
## LNB supply and control IC with step-up and I<sup>2</sup>C interface

### Features

- Complete interface between LNB and I<sup>2</sup>C bus
- Built-in DC-DC converter for single 12 V supply operation and high efficiency (typ. 93% @ 0.5 A)
- Selectable output current limit by external resistor
- Compliant with main satellite receivers output voltage specification
- Auxiliary modulation input (EXTM pin) facilitates DiSEqC™ 1.X encoding
- Accurate built-in 22 kHz tone generator suits widely accepted standards
- Low-drop post regulator and high efficiency step-up PWM with integrated power NMOS allow low power losses
- Overload and over-temperature internal protections with I<sup>2</sup>C diagnostic bits
- LNB short circuit dynamic protection
- ± 4 kV ESD tolerant on output power pins

### Applications

- STB satellite receivers
- TV satellite receivers
- PC card satellite receivers

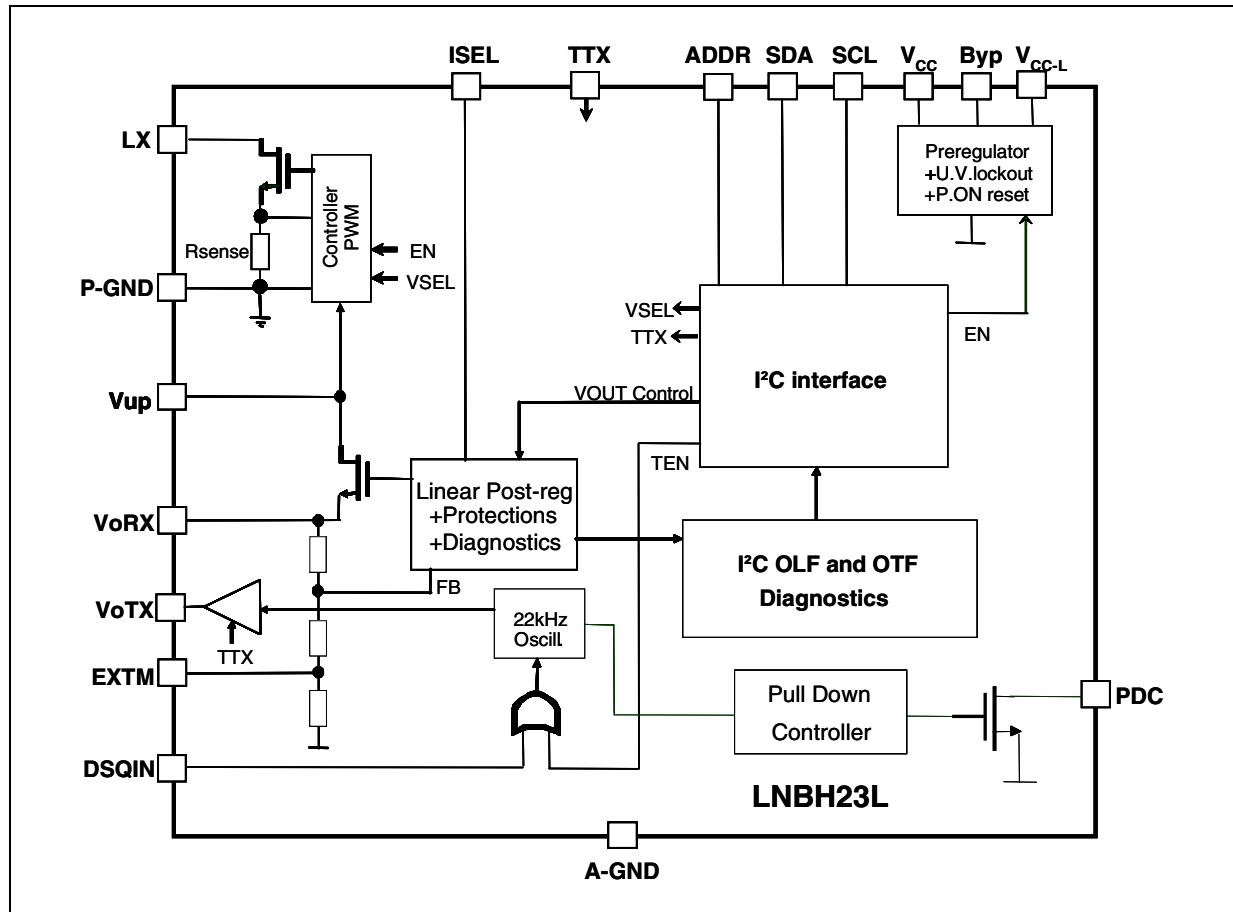


### Description

Intended for analog and digital satellite receivers, the LNBH23L is a monolithic voltage regulator and interface IC, assembled in QFN32 5 x 5 specifically designed to provide the 13 / 18 V power supply and the 22 kHz tone signalling to the LNB down-converter in the antenna dish or to the multi-switch box. In this application field, it offers a complete solution with extremely low component count, low power dissipation together with simple design and I<sup>2</sup>C standard interfacing.

**Table 1. Device summary**

| Order code | Package                      | Packaging     |
|------------|------------------------------|---------------|
| LNBH23LQTR | QFN32 (5 x 5 mm) Exposed pad | Tape and reel |


## Contents

|          |                                                                                    |           |
|----------|------------------------------------------------------------------------------------|-----------|
| <b>1</b> | <b>Block diagram</b>                                                               | <b>4</b>  |
| <b>2</b> | <b>Application information</b>                                                     | <b>5</b>  |
| 2.1      | DiSEqC™ data encoding                                                              | 5         |
| 2.2      | DiSEqC™ 1.X implementation by EXTM pin                                             | 5         |
| 2.3      | DiSEqC™ 1.X implementation with VOTX and EXTM pin connection                       | 5         |
| 2.4      | PDC optional circuit for DiSEQC™ 1.X applications using VOTX signal on to EXTM pin | 6         |
| 2.5      | I <sup>2</sup> C interface                                                         | 6         |
| 2.6      | Output voltage selection                                                           | 6         |
| 2.7      | Diagnostic and protection functions                                                | 6         |
| 2.8      | Over-current and short circuit protection and diagnostic                           | 6         |
| 2.9      | Thermal protection and diagnostic                                                  | 7         |
| 2.10     | Output current limit selection                                                     | 7         |
| <b>3</b> | <b>Pin configuration</b>                                                           | <b>8</b>  |
| <b>4</b> | <b>Maximum ratings</b>                                                             | <b>10</b> |
| <b>5</b> | <b>Typical application circuit</b>                                                 | <b>11</b> |
| <b>6</b> | <b>I<sup>2</sup>C bus interface</b>                                                | <b>14</b> |
| 6.1      | Data validity                                                                      | 14        |
| 6.2      | Start and stop condition                                                           | 14        |
| 6.3      | Byte format                                                                        | 14        |
| 6.4      | Acknowledge                                                                        | 14        |
| 6.5      | Transmission without acknowledge                                                   | 14        |
| <b>7</b> | <b>LNBH23L software description</b>                                                | <b>16</b> |
| 7.1      | Interface protocol                                                                 | 16        |
| 7.2      | System register (SR, 1 byte)                                                       | 16        |
| 7.3      | Transmitted data (I <sup>2</sup> C bus write mode)                                 | 16        |
| 7.4      | Diagnostic received data (I <sup>2</sup> C read mode)                              | 17        |

|           |                                                     |           |
|-----------|-----------------------------------------------------|-----------|
| 7.5       | Power-on I <sup>2</sup> C interface reset . . . . . | 18        |
| 7.6       | Address pin . . . . .                               | 18        |
| 7.7       | DiSEqC™ implementation . . . . .                    | 18        |
| <b>8</b>  | <b>Electrical characteristics . . . . .</b>         | <b>19</b> |
| <b>9</b>  | <b>Package mechanical data . . . . .</b>            | <b>21</b> |
| <b>10</b> | <b>Revision history . . . . .</b>                   | <b>24</b> |

# 1 Block diagram

Figure 1. Block diagram



## 2 Application information

This IC has a built-in DC-DC step-up converter that, from a single source from 8 V to 15 V, generates the voltages ( $V_{UP}$ ) that let the linear post-regulator to work at a minimum dissipated power of 0.55 W typ. @ 500 mA load (the linear post-regulator drop voltage is internally kept at  $V_{UP} - V_{OUT} = 1.1$  V typ.). An under voltage lockout circuit will disable the whole circuit when the supplied  $V_{CC}$  drops below a fixed threshold (6.7 V typically).

**Note:** *In this document the  $V_{OUT}$  is intended as the voltage present at the linear post-regulator output ( $V_{oRX}$  pin).*

### 2.1 DiSEqC™ data encoding

The internal 22 kHz tone generator is factory trimmed in accordance to the standards, and can be selected by I<sup>2</sup>C interface TTX bit (or TTX pin) and activated by a dedicated pin (DSQIN) that allows immediate DiSEqC™ data encoding, or through TEN I<sup>2</sup>C bit in case the 22 kHz presence is requested in continuous mode. In stand-by condition (EN bit LOW) The TTX function must be disabled setting TTX to LOW. Besides the internal 22 kHz tone generator, the auxiliary modulation pin (EXTM) can be driven by an external 22 kHz source and in this case TTX must be set to low.

### 2.2 DiSEqC™ 1.X implementation by EXTM pin

In order to improve design flexibility and reduce the total application cost, an analogic modulation input pin is available (EXTM) to generate the 22 kHz tone superimposed to the  $V_{oRX}$  DC output voltage. An appropriate DC blocking capacitor must be used to couple the modulating signal source to the EXTM pin. If the EXTM solution is used the output R-L filter can be removed (see [Figure 5](#)) saving the external components cost. If this configuration is used keep TTX set to low.

The pin EXTM modulates the  $V_{oRX}$  voltage through the series decoupling capacitor, so that:

$$V_{oRX(AC)} = V_{EXTM(AC)} \times G_{EXTM}$$

Where  $V_{oRX(AC)}$  and  $V_{EXTM(AC)}$  are, respectively, the peak to peak voltage on the  $V_{oRX}$  and EXTM pins while  $G_{EXTM}$  is the voltage gain from EXTM to  $V_{oRX}$ .

### 2.3 DiSEqC™ 1.X implementation with $V_{oTX}$ and EXTM pin connection

If an external 22 kHz tone source is not available, it is possible to use the internal 22 kHz tone generator signal available through the  $V_{oTX}$  pin to drive the EXTM pin. The  $V_{oTX}$  pin internal circuit must be preventively set ON by setting the TTX function to High. This can be controlled both through the TTX pin or by I<sup>2</sup>C bit. By this way the  $V_{oTX}$  22 kHz signal will be superimposed to the  $V_{oRX}$  DC voltage to generate the LNB output 22 kHz tone (see [Figure 3](#)). After TTX is set to High the internal 22 kHz tone generator available through the  $V_{oTX}$  pin can be activated during the 22 kHz transmission either by DSQIN pin or by the TEN bit. The DSQIN internal circuit activates the 22 kHz tone on the  $V_{oTX}$  output with 0.5 cycles  $\pm$  25  $\mu$ s delay from the TTL signal presence on the DSQIN pin, and it stops with 1 cycles  $\pm$  25  $\mu$ s delay after the TTL signal is expired. As soon as the tone transmission is expired, the

$V_{oTX}$  internal circuits must be disabled by setting the TTX to LOW. The 13 / 18 V power supply will be always provided to the LNB from the  $V_{oRX}$  pin.

## 2.4 PDC optional circuit for DiSEQC™ 1.X applications using $V_{oTX}$ signal on to EXTM pin

In some applications, at light output current ( $< 50$  mA) having heavy LNB output capacitive load, the 22 kHz tone can be distorted. In this case it is possible to add the "Optional" external components shown in the typical application circuits (see [Figure 4](#)) connected between  $V_{oRX}$  and PDC pin. This optional circuit acts as an active pull-down discharging the output capacitance only when the internal 22 kHz tone is activated. This optional circuit is not needed in standard applications having  $I_{OUT} > 50$  mA and capacitive load up to 250 nF.

## 2.5 I<sup>2</sup>C interface

The main functions of the IC are controlled via I<sup>2</sup>C bus by writing 6 bits on the system register (SR 8 bits in write mode). On the same register there are 5 bits that can be read back (SR 8 bits in read mode) to provide the diagnostic flags of two internal monitoring functions (OTF, OLF) and three output voltage register status (EN, VSEL, LLC) received by the IC (see below diagnostic functions section). In read mode there are 3 Test bits (test 1 - 2 - 3) that must be disregarded from the MCU. While, in write mode, 2 test bits (test 4 - 5) must be always set LOW.

## 2.6 Output voltage selection

When the IC sections are in stand-by mode (EN bit LOW), the power blocks are disabled. When the regulator blocks are active (EN bit HIGH), the output can be logic controlled to be 13 or 18 V by means of the VSEL bit (voltage SElect). Additionally, the LNBH23L is provided with the LLC I<sup>2</sup>C bit that increases the selected voltage value to compensate possible voltage drop along the output line. The LNBH23L is also compliant to the USA LNB power supply standards. In stand-by condition (EN bit LOW) all the I<sup>2</sup>C bits and the TTX pin must be set LOW (if the TTX pin is not used it can be left floating or to GND but the TTX bit must be set LOW during the stand-by condition).

## 2.7 Diagnostic and protection functions

The LNBH23L has two diagnostic internal functions provided via I<sup>2</sup>C bus by reading 2 bits on the system register (SR bits in read mode). The diagnostic bits are, in normal operation (no failure detected), set to LOW. The diagnostic bits are dedicated to the over-temperature and over-load protections status (OTF and OLF).

## 2.8 Over-current and short circuit protection and diagnostic

In order to reduce the total power dissipation during an overload or a short circuit condition, the device is provided with a dynamic short circuit protection. It is possible to set the short circuit current protection either statically (simple current clamp) or dynamically by the PCL bit of the I<sup>2</sup>C SR. When the PCL (pulsed current limiting) bit is set to LOW, the over current protection circuit works dynamically: as soon as an overload is detected, the output is shut-

down for a time  $T_{OFF}$ , typically 900 ms. Simultaneously the diagnostic OLF I<sup>2</sup>C bit of the system register is set to "1". After this time has elapsed, the output is resumed for a time  $T_{ON} = 1/10 T_{OFF} = 90$  ms (typ.). At the end of  $T_{ON}$ , if the overload is still detected, the protection circuit will cycle again through  $T_{OFF}$  and  $T_{ON}$ . At the end of a full  $T_{ON}$  in which no overload is detected, normal operation is resumed and the OLF diagnostic bit is reset to LOW. Typical  $T_{ON} + T_{OFF}$  time is 990ms and an internal timer determines it. This dynamic operation can greatly reduce the power dissipation in short circuit condition, still ensuring excellent power-on start-up in most conditions. However, there could be some cases in which a highly capacitive load on the output may cause a difficult start-up when the dynamic protection is chosen. This can be solved by initiating any power start-up in static mode (PCL = 1) and, then, switching to the dynamic mode (PCL = 0) after a chosen amount of time depending on the output capacitance. When in static mode, the diagnostic OLF bit goes to "1" when the current clamp limit is reached and returns LOW when the overload condition is cleared.

## 2.9 Thermal protection and diagnostic

The LNBH23L is also protected against overheating: when the junction temperature exceeds 150 °C (typ.), the step-up converter and the liner regulator are shut-off, and the diagnostic OTF SR bit is set to "1". Normal operation is resumed and the OTF bit is reset to LOW when the junction is cooled down to 135 °C (typ.)

## 2.10 Output current limit selection

The linear regulator current limit threshold can be set by an external resistor connected to ISEL pin. The resistor value defines the output current limit by the equation:

$$I_{MAX} (A) = 10000 / R_{SEL}$$

where  $R_{SEL}$  is the resistor connected between ISEL and GND. The highest selectable current limit threshold shall be 0.65 A typ with  $R_{SEL} = 15$  kΩ. The above equation defines the typical threshold value.

*Note:* *External components are needed to comply DiSEqC™ bus hardware requirements. Full compliance of the whole application with DiSEqC™ specifications is not implied by the bare use of this IC. NOTICE: DiSEqC™ is a trademark of EUTELSAT.*

### 3 Pin configuration

Figure 2. Pin connections (bottom view)

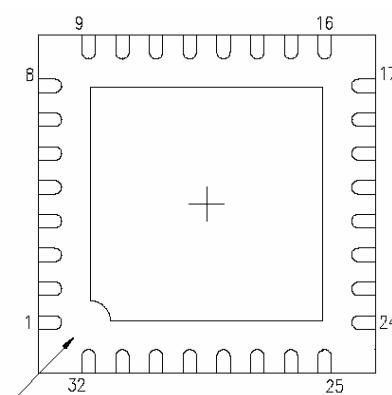



Table 2. Pin description

| Pin n° | Symbol     | Name                           | Pin function                                                                                                                                                                                               |
|--------|------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19     | $V_{CC}$   | Supply input                   | 8 to 15 V IC DC-DC power supply.                                                                                                                                                                           |
| 18     | $V_{CC-L}$ | Supply input                   | 8 to 15 V analog power supply.                                                                                                                                                                             |
| 4      | LX         | NMOS drain                     | Integrated N-channel power MOSFET drain.                                                                                                                                                                   |
| 27     | $V_{UP}$   | Step-up voltage                | Input of the linear post-regulator. The voltage on this pin is monitored by the internal step-up controller to keep a minimum dropout across the linear pass transistor.                                   |
| 21     | $V_{oRX}$  | LDO output port                | Output of the integrated low drop linear regulator. See truth tables for voltage selections and description.                                                                                               |
| 22     | $V_{oTX}$  | Output port for 22 kHz Tone TX | TX Output to the LNB. See truth tables for selection.                                                                                                                                                      |
| 6      | SDA        | Serial data                    | Bi-directional data from/to I <sup>2</sup> C bus.                                                                                                                                                          |
| 9      | SCL        | Serial clock                   | Clock from I <sup>2</sup> C bus.                                                                                                                                                                           |
| 12     | DSQIN      | DiSEqC input                   | This pin will accept the DiSEqC code from the main µController. The LNBH23L will use this code to modulate the internally generated 22 kHz carrier. Set to ground if not used.                             |
| 14     | TTX        | TTX enable                     | This pin can be used, as well as the TTX I <sup>2</sup> C bit of the system register, to control the TTX function enable before to start the 22 kHz tone transmission. Set floating or to GND if not used. |
| 29     | Reserved   | Reserved                       | To be connected to GND.                                                                                                                                                                                    |
| 11     | PDC        | Pull down control              | To be connected to the external NPN transistor Base to reduce the 22 kHz tone distortion in case of heavy capacitive load at light output current. If not used it can be left floating.                    |
| 13     | EXTM       | External modulation            | External Modulation Input acts on $V_{oRX}$ linear regulator output to superimpose an external 22 kHz signal. Needs DC decoupling to the AC source. If not used it can be left floating.                   |
| 5      | P-GND      | Power ground                   | DC-DC converter power ground.                                                                                                                                                                              |

**Table 2. Pin description (continued)**

| Pin n°                                                 | Symbol   | Name                     | Pin function                                                                                                                                                                                                                    |
|--------------------------------------------------------|----------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Epad                                                   | Epad     | Exposed pad              | To be connected with power grounds and to the ground layer through vias to dissipate the heat.                                                                                                                                  |
| 20                                                     | A-GND    | Analog ground            | Analog circuits ground.                                                                                                                                                                                                         |
| 15                                                     | BYP      | By-pass capacitor        | Needed for internal pre-regulator filtering. The BYP pin is intended only to connect an external ceramic capacitor. Any connection of this pin to external current or voltage sources may cause permanent damage to the device. |
| 10                                                     | ADDR     | Address setting          | Two I <sup>2</sup> C bus addresses available by setting the Address pin level voltage. See address pin characteristics table.                                                                                                   |
| 28                                                     | ISEL     | Current selection        | The resistor “RSEL” connected between ISEL and GND defines the linear regulator current limit threshold by the equation:<br>$I_{MAX}(\text{typ.}) = 10000 / RSEL$ .                                                             |
| 30                                                     | Reserved | Reserved                 | To be left floating. Do not connect to GND.                                                                                                                                                                                     |
| 1, 2, 3, 7, 8,<br>16, 17, 23,<br>24, 25, 26,<br>31, 32 | N.C.     | Not internally connected | Not internally connected pins. These pins can be connected to GND to improve thermal performances.                                                                                                                              |

## 4 Maximum ratings

**Table 3. Absolute maximum ratings <sup>(1)</sup>**

| Symbol             | Parameter                                                            | Value              | Unit |
|--------------------|----------------------------------------------------------------------|--------------------|------|
| $V_{CC-L}, V_{CC}$ | DC power supply input voltage pins                                   | -0.3 to 16         | V    |
| $V_{UP}$           | DC input voltage                                                     | -0.3 to 24         | V    |
| $I_{OUT}$          | Output current                                                       | Internally limited | mA   |
| $V_{oRX}$          | DC output pin voltage                                                | -0.3 to 25         | V    |
| $V_{oTX}$          | Tone output pin voltage                                              | -0.3 to 25         | V    |
| $V_I$              | Logic input voltage (TTX, SDA, SCL, DSQIN, ADDR pins)                | -0.3 to 7          | V    |
| $V_{OH}$           | Logic high output voltage (PDC pin)                                  | -0.3 to 7          | V    |
| $V_{EXTM}$         | EXTM pin voltage                                                     | -0.3 to 2          | V    |
| $LX$               | LX input voltage                                                     | -0.3 to 24         | V    |
| $V_{BYP}$          | Internal reference pin voltage <sup>(2)</sup>                        | -0.3 to 4.6        | V    |
| ISEL               | Current selection pin voltage                                        | -0.3 to 4.6        | V    |
| $T_{STG}$          | Storage temperature range                                            | -50 to 150         | °C   |
| $T_J$              | Operating junction temperature range                                 | -25 to 125         | °C   |
| ESD                | ESD rating with human body model (HBM) for all pins unless 4, 21, 22 | 2                  | kV   |
|                    | ESD rating with human body model (HBM) for pins 21, 22               | 4                  |      |
|                    | ESD rating with human body model (HBM) for pin 4                     | 0.6                |      |

1. Absolute maximum ratings are those values beyond which damage to the device may occur. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal.
2. The BYP pin is intended only to connect an external ceramic capacitor. Any connection of this pin to external current or voltage sources may cause permanent damage to the device.

**Table 4. Thermal data**

| Symbol     | Parameter                                                                 | Value | Unit |
|------------|---------------------------------------------------------------------------|-------|------|
| $R_{thJC}$ | Thermal resistance junction-case                                          | 2     | °C/W |
| $R_{thJA}$ | Thermal resistance junction-ambient with device soldered on 2s2p PC board | 35    | °C/W |

## 5 Typical application circuit

Figure 3. DiSEqC 1.x using internal 22 kHz tone generator

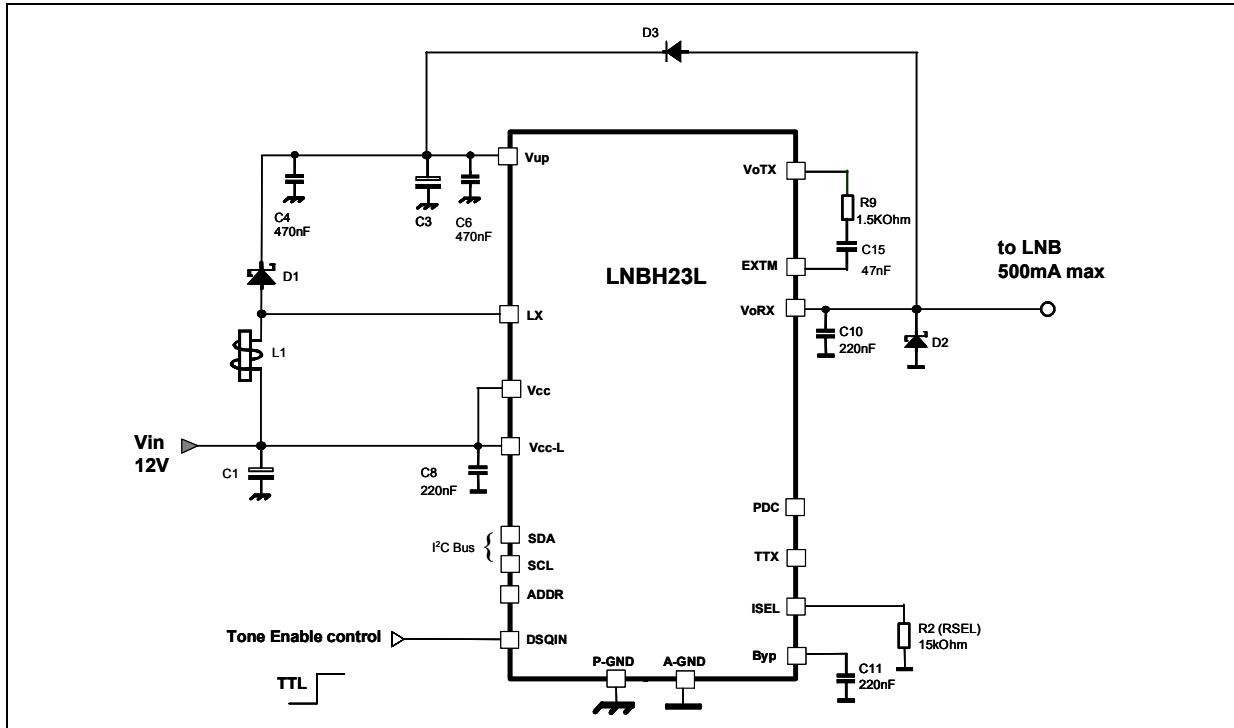



Figure 4. DiSEqC 1.x using internal 22 kHz tone generator and "optional" PDC circuit

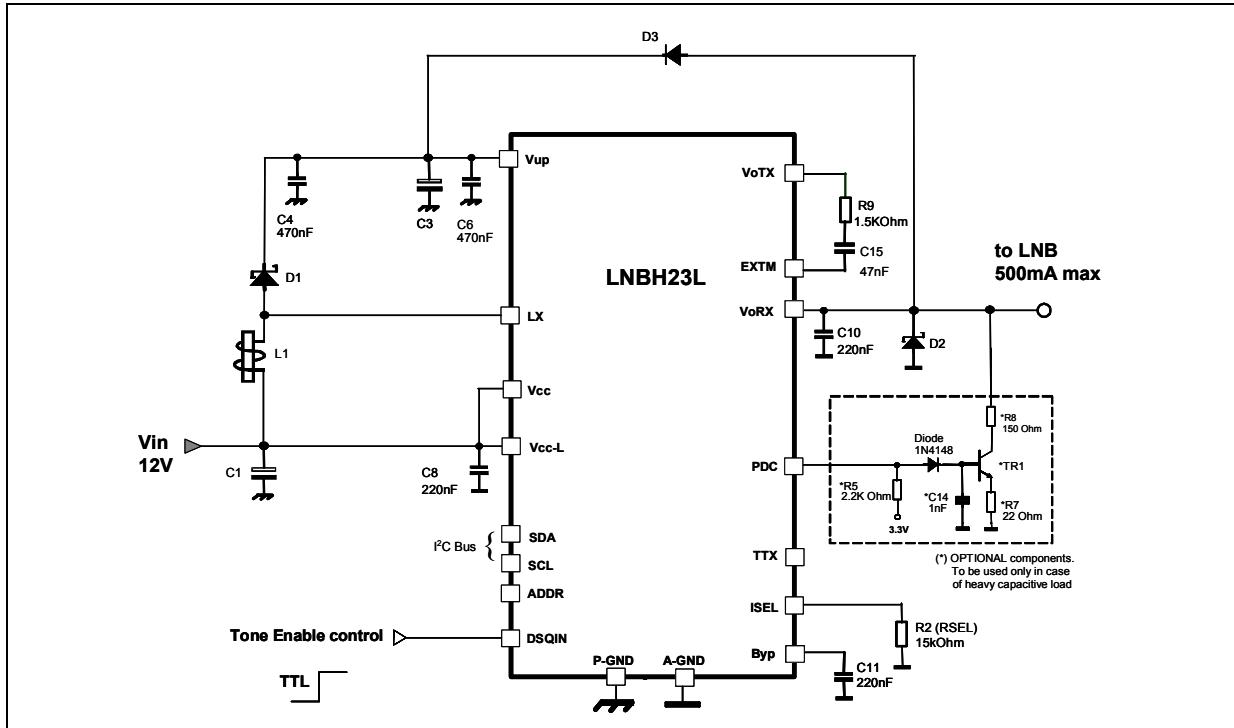



Figure 5. DiSEqC 1.x using external 22 kHz tone generator source through EXTM pin

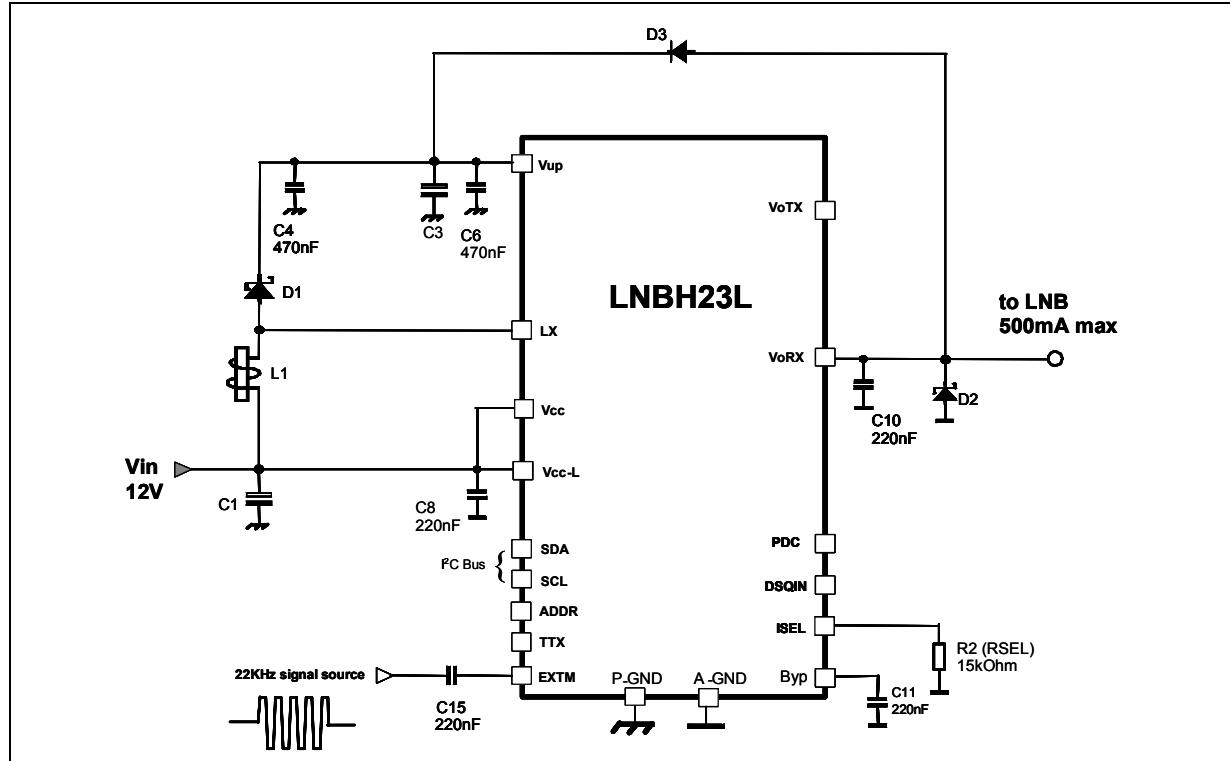



Table 5. BOM list

| Component                                     | Notes                                                                                                                                                 |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| R2, R9, R5 <sup>(1)</sup>                     | 1/16 W resistors. Refer to the typical application circuit for the relative values                                                                    |
| R7 <sup>(1)</sup> , R8 <sup>(1)</sup>         | 1/2 W resistors. Refer to the typical application circuit for the relative values                                                                     |
| C1                                            | 25 V electrolytic capacitor, 100 $\mu$ F or higher is suitable                                                                                        |
| C3                                            | 25 V, 220 $\mu$ F electrolytic capacitor, ESR in the 100 m $\Omega$ to 350 m $\Omega$ range                                                           |
| C4, C6, C8, C10, C11, C15, C14 <sup>(1)</sup> | 25 V ceramic capacitors. Refer to the typ. appl. circuit for the relative values                                                                      |
| D1                                            | STPS130A or any similar schottky diode with $V_{RRM} > 25$ V and $I_{F(AV)}$ higher than: $I_{F(AV)} > I_{OUT\_MAX} \times (V_{UP\_MAX}/V_{IN\_MIN})$ |
| D2                                            | BAT43, 1N5818, or any schottky diode with $I_{F(AV)} > 0.2$ A, $V_{RRM} > 25$ V, $V_F < 0.5$ V. To be placed as close as possible to $V_{oRX}$ pin    |
| D3                                            | 1N4001-07 or any similar general purpose rectifier                                                                                                    |
| TR1 <sup>(1)</sup>                            | BC817 or similar NPN general-purpose transistor.                                                                                                      |
| L1                                            | 22 $\mu$ H inductor with $I_{SAT} > I_{PEAK}$ where $I_{PEAK}$ is the boost converter peak current (see <a href="#">Equation 1</a> )                  |

1. These components can be added to avoid any 22 kHz tone distortion due to heavy capacitive output loads. If not needed they can be removed leaving the PDC pin floating.

To calculate the boost converter peak current ( $I_{PEAK}$ ) of L1, use the following formula:

**Equation 1**

$$I_{PEAK} = \frac{V_{UP\_MAX} * I_{OUT\_MAX}}{Eff * V_{IN\_MIN}} + \frac{V_{IN\_MIN}}{2LF} \left( 1 - \frac{V_{IN\_MIN}}{V_{UP\_MAX}} \right)$$

## 6 I<sup>2</sup>C bus interface

Data transmission from main microprocessor to the LNBH23L and vice versa takes place through the 2 wires I<sup>2</sup>C bus Interface, consisting of the 2 lines SDA and SCL (pull-up resistors to positive supply voltage must be externally connected).

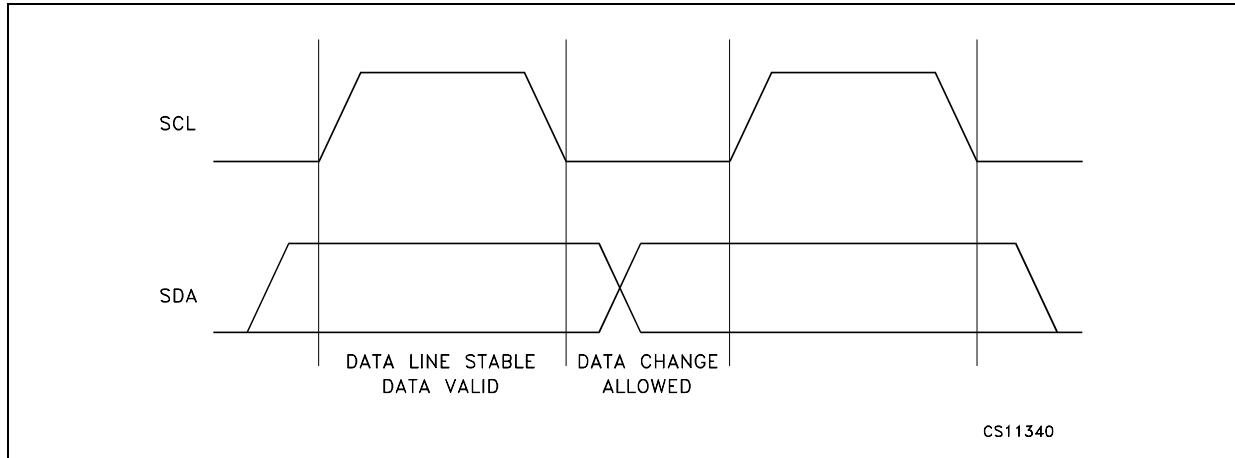
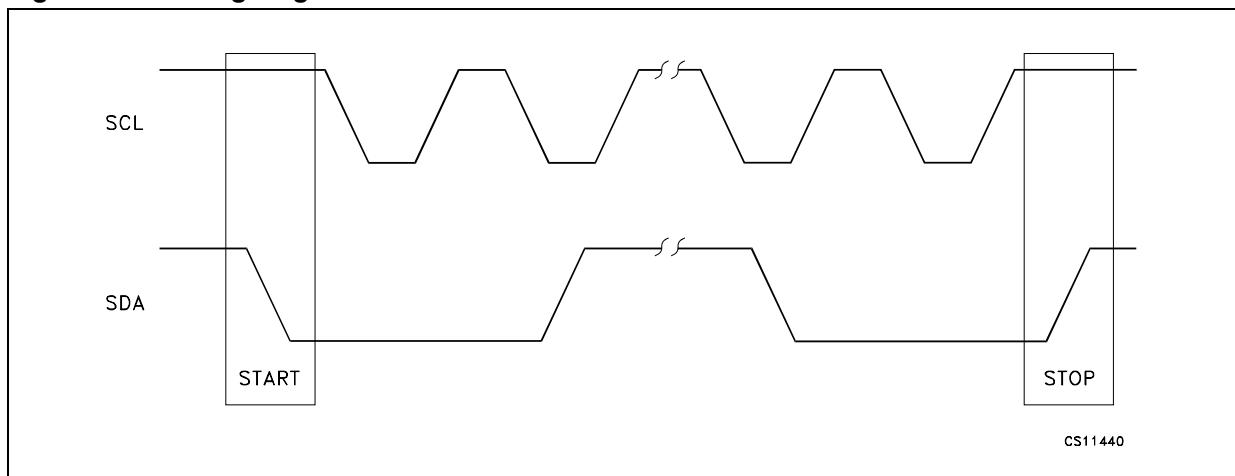
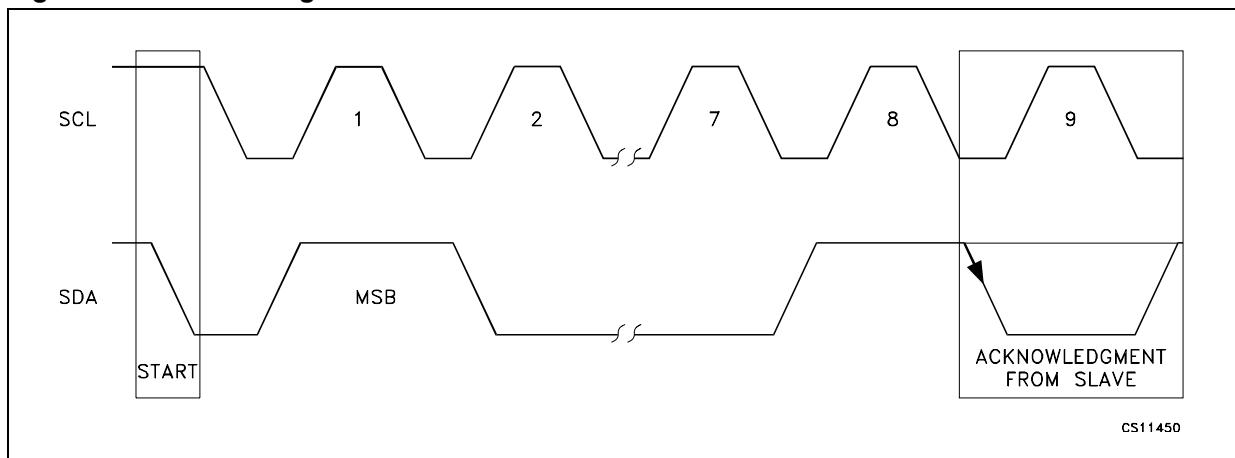
### 6.1 Data validity

As shown in *Figure 6*, the data on the SDA line must be stable during the high semi-period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

### 6.2 Start and stop condition

As shown in *Figure 7* a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. A STOP condition must be sent before each START condition.

### 6.3 Byte format




Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

### 6.4 Acknowledge

The master (microprocessor) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see *Figure 8*). The peripheral (LNBH23L) that acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse. The peripheral which has been addressed has to generate acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer. The LNBH23L won't generate acknowledge if the V<sub>CC</sub> supply is below the under voltage lockout threshold (6.7 V typ.).

### 6.5 Transmission without acknowledge

Avoiding to detect the acknowledges of the LNBH23L, the microprocessor can use a simpler transmission: simply it waits one clock cycle without checking the slave acknowledging, and sends the new data. This approach of course is less protected from misworking and decreases the noise immunity.

**Figure 6. Data validity on the I<sup>2</sup>C bus****Figure 7. Timing diagram of I<sup>2</sup>C bus****Figure 8. Acknowledge on the I<sup>2</sup>C bus**

## 7 LNBH23L software description

### 7.1 Interface protocol

The interface protocol comprises:

- A start condition (S)
- A chip address byte (the LSB bit determines read (=1)/write (=0) transmission)
- A sequence of data (1 byte + acknowledge)
- A stop condition (P)

| Section address (A or B) |   |   |   |   |   |   |   |     |     |  | Data |  |  |  |  |  |  |  |     |   |
|--------------------------|---|---|---|---|---|---|---|-----|-----|--|------|--|--|--|--|--|--|--|-----|---|
| MSB                      |   |   |   |   |   |   |   |     |     |  | MSB  |  |  |  |  |  |  |  |     |   |
| S                        | 0 | 0 | 0 | 1 | 0 | 1 | X | R/W | ACK |  |      |  |  |  |  |  |  |  | ACK | P |

ACK = Acknowledge

S = Start

P = Stop

R/W = 1/0, Read/Write bit

X = 0/1, two addresses selectable by ADDR pin (see [Table 10](#))

### 7.2 System register (SR, 1 byte)

| Mode  | MSB   |       |       |     |      |    |       |       | LSB |
|-------|-------|-------|-------|-----|------|----|-------|-------|-----|
| Write | PCL   | TTX   | TEN   | LLC | VSEL | EN | TEST4 | TEST5 |     |
| Read  | TEST1 | TEST2 | TEST3 | LLC | VSEL | EN | OTF   | OLF   |     |

Write = control bits functions in write mode

Read= diagnostic bits in read mode.

All bits reset to 0 at Power-on

### 7.3 Transmitted data (I<sup>2</sup>C bus write mode)

When the R/W bit in the chip address is set to 0, the main microprocessor can write on the system register (SR) of the LNBH23L via I<sup>2</sup>C bus. 6 bits are available and can be written by the microprocessor to control the device functions as per the below truth table [Table 6](#).

**Table 6. Truth table**

| PCL | TTX | TEN | LLC | VSEL | EN | TEST4 | TEST5 | Function                                                                                |
|-----|-----|-----|-----|------|----|-------|-------|-----------------------------------------------------------------------------------------|
|     | 0   |     | 0   | 0    | 1  | 0     | 0     | $V_{oRX} = 13.4 \text{ V}, V_{UP} = 14.5 \text{ V}, (V_{UP} - V_{oRX} = 1.1 \text{ V})$ |
|     | 0   |     | 0   | 1    | 1  | 0     | 0     | $V_{oRX} = 18.4 \text{ V}, V_{UP} = 19.5 \text{ V}, (V_{UP} - V_{oRX} = 1.1 \text{ V})$ |
|     | 0   |     | 1   | 0    | 1  | 0     | 0     | $V_{oRX} = 14.4 \text{ V}, V_{UP} = 15.5 \text{ V}, (V_{UP} - V_{oRX} = 1.1 \text{ V})$ |
|     | 0   |     | 1   | 1    | 1  | 0     | 0     | $V_{oRX} = 19.5 \text{ V}, V_{UP} = 20.6 \text{ V}, (V_{UP} - V_{oRX} = 1.1 \text{ V})$ |
|     | 0   | 0   |     |      |    | 1     | 0     | Internal 22 kHz generator disabled, EXTM modulation enabled                             |
|     | 1   | 0   |     |      |    | 1     | 0     | Internal 22 kHz controlled by DSQIN pin (only if TTX=1)                                 |
|     | 1   | 1   |     |      |    | 1     | 0     | Internal 22 kHz tone output is always activated                                         |
|     | 0   |     |     |      |    | 1     | 0     | $V_{oRX}$ output is ON, $V_{oTX}$ Tone generator output is OFF                          |
|     | 1   |     |     |      |    | 1     | 0     | $V_{oRX}$ output is ON, $V_{oTX}$ Tone generator output is ON                           |
| 0   | X   |     |     |      |    | 1     | 0     | Pulsed (Dynamic) current limiting is selected                                           |
| 1   | X   |     |     |      |    | 1     | 0     | Static current limiting is selected                                                     |
| X   | X   | X   | X   | X    | 0  | 0     | 0     | Power block disabled                                                                    |

X = don't care

All values are typical unless otherwise specified

Valid with TTX pin floating

## 7.4 Diagnostic received data (I<sup>2</sup>C read mode)

LNBH23L can provide to the MCU master a copy of the diagnostic system register information via I<sup>2</sup>C bus in read mode. The read mode is master activated by sending the chip address with R/W bit set to 1. At the following master generated clocks bits, LNBH23L issues a byte on the SDA data bus line (MSB transmitted first). At the ninth clock bit the Master can:

- Acknowledge the reception, starting in this way the transmission of another byte from the LNBH23L
- No acknowledge, stopping the read mode communication

Three bits of the register are read back as a copy of the corresponding write output voltage register status (LLC, VSEL, EN), two bits convey diagnostic information about the over-temperature (OTF), output over-load (OLF) and three bit are for internal usage (TEST1-2-3) and must be disregarded by the MCU software. In normal operation the diagnostic bits are set to zero, while, if a failure is occurring, the corresponding bit is set to one. At start-up all the bits are reset to zero.

**Table 7. Register**

| TEST1 | TEST2 | TEST3 | LLC                                                                               | VSEL | EN | OTF | OLF | Function                                                |
|-------|-------|-------|-----------------------------------------------------------------------------------|------|----|-----|-----|---------------------------------------------------------|
|       |       |       | These bits are read exactly the same as they were left after last write operation | 0    | 0  | 0   |     | $T_J < 135^{\circ}\text{C}$ , normal operation          |
|       |       |       |                                                                                   |      |    | 1   |     | $T_J > 150^{\circ}\text{C}$ , power blocks disabled     |
|       |       |       |                                                                                   | 1    | 0  | 0   |     | $I_O < I_{O\text{MAX}}$ , normal operation              |
|       |       |       |                                                                                   |      | 1  | 1   |     | $I_O > I_{O\text{MAX}}$ , Overload protection triggered |
| X     | X     | X     |                                                                                   |      |    |     |     | These bits status must be disregarded by the MCU.       |

Values are typical unless otherwise specified.

x = don't care.

## 7.5 Power-on I<sup>2</sup>C interface reset

I<sup>2</sup>C interface built in LNBH23L is automatically reset at power-on. As long as the  $V_{CC}$  stays below the under voltage lockout (UVL) threshold (6.7 V), the interface does not respond to any I<sup>2</sup>C command and the system register (SR) is initialized to all zeroes, thus keeping the power blocks disabled. Once the  $V_{CC}$  rises above 7.3 V typ. The I<sup>2</sup>C interface becomes operative and the SR can be configured by the main microprocessor. This is due to 500 mV of hysteresis provided in the UVL threshold to avoid false retrigerring of the power-on reset circuit.

## 7.6 Address pin

It is possible to select two I<sup>2</sup>C interface addresses by means of ADDR pin. This pin is TTL compatible and can be set as per address pin characteristics [Table 10](#).

## 7.7 DiSEqC™ implementation

LNBH23L helps system designer to implement DiSEqC 1.x protocol by allowing an easy PWK modulation of the 22 kHz carrier through the EXTM and  $V_{o\text{TX}}$  pins. Full compliance of the system to the specification is thus not implied by the bare use of the LNBH23L (see [Figure 3](#), [Figure 4](#) and [Figure 5](#)).

## 8 Electrical characteristics

Refer to the typical application circuits,  $T_J$  from 0 to 85 °C, EN=1, VSEL=LLC=TEN=PCL=TEST4=TEST5=TTX=0,  $R_{SEL}=15\text{ k}\Omega$ , DSQIN=LOW,  $V_{IN}=12\text{ V}$ ,  $I_{OUT}=50\text{ mA}$ , unless otherwise stated. Typical values are referred to  $T_J=25\text{ }^{\circ}\text{C}$ .  $V_{OUT}=V_{oRX}$  pin voltage. See software description section for I<sup>2</sup>C access to the system register.

**Table 8. Electrical characteristics**

| Symbol        | Parameter                            | Test conditions                                                                                                                                                                       |                                                       | Min. | Typ.         | Max. | Unit     |  |
|---------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------|--------------|------|----------|--|
| $V_{IN}$      | Supply voltage                       | $I_{OUT}=500\text{ mA}$ , VSEL=LLC=1                                                                                                                                                  | $I_{OUT}=0$                                           | 8    | 12           | 15   | V        |  |
| $I_{IN}$      | Supply current                       |                                                                                                                                                                                       | EN=TEN=TTX=1, $I_{OUT}=0$ , PDC circuit not connected | 7    | 15           | 40   |          |  |
|               |                                      |                                                                                                                                                                                       | EN=0                                                  | 20   | 40           | 2    |          |  |
| $V_{OUT}$     | Output voltage                       | $VSEL=1$<br>$I_{OUT}=500\text{ mA}$                                                                                                                                                   | LLC=0                                                 | 17.8 | 18.4         | 19.2 | V        |  |
|               |                                      |                                                                                                                                                                                       | LLC=1                                                 | 19.5 |              |      |          |  |
| $V_{OUT}$     | Output voltage                       | $VSEL=0$<br>$I_{OUT}=500\text{ mA}$                                                                                                                                                   | LLC=0                                                 | 12.8 | 13.4         | 14   |          |  |
|               |                                      |                                                                                                                                                                                       | LLC=1                                                 | 14.4 |              |      |          |  |
| $V_{OUT}$     | Line regulation                      | $V_{IN}=8$ to 15V                                                                                                                                                                     | VSEL=0                                                | 5    | 40           | 60   | mV       |  |
|               |                                      |                                                                                                                                                                                       | VSEL=1                                                | 5    | 40           | 60   |          |  |
| $V_{OUT}$     | Load regulation                      | VSEL=0 or 1 $I_{OUT}$ from 50 to 500mA                                                                                                                                                |                                                       |      |              | 200  |          |  |
| $I_{MAX}$     | Output current limiting thresholds   | $R_{SEL}=15\text{ k}\Omega$                                                                                                                                                           |                                                       | 500  |              | 800  | mA       |  |
|               |                                      | $R_{SEL}=22\text{ k}\Omega$                                                                                                                                                           |                                                       | 300  |              | 600  |          |  |
| $I_{SC}$      | Output short circuit current         | VSEL=0/1, AUX=0/1                                                                                                                                                                     |                                                       |      | 1000         |      | mA       |  |
| $T_{OFF}$     | Dynamic overload protection OFF time | PCL=0, output shorted                                                                                                                                                                 |                                                       |      | 900          |      | ms       |  |
| $T_{ON}$      | Dynamic overload protection ON time  | PCL=0, output shorted                                                                                                                                                                 |                                                       |      | $T_{OFF}/10$ |      |          |  |
| $F_{TONE}$    | Tone frequency                       | DSQIN=HIGH or TEN=1, TTX=1 (Using internal tone generator)                                                                                                                            |                                                       | 18   | 22           | 26   | kHz      |  |
| $A_{TONE}$    | Tone amplitude                       | DSQIN=HIGH or TEN=1, TTX=1, DiSEqC 1.X configuration using internal generator, $I_{OUT}$ from 0 to 500mA, $C_{OUT}$ from 0 to 750nF, PDC Optional circuit connected to $V_{oRX}$ rail |                                                       | 0.4  | 0.650        | 0.9  | $V_{PP}$ |  |
| $D_{TONE}$    | Tone duty cycle                      | DSQIN=HIGH or TEN=1, TTX=1 (Using internal tone generator)                                                                                                                            |                                                       | 40   | 50           | 60   | %        |  |
| $t_r, t_f$    | Tone rise or fall time               | DSQIN=HIGH or TEN=1, TTX=1 (Using internal tone generator)                                                                                                                            |                                                       | 5    | 8            | 15   | μs       |  |
| $V_{PDC\_OL}$ | PDC pin logic LOW                    | $I_{PDC}=2\text{ mA}$                                                                                                                                                                 |                                                       |      | 0.3          |      | V        |  |
| $I_{PDC\_OZ}$ | PDC pin leakage current              | $V_{PDC}=5\text{ V}$                                                                                                                                                                  |                                                       |      | 1            |      | μA       |  |
| $G_{EXTM}$    | External modulation gain             | $\Delta V_{OUT}/\Delta V_{EXTM}$ , freq. from 10 kHz to 50 kHz                                                                                                                        |                                                       |      | 1.8          |      |          |  |

**Table 8. Electrical characteristics (continued)**

| Symbol               | Parameter                           | Test conditions                 | Min. | Typ. | Max. | Unit             |
|----------------------|-------------------------------------|---------------------------------|------|------|------|------------------|
| $V_{EXTM}$           | External modulation input voltage   | EXTM AC coupling <sup>(1)</sup> |      |      | 400  | mV <sub>PP</sub> |
| $Z_{EXTM}$           | External modulation impedance       |                                 |      | 2.0  |      | kΩ               |
| Eff <sub>DC-DC</sub> | DC-DC converter efficiency          | $I_{OUT}=500\text{mA}$          |      | 93   |      | %                |
| $F_{SW}$             | DC-DC converter switching frequency |                                 |      | 220  |      | kHz              |
| $V_{IL}$             | DSQIN,TTX, pin logic low            |                                 |      |      | 0.8  | V                |
| $V_{IH}$             | DSQIN,TTX, pin logic high           |                                 | 2    |      |      | V                |
| $I_{IH}$             | DSQIN,TTX, pin input current        | $V_{IH}=5\text{V}$              |      | 15   |      | μA               |
| $I_{OBK}$            | Output backward current             | EN=0, $V_{OBK}=21\text{V}$      |      | -6   | -15  | mA               |
| $T_{SHDN}$           | Thermal shut-down threshold         |                                 |      | 150  |      | °C               |
| $\Delta T_{SHDN}$    | Thermal shut-down hysteresis        |                                 |      | 15   |      | °C               |

1. External signal maximum voltage for which the EXTM function is guaranteed.

**Table 9. I<sup>2</sup>C electrical characteristics <sup>(1)</sup>**

| Symbol    | Parameter                | Test conditions                         | Min. | Typ. | Max. | Unit |
|-----------|--------------------------|-----------------------------------------|------|------|------|------|
| $V_{IL}$  | LOW level input voltage  | SDA, SCL                                |      |      | 0.8  | V    |
| $V_{IH}$  | HIGH level input voltage | SDA, SCL                                | 2    |      |      | V    |
| $I_I$     | Input current            | SDA, SCL, $V_I = 0.4$ to $4.5\text{V}$  | -10  |      | 10   | μA   |
| $V_{OL}$  | Low level output voltage | SDA (open drain), $I_{OL} = 6\text{mA}$ |      |      | 0.6  | V    |
| $f_{MAX}$ | Maximum clock frequency  | SCL                                     | 400  |      |      | kHz  |

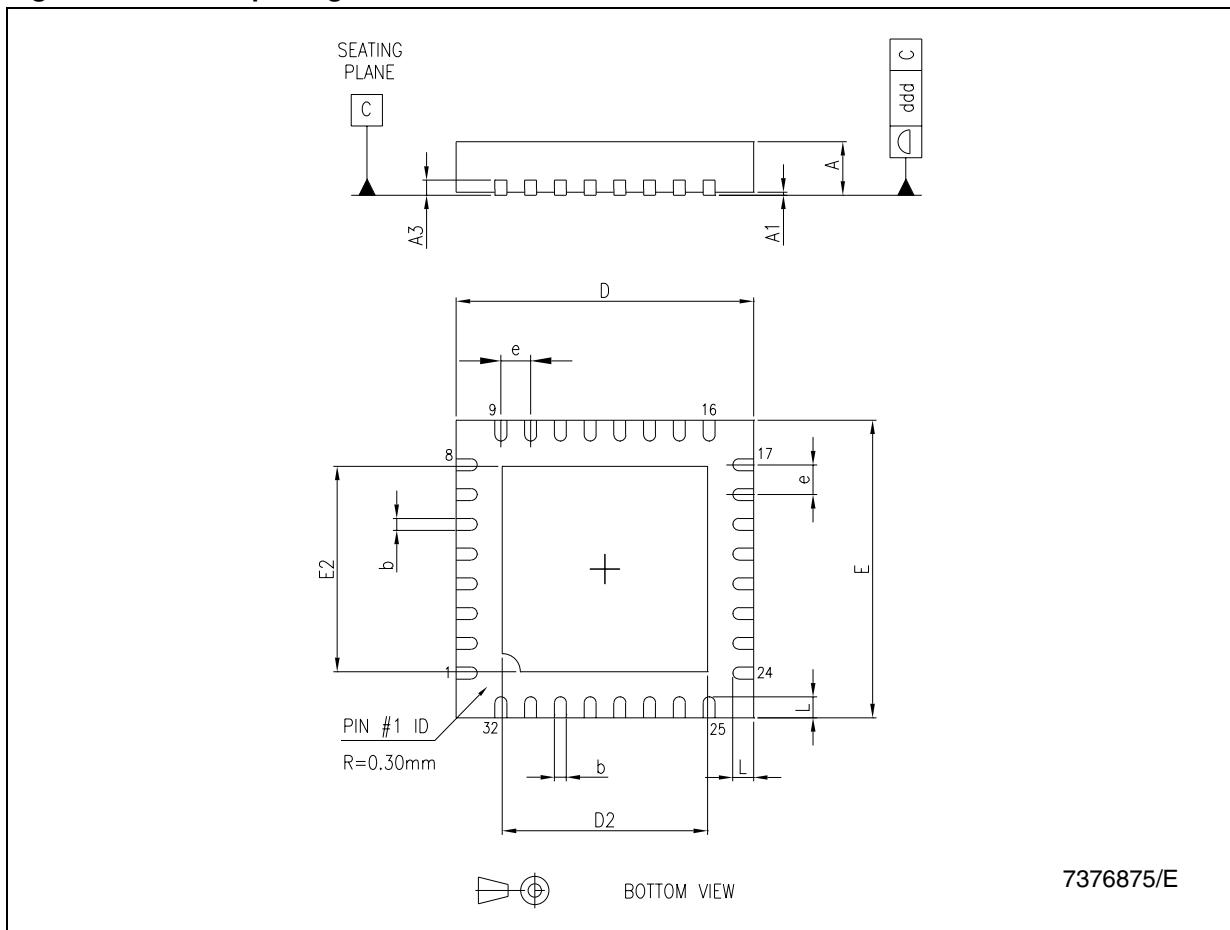
1.  $T_J$  from 0 to  $85$  °C,  $V_I = 12$  V.

**Table 10. Address pins characteristics <sup>(1)</sup>**

| Symbol                      | Parameter                                | Test condition                                                       | Min. | Typ. | Max. | Unit |
|-----------------------------|------------------------------------------|----------------------------------------------------------------------|------|------|------|------|
| $V_{ADDR-1}$                | "0001010(R/W)" Address pin voltage range | R/W bit determines the transmission mode: read (R/W=1) write (R/W=0) | 0    |      | 0.8  | V    |
| $V_{ADDR-2}$                | "0001011(RW)" Address pin voltage range  | R/W bit determines the transmission mode: read (R/W=1) write (R/W=0) | 2    |      | 5    | V    |
| $V_{ADDR-3}$ <sup>(2)</sup> | "0001000(RW)" Address pin voltage range  | R/W bit determines the transmission mode: read (R/W=1) write (R/W=0) | 0    |      | 5    | V    |

1.  $T_J$  from 0 to  $85$  °C,  $V_I = 12$  V

2. This I<sup>2</sup>C address is reserved only for internal usage. Do not use this address with other I<sup>2</sup>C peripherals to avoid address conflicts.


## 9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: [www.st.com](http://www.st.com).  
ECOPACK® is an ST trademark.

Table 11. QFN32 (5 x 5 mm) mechanical data

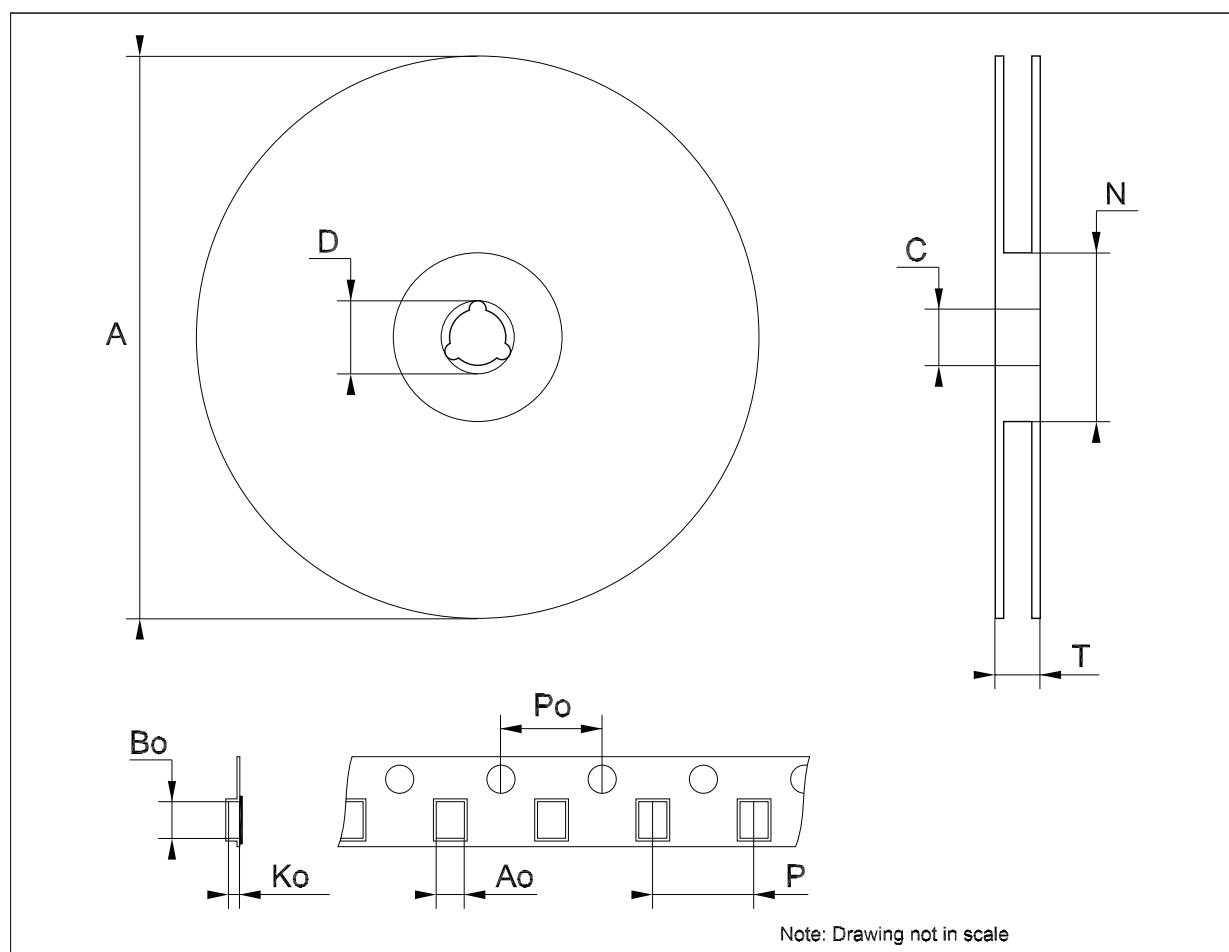

| Dim. | (mm.) |      |      |
|------|-------|------|------|
|      | Min.  | Typ. | Max. |
| A    | 0.80  | 0.90 | 1.00 |
| A1   | 0     | 0.02 | 0.05 |
| A3   |       | 0.20 |      |
| b    | 0.18  | 0.25 | 0.30 |
| D    | 4.85  | 5.00 | 5.15 |
| D2   | 3.20  |      | 3.70 |
| E    | 4.85  | 5.00 | 5.15 |
| E2   | 3.20  |      | 3.70 |
| e    |       | 0.50 |      |
| L    | 0.30  | 0.40 | 0.50 |
| ddd  |       |      | 0.08 |

Figure 9. QFN32 package dimensions



## Tape &amp; reel QFNxx/DFNxx (5x5 mm.) mechanical data

| Dim. | mm.  |      |      | inch. |       |        |
|------|------|------|------|-------|-------|--------|
|      | Min. | Typ. | Max. | Min.  | Typ.  | Max.   |
| A    |      |      | 330  |       |       | 12.992 |
| C    | 12.8 |      | 13.2 | 0.504 |       | 0.519  |
| D    | 20.2 |      |      | 0.795 |       |        |
| N    | 99   |      | 101  | 3.898 |       | 3.976  |
| T    |      |      | 14.4 |       |       | 0.567  |
| Ao   |      | 5.25 |      |       | 0.207 |        |
| Bo   |      | 5.25 |      |       | 0.207 |        |
| Ko   |      | 1.1  |      |       | 0.043 |        |
| Po   |      | 4    |      |       | 0.157 |        |
| P    |      | 8    |      |       | 0.315 |        |



## 10 Revision history

**Table 12. Document revision history**

| Date        | Revision | Changes                                                                                                                                             |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 27-Jan-2009 | 1        | Initial release.                                                                                                                                    |
| 18-May-2009 | 2        | Modified: <i>Figure 3 on page 11</i> , <i>Figure 4 on page 11</i> and <i>Figure 5 on page 12</i> .<br>Added: $Z_{EXTM}$ <i>Table 8 on page 19</i> . |
| 09-Sep-2009 | 3        | Modified: $I_{IN}$ , $A_{TONE}$ condition <i>Table 8 on page 19</i> and <i>Figure 5 on page 12</i> .                                                |
| 29-Nov-2010 | 4        | Modified <i>Table 10 on page 20</i> .                                                                                                               |

**Please Read Carefully:**

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

**UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.**

**UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.**

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

[www.st.com](http://www.st.com)



Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

#### Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помошь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помошь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.



#### Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: [org@eplast1.ru](mailto:org@eplast1.ru)

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.