100V P-CHANNEL ENHANCEMENT MODE MOSFET ### **Product Summary** | BV _{DSS} | Max R _{DS(ON)} | Package | Max I _D
T _A = +25°C
Note 5 | |-------------------|-------------------------------|---------|--| | -100V | 1.0Ω @ V _{GS} = -10V | SOT23 | -0.7A | | -1007 | 1.45Ω @ V _{GS} = -6V | 50123 | -0.5A | ### **Description** This MOSFET utilizes a unique structure that combines the benefits of low on-resistance with fast switching speed, making it ideal for high-efficiency power management applications. ## **Applications** - DC DC Converters - Power Management Functions - Disconnect Switches - Motor Control #### **Features** - Fast Switching Speed - Low Input Capacitance - Low Gate Charge - Low Threshold - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) - Halogen and Antimony Free. "Green" Device (Note 3) - Qualified to AEC-Q101 Standards for High Reliability ### **Mechanical Data** - Case: SOT-23 - Case Material: Molded Plastic, UL Flammability Classification Rating 94V-0 - Moisture Sensitivity: Level 1 per J-STD-020 - Terminals: Matte Tin Finish annealed over Copper leadframe Solderable per MIL-STD-202, Method 208 - Weight: 0.008 grams (approximate) Top View Pin Out Equivalent Circuit ### **Ordering Information** | Part Number | Marking | Reel size (inches) | Tape width (mm) | Quantity per reel | |--------------|---------|--------------------|-----------------|-------------------| | ZXMP10A13FTA | 7P1 | 7 | 8 | 3000 | | ZXMP10A13FTC | 7P1 | 13 | 8 | 10 000 | Notes: - 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant. - 2. See http://www.diodes.com for more information about Diodes Incorporated's definitions of Halogen and Antimony free, "Green" and Lead-Free. - 3. Halogen and Antimony free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds. - 4. For packaging details, go to our website at http://www.diodes.com. ## **Marking Information** 7P1 = Product Type Marking Code # **Maximum Ratings** (@T_A = +25°C, unless otherwise specified.) | Characteristic | | | | Symbol | Value | Units | |---|-----------------------|------------------------|----------------------------------|-----------------|----------------------|-------| | Drain-Source Voltage | | | | V_{DSS} | -100 | V | | Gate-Source Voltage | | | | V _{GS} | ±20 | V | | Continuous Drain Current | V _{GS} = 10V | T _A = +70°C | (Note 6)
(Note 6)
(Note 5) | I _D | -0.7
-0.5
-0.6 | А | | Pulsed Drain Current (Note 7) | | | | I_{DM} | -3.1 | А | | Continuous Source Current (Body Diode) (Note 6) | | | | Is | -1.1 | A | | Pulsed Source Current (Body Diode) (Note 7) | | | | I _{SM} | -3.1 | Α | ### **Thermal Characteristics** | Characteristic | Symbol | Value | Unit | |--|-----------------------------------|-------------|-------| | Power Dissipation (Note 5) | P _D | 625 | mW | | Linear Derating Factor | | 5 | mW/°C | | Power Dissipation (Note 6) | P _D | 806 | mW | | Linear Derating Factor | | 6.4 | mW/°C | | Thermal Resistance, Junction to Ambient (Note 5) | $R_{\theta JA}$ | 200 | °C/W | | Thermal Resistance, Junction to Ambient (Note 6) | R ₀ JA | 155 | °C/W | | Thermal Resistance, Junction to Leads (Note 8) | $R_{ heta JL}$ | 194 | °C/W | | Operating and Storage Temperature Range | T _J , T _{STG} | -55 to +150 | °C | Notes: - 5. For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions 6. For a device surface mounted on FR4 PCB measured at t ≤5 secs. 7. Repetitive rating 25mm x 25mm FR4 PCB, D=0.05 pulse width=10µs pulse current limited by maximum junction temperature. 8. Thermal resistance from junction to solder-point (at the end of the drain lead). ### **Thermal Characteristics** **Transient Thermal Impedance** **Pulse Power Dissipation** # **Electrical Characteristics** (@T_A = +25°C, unless otherwise specified.) | Characteristic | Symbol | Min | Тур | Max | Unit | Test Condition | |--|----------------------|------|-------|-------|------|---| | OFF CHARACTERISTICS | | | | | | | | Drain-Source Breakdown Voltage | BV _{DSS} | -100 | _ | _ | V | $I_D = -250 \mu A$, $V_{GS} = 0 V$ | | Zero Gate Voltage Drain Current | I _{DSS} | _ | _ | -1.0 | μA | $V_{DS} = -100V, V_{GS} = 0V$ | | Gate-Source Leakage | I _{GSS} | | _ | ±100 | nA | $V_{GS} = \pm 20V, V_{DS} = 0V$ | | ON CHARACTERISTICS | | | | | | | | Gate Threshold Voltage | $V_{GS(th)}$ | -2.0 | _ | -4.0 | V | $I_D = -250 \mu A, V_{DS} = V_{GS}$ | | Static Drain-Source On-Resistance (Note 9) | | | | 1 | Ω | $V_{GS} = -10V, I_D = -0.6A$ | | Static Brain Gource On Resistance (Note 3) | R _{DS (on)} | | | 1.45 | 32 | $V_{GS} = -6V, I_D = -0.5A$ | | Forward Transconductance (Notes 9 and 11) | g fs | | 1.2 | _ | S | $V_{DS} = -15V, I_{D} = -0.6A$ | | Diode Forward Voltage (Note 9) | V_{SD} | _ | -0.85 | -0.95 | V | $T_J = 25$ °C, $I_S = -0.75$ A, $V_{GS} = 0$ V | | Reverse Recovery Time (Note 11) | t _{rr} | _ | 29 | _ | ns | $T_J = 25^{\circ}C$, $I_F = -0.9A$, | | Reverse Recovery Charge (Note 11) | Qrr | _ | 31 | _ | nC | di/dt = 100A/μs | | DYNAMIC CHARACTERISTICS (Note 11) | | | | | | | | Input Capacitance | Ciss | | 141 | _ | | $V_{DS} = -50V, V_{GS} = 0V$
f = 1.0MHz | | Output Capacitance | Coss | _ | 13.1 | _ | pF | | | Reverse Transfer Capacitance | C _{rss} | | 10.8 | _ | | | | Turn-On Delay Time (Note 10) | t _{D(on)} | _ | 1.6 | _ | | | | Turn-On Rise Time (Note 10) | t _r | _ | 2.1 | _ | 20 | $V_{DD} = -50V, I_D = -1A,$ | | Turn-Off Delay Time (Note 10) | t _{D(off)} | _ | 5.9 | _ | ns | $R_G \cong 6.0\Omega, V_{GS} = -10V$ | | Turn-Off Fall Time (Note 10) | t _f | _ | 3.3 | _ | | | | Total Gate Charge (Note 10) | Qg | _ | 1.8 | _ | nC | $V_{DS} = -50V, V_{GS} = -5V,$
$I_{D} = -0.6A$ | | Total Gate Charge (Note 10) | Qg | | 3.5 | _ | | $V_{DS} = -50V, V_{GS} = -10V,$ $I_{D} = -0.6A$ | | Gate-Source Charge (Note 10) | Qgs | _ | 0.6 | _ | nC | | | Gate-Drain Charge (Note 10) | Q_{gd} | | 1.6 | _ | | | Notes: ^{9.} Measured under pulsed conditions. Pulse width = $300\mu s$. Duty cycle $\leq 2\%$. 10. Switching characteristics are independent of operating junction temperature. ^{11.} For design aid only, not subject to production testing. ## **Typical Characteristics** **Typical Transfer Characteristics** **Source-Drain Diode Forward Voltage** ### **Typical Characteristics** (cont.) Capacitance v Drain-Source Voltage Gate-Source Voltage v Gate Charge ## **Test Circuits** Current regulator Same as D.U.T Vom Basic gate charge waveform Gate charge test circuit Switching time waveforms Switching time test circuit # **Package Outline Dimensions** | SOT23 | | | | | | |----------------------|-------|------|-------|--|--| | Dim | Min | Max | Тур | | | | Α | 0.37 | 0.51 | 0.40 | | | | В | 1.20 | 1.40 | 1.30 | | | | C | 2.30 | 2.50 | 2.40 | | | | D | 0.89 | 1.03 | 0.915 | | | | F | 0.45 | 0.60 | 0.535 | | | | G | 1.78 | 2.05 | 1.83 | | | | H | 2.80 | 3.00 | 2.90 | | | | J | 0.013 | 0.10 | 0.05 | | | | K | 0.903 | 1.10 | 1.00 | | | | K1 | - | - | 0.400 | | | | L | 0.45 | 0.61 | 0.55 | | | | М | 0.085 | 0.18 | 0.11 | | | | α | 0° | 8° | - | | | | All Dimensions in mm | | | | | | # **Suggested Pad Layout** | Dimensions | Value (in mm) | |------------|---------------| | Z | 2.9 | | Х | 0.8 | | Υ | 0.9 | | С | 2.0 | | E | 1.35 | #### **IMPORTANT NOTICE** DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. #### LIFE SUPPORT Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: - A. Life support devices or systems are devices or systems which: - 1. are intended to implant into the body, or - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. - B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright © 2012, Diodes Incorporated www.diodes.com Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов; - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.