Vishay Semiconductors

8-Channel EMI-Filter with ESD-Protection

MARKING (example only)

 $\begin{array}{l} \text{Dot} = \text{pin 1 marking} \\ \text{Y} = \text{type code (see table below)} \\ \text{XX} = \text{date code} \end{array}$

FEATURES

- Ultra compact LLP3313-17L package
- Low package profile of 0.6 mm
- 8-channel EMI-filter
- Low leakage current
- Line resistance $R_S = 100 \Omega$
- Typical cut off frequency $f_{3dB} = 130 \text{ MHz}$
- ESD-protection acc. IEC 61000-4-2 ± 18 kV contact discharge
 - \pm 25 kV air discharge
- e4 precious metal (e.g. Ag, Au, NiPd, NiPdAu) (no Sn)
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

ORDERING INFORMATION					
DEVICE NAME	ORDERING CODE	TAPED UNITS PER REEL (8 mm TAPE ON 7" REEL)	MINIMUM ORDER QUANTITY		
VEMI85AB-HGK	VEMI85AB-HGK-GS08	3000	15 000		

PACKAGE DATA						
DEVICE NAME	PACKAGE NAME	TYPE CODE	WEIGHT	MOLDING COMPOUND FLAMMABILITY RATING	MOISTURE SENSITIVITY LEVEL	SOLDERING CONDITIONS
VEMI85AB-HGK	LLP3313-17L	9U	7.4 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT	
Peak pulse current	All I/O pin to pin 17; acc. IEC 61000-4-5; $t_p = 8/20 \ \mu s$; single shot	I _{PPM}	4	А	
ESD immunity	Contact discharge acc. IEC61000-4-2; 10 pulses	V	± 18	kV	
	Air discharge acc. IEC61000-4-2; 10 pulses	V _{ESD}	± 25	κv	
Operating temperature	Junction temperature	TJ	- 40 to + 125	°C	
Storage temperature		T _{STG}	- 55 to + 150	°C	

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

Vishay Semiconductors

8-Channel EMI-Filter with ESD-Protection

APPLICATION NOTE

With the VEMI85AB-HGK 8 different signal or data lines can be filtered and clamped to ground. Due to the different clamping levels in forward and reverse direction the clamping behaviour is <u>Bi</u>directional and <u>Asymmetric</u> (BiAs).

L1 _{IN}	L1 _{OUT}
L2 _{IN}	L2 _{OUT}
L3 _{IN}	L3 _{OUT}
L4 _{IN}	L4 _{OUT}
L5 _{IN}	L5 _{OUT}
L6 _{IN}	L6 _{OUT}
L7 _{IN}	L7 _{OUT}
L8 _{IN}	L8 _{OUT}
Ground	

20389

The 8 independent EMI-filter are placed between

pin 1 and pin 16, pin 2 and pin 15, pin 3 and pin 14, pin 4 and pin 13, pin 5 and pin 12, pin 6 and pin 11, pin 7 and pin 10 and pin 8 and pin 9.

They all are connected to a common ground pin 17 on the backside of the package.

The circuit diagram of one EMI-filter-channel shows two identical Z-diodes at the input to ground and the output to ground. These Z-diodes are characterized by the breakthrough voltage level (V_{BR}) and the diode capacitance (C_D). Below the breakthrough voltage level the Z-diodes can be considered as capacitors. Together with these capacitors and the line resistance R_S between input and output the device works as a low pass filter. Low frequency signals ($f < f_{3dB}$) pass the filter while high frequency signals ($f > f_{3dB}$) will be shorted to ground through the diode capacitances C_D .

Each filter is symmetrical so that both ports can be used as input or output.

VEMI85AB-HGK

8-Channel EMI-Filter with ESD-Protection

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS VEMI85AB-HGK						
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of channels which can be protected	N _{channel}	-	-	8	channel
Reverse stand off voltage	at I _R = 1 μA	V _{RWM}	5	-	-	V
Reverse current	at $V_R = V_{RWM}$	I _R	-	0.25	1	μA
Reverse break down voltage	at I _R = 1 mA	V _{BR}	6	6.8	-	V
Pos. clamping voltage	at I _{PP} = 1 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	-	-	7	V
	at $I_{PP} = I_{PPM} = 4$ A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	-	-	8	V
Neg. clamping voltage	at I _{PP} = - 1 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	- 1.4	-	-	V
	at $I_{PP} = I_{PPM} = -4$ A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	- 1.6	-	-	V
Input capacitance	at $V_R = 0 V$; f = 1 MHz	C _{IN}	-	40	45	pF
	at V _R = 2.5 V; f = 1 MHz	C _{IN}	-	24	28	pF
ESD-clamping voltage	at ± 18 kV ESD-pulse acc. IEC 61000-4-2	V _{CESD}	-	7.5	-	V
Line resistance	Measured between input and output; $I_S = 10 \text{ mA}$	R _S	90	100	110	Ω
Cut-off frequency	V_{IN} = 0 V; measured in a 50 Ω system	f _{3dB}	-	130	-	MHz

Note

• Ratings at 25 °C, ambient temperature unless otherwise specified. All inputs (pin 1, 2, 3, 4, 5, 6, 7 and 8) to ground (pin 17)

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

VEMI85AB-HGK

Vishay Semiconductors

8-Channel EMI-Filter with ESD-Protection

Fig. 3 - Typical Forward Current I_{F} vs. Forward Voltage V_{F}

Fig. 4 - Typical Reverse Voltage V_{R} vs. Reverse Current I_{R}

Fig. 6 - Typical Input Capacitance C_{IN} vs. Input Voltage V_{IN}

Fig. 7 - Typical Small Signal Transmission (S21) at ~ Z_{O} = 50 ~ \Omega

8-Channel EMI-Filter with **ESD-Protection**

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters (inches): LLP3313-17L

Document no.:S8-V-3906.04-003 (4) Created - Date: 28. August 2006 Rev. 1 - Date: 27. May 2008 20391

Solder pad

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.