

Document Number: MMRF1004N Rev. 1, 1/2014

MMRF1004NR1

<u>√RoHS</u>

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

Designed for Class A or Class AB general purpose applications with frequencies from 1600 to 2200 MHz. Suitable for analog and digital modulation and multipurpose amplifier applications.

- Typical Two-Tone Performance @ 2170 MHz: V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 10 W PEP Power Gain — 15.5 dB Drain Efficiency — 36% IMD — -34 dBc
 Typical 2-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ} = 130 mA,
- Typical 2-Carner W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ} = 130 HA, P_{out} = 1 W Avg., Full Frequency Band (2130-2170 MHz), Channel Bandwidth = 3.84 MHz. PAR = 8.5 dB @ 0.01% Probability Power Gain — 15.5 dB Drain Efficiency — 15% IM3 @ 10 MHz Offset — -47 dBc in 3.84 MHz Channel Bandwidth ACPR @ 5 MHz Offset — -49 dBc in 3.84 MHz Channel Bandwidth
- Typical Single-Carrier N-CDMA Performance: $V_{DD} = 28$ Vdc, $I_{DQ} = 130$ mA, $P_{out} = 1$ W Avg., Full Frequency Band (1930-1990 MHz), IS-95 (Pilot, Sync, Paging, Traffic Codes 8 through 13), Channel Bandwidth = 1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF. Power Gain — 15.5 dB Drain Efficiency — 16% ACPR @ 885 kHz Offset = -60 dBc in 30 kHz Bandwidth

• Typical GSM EDGE Performance: V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 4 W Avg., Full Frequency Band (1805-1880 MHz)

```
Power Gain — 16 dB
Drain Efficiency — 33%
EVM — 1.3% rms
```

 Capable of Handling 5:1 VSWR, @ 28 Vdc, 2000 MHz, 10 W CW Output Power

Features

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Internally Matched for Ease of Use
- Qualified Up to a Maximum of 32 V_{DD} Operation
- Integrated ESD Protection
- 225°C Capable Plastic Package
- In Tape and Reel. R1 Suffix = 500 Units, 24 mm Tape Width, 13-inch Reel.

Table 1. Maximum Ratings

Rating		Symbol	Va	ue	Unit
Drain-Source Voltage			V _{DSS} -0.5		Vdc
Gate-Source Voltage	Gate-Source Voltage			+12	Vdc
Storage Temperature Range		T _{stg}	-65 to	+150	°C
Case Operating Temperature		Τ _C	15	50	°C
Operating Junction Temperature ⁽¹⁾		TJ	22	25	°C
Table 2. Thermal Characteristics					
Characteristic		Symbol	Valu	e (2)	Unit
Thermal Resistance, Junction to Case Case Temperature 78°C, 1 W CW		$R_{\theta JC}$	2.	3	°C/W
Case Temperature 79°C, 10 W PEP, Two-Tone Test			2.	9	
Table 3. ESD Protection Characteristics					
Test Methodology			Clas	S	
Human Body Model (per JESD22-A114)			1A		
Machine Model (per EIA/JESD22-A115)			А		
Charge Device Model (per JESD22-C101)	Device Model (per JESD22-C101) IV				
Table 4. Moisture Sensitivity Level					
Test Methodology	Test Methodology Ratin		kage Peak Tem	perature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260			°C
Table 5. Electrical Characteristics (T _A = 25°C unless otherwise n	ioted)				
Characteristic	Symb	ol Min	Тур	Max	Unit
Off Characteristics	•	·	·	·	
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 68 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	-	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	-	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	. —	—	500	μAdc
On Characteristics	•		•		
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 40 \mu \text{Adc})$	V _{GS(t}	h) 1.5	2.2	3.5	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _D = 130 mAdc, Measured in Functional Test)	V _{GS(0}	(ړ	2.8	4	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 0.4 Adc)	V _{DS(o}	n) —	0.33	0.4	Vdc
Dynamic Characteristics ⁽⁴⁾					
Output Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	-	20	—	pF
Reverse Transfer Capacitance (V _{DS} = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	11.6	_	pF
Input Capacitance (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	120	_	pF

1. Continuous use at maximum temperature will affect MTTF.

2. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

3. Part internally matched on input.

(continued)

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit

Functional Tests ⁽¹⁾ (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 10 W PEP, f1 = 2170 MHz, f2 = 2170.1 MHz, Two-Tone Test

Power Gain	G _{ps}	14	15.5	17	dB
Drain Efficiency	η _D	33	36		%
Intermodulation Distortion	IMD	_	-34	-28	dBc
Input Return Loss	IRL	_	-15	-9	dB

Typical 2-Carrier W-CDMA Performances (In Freescale CDMA Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQ} = 130$ mA, $P_{out} = 1$ W Avg., f1 = 2112.5 MHz, f2 = 2122.5 MHz and f1 = 2157.5 MHz, f2 = 2167.5 MHz, 2-Carrier W-CDMA, 3.84 MHz Channel Bandwidth Carriers. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. IM3 measured in 3.84 MHz Bandwidth @ ±10 MHz Offset. PAR = 8.5 dB @ 0.01% Probability on CCDF.

Power Gain	G _{ps}	—	15.5	—	dB
Drain Efficiency	ηD	_	15	_	%
Gain Flatness in 30 MHz Bandwidth @ P _{out} = 1 W CW	G _F	—	0.3	—	dB
Intermodulation Distortion	IМЗ		-47	_	dBc
Adjacent Channel Power Ratio	ACPR	_	-49	_	dBc

Typical N-CDMA Performances (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 1 W Avg., 1930 MHz<Frequency<1990 MHz, Single-Carrier N-CDMA, 1.2288 MHz Channel Bandwidth Carrier. ACPR measured in 30 kHz Channel Bandwidth @ ±885 kHz Offset. PAR = 9.8 dB @ 0.01% Probability on CCDF

Power Gain	G _{ps}	—	15.5	—	dB
Drain Efficiency	η _D		16		%
Gain Flatness in 30 MHz Bandwidth @ P _{out} = 1 W CW	G _F	—	0.3	—	dB
Adjacent Channel Power Ratio	ACPR	—	-60	—	dBc

Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 4 W Avg., 1805-1880 MHz, EDGE Modulation

Power Gain	G _{ps}	—	16		dB
Drain Efficiency	η _D	—	33	_	%
Gain Flatness in 30 MHz Bandwidth @ P _{out} = 4 W CW	G _F	—	0.3	_	dB
Error Vector Magnitude	EVM	—	1.3	_	% rms
Spectral Regrowth at 400 kHz Offset	SR1	—	-60	_	dBc
Spectral Regrowth at 600 kHz Offset	SR2	—	-70	_	dBc

1. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

		Figure 2. MMR	F1004NR1	Test Circuit	Schematic —	2110-2170	MHz
--	--	---------------	----------	--------------	-------------	-----------	-----

Table 6	MMRF1004NR1	Test Circuit Com	nonent Designation	e and Values —	2110-2170 MHz
Table 0.		lest circuit con		is allu values —	~~~~~~~~~~~~

Part	Description	Part Number	Manufacturer
C1	100 nF Chip Capacitor	CDR33BX104AKYS	Kemet
C2, C6	4.7 pF Chip Capacitors	ATC100B4R7CT500XT	ATC
C3, C7, C8	9.1 pF Chip Capacitors	ATC100B9R1CT500XT	ATC
C4, C5, C9, C10	10 μF, 50 V Chip Capacitors	GRM55DR61H106KA88B	Murata
C11	10 μF, 35 V Tantalum Chip Capacitor	T490D106K035AT	Kemet
R1	1 kΩ, 1/4 W Chip Resistor	CRCW12061001FKEA	Vishay
R2	10 kΩ, 1/4 W Chip Resistor	CRCW12061002FKEA	Vishay
R3	10 Ω, 1/4 W Chip Resistor	CRCW120610R0FKEA	Vishay

Figure 3. MMRF1004NR1 Test Circuit Component Layout — 2110-2170 MHz

TYPICAL CHARACTERISTICS — 2110-2170 MHz

TYPICAL CHARACTERISTICS - 2110-2170 MHz

Figure 13. MTTF versus Junction Temperature — CW

W-CDMA TYPICAL CHARACTERISTICS - 2110-2170 MHz

W-CDMA TEST SIGNAL

Figure 16. CCDF W-CDMA 3GPP, Test Model 1, 64 DPCH, 67% Clipping, Single-Carrier Test Signal

Figure 17. 2-Carrier W-CDMA Spectrum

N-CDMA TYPICAL CHARACTERISTICS - 1930-1990 MHz

Figure 18. MMRF1004NR1 Test Circuit Schematic — 1930-1990 MHz

Table 7.	MMRF1004NR1	Test Circuit Com	ponent Designation	s and Values —	1930-1990 MHz
1001011			ponone boolgnation		

Part	Description	Part Number	Manufacturer
C1	100 nF Chip Capacitor	12065C104KAT	AVX
C2, C6	4.7 pF Chip Capacitors	ATC100B4R7BT500XT	ATC
C3, C7, C8	9.1 pF Chip Capacitors	ATC100B9R1BT500XT	ATC
C4, C5, C9, C10	10 μF Chip Capacitors	C5750X5R1H106MT	TDK
C11	10 μF, 35 V Tantalum Chip Capacitor	TAJD106K035R	AVX
R1, R2	10 kΩ, 1/4 W Chip Resistors	CRCW12061002FKEA	Vishay
R3	10 Ω, 1/4 W Chip Resistor	CRCW120610R0FKEA	Vishay

N-CDMA TYPICAL CHARACTERISTICS - 1930-1990 MHz

Figure 19. MMRF1004NR1 Test Circuit Component Layout — 1930-1990 MHz

N-CDMA TYPICAL CHARACTERISTICS - 1930-1990 MHz

Figure 20. Single-Carrier N-CDMA Broadband Performance @ P_{out} = 1 Watt Avg.

Figure 21. Single-Carrier N-CDMA ACPR and Drain Efficiency versus Output Power

N-CDMA TEST SIGNAL

GSM EDGE TYPICAL CHARACTERISTICS - 1805-1880 MHz

Figure 24. MMRF1004NR1 Test Circuit Schematic — 1805-1880 MHz

Table 8, MMRF	1004NR1 Test Cir	cuit Component	Designations and	Values — 1805-1880 MHz

Part	Description	Part Number	Manufacturer
C1	100 nF Chip Capacitor	12065C104KAT	AVX
C2, C6	4.7 pF Chip Capacitors	ATC100B4R7BT500XT	ATC
C3, C7, C8	9.1 pF Chip Capacitors	ATC100B9R1BT500XT	ATC
C4, C5, C9, C10	10 μF Chip Capacitors	C5750X5R1H106MT	TDK
C11	10 μF, 35 V Tantalum Chip Capacitor	TAJD106K035R	AVX
R1, R2	10 kΩ, 1/4 W Chip Resistors	CRCW12061001FKEA	Vishay
R3	10 Ω, 1/4 W Chip Resistor	CRCW120610R0FKEA	Vishay

GSM EDGE TYPICAL CHARACTERISTICS — 1805-1880 MHz

Figure 25. MMRF1004NR1 Test Circuit Component Layout — 1805-1880 MHz

GSM EDGE TYPICAL CHARACTERISTICS - 1805-1880 MHz

600 kHz versus Output Power

GSM EDGE TEST SIGNAL

2170 MHz

 V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 10 W PEP

f MHz	Z_{source}	Z_{load}
2110	3.619 + j0.792	2.544 + j3.068
2140	3.918 + j0.797	2.673 + j3.291
2170	4.087 + j0.558	2.818 + j3.406

1900 MHz							
V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 1 W Avg.							
f MHz	$\mathbf{Z}_{\mathbf{source}}_{\Omega}$	Z_{load}					
1930	9.237 + j1.849	2.770 + j3.497					
1960	9.521 + j2.144	2.754 + j3.668					

2.772 + j3.833

9.889 + j2.434

1990

1800 MHz								
V_{DD} = 28 Vdc, I_{DQ} = 130 mA, P_{out} = 4 W Avg.								
f MHz	z_{source}	Z_{load}						
1805	13.237 + j5.810	2.445 + j3.698						
1840	13.953 + j6.084	2.542 + j3.942						
1880	14.858 + j6.279	2.695 + j4.170						

Z_{source} = Test circuit impedance as measured from gate to ground.

Test circuit impedance as measured Zload = from drain to ground.

Figure 30. Series Equivalent Source and Load Impedance

Table 9. Common Source Scattering Paramete	r s (V _{DD} = 28 V, I _{DQ} = 126 mA, T _A = 25°C, 50 ohm system)
--	---

f	S ₁₁		S ₂₁		\$ ₁₂		\$ ₂₂	
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$
500	0.984	-178.1	1.195	42.42	0.001	-129.1	0.875	-116.3
550	0.986	-179.0	0.947	40.48	0.001	-159.2	0.892	-121.6
600	0.985	179.9	0.747	39.66	0.001	147.4	0.905	-125.9
650	0.986	178.9	0.581	39.89	0.001	119.1	0.913	-129.9
700	0.982	177.9	0.446	41.80	0.001	108.1	0.927	-133.4
750	0.983	177.2	0.336	46.70	0.002	102.9	0.935	-136.4
800	0.983	176.5	0.248	56.02	0.002	96.99	0.941	-139.5
850	0.979	175.5	0.188	72.74	0.003	97.40	0.947	-141.9
900	0.980	174.8	0.168	96.69	0.003	94.63	0.951	-144.4
950	0.977	174.0	0.183	119.3	0.004	91.92	0.955	-146.6
1000	0.978	173.2	0.223	134.3	0.004	92.80	0.960	-148.6
1050	0.972	172.4	0.276	142.2	0.004	89.92	0.962	-150.5
1100	0.972	171.4	0.335	146.4	0.005	89.90	0.966	-152.2
1150	0.963	170.8	0.396	148.5	0.005	87.51	0.977	-153.7
1200	0.964	169.9	0.461	148.8	0.006	89.25	0.971	-155.2
1250	0.956	169.0	0.531	148.2	0.007	86.98	0.977	-156.8
1300	0.948	167.8	0.604	146.9	0.007	85.08	0.982	-157.9
1350	0.939	167.0	0.685	144.8	0.008	82.40	0.986	-159.5
1400	0.927	165.7	0.772	142.2	0.008	79.69	0.988	-160.7
1450	0.910	164.5	0.869	138.7	0.009	77.79	0.994	-162.1
1500	0.889	163.2	0.975	134.7	0.010	75.79	0.991	-163.4
1550	0.861	161.9	1.093	129.7	0.010	72.86	0.993	-164.7
1600	0.821	160.9	1.221	123.8	0.011	69.89	0.996	-166.0
1650	0.780	160.1	1.356	116.7	0.012	63.71	0.984	-167.4
1700	0.722	160.6	1.491	108.3	0.013	57.70	0.985	-168.5
1750	0.666	162.5	1.606	98.77	0.014	49.85	0.977	-169.6
1800	0.618	167.0	1.687	88.09	0.014	41.19	0.970	-170.8
1850	0.603	173.3	1.706	76.98	0.013	32.65	0.958	-171.3
1900	0.614	179.7	1.673	66.08	0.012	25.40	0.954	-171.9
1950	0.654	-175.6	1.591	55.96	0.011	20.73	0.945	-172.3
2000	0.701	-173.5	1.484	47.04	0.010	15.11	0.947	-172.6
2050	0.747	-172.7	1.364	39.29	0.008	10.13	0.947	-173.0
2100	0.783	-172.6	1.242	32.87	0.006	6.333	0.945	-173.6
2150	0.816	-172.9	1.136	27.69	0.004	15.63	0.944	-173.9
2200	0.842	-173.6	1.042	23.26	0.004	42.20	0.944	-174.2
2250	0.864	-174.2	0.961	19.26	0.005	57.76	0.948	-174.6
2300	0.882	-175.0	0.888	15.75	0.006	62.56	0.948	-175.2
2350	0.894	-175.7	0.822	12.69	0.008	59.72	0.949	-175.7
2400	0.906	-176.4	0.764	9.857	0.009	49.09	0.951	-176.1
2450	0.910	-176.9	0.712	7.587	0.008	39.24	0.955	-176.5

(continued)

f	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$
2500	0.923	-177.5	0.666	5.462	0.006	42.56	0.957	-177.2
2550	0.927	-178.0	0.625	3.680	0.006	52.25	0.962	-177.8
2600	0.937	-178.8	0.591	1.864	0.006	60.26	0.961	-178.4
2650	0.937	-179.0	0.559	0.237	0.007	64.14	0.964	-179.1
2700	0.942	-179.8	0.529	-1.378	0.007	65.62	0.964	-179.6
2750	0.945	-179.9	0.504	-2.768	0.007	64.71	0.964	179.7
2800	0.946	179.5	0.479	-4.088	0.007	67.58	0.966	179.4
2850	0.950	179.3	0.456	-5.412	0.007	75.44	0.966	178.8
2900	0.949	178.8	0.436	-6.305	0.008	82.04	0.964	178.3
2950	0.952	178.5	0.419	-7.279	0.009	83.60	0.967	177.9
3000	0.950	178.4	0.402	-8.087	0.011	83.41	0.968	177.4
3050	0.958	177.9	0.387	-9.138	0.012	81.35	0.964	176.8
3100	0.953	177.7	0.373	-9.904	0.013	77.45	0.969	176.4
3150	0.957	177.2	0.362	-10.86	0.014	70.98	0.970	176.2
3200	0.960	177.4	0.350	-11.79	0.013	67.00	0.970	175.5

Table 9. Common Source Scattering Parameters (V_{DD} = 28 V, I_{DQ} = 126 mA, T_A = 25°C, 50 ohm system) (continued)

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASH98117A	REV: K
IU-270 Surface Mount	CASE NUMBER	: 1265–09	29 JUN 2007	
SORTACE MOON	STANDARD: JE	DEC TO-270 AA		

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASH98117A	REV: K
SURFACE MOUN	CASE NUMBER	: 1265–09	29 JUN 2007	
SONTACE MOON	STANDARD: JE	DEC TO-270 AA		

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1 AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- DIMENSION "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION "A2" APPLIES WITHIN ZONE "J" ONLY.
- 8. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. OVERALL LENGTH INCLUDING MOLD PROTRUSION SHOULD NOT EXCEED 0.430 INCH FOR DIMENSION "D" AND 0.080 INCH FOR DIMENSION "E2". DIMENSIONS "D" AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -D-.

	IN	ICH	MI	MILLIMETER			INCH	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
A	.078	.082	1.98	2.08	F	.0	25 BSC	0	0.64 BSC	
A1	.039	.043	0.99	1.09	b1	.193	.199	4.90	5.06	
A2	.040	.042	1.02	1.07	c1	.007	.011	0.18	3 0.28	
D	.416	.424	10.57	10.77	aaa		.004		0.10	
D1	.378	.382	9.60	9.70						
D2	.290		7.37							
D3	.016	.024	0.41	0.61						
E	.436	.444	11.07	11.28						
E1	.238	.242	6.04	6.15						
E2	.066	.074	1.68	1.88						
E3	.150		3.81							
E4	.058	.066	1.47	1.68						
E5	.231	.235	5.87	5.97						
© FREESCALE SEMICONDUCTOR, INC. MECHANICA			L OUT	LINE	PRINT VERS	SION NC	T TO SCALE			
TITLE:		TO 07	70		DOCU	MENT NO): 98ASH98117	٩	REV: K	
					CASE NUMBER: 1265-09 29 JUN		29 JUN 2007			
SURFACE MOUNT					STAN	STANDARD: JEDEC TO-270 AA		•		

STYLE 1: PIN 1 – DRAIN PIN 2 – GATE PIN 3 – SOURCE

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASA99301D	REV: C
		CASE NUMBER	R: 1265A—03	02 JUL 2007
GOLL WING		STANDARD: JE	DEC TO-270 BA	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NC	T TO SCALE
TITLE:		DOCUMENT NO): 98ASA99301D	REV: C
		CASE NUMBER	R: 1265A—03	02 JUL 2007
		STANDARD: JE	DEC TO-270 BA	

NP

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1 AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION b1 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE b1 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSIONS "D" AND "E2" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .003 PER SIDE. DIMENSIONS "D AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -D-.

STYLE 1:			
PIN	1	—	DRAIN
PIN	2	—	GATE
PIN	3	_	SOURCE

	INCH		MIL	MILLIMETER			INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
А	.078	.082	1.98	2.08	L	.018	.024	0.46	6 0.61	
A1	.001	.004	0.02	0.10	L1	.01 BSC		(0.25 BSC	
A2	.077	.088	1.96	2.24	b1	.193	.199	4.90	5.06	
D	.416	.424	10.57	10.77	c1	.007	.011	0.18	3 0.28	
D1	.378	.382	9.60	9.70	e	2'	8.	2.	8.	
D2	.290	-	7.37	—	aaa	.004			0.10	
D3	.016	.024	0.41	0.61						
Е	.316	.324	8.03	8.23						
E1	.238	.242	6.04	6.15						
E2	.066	.074	1.68	1.88						
E3	.150	_	3.81	_						
E4	.058	.066	1.47	1.68						
E5	.231	.235	5.87	5.97						
© F	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA			AL OUT	L OUTLINE PRINT VERSION NOT TO			T TO SCALE		
TITLE: TO-270				DOCUMENT NO: 98ASA99301D				REV: C		
			CASE	NUMBER	02 JUL 2007					
GULL WING				STAN	STANDARD: JEDEC TO-270 BA					

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Dec. 2013	Initial Release of Data Sheet
1	Jan. 2014	 Fig. 1, Pin Connections: corrected pin 1 and pin 2 labels to align with labelling in the mechanical outline, p. 1 Table 2. Thermal Characteristics: CW thermal value changed from 2.5 to 2.3°C/W to reflect recent thermal test results; two-tone test corrected from 5 W PEP to 10 W PEP and the thermal value changed from 5.9 to 2.9°C/W to reflect recent thermal test results, p. 2

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2013-2014 Freescale Semiconductor, Inc.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.