

5th Order Lowpass Filter

FEATURES

- Lowpass Filter with No DC Error
- Low Passband Noise
- Operates DC to 20kHz
- Operates On a Single 5V Supply or Up to ±8V
- 5th Order Filter
- Maximally Flat Response
- Internal or External Clock
- Cascadable for Faster Rolloff
- Buffer Available

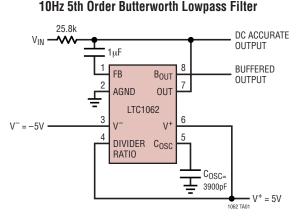
APPLICATIONS

- 60Hz Lowpass Filters
- Antialiasing Filter
- Low Level Filtering
- Rolling Off AC Signals from High DC Voltages
- Digital Voltmeters
- Scales
- Strain Gauges

DESCRIPTION

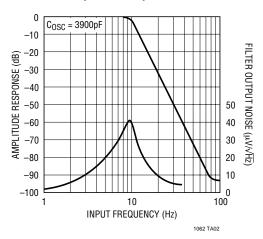
The LTC[®]1062 is a 5th order all pole maximally flat lowpass filter with no DC error. Its unusual architecture puts the filter outside the DC path so DC offset and low frequency noise problems are eliminated. This makes the LTC1062 very useful for lowpass filters where DC accuracy is important.

The filter input and output are simultaneously taken across an external resistor. The LTC1062 is coupled to the signal through an external capacitor. This RC reacts with the internal switched capacitor network to form a 5th order rolloff at the output.


The filter cutoff frequency is set by an internal clock that can be externally driven. The clock-to-cutoff frequency ratio is typically 100:1, allowing the clock ripple to be easily removed.

Two LTC1062s can be cascaded to form a 10th order quasi max flat lowpass filter. The device can be operated with single or dual supplies ranging from $\pm 2.5V$ to $\pm 9V$.

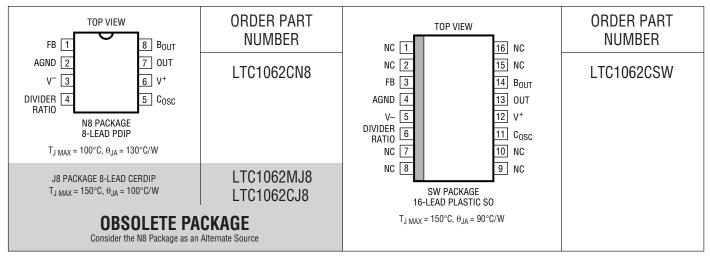
The LTC1062 is manufactured using Linear Technology's enhanced LTCMOS[™] silicon gate process.


LT, LTC and LT are registered trademarks of Linear Technology Corporation. LTCMOS is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

NOTE: TO ADJUST OSCILLATOR FREQUENCY, USE A 6800pF CAPACITOR IN SERIES WITH A 50k POT FROM PIN 5 TO GROUND

Filter Amplitude Response and Noise



ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature Range -65°C to 150°C Lead Temperature (Soldering, 10 sec)...... 300°C

LTC1062M (**OBSOLETE**).....--55°C $\leq T_A \leq 125°C$ LTC1062C-40°C $\leq T_A \leq 85°C$

PACKAGE/ORDER INFORMATION

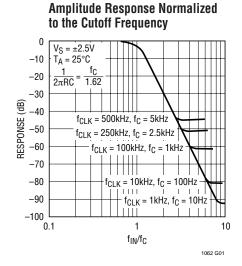
Consult LTC Marketing for parts specified with wider operating temperature ranges.

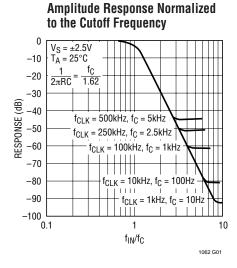
ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating tempera-

ture range, otherwise specifications are at $T_A = 25^{\circ}C$. V⁺ = 5V, V⁻ = -5V, unless otherwise specified. AC output measured at Pin 7, Figure 1.

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Power Supply Current	C_{OSC} (Pin 5 to V ⁻ , Pin 11 in SW16) = 100pF			4.5	7	mA
		•			10	mA
Input Frequency Range				0 to 20		kHz
Filter Gain at f _{IN} = 0	f _{CLK} = 100kHz, Pin 4 (Pin 6 in SW16) at V ⁺ ,			0.00		dB
f _{IN} = 0.5f _C (Note 2)	C = 0.01µF, R = 25.78k			-0.02	-0.3	dB
$f_{IN} = f_C$			-2	-3.00		dB
$f_{IN} = 2f_C$			-28	-30.00		dB
$f_{IN} = 4f_C$			-52	-60.00		dB
Clock-to-Cutoff Frequency Ratio, f_{CLK}/f_C	f_{CLK} = 100kHz, Pin 4 (Pin 6 in SW16) at V ⁺ , C = 0.01µF, R = 25.78k			100 ±1		%
Filter Gain at f _{IN} = 16kHz	f _{CLK} = 400kHz, Pin 4 at V ⁺ , C = 0.01µF, R = 6.5k	•	-43	-52		dB
f _{CLK} /f _C Tempco	$f_{CLK} = 400$ kHz, Pin 4 at V ⁺ , C = 0.01µF, R = 6.5k			10		ppm/°C
Filter Output (Pin 7, Pin 13 in SW16) DC Swing	Pin 7/Pin13 (SW16) Buffered with an External Op Amp		±3.5	±3.8		V
Clock Feedthrough				1		mV _{P-P}

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V⁺ = 5V, V⁻ = -5V, unless otherwise specified, AC output measured at Pin 7, Figure 1.

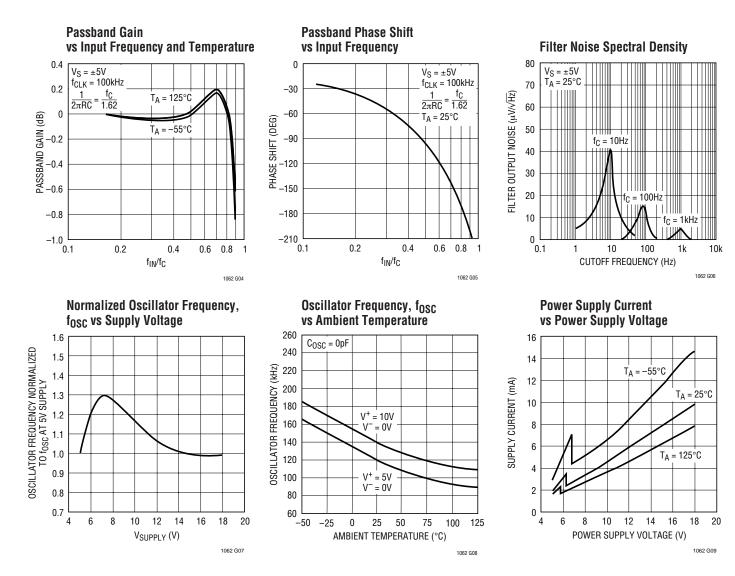

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Internal Buffer						. <u> </u>
Bias Current				2	50	pА
		•		170	1000	pA
Offset Voltage				2	20	mV
Voltage Swing	$R_{LOAD} = 20k$	•	±3.5	±3.8		V
Short-Circuit Current Source/Sink				40/3		mA
Clock (Note 3)						
Internal Oscillator Frequency	C_{OSC} (Pin 5 to V ⁻ , Pin 11 in SW16) = 100pF		25	32	50	kHz
		•	15		65	kHz
Max Clock Frequency				4		MHz
Pin 5 (Pin 11 in SW16) Source or Sink Current		•		40	80	μA


Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: f_C is the frequency where the gain is -3dB with respect to the input signal.

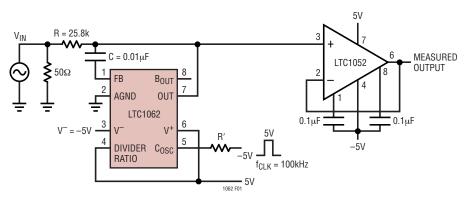
Note 3: The external or driven clock frequency is divided by either 1, 2 or 4 depending upon the voltage at Pin 4. For the N8 package, when Pin $4 = V^+$, ratio = 1; when Pin 4 = GND, ratio = 2; when Pin 4 = V^- , ratio = 4.

TYPICAL PERFORMANCE CHARACTERISTICS



Passband Gain vs Input Frequency

TYPICAL PERFORMANCE CHARACTERISTICS


BLOCK DIAGRAM

SWITCHED FB 1 8 BOUT CAPACITOR NETWORK AGND 2 7 OUT ×1 f_{CLK} 6 V+ V⁻ 3 CLOCK GEN ÷ 4 ÷ 1, 2, 4 OSC 5 C_{OSC} 1062 BD

BY CONNECTING PIN 4 TO V⁺, AGND OR V⁻, THE OUTPUT FREQUENCY OF THE INTERNAL CLOCK GENERATOR IS THE OSCILLATOR FREQUENCY DI-VIDED BY 1, 2, 4. THE (f_{CLK}/f_C) RATIO OF 100:1 IS WITH RESPECT TO THE INTERNAL CLOCK GENERA-TOR OUTPUT FREQUENCY. PIN 5 CAN BE DRIVEN WITH AN EXTERNAL CMOS LEVEL CLOCK. THE LTC1062 CAN ALSO BE SELF-CLOCKED BY CON-NECTING AN EXTERNAL CAPACITOR (C_{OSC}) TO GROUND (OR TO V⁻ IFC_{OSC} IS POLARIZED). UNDER THIS CONDITION AND WITH ±5V SUPPLIES, THE INTERNAL OSCILLATOR FREQUENCY IS:

 $f_{OSC} \approx 140 \text{kHz} [33\text{pF}/(33\text{pF} + C_{OSC})]$

AC TEST CIRCUIT

FOR BEST MAX FLAT APPROXIMATION, THE INPUT RC SHOULD BE SUCH AS:

$$\frac{1}{2\pi RC} = \frac{f_{CLK}}{100} \bullet \frac{1}{1.6}$$

A 0.5k RESISTOR, R', SHOULD BE USED IF THE BIPOLAR EXTERNAL CLOCK IS APPLIED BEFORE THE POWER SUPPLIES TURN ON

Figure 1

For Adjusting Oscillator Frequency, Insert a 50k Pot in Series with COSC. Use Two Times Calculated COSC

APPLICATIONS INFORMATION

Filter Input Voltage Range

Every node of the LTC1062 typically swings within 1V of either voltage supply, positive or negative. With the appropriate external (RC) values, the amplitude response of all the internal or external nodes does not exceed a gain of 0dB with the exception of Pin 1. The amplitude response of the feedback node (Pin 1) is shown in Figure 2. For an input frequency around $0.8 \cdot f_C$, the gain is 1.7V/V and, with $\pm 5V$ supplies, the peak-to-peak input voltage should not exceed 4.7V. If the input voltage goes beyond this value, clipping and distortion of the output waveform occur, but the filter will not get damaged nor will it oscillate. Also, the absolute maximum input voltage should not exceed the power supplies.

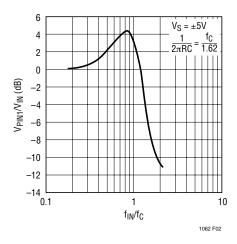


Figure 2. Amplitude Response of Pin 1

Internal Buffer

The internal buffer out (Pin 8) and Pin 1 are part of the signal AC path. Excessive capacitive loading will cause gain errors in the passband, especially around the cutoff frequency. The internal buffer gain at DC is typically 0.006dB. The internal buffer output can be used as a filter output, however, it has a few millivolts of DC offset. The temperature coefficient of the internal buffer is typically 1μ V/°C.

Filter Attenuation

The LTC1062 rolloff is typically 30dB/octave. When the clock and the cutoff frequencies increase, the filter's maximum attenuation decreases. This is shown in the

Typical Performance Characteristics. The decrease of the maximum attenuation is due to the rolloff at higher frequencies of the loop gains of the various internal feedback paths and not to the increase of the noise floor. For instance, for a 100kHz clock and 1kHz cutoff frequency, the maximum attenuation is about 64dB. A 4kHz, $1V_{RMS}$ input signal will be predictably attenuated by 60dB at the output. A 6kHz, $1V_{RMS}$ input signal will be as an ideal 5th order maximum flat filter would have dictated. The LTC1062 output at 6kHz will be about $630\mu V_{RMS}$. The measured RMS noise from DC to 17kHz was $100\mu V_{RMS}$ which is 16dB below the filter output.

C_{OSC}, Pin 5

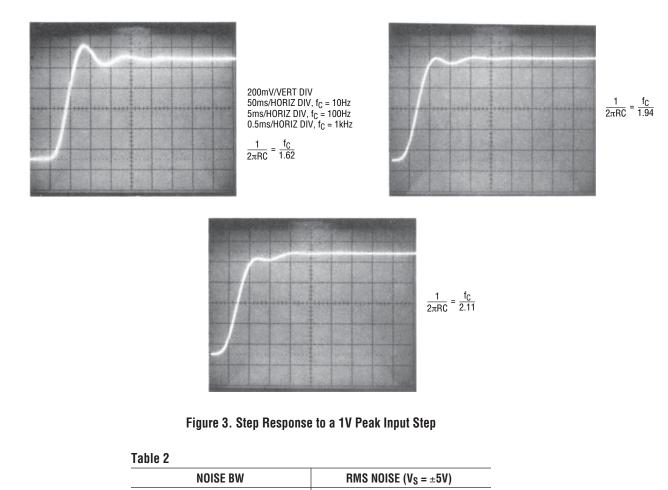
The C_{OSC} , Pin 5, can be used with an external capacitor, C_{OSC} , connected from Pin 5 to ground. If C_{OSC} is polarized it should be connected from Pin 5 to the negative supply, Pin 3. C_{OSC} lowers the internal oscillator frequency. If Pin 5 is floating, an internal 33pF capacitor plus the external interpin capacitance set the oscillator frequency around 140kHz with \pm 5V supply. An external C_{OSC} will bring the oscillator frequency down by the ratio (33pF)/ $(33pF + C_{OSC})$. The Typical Performance Characteristics curves provide the necessary information to get the internal oscillator frequency for various power supply ranges. Pin 5 can also be driven with an external CMOS clock to override the internal oscillator. Although standard 7400 series CMOS gates do not guarantee CMOS levels with the current source and sink requirements of Pin 5, they will, in reality, drive the C_{OSC} pin. CMOS gates conforming to standard B series output drive have the appropriate voltage levels and more than enough output current to simultaneously drive several LTC1062 C_{OSC} pins. The typical trip levels of the internal Schmitt trigger which input is Pin 5, are given in Table 1.

Table 1

V _{SUPPLY}	V _{TH} +	V _{TH} ⁻
±2.5V	0.9V	-1V
±5V	1.3V	-2.1V
±6V	1.7V	-2.5V
±7V	1.75V	-2.9V

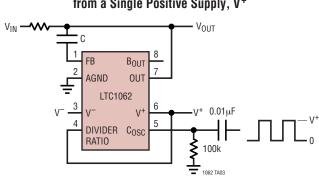
APPLICATIONS INFORMATION

Divide By 1, 2, 4 (Pin 4)

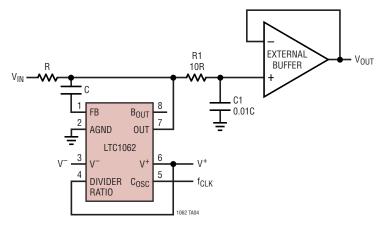

By connecting Pin 4 to V⁺, to mid supplies or to V⁻, the clock frequency driving the internal switched capacitor network is the oscillator frequency divided by 1, 2, 4 respectively. Note that the f_{CLK}/f_C ratio of 100:1 is with respect to the internal clock generator output frequency. The internal divider is useful for applications where octave tuning is required. The \div 2 threshold is typically \pm 1V from the mid supply voltage.

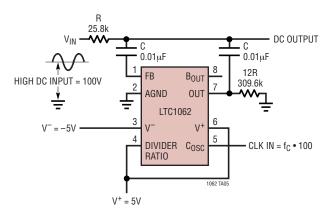
Transient Response

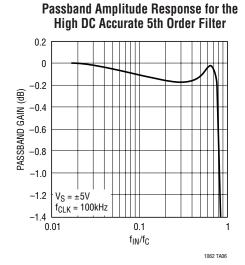
Figure 3 shows the LTC1062 response to a 1V input step.


Filter Noise

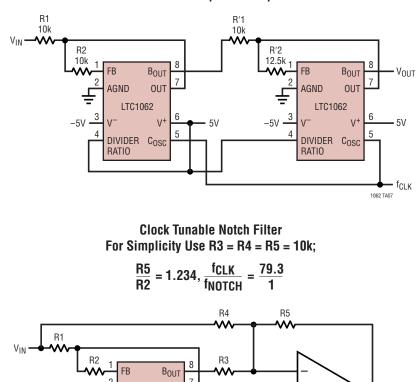
The filter wideband RMS noise is typically $100\mu V_{RMS}$ for $\pm 5V$ supply and it is nearly independent from the value of the cutoff frequency. For single 5V supply the RMS noise is $80\mu V_{RMS}$. Sixty-two percent of the wideband noise is in the passband, that is from DC to f_C. The noise spectral density, unlike conventional active filters, is nearly zero for frequencies below 0.1 • f_C. This is shown in the Typical Performance Characteristics section. Table 2 shows the LTC1062 RMS noise for different noise bandwidths.


NOISE BW	RMS NOISE ($V_S = \pm 5V$)		
DC – 0.1 • f _C	2μV		
DC - 0.25 • f _C	8μV		
DC – 0.5 • f _C	20μV		
DC – 1 • f _C	62μV		
$DC - 2 \bullet f_C$	100µV		
	-		

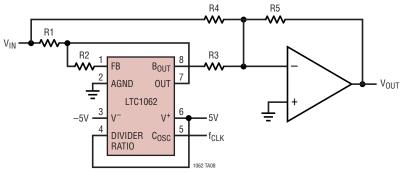


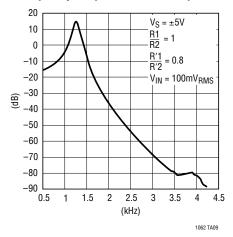


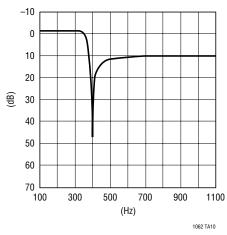
Filtering AC Signals from High DC Voltages

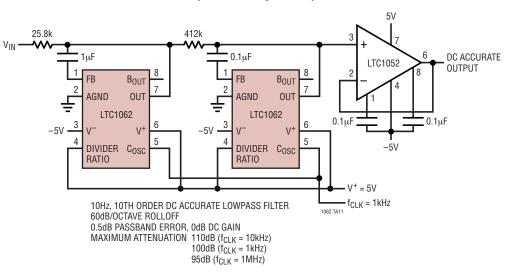


EXAMPLE:

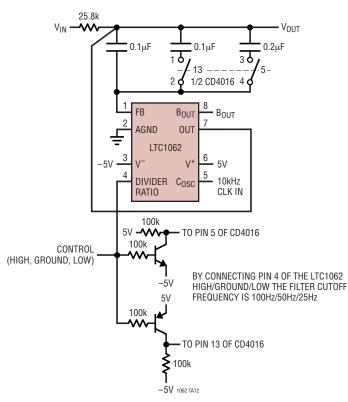

 f_{CLK} = 100KHz, f_C = 1kHz. The Filter accurately passes the high DC input and ACTS as 5th order LP filter for the AC signals riding on the DC




Cascading Two LTC1062s to Form a Very Selective Clock Sweepable Bandpass Filter

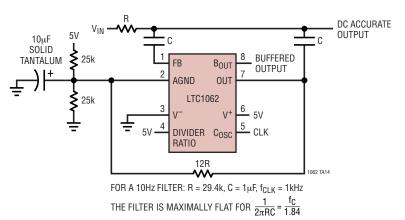

Frequency Response of the Bandpass Filter

Frequency Response of the Notch Filter



TECHNOLOGY

R4 R3 5V 6 LTC1052 V_{OUT} 2.6k R1 R2 3 8 ~~~ \sim VIN 0.1µF C2 1µF 0.1µF -5V BOUT FB OUT AGND LTC1062 3 6 V+ 5V -5V <u>۱</u> 4 5 5V DIVIDER COSC 10kHz RATIO CLK IN 1062 TA13

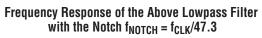

7th Order 100Hz Lowpass Filter with Continuous Output Filtering, Output Buffering and Gain Adjustment

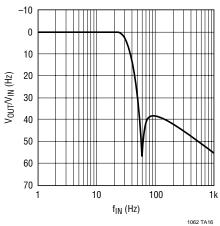
THE LTC1052 IS CONNECTED AS A 2ND ORDER SALLEN AND KEY LOWPASS FILTER WITH A CUTOFF FREQUENCY EQUAL TO THE CUTOFF FREQUENCY OF THE LTC1062. THE ADDITIONAL FILTERING ELIMINATES ANY 10kHz CLOCK FEEDTHROUGH PLUS DECREASES THE WIDEBAND NOISE OF THE FILTER DC OUTPUT OFFSET (REFERRED TO A DC GAIN OF UNITY) = 5μ V MAX

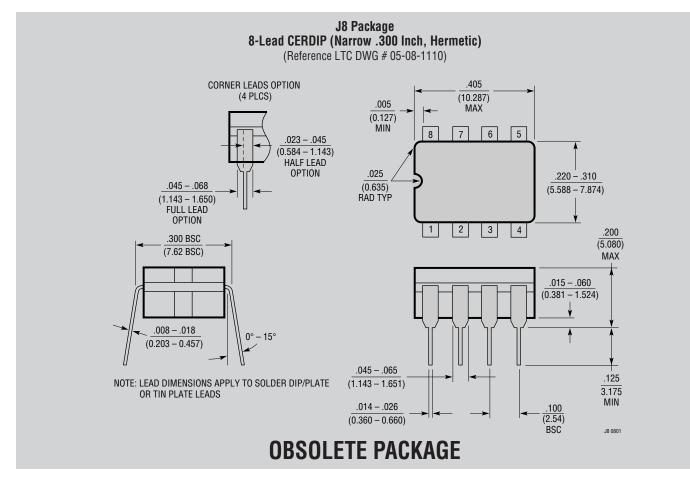
WIDEBAND NOISE (REFERRED TO A DC GAIN OF UNITY) = $60 \mu V_{RMS}$

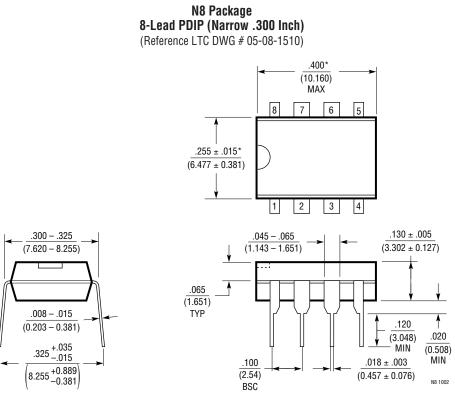
OUTPUT FILTER COMPONENT VALUES

DC GAIN	R3	R4	R1	R2	C1	C2
1	8	0	14.3k	53.6k	0.1µF	0.033µF
10	3.57k	32.4k	46k	274k	0.01µF	0.02µF



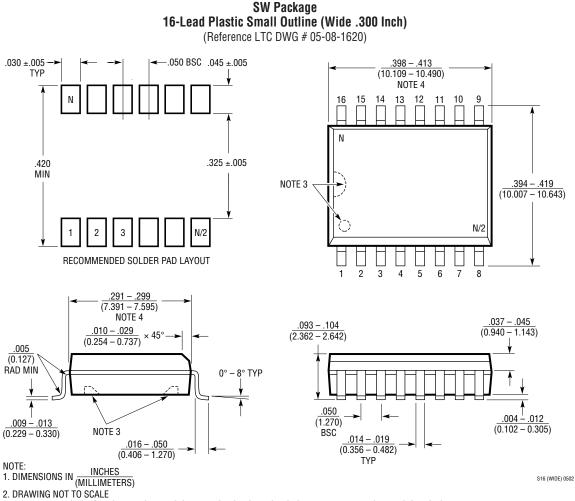

Single 5V Supply 5th Order LP Filter


A Lowpass Filter with a 60Hz Notch



PACKAGE DESCRIPTION

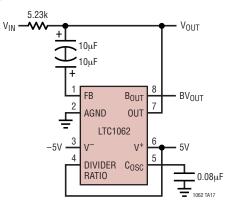
PACKAGE DESCRIPTION



NOTE:

NOTE: 1. DIMENSIONS ARE <u>INCHES</u> *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION



3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS

4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

A Low Frequency, 5Hz Filter Using Back-to-Back Solid Tantalum Capacitors

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1063	5th Order Butterworth Lowpass, DC Accurate	Clock Tunable, No External Components
LTC1065	5th Order Bessel Lowpass, DC Accurate	Clock Tunable, No External Components
LTC1066-1	8th Order Elliptic or Linear Phase, DC Accurate	Clock Tunable, fc ≤ 120kHz
LTC1563-2/ LTC1563-3	Active RC, 4th Order Lowpass	Very Low Noise, 256Hz ≤ fc ≤ 256kHz
LTC1564	10kHz to 150kHz Digitally Controlled Lowpass and PGA	Continuous Time, Very High Dynamic Range, PGA Included
LTC1569-6	Linear Phase, DC Accurate, 10th Order	No External Clock Required, fc ≤ 64kHz, S08
LTC1569-7	Linear Phase, DC Accurate, 10th Order	No External Clock Required, fc ≤ 300kHz, S08

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.