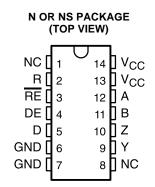


SLLS152C - DECEMBER 1992 - REVISED MAY 2010


DIFFERENTIAL DRIVER AND RECEIVER PAIR

Check for Samples: SN75ALS181

FEATURES

- Meets TIA/EIA-422-B, TIA/EIA-485-A, and CCITT Recommendations V.11 and X.27
- Low Supply-Current Requirements... 30 mA Max
- Driver Output Capacity...±60 mA
- Thermal Shutdown Protection
- Driver Common-Mode Output Voltage Range of –7 V to 12 V
- Receiver Input Impedance...12 kΩ Min
- Receiver Input Sensitivity...±200 mV
- Receiver Input Hysteresis...60 mV Typ
- Receiver Common-Mode Input Voltage Range of ±12 V
- Operates From Single 5-V Supply

Glitch-Free Power-Up and Power-Down
Protection

N.C. - No internal connection

DESCRIPTION

The SN75ALS181 is a differential driver and receiver pair designed for bidirectional data communication on multipoint bus transmission lines. The design provides for balanced transmission lines and meets TIA/EIA-422-B and TIA/EIA-485-A, and CCITT recommendations V.10, V.11, X.26, and X.27.

The SN75ALS181 combines a 3-state differential line driver and a differential-input line receiver that operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, that can be connected together externally to function as a direction control. The driver differential outputs and the receiver differential inputs are connected to separate pins for greater flexibility and are designed to offer minimum loading to the bus when the driver is disabled or $V_{CC} = 0$. These ports feature wide positive and negative common-mode voltage changes, making the device suitable for party-line applications.

ORDERING INFORMATION

T _A	PACKAG	GE ^{(1) (2)}	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
0%C to 70%C	PDIP – N	Tape and reel	SN75ALS181N	SN75ALS181N		
0°C to 70°C	SOP – NS	Tape and reel	SN75ALS181NSR	75ALS181		

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

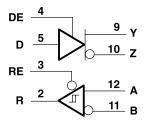
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS152C – DECEMBER 1992 – REVISED MAY 2010

FUNCTION TABLES

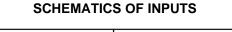
Each Driver

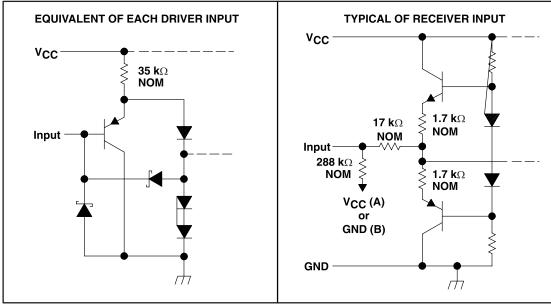

INPUTS	ENABLE	OUT	PUTS
D	D DE	Y	Z
Н	Н	Н	L
L	н	L	Н
Х	L	Z	Z

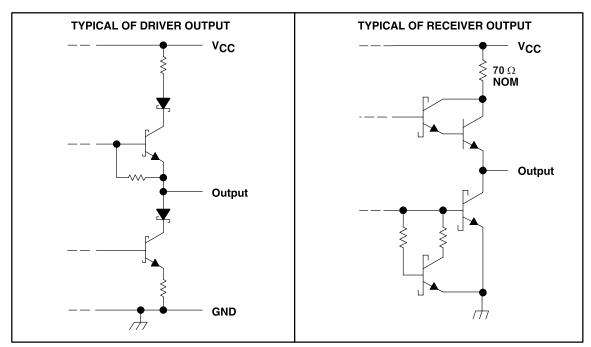
Each Receiver⁽¹⁾

DIFFERENTIAL A–B	ENABLE RE	OUTPUT R									
V _{ID} ≥ 0.2 V	L	Н									
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?									
$V_{\text{ID}} \leq -0.2 \text{ V}$	L	L									
Х	Н	Z									

(1) H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)


LOGIC DIAGRAM (POSITIVE LOGIC)




SLLS152C - DECEMBER 1992 - REVISED MAY 2010

www.ti.com

SCHEMATICS OF OUTPUTS

SLLS152C-DECEMBER 1992-REVISED MAY 2010

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾			7	V
	Input voltage range	D, DE, and RE inputs		7	V
	Output voltage range	Driver	-9	14	V
	Input voltage range	Receiver	-14	14	V
	Receiver differential input voltage range ⁽³⁾	-14	14	V	
0	Declare thermal impedance $(4)(5)$	N package		80	0C AA/
θ_{JA}	Package thermal impedance ⁽⁴⁾⁽⁵⁾	NS package		76	°C/W
	Lead temperature 1,6 mm (1/16 inch) from ca	ase for 10 seconds		260	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values, except differential input voltage, are with respect to network ground terminal. (2)

(3)

Differential input voltage is measured at the noninverting terminal with respect to the inverting terminal. Maximum power dissipation is a function of TJ(max), θ JA, and TA. The maximum allowable power dissipation at any allowable ambient (4)temperature is PD = (TJ(max) - TA)/0JA. Operating at the absolute maximum TJ of 150°C can affect reliability.

The package thermal impedance is calculated in accordance with JESD 51-7. (5)

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.75	5	5.25	V
V _{OC}	Common-mode output voltage ⁽¹⁾	Driver	-7		12	V
V _{IC}	Common-mode input voltage ⁽¹⁾	Receiver	-12		12	V
V _{IH}	High-level input voltage	D, DE, and RE	2			V
V _{IL}	Low-level input voltage	D, DE, and RE			0.8	V
V _{ID}	Differential input voltage				±12	V
	Lieb level evinet evinent	Driver			-60	mA
I _{OH}	High-level output current	Receiver			-400	μA
		Driver			60	
IOL	Low-level output current	Receiver			8	mA
T _A	Operating free-air temperature		0		70	°C

(1) The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this table for common-mode output voltage level only.

Driver Section

ELECTRICAL CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	Input clamp voltage	I _I = -18 mA				-1.5	V
Vo	Output voltage	I _O = 0		0		6	V
V _{OD1}	Differential output voltage	I _O = 0		1.5		6	V
		V _{CC} = 5 V ,		1/2 V _{OD1}			
V _{OD2}	Differential output voltage	$R_L = 100 \Omega$	See Figure 1	2			V
		R _L = 54 Ω		1.5	2.3	5	
V _{OD3}	Differential output voltage	$V_{\text{test}} = -7 \text{ V to } 12 \text{ V},$	See Figure 2	1.5		5	V
$\Delta V_{OD} $	Change in magnitude of differential output voltage	$R_L = 54 $ Ω or 100 Ω,	See Figure 1			±0.5	V
V	Common mode output voltage	$R_1 = 54 \Omega \text{ or } 100 \Omega$	Cas Figure 1			3	V
V _{OC}	Common mode output voltage	$R_{L} = 54 \Omega 01 100 \Omega,$	See Figure 1			-1	v
Δ V _{OC}	Change in magnitude of common-mode output voltage ⁽²⁾	$R_L = 54 \ \Omega \text{ or } 100 \ \Omega,$ See Figure 1				±0.2	μA
I _{OZ}	High-impedance-state output current	$V_{\rm O} = -7$ V to 12 V ⁽³⁾				±100	μA
I _{IH}	High-level input current	V _{IH} = 2.4 V				20	μA
IIL	Low-level input current	$V_{IL} = 0.4 V$				-100	μA
		$V_{O} = -7 V$				-250	
	Chart arout output ourrent	$V_{O} = V_{CC}$				250	
l _{OS}	Short circuit output current	V _O = 12 V			250) mA	
		$V_0 = 0 V$			-150		
	Supply autont (total package)	Nolood	Outputs enabled		21	30	mA
I _{CC}	Supply current (total package)	No load	Outputs disabled		14	21	ША

(1) All typical values are at $V_{CC} = 5$ V and TA = 25°C. (2) $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

(3) This applies for both power on and power off. Refer to TIA/EIA-485-A for exact conditions

SWITCHING CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	-	TEST CONDITIO	NS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{dD}	Differential output delay time, tdDH or tdDL	$R_L = 54 \ \Omega$,	C _L = 50 pF,	See Figure 3	9	13	20	ns
t _{sk(p)}	Pulse skew (tdDH – tdDL)	$R_L = 54 \ \Omega$,	C _L = 50 pF,	See Figure 3		1	8	ns
t _t	Differential output transition time	$R_L = 54 \ \Omega$,	C _L = 50 pF,	See Figure 3	3	10	16	ns
t _{PZH}	Output enable time to high level	$R_L = 110 \ \Omega$,	See Figure 4			36	53	ns
t _{PZL}	Output enable time to low level	$R_L=110\;\Omega$,	See Figure 5			39	56	ns
t _{PHZ}	Output disable time from high level	$R_L = 110 \ \Omega$,	See Figure 4			20	31	ns
t _{PLZ}	Output disable time from low level	$R_L = 110 \ \Omega$,	See Figure 5			9	20	ns

(1) All typical values are at V_{CC} = 5 V and TA = 25°C.

Receiver Section

ELECTRICAL CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TI	EST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{T+}	Positive-going threshold voltage, differential input	V _O = 2.7 V,	I _O = -0.4 mA			0.2	V
V_{T-}	Negative-going threshold voltage, differential input	V _O = 0.5 V,	I _O = 8 mA	-0.2			V
V _{hys}	Input hysteresis (V _{T+} – V _T)				60		mV
V_{IK}	Input clamp voltage, RE	I _I = -18 mA				-1.5	V
V _{OH}	High-level output voltage	V _{ID} = 200 mV,	$I_{OH} = -400 \ \mu A$, See Figure 6	2.7			V
V _{OL}	Low-level output voltage	V _{ID} = 200 mV,	I _{OL} = 8 mA, See Figure 6			0.45	V
I _{OZ}	High-impedance-state output current	$V_0 = 0.4$ V to 2.4	V			±20	μA
		Other input at 0	V ₁ = 12 V			1	
I,	Line input current	V ⁽²⁾ ,	$V_1 = -7 V$			-0.8	mA
I _{IH}	High-level input current, RE	V _{IH} = 2.7 V				20	μA
IIL	Low-level input current, RE	$V_{IL} = -7 V$				-100	μA
RI	Input resistance			12			kΩ
I _{OS}	Short circuit output current	V _{ID} = 200 mV,	$V_{O} = 0 V$	-15		-85	mA
	Supply current (total package)	Nolood	Outputs enabled		21	30	m۸
I _{CC}		No load	Outputs disabled		14	21	mA

(1) All typical values are at $V_{CC} = 5$ V and TA = 25°C. (2) This applies for both power on and power off. Refer to TIA/EIA-485-A for exact conditions

SWITCHING CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PHL}	Differential output delay time, tdDH or tdDL	$V_{ID} = -1.5$ V to 1.5 V	10	16	25	ns
t _{PLH}	Propagation delay time, low- to high-level output	$V_{ID} = -1.5 \text{ V} \text{ to } 1.5 \text{ V}$	10	16	25	ns
t _{sk(p)}	Pulse skew (tdDH – tdDL)	$V_{ID} = -1.5$ V to 1.5 V		1	8	ns
t _{PZH}	Output enable time to high level			7	15	ns
t _{PZL}	Output enable time to low level			9	19	ns
t _{PHZ}	Output disable time from high level			18	27	ns
t _{PLZ}	Output disable time from low level			10	15	ns

(1) All typical values are at V_{CC} = 5 V and TA = 25°C.

SLLS152C - DECEMBER 1992 - REVISED MAY 2010

PARAMETER MEASUREMENT INFORMATION

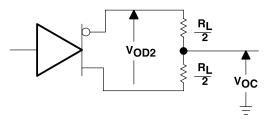
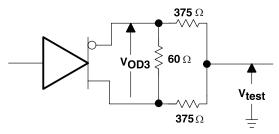
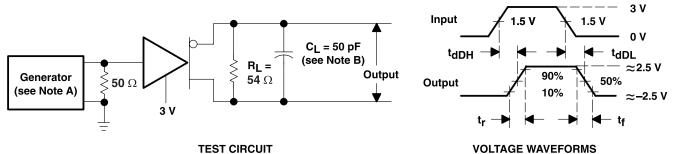
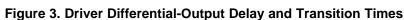
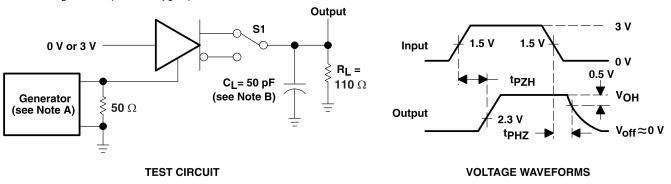


Figure 1. Driver Test Circuit, V_{OD} and V_{OC}


Figure 2. Driver Circuit, V_{OD3}

- A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50 \ \Omega$
- B. C_L includes probe and jig capacitance.

- C. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50 \Omega$
- D. C_L includes probe and jig capacitance.

- E. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50 \ \Omega$
- F. C_L includes probe and jig capacitance.

Texas Instruments

www.ti.com

SLLS152C - DECEMBER 1992 - REVISED MAY 2010

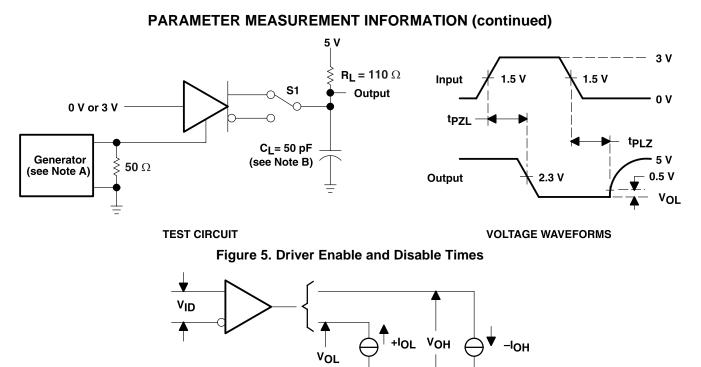
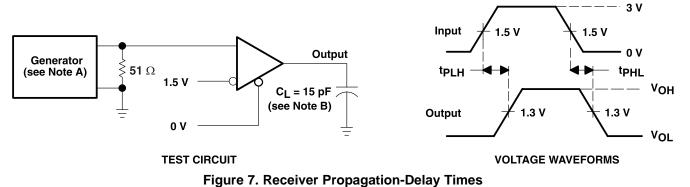



Figure 6. Receiver, V_{OH} and V_{OL}

- G. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50 \ \Omega$
- H. C_L includes probe and jig capacitance.

- I. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_0 = 50 \Omega$
- J. C_{L} includes probe and jig capacitance.

SLLS152C-DECEMBER 1992-REVISED MAY 2010



Figure 8. Receiver Output Enable and Disable Times

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN75ALS181N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS181NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS181NSLE	OBSOLETE	SO	NS	14		TBD	Call TI	Call TI
SN75ALS181NSR	ACTIVE	SO	NS	14	2000	Green (RoHS 8 no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS181NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

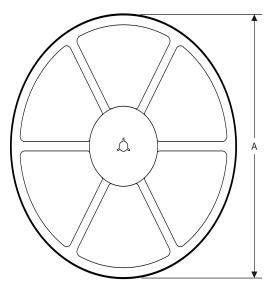
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

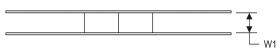
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

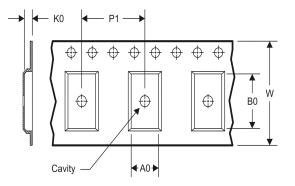
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION


REEL DIMENSIONS

TEXAS INSTRUMENTS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75ALS181NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75ALS181NSR	SO	NS	14	2000	367.0	367.0	38.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.