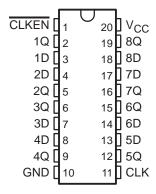
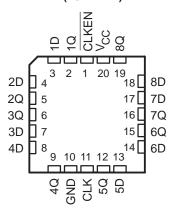
SN54ABT377, SN74ABT377 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH CLOCK FNARLE

SCBS156B - FEBRUARY 1991 - REVISED JULY 1994


- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce)
 1 V at V_{CC} = 5 V, T_A = 25°C
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages, Ceramic Chip Carriers (FK), and Plastic (N) and Ceramic (J) DIPs

description


The 'ABT377 are 8-bit positive-edge-triggered D-type flip-flops with a clock (CLK) input. They are particularly suitable for implementing buffer and storage registers, shift registers, and pattern generators.

Data (D) input information that meets the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if the common clock-enable (CLKEN) input is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the buffered clock (CLK) input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at CLKEN.

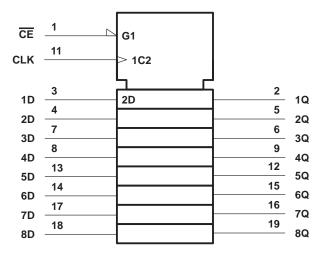
SN54ABT377 . . . J PACKAGE SN74ABT377 . . . DB, DW, OR N PACKAGE (TOP VIEW)

SN54ABT377 . . . FK PACKAGE (TOP VIEW)

The SN74ABT377 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT377 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT377 is characterized for operation from -40° C to 85° C.

FUNCTION TABLE (each flip-flop)


I	OUTPUT		
CLKEN	CLK	D	Q
Н	X	Χ	Q ₀
L	\uparrow	Н	Н
L	\uparrow	L	L
Х	H or L	Χ	Q ₀

EPIC-IIB is a trademark of Texas Instruments Incorporated.


SCBS156B - FEBRUARY 1991 - REVISED JULY 1994

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

SN54ABT377, SN74ABT377 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH CLOCK ENABLE

SCBS156B - FEBRUARY 1991 - REVISED JULY 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} –0.5 V to 7 V
Input voltage range, V _I (see Note 1) –0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V _O −0.5 V to 5.5 V
Current into any output in the low state, I _O : SN54ABT377
SN74ABT377 128 mA
Input clamp current, I_{IK} ($V_I < 0$)
Output clamp current, I_{OK} ($V_O < 0$)
Maximum power dissipation at T _A = 55°C (in still air) (see Note 2): DB package 0.6 W
DW package 1.6 W
N package 1.3 W
Storage temperature range –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils, except for the N package, which has a trace length of zero. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B.

recommended operating conditions (see Note 3)

		SN54ABT377		SN74A	UNIT	
		MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
\vee_{IL}	Low-level input voltage		0.8		0.8	V
٧ _I	Input voltage	0	Vcc	0	Vcc	V
loн	High-level output current		-24		-32	mA
loL	Low-level output current		48		64	mA
Δt/Δν	Input transition rise or fall rate		5		5	ns/V
TA	Operating free-air temperature	-55	125	-40	85	°C

NOTE 3: Unused or floating inputs must be held high or low.

SN54ABT377, SN74ABT377 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH CLOCK ENABLE

SCBS156B - FEBRUARY 1991 - REVISED JULY 1994

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			Т	T _A = 25°C			BT377	SN74ABT377		UNIT
PARAMETER				MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNIT
VIK	$V_{CC} = 4.5 V$,	$I_{I} = -18 \text{ mA}$				-1.2		-1.2		-1.2	V
	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$		2.5			2.5		2.5		
V	$V_{CC} = 5 V$,	IOH = -3 mA		3			3		3		V
VOH	V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$		2			2				V
	VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$		2*					2		
V	\/aa 45\/	I _{OL} = 48 mA				0.55 0.55			V		
VOL	V _{CC} = 4.5 V I _{OL} = 64 mA					0.55*				0.55	V
ΙĮ	$V_{CC} = 5.5 V$,	$V_I = V_{CC}$ or GND				±1		±1		±1	μΑ
loff	$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$				±100				±100	μΑ
ICEX	$V_{CC} = 5.5 V$,	V _O = 5.5 V	Outputs high			50		50		50	μΑ
IO [‡]	$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V		-50	-100	-180	-50	-180	-50	-180	mA
la a	V _{CC} = 5.5 V,	I _O = 0,	Outputs high		1	250		250		250	μΑ
lcc	$V_I = V_{CC}$ or GI	ND	Outputs low		24	30		30		30	mA
Δl _{CC} §	V _{CC} = 5.5 V, Other inputs at	One input at 3.4 V, V _{CC} or GND				1.5		1.5		1.5	mA
Ci	V _I = 2.5 V or 0.	5 V			3						pF

^{*} On products compliant to MIL-STD-883, Class B, this parameter does not apply.

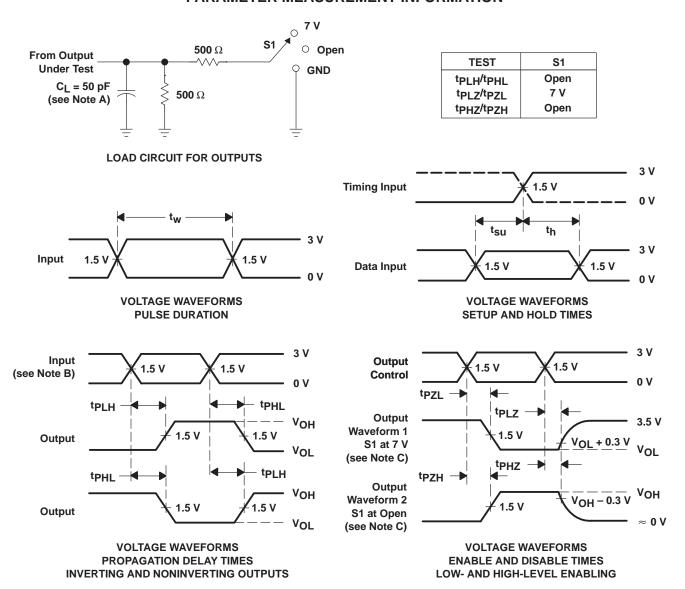
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			$V_{CC} = 5 \text{ V},$ $T_A = 25^{\circ}\text{C}$		SN54ABT377		SN74ABT377		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		0	150	0	150	0	150	MHz
t _W	Pulse duration	CLK high or low	3.3		3.3		3.3		ns
	Catura tima hafana CLIVA	Data high or low	2		2.5		2		20
t _{su}	Setup time before CLK↑	CLKEN high or low	3		3		3		ns
4.	Hold time after CLK↑	Data high or low	1.8¶		1.8¶		1.8¶		20
th	Floid time after CENT	CLKEN high or low	1.8¶		1.8¶		1.8¶		ns

[¶] This data sheet limit may vary among suppliers.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_1 = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C		SN54ABT377		SN74ABT377		UNIT	
	(INPOT)	(001F01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}			150			150		150		MHz
t _{PLH}	CLK	Q	2.2	4.5	6	2.2	7	2.2	6.5	ns
t _{PHL}	CLK	ď	3.1	5.3	6.8	2	7.6	3.1	7.3	115



[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[§] This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

ti.com 26-Sep-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9314801Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
5962-9314801QRA	ACTIVE	CDIP	J	20	1	TBD	Call TI	Level-NC-NC-NC
5962-9314801QSA	ACTIVE	CFP	W	20	1	TBD	Call TI	Level-NC-NC-NC
SN74ABT377DBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
SN74ABT377DW	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI
SN74ABT377DWR	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI
SN74ABT377N	OBSOLETE	PDIP	N	20		TBD	Call TI	Call TI
SNJ54ABT377FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54ABT377J	ACTIVE	CDIP	J	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54ABT377W	ACTIVE	CFP	W	20	1	TBD	Call TI	Level-NC-NC-NC

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

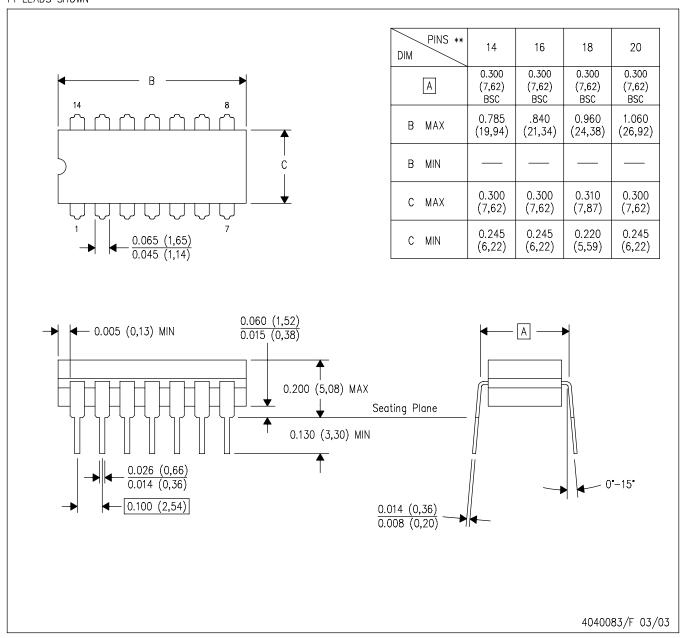
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

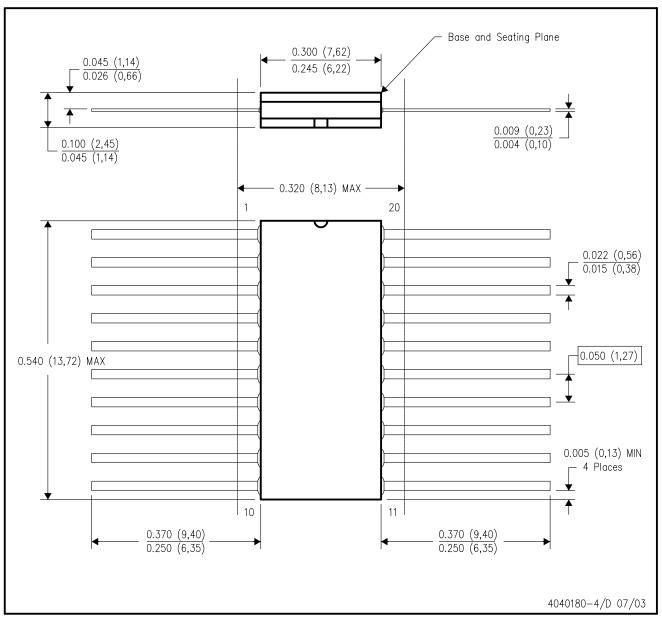
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

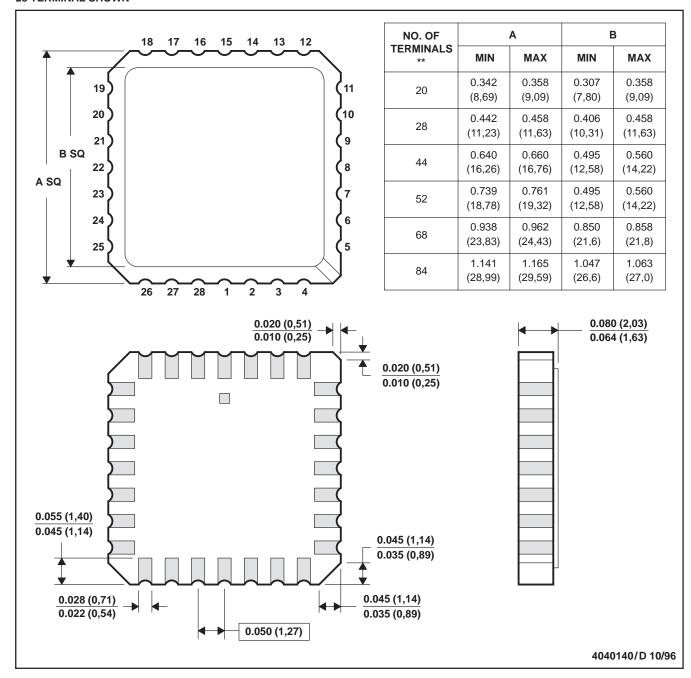
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

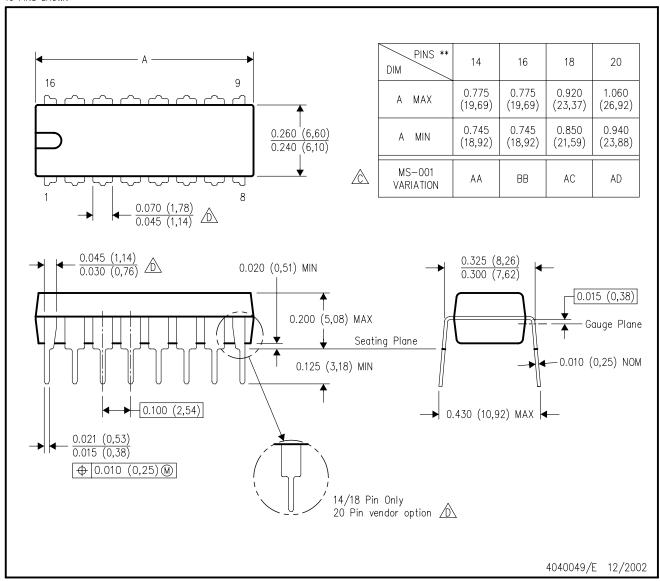

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within Mil-Std 1835 GDFP2-F20

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

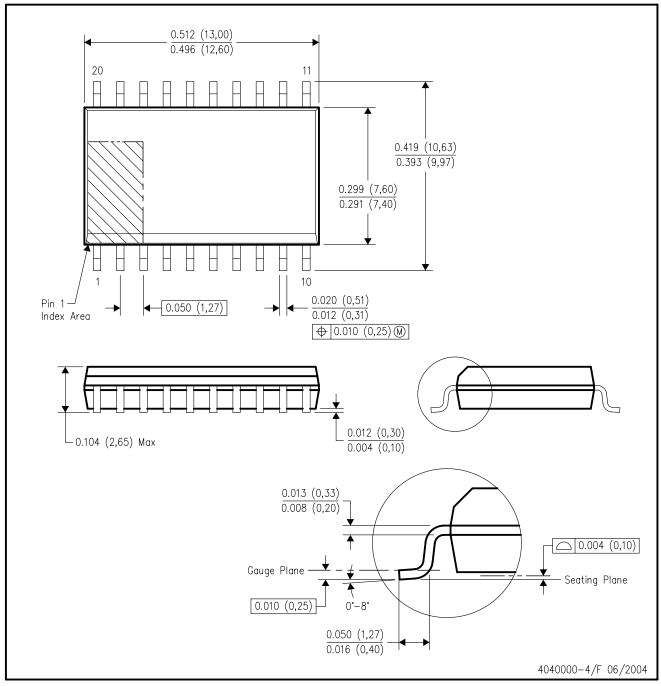
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

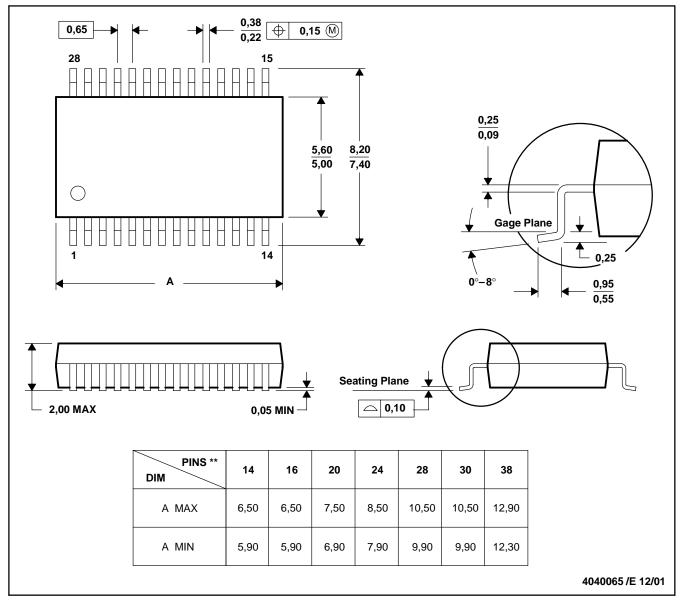
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.