

18V Dual Input Micropower PowerPath Prioritizer with Backup Supply Monitoring

DESCRIPTION

Demonstration circuit DC2208A uses the LTC[®]4420 to provide backup switchover, keeping the output load powered during brownout or power loss conditions. Priority is assigned by supply connection to the V1 and V2 inputs. The power source connected to the V1 input has a higher priority, and it is monitored continuously by adjustable comparator (ADJ) with the proper threshold arranged by an external resistive divider. If the input voltage V1 exceeds 1.55V (1.8V worst case) and the ADJ pin is above 1.097V for at least 64ms after V1 has powered up, and then stays above 1.047V, V1 is considered valid, and the LTC4420 connects V1 to load (OUT pin). If V1 drops below 1.52V, or the ADJ pin voltage is lower than 1.047V, V1 is considered invalid, and LTC4420 switches V2 to load, if the $\overline{V2DIS}$ pin voltage is above 0.9V. If the $\overline{V2DIS}$ pin voltage is below 0.2V, V2 to load connection is activated only if V2UV is >0.387V.

The DC2208A is populated to provide switchover when V1 is below $9.92V \pm 0.32V$. The upper limit for V1 is the maximum operating voltage of 18V; recommended V1 voltage is 12V. The resistive divider of the auxiliary comparator CMP1, R1–R2, is adjusted to trigger the comparator when VCMP1_TOP turret voltage is in the range 9.82V to 10.69V.

The second rail, V2, is monitoring periodically through the external resistive divider R6, R7 and the V2UV_TEST jumper head in the ON position. The bottom resistor of this divider, R7, is periodically connected to GND through open-drain output GNDSW. V2UV undervoltage range on the DC2208A is 3.26V to 3.53V. If $\overline{V2DIS}$ is connected to GND, V2UV_TEST is ON, and V2 drops below the undervoltage level, the LTC4420 disconnects OUT from V2.

If the bottom resistor of the divider, R7, is connected to GND, V2 is not monitored for undervoltage condition and the load can be powered by any voltage from 1.8V to 18V.

Recommended V2 voltage is 5V.

The LTC4420's internal overcurrent (0.5A to 1.6A) and thermal protection circuitry allow safe prioritization in critical operation modes. Overtemperature protection terminates prioritizer operation when the junction temperature exceeds 125°C.

Another inherent feature—reverse supply protection protects the prioritizer input-output and load when negative voltage (up to -15V) is applied to any supply input, V1 or V2.

The LTC4420's break-before-make switching method prevents cross conduction between input channels during switchover; connection to any input occurs only if the input voltage exceeds the output by 50mV. This eliminates reverse current flow from the output into selected input supply.

Design files for this circuit board are available at http://www.linear.com/demo/DC2208A

Δ7, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and PowerPath is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY Specifications are at T_A = 25°C

SYMBOL CONDITIONS PARAMETER TYP UNITS MIN MAX V1, V2 V1, V2, Operating Voltage Range 18 V 1.8 R_{ON} Switch Resistance V1 = V2 = 5V, I_{OUT} = -100mA 1 2 5 Ω Input Qualification Time V1 Rising, ADJ Rising 34 94 64 t_{VALID(V1)} ms ADJ Threshold ADJ Falling 1.032 1.047 1.062 V V_{THA} **ADJ Comparator Hysteresis** ADJ Rising 30 50 70 m٧ V_{HYSTA} CMP1, V_{2UV} Threshold CMP1, V2UV Falling 0.378 0.387 0.396 V V_{THC}

PERFORMANCE SUMMARY Specifications are at $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
V _{HYSTC}	Comparator CMP1, V2UV Hysteresis	CMP1, V2UV Rising	7.5	10	12.5	mV
ILIM	Switch Current Limit	V1 = V2,= 8.4V	0.5	1.1	1.6	A
V _{REV}	Reverse Comparator Threshold	(V1, V2) – V _{OUT} for PowerPath [™] Turn-On	25	50	75	mV
t _{SWITCH}	Break-Before-Make Time	V1 = V2 = 5V, I _{OUT} < 10mA	1	2.5	5	μs
V _{1_SWITCHOVER}	Demo Board Switchover Voltage		9.6	9.92	10.24	V
V _{1_ALARM}	Demo Board V1 Alarmed Voltage		9.82	10.42	10.69	V
V _{2UV}	Demo Board V2UV Voltage		3.26	3.38	3.53	V
t _{LTEST}	Time Between V2UV Monitoring Event	V2TEST	80	132	180	S

OVERVIEW

The DC2208A is intended to provide a particular prioritizer implementation.

The board includes the LTC4420, 18V dual input micropower PowerPath prioritizer with backup supply monitoring (U1), LDO regulator with 2.5V output voltage (U2, LT1763) for powering LEDs and logic, dual inverter buffer (U3), three LEDs (D7–D9) for visual information, two jumpers (JP1, JP2) for selecting a power source for LDO and three jumpers (JP4–JP6) for setting monitoring parameters, push button (SW1) for enabling freshness seal mode, a few turrets for connecting the board to power sources, load and measuring instruments. Auxiliary components—LDO and logic—are placed on the bottom side.

The DC2208A design allows adjusting the operating voltage of each channel to any voltage within the full operating range.

Provision is made for increasing the hysteresis of the auxiliary comparator (marked in data sheet as CP1) by placing optional resistor R17.

Turrets

V1 (E1): 12V supply input; the voltage should not exceed +18V, and should not be lower than -15V.

V2 (E8): 5V supply input; the voltage should not exceed +18V, and should not be lower than -15V.

ADJ (E3): Adjustable comparator noninverting input for setting switchover threshold level.

VCMP1_TOP (E2): Input for voltage monitored by first auxiliary comparator CMP1.

V2UV (E7): Undervoltage comparator noninverting input.

VCMP2_TOP (E6): Noninverting input of the comparator V2UV for V2 undervoltage monitoring.

CMP1 (E4): Auxiliary comparator CMP1 noninverting input.

GND (E5 and E11): Common ground.

OUT (E9): Terminal for load connection (up to 0.5A).

LDO_EXT (E14): Positive terminal for external auxiliary 3.5V to 20V power supply.

V2P5V (E10): LDO output voltage terminal (2.5V).

GNDSW (E12): Pulsed GND Output.

Jumpers

LDO (JP1): ON/OFF switch for powering LDO.

LDO_POWER (JP2): Power supply selection for LDO.

V2UV_TEST (JP6): Selection of Monitoring Mode for V2.

V2DIS (JP4): V2 channel enable or disable.

V2TEST (JP5): Enable or disable V2 test.

LEDs

D7: Indicates LDO output voltage.

D8: Indicates first auxiliary comparator output stage (CMPOUT1 pin).

D9: Indicates that V2 is above undervoltage threshold in the monitoring mode.

QUICK START PROCEDURE

Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

- 1. Place JP1 in position ON and JP2 in position LDO_EX-TER. Turn off all external switches SW1–SW4. Connect turrets ADJ and GND with external wire.
- 2. Adjust V1 supply output to 12.0V, V2 to 5V, and auxiliary power supply to 10V. Use 30Ω resistive load.
- 3. Turn all external switches SW1–SW4 on.
- 4. Place scope probes at the ADJ and OUT turrets. Disconnect the turrets ADJ and GND and measure the time between events when the ADJ pin voltage reaches 1.097V and when the output voltage starts to rise. The qualification time should be in the range 34ms to 94ms.
- Turning SW1 off or decreasing V1 to 9V initiates switchover from V1 to V2. Turning SW1 back to on or increasing V1 above 10.5V initiates switchover from V2 to V1 with a qualification time delay.

- 6. Turn all external switches SW1–SW4 off again and connect turrets ADJ and GND with external wire. Use 5Ω resistive load. Place current probe to measure load current.
- 7. Turn all external switches SW1–SW4 on. Disconnect the turrets ADJ and GND and observe overcurrent transients with cooling period and thermal protection.
- 8. Disconnect V1 from the board (turn SW1 off) and verify that:
 - V2 is disconnected from load if V2 is lower than 3.5V in the V2UV_TEST mode (JP6 in ON position) and V2DIS is low (JP4 in ON position);
 - V2 is not disconnected from load if V2 is lower than 3.5V in the V2UV_TEST mode (JP6 in ON position) and V2DIS is high (JP4 in OFF position).

Figure 1. Proper Measurement Equipment Setup

DEMO MANUAL DC2208A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER					
Required Circuit Components									
1	0	BT1	HOLDER, BATTERY 20mm OPTION	KEYSTONE 1066 OPTION					
2	2	C12, COUT	CAP, 1206 10µF 20% 25V TANT	AVX F951E106MAAAQ2					
3	3	C1, C2, C7	CAP, 2220 47µF 20% 25V X5R	TDK CKG57NX5R1E476M500JH					
4	0	C3, C4, C5, C6	CAP, 1206 22µF 20% 6.3V X5R OPTION	TAIYO YUDEN EMK316BJ226ML-T OPT					
5	0	C8	CAP, 2220 OPTION	OPTION					
6	2	C9, C10	CAP, 0805 0.1µF 10% 25V X5R	AVX 08053D104KAT2A					
7	1	C11	CAP, 0805 10nF 10% 16V X7R	AVX 0805YC103KAT2A					
8	1	C13	CAP, 0805 1nF 10% 50V X7R	AVX 08055C102KAT					
9	1	C14	CAP, 7343 10µF 10% 35V TANT	AVX TPSD106K035R0300					
10	2	D1, D3	DIODE, 600W TRANSIENT VOLTAGE SUPPRESSOR	DIODES INC. SMAJ18CA					
11	1	D5	DIODE, 400W 22V TRANSIENT VOLTAGE SUPPRESSOR	VISHAY TPSMA22A					
12	1	D6	DIODE, SCHOTTKY BARRIER RECTIFIER 30V 1.0A	DIODES INC. DFLS130-7					
13	1	D7	LED, 0603 GREEN	WURTH ELEKTRONIK 150060GS75000					
14	1	D8	LED, 0603 BLUE	WURTH ELEKTRONIK 150060BS75000					
15	1	D9	LED, 0603 WHITE	PANASONIC LNJ026X8ARA1					
16	5	E1, E8, E9, E11, E14	TURRET	MILL-MAX 2501-2-00-80-00-00-07-0					
	8	E2, E3, E4, E5, E6, E7, E10, E12	TURRET	MILL MAX 2308-2-00-80-00-00-07-0					
17	4	JP1, JP4, JP5, JP6	HEADER, 2mm, 3-PIN	SULLINS, NRPN031PAEN-RC					
18	1	JP2	HEADER, 2mm, 3-PIN	SULLINS, NRPN031PAEN-RC					
19	4	MH1, MH2, MH3, MH4	STANDOFF, SNAP ON	KEYSTONE_8831					
20	1	R1	RES, 0805 1.21MΩ 1% 1/18W	VISHAY CRCW08051M21FKEA					
21	2	R2, R7	RES, 0805 47.5kΩ 1% 1/8W	VISHAY CRCW080547K5FKEA					
22	1	R3	RES, 0805 1MΩ 1% 1/8W	VISHAY CRCW08051M00FKEA					
23	1	R4	RES, 0805 118kΩ 1% 1/8W	VISHAY CRCW0805118KFKEA					
24	0	R5	RES, 0805 69.8kΩ 1% 1/8W OPTION	VISHAY CRCW080569K8FKEA OPT					
25	0	R6	RES, 0805 365kΩ 1% 1/8W OPTION	VISHAY CRCW0805365KFKEA OPT					
26	1	R8	RES, 0805 365kΩ 1% 1/8W	VISHAY CRCW0805365KFKEA					
27	2	R9, R13	RES, 0805 511kΩ 1% 1/8W	VISHAY CRCW0805511KFKEA					
28	0	R10, R14	RES, 0805 511kΩ 1% 1/8W OPTION	VISHAY CRCW0805511KFKEA OPT					
29	2	R11, R12	RES, 0805 511Ω 1% 1/8W	VISHAY CRCW0805511RFKEA					
30	2	R15, R16	RES, 0805 2Ω 1% 1/8W	VISHAY CRCW08052R00FNEA					
31	0	R17	RES, 0805 1MΩ 1% 1/8W OPTION	VISHAY CRCW08051M00FKEA OPT					
32	1	R18	RES, 0805 510Ω 5% 1/8W	VISHAY CRCW0805510RJNEA					
33	1	SW1	SWITCH, MOMENTARY, PUSH BUTTON	WURTH 434 123 050 816					
34	1	U1	IC, LTC4420IDD#TRPBF	LINEAR TECH LTC4420IDD#TRPBF					
35	1	U2	IC, 500mA LOW NOISE LDO MICROPOWER REGULATOR	LINEAR TECH LT1763IS8-2.5#PBF					
36	1	U3	IC, DUAL INVERTER BUFFER/DRIVER WITH OPEN-DRAIN OUTPUTS	TEXAS INSTRUMENTS SN74LVC2G06DCKR					
37	5	XJP1, XJP2, XJP3, XJP4, XJP5		SAMTEC 2SN-BK-G					

SCHEMATIC DIAGRAM

LINEAR TECHNOLOGY Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. dc2208af

5

DEMO MANUAL DC2208A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

dc2208at

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.