Multiplexer/demultiplexer switch for Thunderbolt applicationsRev. 5 — 15 July 2013Product data sheet

1. General description

The CBTL05023 is a multiplexer/demultiplexer switch chip for DisplayPort v1.2 signals and the control signals of a 10 Gbit/s channel. The 10 Gbit/s channel does not pass through this switch. This chip provides BIASOUT output control signal, and the DC-biasing pull-down resistors to facilitate an external 10 Gbit/s channel.

The AUX MUX is a 2 : 1 switch with CA_DETect pin selecting between AUX and DDC (Direct Display Control) signals.

The DP MUX is a 2 : 1 switch that selects between DPML (DisplayPort Main Link) and LSTX/LSRX signals.

This chip also includes three control signal buffers: HPDOUT, CA_DETOUT and BIASOUT.

CBTL05023 is powered by a 3.3 V supply and it is available in 3 mm \times 3 mm HVQFN24 package with 0.4 mm pitch.

2. Features and benefits

2.1 AUX MUX 2 : 1 switch

- This 2 : 1 switch is controlled by CA_DET signal multiplexing of the 1 Mbit/s differential AUX and DDC (Direct Display Control) signals
 - When CA_DET is HIGH, DDC path is selected
- Differential AUX channel:
 - ◆ Low insertion loss: –0.5 dB at 5 MHz
 - ◆ Low return loss: –19 dB at 5 MHz
 - Low ON-state resistance: 7.5 Ω
 - Bandwidth: 5 GHz
 - Low off-state isolation: –75 dB at 5 MHz
 - Low crosstalk: –40 dB at 5 MHz
 - Common-mode input voltage V_{IC}: 0 V to 3.3 V
 - Differential input voltage VID: 1.4 V (maximum)
- DDC channel has DDC_CLK and DDC_DAT I²C signals
 - ◆ 100 kHz 3.3 V voltage swing
- Both AUXIO+ and AUXIO- outputs have 900 Ω (±20 %) pull-down resistor that is enabled by the status of the BIASOUT output pin
 - These pull-down resistors provide DC bias for the 10 Gbit/s channel

2.2 DP MUX 2 : 1 switch

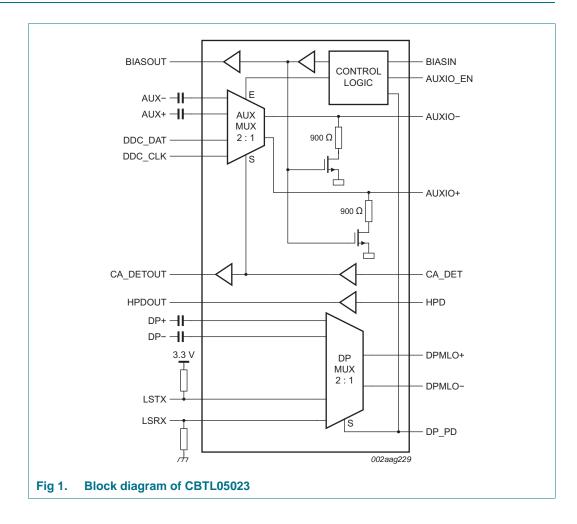
The DP MUX is a 2:1 switch that is controlled by DP_PD pin multiplexing of a differential DPML signal and LSTX/LSRX signals

- The DPML (DisplayPort Main Link) runs up to HBR2 data rate of 5.4 Gbit/s
- The low speed DC coupled signals LSTX and LSRX are 3.3 V single-ended signals that operated at 1 Mbit/s
- 5.4 Gbit/s DPML channel:
 - Low insertion loss for DP-DPMLO path: –2.0 dB at 2.5 GHz
 - Low insertion loss for LS-DPMLO path: –2.0 dB at 2.5 GHz
 - ◆ Low return loss for DP-DPMLO path: –15 dB at 2.5 GHz
 - ◆ Low return loss for LS-DPMLO path: –14 dB at 2.5 GHz
 - Low ON-state resistance for DP-DPMLO path: 9 Ω
 - Low ON-state resistance for LS-DPMLO path: 13 Ω
 - High bandwidth: 7 GHz
 - Low off-state isolation: –20 dB at 2.5 GHz
 - Low crosstalk: –25 dB at 2.5 GHz
 - Common-mode input voltage V_{IC}: 0 V to 3.3 V
 - Differential input voltage V_{ID}: 1.4 V (maximum)

2.3 General

- The input of the HPDOUT (Hot Plug Detect output) buffer is 5 V tolerant
- HPDOUT, CA_DETOUT and BIASOUT buffers
 - \blacklozenge CA_DET input leakage current < 0.1 μA to prevent driving the 1 M Ω pull-down to a HIGH level
 - BIASOUT buffer is able to provide enough current to drive the bias circuit for the PIN diode path
 - BIASOUT buffer can drive up to six sets of bias circuits for the 10 Gbit/s paths
- When AUXIO_EN is LOW or (BIASIN = 0 and DP_PD = 1), this chip is in Sleep mode
 - AUXIO+ and AUXIO- of AUX MUX are disabled
 - CA_DETOUT and HPDOUT buffers are on
 - ◆ When the chip is in Sleep mode, CBTL05023 consumes < 3.5 mW
- Patent-pending high-bandwidth analog pass-gate technology
- Very low intra-pair differential skew (5 ps typical)
- All channels have back current protection
- All channels support rail-to-rail input voltage
- CMOS input buffer with hysteresis
- Single 3.3 V \pm 10 % power supply
- HVQFN24 3 mm × 3 mm package, 0.4 mm pitch, with exposed center pad for thermal relief and electrical ground
- ESD: 2500 V HBM, 1250 V CDM
- Operating temperature range: 0 °C to 85 °C

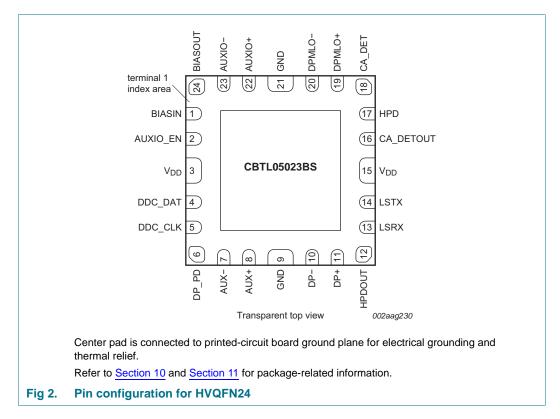
3. Ordering information


Table 1. Ordering information							
Type number	Topside	Package					
	marking	Name	Description	Version			
CBTL05023BS	023	HVQFN24	plastic thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3 \times 3 \times 0.85 \text{ mm}^{11}$	SOT905-1			

[1] Maximum package height is 1 mm.

3.1 Ordering options

Table 2. Ordering options						
Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature	
CBTL05023BS	CBTL05023BS,118	HVQFN24	Reel 13" Q1/T1 *standard mark SMD	6000	$T_{amb} = 0 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$	


4. Block diagram

Multiplexer/demultiplexer switch for Thunderbolt applications

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 3.	Pin descripti	on	
Symbol	Pin	Туре	Description
Data path	signals		
AUX–	7	differential I/O	AUX differential signals. The input to this pin must
AUX+	8	differential I/O	be AC-coupled externally.
AUXIO-	23	differential I/O	Differential pairs that are DC-coupled to 3.3 V and
AUXIO+	22	differential I/O	ground.
			These two pins are internally connected to 1 k Ω pull-down resistors that are enabled by the status of BIASOUT output pin (see <u>Table 18</u> for details).
DDC_CLK	5	single-ended I/O	Pair of single-ended terminals for DDC clock and
DDC_DAT	4	single-ended I/O	data signals.
DP-	10	differential I/O	High speed differential pair. The input to this pin
DP+	11	differential I/O	must be AC-coupled externally.
DPMLO-	20	differential I/O	Differential pair that is DC-coupled to 3.3 V and
DPMLO+	19	differential I/O	ground.
LSRX	13	single-ended I/O	Single-ended signal with DC coupled to 3.3 V.
LSTX	14	single-ended I/O	Single-ended signal with DC coupled to ground.
	All information	provided in this document is subject to	b legal disclaimers. © NXP B.V. 2013. All rights reserved

CBTL05023

_. .

. ..

CBTL05023

Multiplexer/demultiplexer switch for Thunderbolt applications

Symbol	Pin	Туре	Description
Control signal	s		
HPDOUT	12	CMOS output	3.3 V CMOS output buffer for HPD.
HPD	17	CMOS input	CMOS input with 5 V tolerance.
CA_DET	18	CMOS input	When CA_SET is HIGH, the DDC_CLK and DDC_DAT replace AUX differential pair.
CA_DETOUT	16	CMOS output	3.3 V CMOS output buffer for CA_DET.
BIASIN	1	CMOS input	CMOS input buffer.
BIASOUT	24	CMOS output	This output enables the 1 k Ω pull-down resistors for both AUXIO+ and AUXIO It enables the DC bias of the 10 Gbit/s data path. It provides power through six sets of 3.2 k Ω bias circuits for 10 Gbit/s paths.
AUXIO_EN	2	CMOS input	If AUXIO_EN is LOW, then AUXIO+ and AUXIO- are in high-impedance state for Sleep mode.
DP_PD	6	CMOS input	If DP_PD is LOW, then DPMLO+ and DPMLO- are connected to DP+ and DP If DP_PD is HIGH, then DPMLO+ and DPMLO- are connected to LSTX and LSRX. This multiplexer must work during initial power-up that might have $V_{DD} = 2.3$ V.
3.3 V supply o	ption		
V _{DD}	3, 15	power	3.3 V supply. Both pin 3 and pin 15 must be connected to system power supply.
Ground conne	ctions		
GND	9, 21 <mark>11</mark>	ground	0 V (ground).
GND	center pad	ground	The center pad must be connected to GND plane for both electrical grounding and thermal relief.

[1] HVQFN24 package die supply ground is connected to both GND pins and exposed center pad. GND pins and the exposed center pad must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the printed-circuit board in the thermal pad region.

Functional description 6.

Refer to Figure 1 "Block diagram of CBTL05023".

The following sections describe the individual block functions and capabilities of the device in more detail.

6.1 Buffer function tables

BIASOUT buffer Table 4.

X = don't care.					
AUXIO_EN	BIASIN	BIASOUT			
0	Х	0			
1	0	0			
1	1	1			

Table 5. **HPD** buffer

HPD input	HPDOUT output
0	0
1	1

CA_DET buffer Table 6.

CA_DET input	CA_DETOUT output
0	0
1	1

6.2 AUX MUX state and function tables

The 2 : 1 AUXIO+ and AUXIO- are controlled by three signals: AUXIO_EN, CA_DET and BIASIN.

Table 7. AUX MUX state X = don't care.

AUXIO_EN input	BIASIN input	DP_PD input	AUX MUX	State
0	Х	Х	3-state	sleep
1	0	0	ON	DP/DP++
1	0	1	3-state	sleep
1	1	0	3-state	illegal
1	1	1	3-state	10 Gbit/s mode

Table 8. **AUX MUX function**

CA_DET input	AUXIO	
0	AUX	
1	DDC	

CBTL05023 Product data sheet

6.3 Operation modes of both DPML MUX and AUX MUX

Table 9. DPML MUX function

DP_PD input	DPMLO outputs
0	DP+ and DP-
1	LSRX and LSTX

Table 10. Operation modes

X = don't care.	
-----------------	--

	-						
AUXIO_EN	BIASIN	DP_PD	CA_DET	BIASOUT	AUXIO	DPMLO	State
0	Х	0	Х	0	3-state	DP input	sleep
0	Х	1	Х	0	3-state	LS	sleep
1	0	0	0	0	AUX input	DP input	DP mode
1	0	0	1	0	DDC	DP input	DP++ mode
1	0	1	Х	0	3-state	LS	detect
1	1	0	Х	1	1 k Ω pull-down	DP input	illegal
1	1	1	Х	1	1 k Ω pull-down	LS	10 Gbit/s mode

7. Limiting values

Table 11. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		<u>[1]</u> –0.3	+4.6	V
VI	input voltage		<u>[1]</u> –0.3	+5.5	V
T _{stg}	storage temperature		-65	+150	°C
V _{ESD}	electrostatic discharge	HBM	[2] _	2500	V
	voltage	CDM	[3] _	1250	V

[1] All voltage values, except differential voltages, are with respect to network ground terminal.

[2] Human Body Model: ANSI/EOS/ESD-S5.1-1994, standard for ESD sensitivity testing, Human Body Model -Component level; Electrostatic Discharge Association, Rome, NY, USA.

[3] Charged Device Model: ANSI/EOS/ESD-S5.3-1-1999, standard for ESD sensitivity testing, Charged Device Model - Component level; Electrostatic Discharge Association, Rome, NY, USA.

8. Recommended operating conditions

Table 12. Operating conditions

Over operating free-air temperature range, unless specified otherwise.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage	3.3 V supply option	3.0	3.3	3.6	V
		initial supply voltage before power supply negotiation done	[1] 2.3	-	-	V
VI	input voltage	CMOS inputs	-0.3	-	$V_{DD} + 0.3$	V
		MUX I/O pins	-0.3	-	$V_{DD} + 0.3$	V
T _{amb}	ambient temperature	operating in free air	0	-	85	°C

[1] During power supply negotiation only a limited supply voltage is available. The control logic and multiplexers must be in full function with degraded performance. The channel between LSTX/LSRX and DPMLO+/DPMLO- must work. The initial R_{on} of DP MUX in <u>Table 15</u> should be < 50 Ω.</p>

9. Characteristics

9.1 Device general characteristics

Table 13.	General characteristics	S				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD}	supply current	V_{DD} = 3.6 V with no load on BIASOUT	-	-	2.8	mA
P _{cons}	power consumption	V_{DD} = 3.6 V with no load on BIASOUT	-	-	10	mW
		Sleep mode; AUXIO_EN = 0 or (BIASIN = 0 and DP_PD = 1)	-	-	3.5	mW
t _{startup}	start-up time	supply voltage valid to channel specified operating characteristics	-	-	10	ms
t _{rcfg}	reconfiguration time	DP_PD, AUXIO_EN, BIASIN or CA_DET state change to channel specified operating characteristics	<u>[1]</u> -	2	4	μS

[1] Outputs are undefined during reconfiguration, including enable and disable time of the multiplexers.

9.2 AUX/DDC channel characteristics

Table 14.	4. AUX/DDC channel characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DDIL	differential insertion loss	channel is OFF; f = 5 MHz	-	-75	-	dB
		channel is ON; f = 5 MHz	-	-0.5	-	dB
DDRL	differential return loss	f = 5 MHz	-	-19	-	dB
DDNEXT	differential near-end crosstalk	adjacent channels are ON; f = 5 MHz	-	-40	-	dB
R _{on}	ON-state resistance	V_{DD} = 3.3 V; V_{I} = 3.3 V; I_{I} = 20 mA	-	7.5	-	Ω
B _{-3dB}	–3 dB bandwidth		-	5	-	GHz
t _{PD}	propagation delay	from DDC to AUXIO	-	70	-	ps
		from AUX to AUXIO	-	70	-	ps
t _{sk(dif)}	differential skew time	intra-pair	-	5	-	ps
VI	input voltage	AUX+/AUX- and AUXIO+/AUXIO-	0	-	V_{DD}	V
V _{IC}	common-mode input voltage	AUX+/AUX- and AUXIO+/AUXIO-	0	-	V_{DD}	V
V _{ID}	differential input voltage	AUX+/AUX– and AUXIO+/AUXIO–; peak-to-peak value	-	-	1.4	V
I _{LIH}	HIGH-level input leakage current	$V_{DD} = max.; V_I = V_{DD}$	-	-	±0.5	μΑ
I _{LIL}	LOW-level input leakage current	$V_{DD} = max.; V_I = GND$	-	-	±0.5	μA

Table 14. AUX/DDC channel characteristics

NXP Semiconductors

CBTL05023

Multiplexer/demultiplexer switch for Thunderbolt applications

9.3 DisplayPort Main Link (DPML) channel characteristics

Symbol DDIL				Тур	Max	Unit
	differential insertion loss	DP-DPMLO path; channel is OFF				
		f = 2.5 GHz	-	-20	-	dB
		f = 1.35 GHz	-	-26	-	dB
		DP-DPMLO path; channel is ON				
		f = 2.5 GHz	-	-2.0	-	dB
		f = 1.35 GHz	-	-1.0	-	dB
		f = 100 MHz	-	-0.5	-	dB
		LS-DPMLO path; channel is OFF				
		f = 2.5 GHz	-	-20	-	dB
		f = 1.35 GHz	-	-26	-	dB
		LS-DPMLO path; channel is ON				
		f = 2.5 GHz	-	-2.0	-	dB
		f = 1.35 GHz	-	-1.5	-	dB
		f = 100 MHz	-	-1.5	-	dB
DDRL	differential return loss	DP-DPMLO path				
		f = 2.5 GHz	-	-15	-	dB
		f = 100 MHz	-	-24	-	dB
		LS-DPMLO path				
		f = 2.5 GHz	-	-14	-	dB
		f = 100 MHz	-	-18	-	dB
DDNEXT	differential near-end crosstalk	adjacent channels are ON				
		f = 2.5 GHz	-	-25	-	dB
		f = 100 MHz	-	-60	-	dB
R _{on}	ON-state resistance	V _{DD} = 3.3 V; V _I = 3.3 V; I _I = 10 mA				
0		DP-DPMLO path	-	9	-	Ω
		LS-DPMLO path	-	13	-	Ω
		initial ON-state resistance before power supply negotiation done; $V_{DD} = 2.3 \text{ V}; V_I = 2.3 \text{ V}; I_I = 10 \text{ mA}$	-	-	50	Ω
B _{-3dB}	-3 dB bandwidth		-	7.0	-	GHz
t _{PD}	propagation delay	from DP+/DP- to DPMLO+/DPMLO-	-	100	-	ps
t _{sk(dif)}	differential skew time	intra-pair	-	5	-	ps
VI	input voltage	LSTX/LSRX to DPMLO+/DPMLO- channel	-0.3	-	V _{DD} + 0.6	V
V _{IC}	common-mode input voltage	DP+/DP- and DPMLO+/DPMLO-	0	-	V _{DD}	V
V _{ID}	differential input voltage	DP+/DP- and DPMLO+/DPMLO- channel; peak-to-peak value	-	-	1.4	V
I _{LIH}	HIGH-level input leakage current	V_{DD} = max.; V_{I} = V_{DD}	-	-	±0.5	μA
I _{LIL}	LOW-level input leakage current	$V_{DD} = max.; V_I = GND$	-	-	±0.5	μA

NXP Semiconductors

9.4 Control signals characteristics

Table 16.	CA_DET input buffer characteristics					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IH}	HIGH-level input voltage		$0.7\times V_{DD}$	-	-	V
V _{IL}	LOW-level input voltage		-	-	$0.3\times V_{DD}$	V
I _{LI}	input leakage current	measured with input at $V_{\text{IH}(\text{max})}$ and $V_{\text{IL}(\text{min})}$	<u>[1]</u> -	-	0.1	μA

[1] The leakage current on CA_DET pin must not drive the 1 MΩ pull-down to a HIGH level.

Table 17. HPD, BIASIN, DP_PD, AUXIO_EN input buffer characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage	CMOS inputs	$0.7\times V_{DD}$	-	-	V
V _{IL}	LOW-level input voltage	CMOS inputs	-	-	$0.3\times V_{DD}$	V
I _{LI}	input leakage current	measured with input at $V_{IH(max)}$ and $V_{IL(min)}$	-	-	1	μΑ

Table 18. BIASOUT output buffer characteristics

This buffer provides the power supply current for the PIN diode bias path and it drives six sets of bias resistors for the 10 Gbit/s signal paths.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{pd}	pull-down current	$V_{O} = 0.4 V$	5	-	-	mA
I _{pu}	pull-up current	$V_O = V_{DD} - 0.4 V$	-	-	-9	mA
t _{PD}	propagation delay		-	40	60	ns

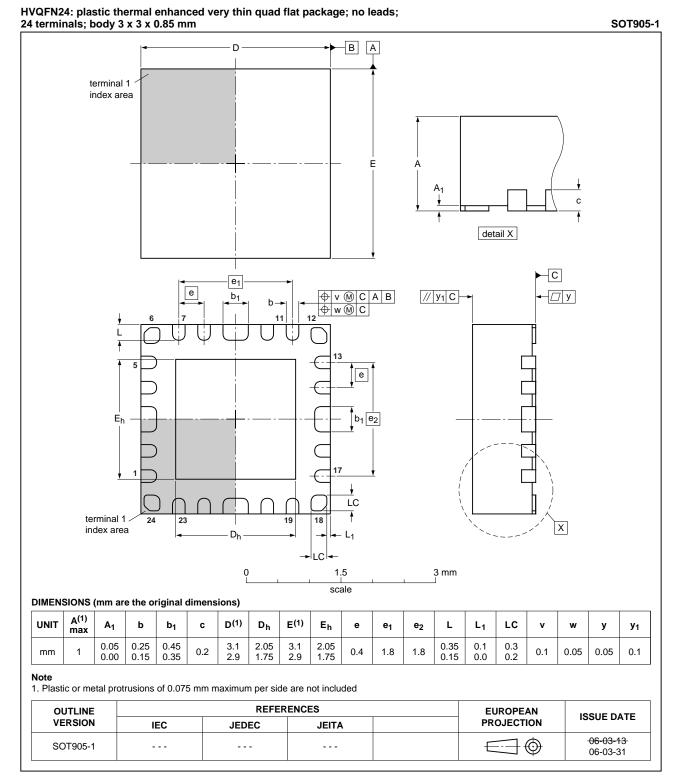
Table 19. CA_DETOUT, HPDOUT output buffer characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{pd}	pull-down current	$V_0 = 0.4 V$	2	-	-	mA
I _{pu}	pull-up current	$V_O = V_{DD} - 0.4 V$	-	-	-2	mA
t _{PD}	propagation delay		-	70	100	ns

Table 20. AUXIO+ and AUXIO- pins in 10 Gbit/s mode (AUXIO_EN = BIASIN = DP_PD = 1) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	I _O = 1 mA	<u>[1]</u> 0.72	0.90	1.1	V

[1] This V_{OL} is contributed from the 900 Ω pull-down resistors on these two pins.


11 of 19

NXP Semiconductors

CBTL05023

Multiplexer/demultiplexer switch for Thunderbolt applications

10. Package outline

Fig 3. Package outline SOT905-1 (HVQFN24)

CBTL05023

11. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

11.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

11.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

11.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

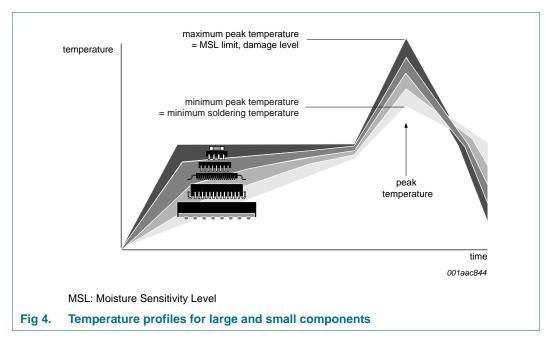
11.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 4</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 21 and 22

Table 21. SnPb eutectic process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm³) ≥ 350			
< 2.5	235	220		
≥ 2.5	220	220		


Table 22. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow tem	Package reflow temperature (°C)				
	Volume (mm ³) < 350 350 to 2000 > 2000					
< 1.6	260	260	260			
1.6 to 2.5	260	250	245			
> 2.5	250	245	245			

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 4.

Multiplexer/demultiplexer switch for Thunderbolt applications

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

12. Abbreviations

Table 23. Abbreviations				
Acronym	Description			
CDM	Charged-Device Model			
CMOS	Complementary Metal-Oxide Semiconductor			
DDC	Direct Display Control			
DP	DisplayPort			
DPML	DisplayPort Main Link			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
HBR2	High Bit Rate 2			
ML	Main Link			
MUX	Multiplexer			
PIN	P-type, Intrinsic, N-type			

13. Revision history

Table 24. Revis	sion history					
Document ID	Release date	Data sheet status	Change notice	Supersedes		
CBTL05023 v.5	20130715	Product data sheet	-	CBTL05023 v.4		
Modifications:	• <u>Section 2.3 "General"</u> , first bullet item: corrected term from "Hug Plug Detect" to "Hot Plug Detect"					
		ering information": added co	lumn "Topside marking"			
		on 3.1 "Ordering options"				
	 De-activated 	I hyper links in previous revis	sion history			
CBTL05023 v.4	20121031	Product data sheet	-	CBTL05023 v.3		
Modifications:	•	itle of data sheet changed fro demultiplexer switch for Thu		er switch chip" to		
	 <u>Table 13 "Al</u> 	JX/DDC channel characterist	tics":			
	– I _{LIH} Max	value changed from "±5 μ A" $$	to "±0.5 μA"			
	 I_{LIL} Max value changed from "±5 μA" to "±0.5 μA" 					
	 <u>Table 14 "DPML channel characteristics"</u>: 					
	– I_{LIH} Max value changed from "±5 μ A" to "±0.5 μ A"					
	– I_{LIL} Max value changed from "±5 μ A" to "±0.5 μ A"					
	 Table 16 "HPD, BIASIN, DP_PD, AUXIO_EN input buffer characteristics": 					
	– I _{LI} Max va	alue changed from "10 μ A" to	ο "1 μΑ"			
CBTL05023 v.3	20120621	Product data sheet	-	CBTL05023 v.2		
Modifications:	• Table 2 "Pin	description", last row: "Type"	for Pin "center pad" correc	ted from "power" to "ground"		
CBTL05023 v.2	20120515	Product data sheet	-	CBTL05023 v.1		
Modifications:	Section 2.2	<u>'DP MUX 2 : 1 switch"</u> , third l	bullet, ninth sub-bullet: chai	nged from "–50 dB" to "–25 dB"		
	 <u>Section 2.3 "General</u>", fourth bullet: inserted "Patent-pending" 					
	Table 14 "DF	PML channel characteristics"	, DDNEXT characteristic:			
	 Typ value for condition f = 2.5 GHz changed from "-50 dB" to "-25 dB" 					
	 Typ value 	e for condition f = 100 MHz c	hanged from "–65 dB" to "–	60 dB"		
CBTL05023 v.1	20111104	Product data sheet	-	-		

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP B.V. 2013. All rights reserved.

CBTL05023

Multiplexer/demultiplexer switch for Thunderbolt applications

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Multiplexer/demultiplexer switch for Thunderbolt applications

16. Contents

1	General description	. 1
2	Features and benefits	. 1
2.1	AUX MUX 2 : 1 switch	. 1
2.2	DP MUX 2 : 1 switch	. 2
2.3	General	. 2
3	Ordering information	. 3
3.1	Ordering options	. 3
4	Block diagram	. 3
5	Pinning information	. 4
5.1	Pinning	. 4
5.2	Pin description	. 4
6	Functional description	. 6
6.1	Buffer function tables	
6.2	AUX MUX state and function tables	
6.3	Operation modes of both DPML MUX	
	and AUX MUX	. 7
7	Limiting values	. 8
8	Recommended operating conditions	. 8
9	Characteristics	. 9
9.1	Device general characteristics	
9.2	AUX/DDC channel characteristics	
9.3	DisplayPort Main Link (DPML) channel	
	characteristics	10
9.4	Control signals characteristics	11
10	Package outline	12
11	Soldering of SMD packages	13
11.1	Introduction to soldering	13
11.2	Wave and reflow soldering	13
11.3	Wave soldering	13
11.4	Reflow soldering	14
12	Abbreviations	15
13	Revision history	16
14	Legal information	17
14.1	Data sheet status	17
14.2	Definitions	17
14.3	Disclaimers	17
14.4	Trademarks	18
15	Contact information	18
16	Contents	19

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 July 2013 Document identifier: CBTL05023

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.