
SERCOS INTERFACE CONTROLLER

- Single-chip controller for SERCOS interface
- Real time communication for industrial control systems
- 8/16-bit bus interface, Intel and Motorola control signals
- Dual port RAM with 2048 word *16-bit
- Data communications via optical fiber rings, RS 485 rings and RS 485 busses
- Maximum transmission rate of 16 Mbaud with internal clock recovery
- Internal repeater for ring connections
- Full duplex operation
- Modulation of power of optical transmitter diode
- Automatic transmission of synchronous and data telegrams in the communication cycle
- Flexible RAM configuration, communication data stored in RAM (single or double buffer) or transfer via DMA
- Synchronization by external signal

Figure 1. SERCON816 Block Diagram

- Timing control signals
- Automatic service channel transmission
- Watchdog to monitor software and external synchronization signals
- Compatible mode to SERCON410B SERCOS interface controller
- 100-pin plastic flat-pack casing

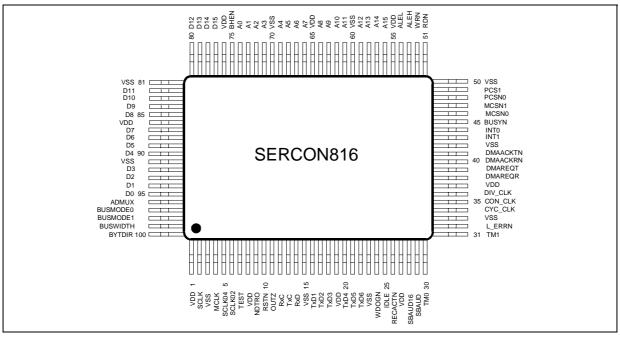
TABLE OF CONTENTS

1	GENEF	RAL DESCRIPTION	3
2	Pin Des	scription	5
3	Electric	cal (DC and AC) Characteristics	7
		Absolute Maximum Ratings	
	3.2 F	Recommended Operating Conditions	8
		ELECTRICAL CHARACTERISTCS	
	3.4 F	Power Dissipation	9
	3.4.	1 Power Dissipation Considerations	9
	3.5 A	AC Electrical Characteristics1	
	3.5.	1 Clock Input MCLK1	0
	3.5.	2 Clock Input SCLK1	1
	3.5.		
	3.5.		
	3.5.		
	3.5.		4
	3.5.		5
4		I Registers and RAM Data Structures1	
	4.1 (Control Register Addresses1	6
	4.2 E	Data Structures within the RAM1	6
	4.2.	- - - -	
	4.2.		
	4.2.		
	4.2.		
5		nal Specifications, Tools and Support2	
		Additional Specifications2	
	5.2 H	Hardware and Software Components2	21
	5.3 7	Tools2	21
6	Packag	ge Mechanical Data:	
	SERCO	DN816 100 Pin Plastic Quad Flat Pack Package (PQFP100)2	22

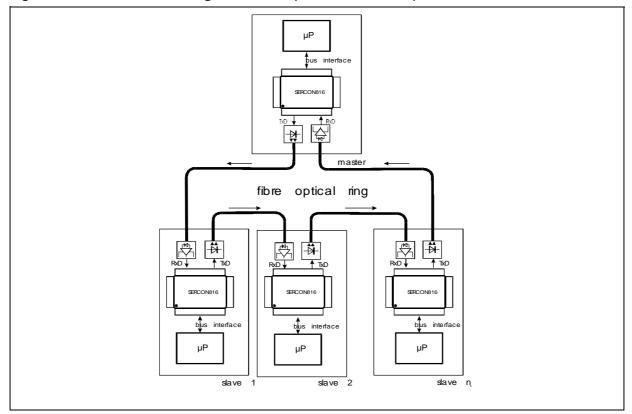
1 GENERAL DESCRIPTION

The SERCOS interface controller SERCON816 is an integrated circuit for SERCOS interface communication systems. The SERCOS interface is a digital interface for communication between systems which have to exchange information cyclically at short, fixed intervals (62,5 s to 65 ms). It is appropriate for the synchronous operation of distributed control or test equipment (e.g. connection between drives and numeric control).

A SERCOS interface communication system consists of one master and several slaves. These units are connected by a fiber optical ring. This ring starts and ends at the master. The slaves regenerate and repeat their received data or send their own telegrams. By this method the telegrams sent by the master are received by all slaves while the master receives data telegrams from the slaves. The optical fiber assures a reliable high-speed data transmission with excellent noise immunity.


The SERCOS interface controller contains all the hardware-related functions of the SERCOS interface and considerably reduces the hardware costs and the computing time requirements of the microprocessor. It is the direct link between the electro-optical receiver and transmitter and the microprocessor that executes the control algorithms. The SERCON816 can be used both for SERCOS interface masters and slaves.

The circuit contains the following functions (Fig. 1):


- Interface to the microprocessor with a data bus width of 8 or 16 bits and with control lines according to Intel or Motorola standards.
- A serial interface for making a direct connection with the optical receiver and transmitter of the fiber optic ring
 or with drivers to an electric ring or bus. Data and clock regeneration, the repeater for ring topologies and the
 serial transmitter and receiver are integrated. The signals are monitored and test signals generated. The serial interface operates up to 16 Mbaud without external circuitry.
- A dual port RAM (2048 * 16 bit) for control and communication data. The organization of the memory is flexible.
- Telegram processing for automatic transmission and monitoring of synchronous and data telegrams. Only
 transmission data which is intended for the particular interface user is processed. The transmitted data is either stored in the internal RAM (single or double buffer) or transferred via direct memory access (DMA). The
 transmission of service channel information over several communication cycles is executed automatically.

In addition to the SERCOS interface the SERCON816 can also be used for other real-time communications tasks. As an alternative to the fiber optical ring also bus topologies with RS-485 signals are supported (Fig. 4). The SERCON816 is therefore suitable for a wide range of applications.

Remark: The SERCON816 is based on the former SERCON410B SERCOS interface controller.

Figure 2. SERCON816 Pin Configuration

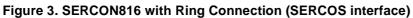
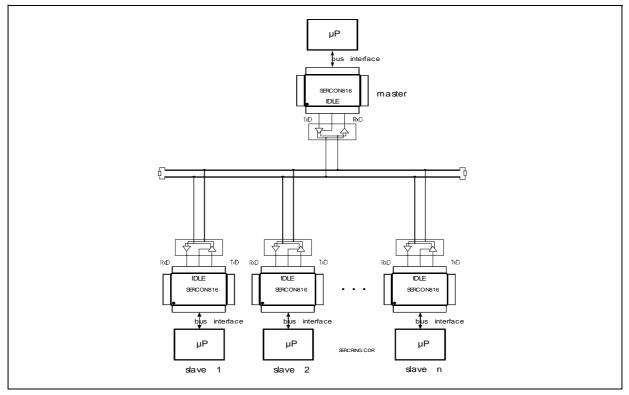



Figure 4. SERCON816 with RS-485 bus connection

57

4/23

2 PIN DESCRIPTION

Table 1. SERCON816 I/C	Port Function Summary
------------------------	-----------------------

Signal(s)	Pin(s)	ю	Function
D15-0	77-80, 82-85, 87-90, 92-95	I/O	Data bus: for 8-bit-wide bus interfaces, data is written to and read via D7-0, for 16-bit-wide bus interfaces via D15-0. When ADMUX is 1, the address which is stored in the address latch with ALEL and ALEH is input via D15-0.
ALEL, ALEH	54, 53	I	Address latch enable, low and high, active high: they are only used when ADMUX is 1. When ALEL/ALEH is 1, the signals go from the data bus to the address bus, when ALEL/ALEH = 0, they store the address. When ADMUX is 0, ALEL/ALEH have to be connected to VDD.
RDN	51	Ι	Read: for the Intel bus interface, data is read when RDN is 0. For the Motorola bus interface, data is read or written to when RDN is 0 (BUSMODE1 = 0) or RDN is 1 (BUSMODE1 = 1).
WRN	52	Ι	Write: for the Intel bus interface, data is written to when WRN is 0. For the Motorola bus interace, WRN selects read (WRN = 1) and write (WRN = 0) operations of the data bus.
BHEN	75	I	Byte high enable, active low: in the 16-bit bus mode, data is transferred via D15-8 when BHEN is 0.
MCSN0, MCSN1	46,47	I	Memory chip select, active low: to access the internal RAM MCSN0 and MCSN1 must be 0.
PCSN0, PCS1	48,49	I	Periphery chip select, active low (PCSN0) and active high (PCS1): to access the control registers PCSN0 must equal 0 and PCS1 must equal 1.
BUSYN	45	0	RAM busy, active low: becomes active if an access to an address of the dual port RAM is performed simultaneously to an access to the same memory location by the internal telegram processing.
DMAREQR	38	0	DMA request receive, active high: becomes active if data from the receive FIFO can be read. At the beginning of the read operation of the last word of the receive FIFO, DMAREQR becomes inactive.
DMAACKRN	40	I	DMA acknowledge receive, active low: when DMAACKRN is 0, the receive FIFO is read, independent of the levels on A6-1 and the chip select signals.
DMAREQT	39	0	DMA request transmit, active high: becomes active when data can be written to the transmit FIFO. DMAREQT becomes inactive again at the beginning of the last write access to the transmit FIFO.
DMAACKTN	41	Ι	DMA acknowledge transmit, active low: when DMAACKTN is 0, the transmit FIFO is written to when there is a bus write access independent of the levels on A6-1 and the chip select signals.
ADMUX	96	I	Address data bus: when ADMUX is 0 A15-0 are the address inputs, when ADMUX is 1 A15-0 are the outputs of the address latch.
BUSMODE0, BUSMODE1	97,98	I	Bus mode: BUSMODE0 = 0 turns on the Intel bus interface (RDN = read, WRN = write), BUSMODE0 = 1 selects the Motorola interface (RDN = data strobe, WRN = read/write). BUSMODE1 selects the 0-active data strobe (BUSMODE1 = 0) or the 1-active data strobe (BUSMODE1 = 1).
BUSWIDTH	99	I	Bus width: selects the 8-bit- (0) or the 16-bit-wide interface (1).
BYTEDIR	100	Ι	Byte address sequence: when BYTEDIR is 0, A0 = 0 addresses the lower 8 bits of a word (low byte first), when BYTEDIR is 1, the upper 8 bits of a word are addressed (high byte first).
INTO, INT1	44,43	0	Interrupts, active low or active high. Interrupt sources and signal polarity are programmable.
SBAUD16	28	Ι	Baud rate and SERCON410B compatible mode: SBAUD and SBAUD16 selects the baud rate for the serial interface. If SBAUD16 is '1' the SERCON410B compatible mode is selected.
SBAUD	29	I	Baud rate. Can be overwritten by the microprocessor.

Signal(s)	Pin(s)	ю	Function
RxD	14	I	Receive data for the serial interface.
RxC	12	0	Receive clock for the serial interface. Output of the internally generated receive clock.
RECACTN	26	0	Receive active, active low. Indicates that the serial receiver is receiving a telegram.
TxD1	16	0	Transmit data. The pin can be switched to a high impedance state.
TxD6-2	22,21,20, 18,17	0	Transmit data or output port. The pins either output the serial data or can be used as parallel output ports. When they output transmit data, each pin can be switched to a high impedance state individually.
TxC	13	0	Transmit clock for the serial interface. Output for the internally generated transmit clock.
IDLE	25	0	Transmitter active, active low. When transmitting own data IDLE is 0.
DMAREQT	39	0	DMA request transmit, active high: becomes active when data can be writter to the transmit FIFO. DMAREQT becomes inactive again at the beginning of the last write access to the transmit FIFO.
DMAACKTN	41	I	DMA acknowledge transmit, active low: when DMAACKTN is 0, the transmit FIFO is written to when there is a bus write access independent of the levels on A6-1 and the chip select signals.
ADMUX	96	I	Address data bus: when ADMUX is 0 A15-0 are the address inputs, when ADMUX is 1 A15-0 are the outputs of the address latch.
BUSMODE0, BUSMODE1	97,98	I	Bus mode: BUSMODE0 = 0 turns on the Intel bus interface (RDN = read, WRN = write), BUSMODE0 = 1 selects the Motorola interface (RDN = data strobe, WRN = read/write). BUSMODE1 selects the 0-active data strobe (BUSMODE1 = 0) or the 1-active data strobe (BUSMODE1 = 1).
BUSWIDTH	99	I	Bus width: selects the 8-bit- (0) or the 16-bit-wide interface (1).
BYTEDIR	100	I	Byte address sequence: when BYTEDIR is 0, A0 = 0 addresses the lower 8 bits of a word (low byte first), when BYTEDIR is 1, the upper 8 bits of a word are addressed (high byte first).
INTO, INT1	44,43	0	Interrupts, active low or active high. Interrupt sources and signal polarity are programmable.
SBAUD16	28	I	Baud rate and SERCON410B compatible mode: SBAUD and SBAUD16 selects the baud rate for the serial interface. If SBAUD16 is '1' the SERCON410B compatible mode is selected.
SBAUD	29	I	Baud rate. Can be overwritten by the microprocessor.
RxD	14	I	Receive data for the serial interface.
RxC	12	0	Receive clock for the serial interface. Output of the internally generated receive clock.
RECACTN	26	0	Receive active, active low. Indicates that the serial receiver is receiving a telegram.
TxD1	16	0	Transmit data. The pin can be switched to a high impedance state.
TxD6-2	22,21,20, 18,17	0	Transmit data or output port. The pins either output the serial data or can be used as parallel output ports. When they output transmit data, each pin can b switched to a high impedance state individually.
TxC	13	0	Transmit clock for the serial interface. Output for the internally generated transmit clock.
IDLE	25	0	Transmitter active, active low. When transmitting own data IDLE is 0.
TM0, TM1	30,31	Ι	Turn on test generator: $TM0 = 0$ switches TxD1-6 to contiuous signal light, TM1 = 0 switch-over to zero bit stream. The processor can overwrite the level of TM1-0. Select repeater mode at reset time: TM1=0 and TM2=0 repeater off, all other repeater on.

Table 1. SERCON816 I/O Port Function Summary (continued)

Signal(s)	Pin(s)	10	Function	
WDOGN	24	0	Watchdog output (active low)	
L_ERRN	32	0	Line error, active low: goes low when signal distortion is too high or when the receive signal is missing. The operating mode is programmed by the processor.	
CYC_CLK	34	Ι	SERCOS interface cycle clock: CYC_CLK synchronizes the communication cycles. The polarity is programmable.	
CON_CLK	35	0	Control clock: becomes active within a communication cycle. Time, pola and width are programmable.	
DIV_CLK	36	0	Divided control clock: becomes active several times within a communication cycle or once in several communication cycles. Number of pulses, start time, repetition rate and polarity are programmable, the pulse width is 1 μ s.	
SCLK	2	Ι	Serial clock for clock regeneration: the maximum frequency is 64 MHz.	
SCLKO2	6	0	Clock output: outputs the SCLK clock divided by 2 or 1.	
SCLKO4	5	0	Clock output: outputs the SCLK clock divided by 4 or 2.	
MCLK	4	Ι	Master clock for telegram processing and timing control, frequency 12 to 64 MHz.	
RSTN	10	Ι	Reset, active low. Must be zero for at least 50 ns after power on.	
TEST	7	Ι	Test, active high. Has to be tied to VSS.	
OUTZ	11	Ι	Puts outputs into high impedance state, active high: OUTZ is 1 puts all pins into a high impedance state. The clocks are turned off and the circuit is reset. For the in-circuit test and for turning on the power-down mode.	
NDTRO	9	0	NAND tree output. For the test at the semiconductor manufacturers and for the connection test after board production. NDTRO is not set to a high impedance state.	
VSS	3,15,23,33 ,42,50,60, 70,81,91		Ground pins:	
VDD	1,8,19,27, 37,55,65, 76,86		Power supply +5 V \pm 5%.	

Table 1. SERCON816 I/O Port Function Summary (continued)

3 ELECTRICAL (DC AND AC) CHARACTERISTICS

3.1 Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	-0.5 to 6.5	V
VI	Input voltage	-0.5 to V _{DD} + 0.5	V
Vo	Output voltage	-0.5 to V _{DD} + 0.5	V
T _{STG}	Storage temperature	-55 to +150	°C

Symbol	Parameter	Min.	Max.	Unit
T _A	Operating temperature	-40	85	°C
TJ	Chip junction temperature	-40	125	°C
V _{DD}	Operating supply voltage	4.75	5.25	V
f _{SCLK}	CLK Clock frequency SCLK		64	MHz
fMCLK	Clock frequency MCLK	12 ²	64	MHz

3.2 Recommended Operating Conditions

Notes: 1. Only if PLL is used (SBAUD16=0)

2. For normal operation, during testing $f_{MCLK} = 0$ is possible

3.3 ELECTRICAL CHARACTERISTCS

(V_{DD} = 5V \pm 5% T_{amb} = -40 °C to +85 °C, unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
VIL	Low level input voltage (TTL) All inputs				0.8	V
VIH	High level input voltage (TTL) All inputs		2.0			V
V _{hyst}	Schmitt trigger hysteresis L_ERRN, TXD6-1, MCLK, SCLK, RSTN, ADMUX, BUSMODE1-0, BUSWIDTH, BYTEDIR, TM1-0, SBAUD16, SBAUD, TEST, OUTZ, RXD, CYC_CLK		0.4		0.7	V
ΙιL	Low level input current with pull- up D15-0, A15-0, TXD6-1, ADMUX, BUSMODE1-0, BYTEDIR, TM1- 0, SBAUD16, SBAUD, TEST, OUTZ, RXD, CYC_CLK, BHEN, MCSN1-0, PCSN0, PCS1, DMAACKTN, DMAACKRN	V _I = V _{SS}	-40	-100	-240	μΑ
IIH	High level input current with pull- down MCLK, SCLK, RSTN, ALEH, ALEL	V _I = V _{DD}	40	100	240	μA
Rup	Equivalent pull-up resistance	$V_I = V_{SS}$	23	50	112.5	KOhm
Rdn	Equivalent pull-down resistance	$V_I = V_{DD}$	23	50	112.5	KOhm
V _{OL} Low level output voltage, all O- and I/O-pins except TXD6-1, L_ERRN		I _{OI} = -4 mA			0.4	V
V _{OH}	High level output voltage, all O- and I/O-pins except TXD6-1, L_ERRN	I _{OH} = +4 mA	2.4			V

3.3 ELECTRICAL CHARACTERISTCS (continued)

 $(V_{DD} = 5V \pm 5\% T_{amb} = -40 \text{ °C to } +85 \text{ °C}, \text{ unless otherwise specified})$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{OL}	Low level output voltage, pins TXD6-1, L_ERRN	I _{OI} = -8 mA			0.4	V
V _{OH}	High level output voltage, pins TXD6-1, L_ERRN	I _{OH} = +8 mA	2.4			
I _{OZ}	Tri-state output leakage	$V_{O} = 0 V \text{ or } V_{DD}$			1	μΑ
I _{KLU}	I/O latch-up current	V <v<sub>SS V>V_{DD}</v<sub>	200			mA
V _{ESD}	Electrostatic protection	Leakage < 1 µA, human body model	2000			V
C _{PIN}	Pin capacitance			10		pF

3.4 Power Dissipation

 $(V_{DD} = 5V \pm 5\% T_{amb} = -40 \text{ °C to } +85 \text{ °C}, \text{ unless otherwise specified})$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
PD	Power dissipation	16 Mbaud, MCLK=64 MHz		850 ¹		mW
P _{DA}	Maximum allowed power dissipation	T _A =+85°, no air flow			1000	mW

Notes: 1. estimated

3.4.1 Power Dissipation Considerations

Most of the current consumed by CMOS devices is alternate current (AC) which is charging and discharging the capacitances of the pins and internal nodes. The current consumption rises with the frequency at which the pins and internal nodes will toggle and with the capacitances connected to the pins of the device:

 $P = f \cdot C \cdot V^2$ (C=capacitance, V=voltage, f=frequency)

For applications which require low power consumption or exceeds the maximum allowed power consumption the following is required:

- Connect unused pins to pull-up or pull-down resistors
- Minimize the capacitive load on the pins
- Reduce clock frequency of SCLK and MCLK
- Minimize accesses to the internal RAM and control registers

The maximum allowed power consumption is limited by the maximum allowed chip junction temperature and by the number of VCC/VDD pins. The chip junction temperature is influenced by the ambient temperature and the package thermal resistance. The ambient temperature could be influenced by the application through a good temperature management like heat sinks or ambient air cooling.

A7/

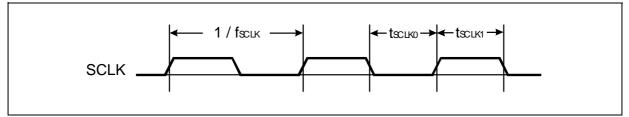
Typical current consumption: measured at 5V (VCC/VDD) and 25°C

Mode	f _{SCLK} (MHz)	f _{MCLK} (MHz)	Current (mA)
410B	64	32	30
816	64	32	80

3.5 AC Electrical Characteristics

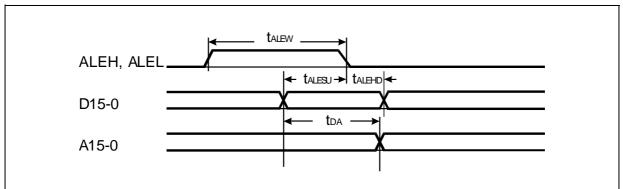
 $(C_{load} = 50 \text{ pF}, V_{DD} = 5 \text{ V} \pm 5\% \text{ T}_{amb} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

3.5.1 Clock Input MCLK


Figure 5. Timing of clock MCLK and related outputs

Symbol	Parameter	Min.	Тур.	Max.	Unit
fMCLK	Clock frequency MCLK	12		64	MHz
t _{MCLK0}	MCLK low	6			ns
t _{MCLK1}	MCLK high	6			ns
tMCLD	Output delay rising edge MCLK to DMAREQR/T, CON_CLK, DIV_CLK			20	ns
fMCLK	Baudrate 2 Mbit/s	12		64	MHz
f _{MCLK}	Baudrate 4 Mbit/s	12		64	MHz

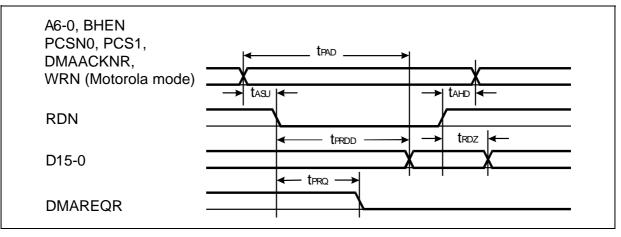
3.5.2 Clock Input SCLK


Figure 6. Timing of Clock SCLK

Symbol	Parameter	Min.	Тур.	Max.	Unit
f _{SCLK}	Clock frequency SCLK				
	PLL used (SBAUD16=0)			64	MHz
	PLL unused (SBAUD16=1)			64	MHz
tSCLK0	SCLK low	6			ns
tSCLK1	SCLK high	6			ns

3.5.3 Address Latch

Figure 7. Address Latch

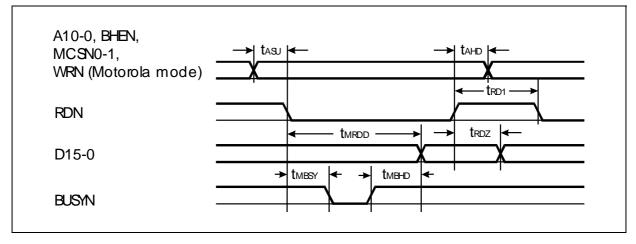


Symbol	Parameter	Min.	Тур.	Max.	Unit
TALEW	Pulse width ALEL, ALEH	10			ns
T _{ALESU}	Setup time D15-0 to falling edge ALEH, ALEL	5			ns
T _{ALEHD}	hold time falling edge ALEH, ALEL to D15-0	5			ns
t _{DA}	Delay from D15-0 to A15-0			20	ns

A 7/

3.5.4 Read Access of Control Registers

Figure 8. Read Access of Control Registers

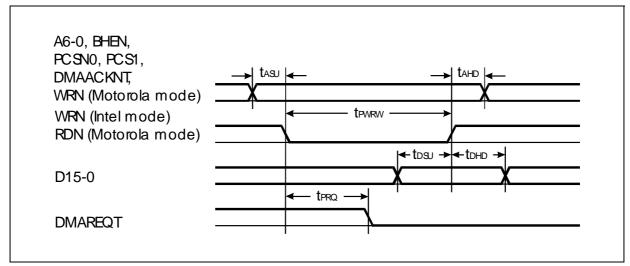


Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{ASU}	Setup time A6-0, (Note 1)	10			ns
	Setup time BHEN, PCSN0, PCS1, DMAACKNR, WRN (only Motorola mode), (Note 1)	0			ns
t _{AHD}	Hold time A6-0, BHEN, PCSN0, PCS1, DMAACKNR, WRN (only Motorola mode) to rising edge RDN (Intel Motorola mode with low active strobe) or falling edge RDN (Motorola mode with high active strobe)	0			ns
t _{PAD}	Access time A6-0, BHEN, PCSN0, PCS1, DMAACKNR, WRN (only Motorola mode) to D15-0 valid			30	ns
t _{PRDD}	Access time RDN to D15-0 valid			30	ns
t _{RDZ}	Delay RDN to D15-0 high-Z			20	ns
tPRQ	Delay RDN to DMAREQR low			20	ns

Note: 1. Setup time input signals to falling edge RDN (Intel or Motorola mode with low active strobe) or rising edge RDN (Motorola mode with high active strobe)

3.5.5 Read Access of Dual Port RAM

Figure 9. Read Access of Dual Port RAM

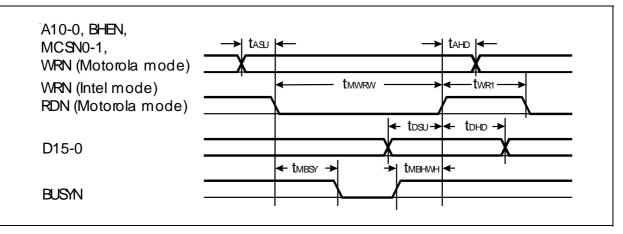


Symbol	Parameter	Min.	Тур.	Max.	Unit
tasu	Setup time A11-0, (Note 1)	10			ns
	Setup time MCSN0-1, if both signals are activated simultaneously. (Note 1)	5			ns
	Setup time MCSN0-1, if one of these both signals is activated 10 ns earlier. (Note 1)	0			ns
	Setup time BHEN, WRN (only Motorola mode), (Note 1)	0			ns
t _{AHD}	hold time A11-0, BHEN, MCSN0-1, WRN (only Motorola mode) to rising edge RDN (Intel Motorola mode with low active strobe) or falling edge RDN (Motorola mode with high active strobe)	0			ns
t RDNCLK	Cycle time of RAM read clock				
	SBAUD16 = 1 ($f_{RDNCLK} = f_{SCLK}$)		1 / f _{SCLK}		
	SBAUD16 = 0 ($f_{RDNCLK} = 2 * f_{SCLK}$)		0.5 / f _{SCLK}		
t _{MRDD}	access time RDN to D15-0 valid			2 * t _{RDNCLK} + 30	ns
t _{MBSY}	delay RDN to BUSYN low			15	ns
t _{MBHD}	Delay BUSYN high to D15-0 valid			2 * t _{RDNCLK} + 30	ns
t _{RDZ}	Delay RDN to D15-0 high-Z			20	ns
t _{RD1}	RDN and WRN high after end of read access	15			ns

Notes: 1. Setup time input signals to falling edge RDN (Intel or Motorola mode with low active strobe) or rising edge RDN (Motorola mode with high active strobe)

3.5.6 Write Access to Control Registers

Figure 10. Write Access to Control Registers



Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{ASU}	Setup time A6-0, (Note 1)	10			ns
	Setup time BHEN, PCSN0, PCS1, DMAACKNR, WRN (only Motorola mode), (Note 1)	0			ns
t _{AHD}	hold time A6-0, BHEN, PCSN0, PCS1, DMAACKNT, WRN (only Motorola mode) to rising edge WRN (Intel mode) or RDN (Motorola mode, strobe active low) or falling edge RDN (Motorola mode, strobe active high)	0			ns
t _{PWRW}	pulse width WRN (Intel mode) or RDN (Motorola mode)	20			ns
t _{DSU}	setup time D15-0 to end of write access	10			ns
t _{DHD}	hold time D15-0 to end of write access	5			ns
tPRQ	delay WRN or RDN to DMAREQT low			20	ns

Notes: 1. Setup time input signals to falling edge WRN (Intel mode) or RDN (Motorola mode with low active strobe) or rising edge RDN (Motorola mode with high active strobe)

3.5.7 Write Access to DUAL Port RAM

Figure 11. Write Access to DUAL Port RAM

Symbol	Parameter	Min.	Тур.	Max.	Unit
tASU	Setup time A11-0, (Note 1)	10			ns
	Setup time MCSN0-1, if both signals are activated simultaneously. (Note 1)				ns
	Setup time MCSN0-1, if one of these both signals is activated 10 ns earlier. (Note 1)	0			
	Setup time BHEN, WRN (only Motorola mode), (Note 1)	0			ns
tahd	hold time A11-0, BHEN, MCSN0-1, WRN (only Motorola mode) to rising edge of WRN (Intel mode) or RDN (Motorola mode with low active strobe) or falling edge RDN (Motorola mode with high active strobe)	0			ns
t _{MWRW}	Pulse width WRN or RDN	20			ns
tDSU	Setup time D15-0 to end of write access	10			ns
t _{DHD}	Hold time D15-0 after end of write access	5			ns
t _{MBSY}	Delay WRN or RDN (begin of write access) to BUSYN low			15	ns
t _{MBHWH}	Setup time BUSYN high to end of write access	15			ns
t _{WR1}	WRN and RDN high after end of write access	15			ns

Notes: 1. Setup time input signals to falling edge WRN (Intel mode) or RDN (Motorola mode with low active strobe) or rising edge RDN (Motorola mode with high active strobe)

4 CONTROL REGISTERS AND RAM DATA STRUCTURES

4.1 Control Register Addresses

The following table is an overview of the control registers. The address is the word address which is input by A6-1. To calculate the byte address, the value has to be multiplied by two. All control registers can be written to and read (R/W), with the exception of the control bits that initiate an action (W).

The status registers can only be read (R). When control registers which contain bits that are not used or can only be read, are written to, these bits can be set to 0 or 1; they are not evaluated internally. If control registers are read with bits that are not used, these bits are set to 0.

A6-1	Bits	Name	R/W	Value	Function
00H	0-15	VERSION	R	0010H	Circuit code (0010H)
01H - 2AH	0-15 I	Please refer to SERCC)N816 R	eference G	uide for a detailed description of the control registers.

4.2 Data Structures within the RAM

In this RAM the first eleven words have a fixed meaning.

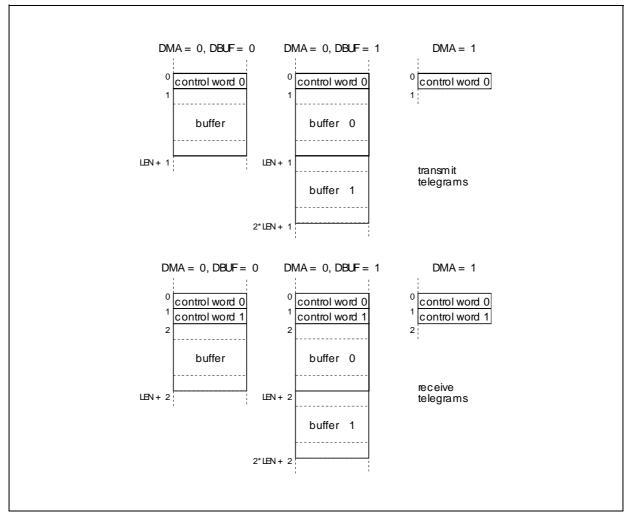
A10-1	Contents			
0-1	COMPT0-1: Start of transmission blocks 0-1			
2-9	SCPT0-7: Address service containers 0-7			
10	NMSTERR: Error counter MST			

The rest of the RAM can be divided into data structures as required.

4.2.1 Telegram Headers

A telegram header for receive telegram contains the following five control words:

Index	Bit	Name	Function
0	0-7	ADR	Telegram address
	8	DMA	Data storage in the internal RAM (DMA = 0) or DMA transfer (DMA = 1)
	9	DBUF	Data in the RAM: single buffer (DBUF = 0) or double buffer (DBUF = 1)
	10	VAL	For single buffering (DMA = 0, DBUF = 0) or DMA transfer (DMA = 1): telegram data is invalid (VAL = 0) or valid (VAL = 1); for double buffering (DMA = 0, DBUF = 1): data in buffer 0 (VAL = 0) or buffer 1 (VAL = 1) is valid. Modified by controller at beginning and end of receive telegrams.
	11	ACHK	Telegrams are received if the address is valid (ACHK = 1) or independent on the received address (ACHK = 0). The received address is stored at ADR.
	12	тснк	The time of receiving is checked (TCHK = 1) or not checked (TCHK = 0).
	13	RERR	The last telegram was free of error (RERR = 0) or errored or not received (RERR = 1).
	14	0	Marker bit for telegram header of receive telegram.
	15	0	Marker bit for telegram header.
1	0-15	TRT	Time for the start of telegram in μ s after end of MST.
2	0-15	TLEN	Length of telegram in data words (not including address).
3	0-10	PT	Word address within the RAM of the next telegram header or the end marker.
	9-15		(Not used)
4	0-15	NERR	Error counter


4.2.2 Data Containers

A data container comprises one or two 16-bit control words as well as a variable number of data words. If the data is stored in the internal RAM (DMA = 0) and a single buffer is used (DBUF = 0), the data container has one buffer. Using RAM storage and double buffering (DBUF = 1), two data buffers are needed. In case of DMA transfer (DMA = 1) the data container only comprises the control words (Fig. 12). The structure of the two control words depends on whether a telegram is transmitted or received:

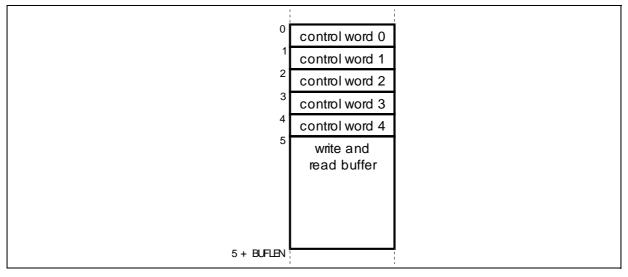
Index	Bit	Name	Function
0	0-9	LEN	Number of 16-bit data words of the data block.
	10	SVFL	Flag, whether data block uses service container (SVFL = 1).
	11-13	NSV	Number of service container, which is used (0 - 7).
	14	SCMASTER	Processing of service container in slave mode (SCMASTER = 0) or master mode (SCMASTER = 1).
	15	LASTDC	Last data container of the telegram (1) or further data containers follow (0).
1	0-15	POS	Position of the data block within the telegram in number of words. The first data record of a telegram has POS = 0 (only in case of receive telegrams).

Figure 12. Structure of Data Containers

57

17/23

4.2.3 End Marker


The end marker comprises two 16-bit words:

Index	Bit	Name	Function		
0	0-13		(Not used)		
	14	1	Marker bit for the end marker.		
	15	1	Marker bit for the end marker.		
1	0-15	TEND	Time after end of MST at which the last telegram has ended (in μs).		

4.2.4 Service Containers

A service container contains 5 control words and a buffer (BUFLEN words, max. length 255)

Figure 13. Structure of Service Container

Index	Bit	Name	Function			
0	0	HS_MDT	Handshake-bit in MDT			
	1	L/S_MDT	Read/write in MDT			
	2	END_MDT	End in MDT			
	3-5	ELEM_MDT	Data element type in MDT			
	6	SETEND	END_MDT is to be set			
	7	M_BUSY	Service container waits for interaction of microprocessor (M_BUSY = 1)			
	8-9	NINFO_WRITE	Number of info words in write buffer (1 to 4)			
	10-11		(Not used)			
	12	INT_ERR	Slave reports error			
	13	INT_END_WRBUF	End of write buffer is reached			
	14	INT_END_RDBUF	End of read buffer is reached			
	15		(Not used)			
1	0	HS_AT	Handshake bit in AT			
	1	BUSY_AT	Busy bit in AT			
	2	ERR_AT	Error bit in AT			
	3	CMD_AT	Command modification bit in AT			
	4-6		(Not used)			
	7	RECERR	Last transmission was correct (0) or erroneous (1)			
	8-9	NINFO_READ	Number of info words in read buffer (1 to 4)			
	10-15		(Not used)			
2	0-7	WRDATPT	Pointer to present position in write buffer			
	8-15	WRDATLAST	Pointer to last position in write buffer			
3	0-7	RDDATPT	Pointer to present position in read buffer			
	8-15	RDDATLAST	Pointer to last position in read buffer			
4	0-7	ERR_CNT	Error counter			
	8	BUSY_CNT	Error counts differences of handshake (0) or BUSY cycles (1)			
	9	INT_SC_ERR	Interrupt due to protocol error			
	10	INT_HS_TIMEOUT	Interrupt due to handshake timeout			
	11	INT_BUSY_TIMEOUT	Interrupt BUSY timeout			
	12	INT_CMD	Slave has set command modification bit			
	13-15		(Not used)			

For master mode (SCMASTER = 1) the control words are coded as follows:

The coding of the five control words depends on the mode of the service channel. Using the slave mode (SCMASTER = 0) they have the following structure:

Index	Bit	Name	Function			
0	0	HS_AT	Handshake bit in AT			
	1	BUSY_AT	Busy bit in AT, also waiting for microprocessor interaction			
	2	ERR_AT	Error bit in AT			
	3	CMD_AT	Command modification bit in AT			
	4-6	ELEM	Data element of present transmission			
	7	L/S	Read (0)/write (1) of present transmission			
	8-9	NINFO_WRITE	Number of info words in write buffer (1 to 4)			
	10-11		(Not used)			
	12	INT_ELEM_CHANGE	Master has modified data element or read/write			
	13	INT_END_WRBUF	End of write buffer is reached			
	14	INT_END_RDBUF	End of read buffer is reached			
	15	INT_END_MDT	Master reports end via END_MDT-bit			
1	0	HS_MDT	Handshake bit in MDT			
	1	L/S_MDT	Read/write in MDT			
	2	END_MDT	End bit in MDT			
	3-5	ELEM_MDT	Data element in MDT			
	6		(Not used)			
	7	RECERR	Last transmission was correct (0) or erroneous (1)			
	8-9	NINFO_READ	Number of info words in read buffer (1 to 4)			
	10-15		(Not used)			
2	0-7	WRDATPT	Pointer to present position in write buffer			
	8-15	WRDATLAST	Pointer to last position in write buffer			
3	0-7	RDDATPT	Pointer to present position in read buffer			
ļ	8-15	RDDATLAST	Pointer to last position in read buffer			
4	0-8		(Not used)			
	9	INT_SC_ERR	Interrupt due to protocol error			
	10-15		(Not used)			

A7/

5 ADDITIONAL SPECIFICATIONS, TOOLS AND SUPPORT

5.1 Additional Specifications

Reference Manual SERCON816

The reference manual (160 pages) for the SERCON816 Asic contains a complete and very detailed specification of the SERCON816 Asic, including a description of the pinning of the controller, microprocessor interface, serial interface, telegram processing, master and slave modes, additional modes, control and RAM data structures, programming examples, electrical and mechanical characteristics of the chip, differences between SERCON816 and SERCON410B controller.

SERCOS interface specification

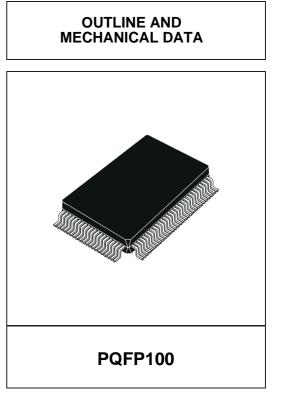
The SERCOS interface specification (IEC/EN 61491) contains a detailed description of the transfer medium and physical layer, data transfer and data link layer, protocol structure and data contents, communication phases, functional handling and error handling, list and description of identifier numbers.

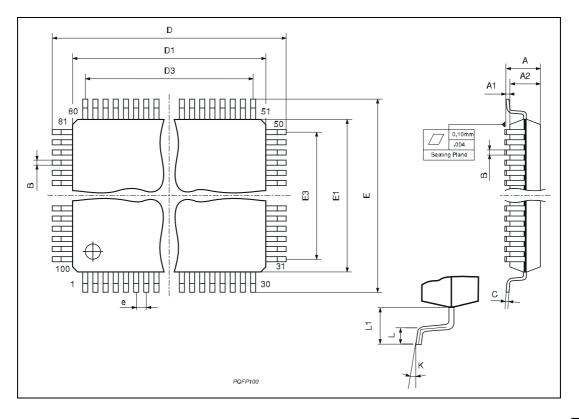
I/O functions are described in a separate document.

5.2 Hardware and Software Components

Master and slave routines (driver software) for the SERCON816 controller are available from several suppliers world-wide. Furthermore different boards for a wide range of computer interfaces are offered, including ISA-, VME-, PCI- and PC/104 bus systems.

5.3 Tools


Different development and testing tools are available for SERCOS interface.


These tools include bus monitors, configuration and simulation tools, as well as tools for conformance testing.

For all specification and additional application notes please contact: Interests Group SERCOS interface e. V.

6 PACKAGE MECHANICAL DATA: SERCON816 100 PIN PLASTIC QUAD FLAT PACK PACKAGE (PQFP100)

DIM.		mm		inch			
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			3.40			0.134	
A1	0.25			0.010			
A2	2.55	2.80	3.05	0.100	0.110	0.120	
В	0.22		0.38	0.0087		0.015	
С	0.13		0.23	0.005		0.009	
D	22.95	23.20	23.45	0.903	0.913	0.923	
D1	19.90	20.00	20.10	0.783	0.787	0.791	
D3		18.85			0.742		
е		0.65			0.026		
Е	16.95	17.20	17.45	0.667	0.677	0.687	
E1	13.90	14.00	14.10	0.547	0.551	0.555	
E3		12.35			0.486		
L	0.65	0.80	0.95	0.026	0.031	0.037	
L1		1.60			0.063		
к	0°(min.), 7°(max.)						

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

STMicroelectronics acknowledges the trademarks of all companies referred to in this document.

The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.