT			
6	ACG2	Low frequency termination. Attach bypass capacitor per application circuit here in.	RFIN ACG2			
Die Bottom	GND	Die bottom must be connected to RF/DC ground.	GND			



GaAs PHEMT MMIC POWER AMPLIFIER, DC - 18 GHz

Assembly Diagram

Application Circuit

NOTE 1: Drain Bias (Vdd) must be applied through a broadband bias tee or external bias network.

Mounting & Bonding Techniques for Millimeterwave GaAs MMICs

The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note).

50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2).

Microstrip substrates should brought as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm to 0.152 mm (3 to 6 mils).

Handling Precautions

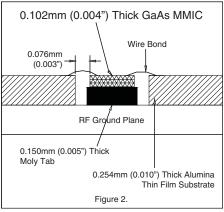
Follow these precautions to avoid permanent damage.

Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment.

Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against ESD strikes.

Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up.


0.102mm (0.004") Thick GaAs MMIC

Wire Bond

0.076mm
(0.003")

RF Ground Plane

0.127mm (0.005") Thick Alumina
Thin Film Substrate
Figure 1.

General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip may have fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.

Mounting

The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat.

Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 °C and a tool temperature of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 °C. DO NOT expose the chip to a temperature greater than 320 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment.

Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule.

Wire Bonding

Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 °C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31mm (12 mils).

3

LINEAR & POWER AMPLIFIERS - CHIP

GaAs PHEMT MMIC POWER AMPLIFIER, DC - 18 GHz

Notes:

ANALOGDEVICES

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.