

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

74VHC157 Quad 2-Input Multiplexer

Features

- High Speed: t_{PD} = 4.1ns (Typ.) at V_{CC} = 5V
- Low power dissipation: I_{CC} = 4µA (Max.) at T_A = 25°C
- High noise immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Power down protection is provided on all inputs
- Low noise: V_{OLP} = 0.8V (Max.)
- Pin and function compatible with 74HC157

General Description

The VHC157 is an advanced high speed CMOS Quad 2-Channel Multiplexer fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

It consists of four 2-input digital multiplexers with common select and enable inputs. When the ENABLE input is held "H" level, selection of data is inhibited and all the outputs become "L" level. The SELECT decoding determines whether the I_{0x} or I_{1x} inputs get routed to their corresponding outputs.

An Input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and on two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Ordering Information

Order Number	Package Number	Package Description
74VHC157M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHC157SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC157MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.

Connection Diagram

Pin Description

Pin Names	Description
I _{0a} –I _{0d}	Source 0 Data Inputs
I _{1a} –I _{1d}	Source 1 Data Inputs
Ē	Enable Input
S	Select Input
Z _a –Z _d	Outputs

Truth Table

	Outputs			
Ē	S	I ₀	I ₁	Z
Н	Х	Х	Х	L
L	Н	Х	L	L
L	Н	Х	Н	Н
L	L	L	Х	L
L	L	Н	Х	Н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Functional Description

The VHC157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (\overline{E}) is active-LOW. When \overline{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The VHC157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$Z_{a} = \overline{E} \cdot (I_{1a} \cdot S + I_{0a} \cdot \overline{S})$
$\mathbf{Z}_{b} = \overline{E} \cdot (I_{1b} \cdot S + I_{0b} \cdot \overline{S})$
$Z_{c} = \overline{E} \cdot (I_{1c} \cdot S + I_{0c} \cdot \overline{S})$
$\mathbf{Z}_{d} = \overline{E} \cdot (I_{1d} \cdot S + I_{0d} \cdot \overline{S})$

A common use of the VHC157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The VHC157 can generate any four of the sixteen different functions of two variables with one variable common. This is useful for implementing gating functions.

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
V _{IN}	DC Input Voltage	-0.5V to +7.0V
V _{OUT}	DC Output Voltage	-0.5V to V _{CC} + 0.5V
I _{IK}	Input Diode Current	–20mA
I _{OK}	Output Diode Current	±20mA
I _{OUT}	DC Output Current	±25mA
I _{CC}	DC V _{CC} / GND Current	±50mA
T _{STG}	Storage Temperature	–65°C to +150°C
TL	Lead Temperature (Soldering, 10 seconds)	260°C

Recommended Operating Conditions⁽¹⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	2.0V to +5.5V
V _{IN}	Input Voltage	0V to +5.5V
V _{OUT}	Output Voltage	0V to V _{CC}
T _{OPR}	Operating Temperature	–40°C to +85°C
t _r , t _f	Input Rise and Fall Time,	
	$V_{CC} = 3.3V \pm 0.3V$	0ns/V ~ 100ns/V
	$V_{CC} = 5.0V \pm 0.5V$	0ns/V ~ 20ns/V

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

74VHC157 Quad 2-Input Multiplexer

DC Electrical Characteristics

					г		с	T _A = -4 +8	40°C to 5°C	
Symbol	Parameter	V _{CC} (V)	Con	ditions	Min.	Тур.	Max.	Min.	Max.	Units
V _{IH}	HIGH Level Input	2.0			1.50			1.50		V
	Voltage	3.0–5.5			0.7 x V _{CC}			$0.7 \times V_{CC}$		
V _{IL}	LOW Level Input	2.0					0.50		0.50	V
	Voltage	3.0–5.5					$0.3 \times V_{CC}$		$0.3 \times V_{CC}$	
V _{OH}	HIGH Level	2.0	$V_{IN} = V_{IH}$	I _{OH} = -50μA	1.9	2.0		1.9		V
	Output Voltage	3.0	or V _{IL}		2.9	3.0		2.9		
		4.5			4.4	4.5		4.4		
		3.0		I _{OH} = -4mA	2.58			2.48		
		4.5		I _{OH} = -8mA	3.94			3.80		
V _{OL}	LOW Level	2.0	$V_{IN} = V_{IH}$	Ι _{ΟL} = 50μΑ		0.0	0.1		0.1	V
	Output Voltage	3.0	or V _{IL}			0.0	0.1		0.1	
		4.5				0.0	0.1		0.1	
		3.0		$I_{OL} = 4mA$			0.36		0.44	
		4.5		I _{OL} = 8mA			0.36		0.44	
I _{IN}	Input Leakage Current	0–5.5	V _{IN} = 5.5V	or GND			±0.1		±1.0	μA
Icc	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$	or GND			4.0		40.0	μA

Noise Characteristics

				T _A = 25°C		
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	Limits	Units
V _{OLP} ⁽³⁾	Quiet Output Maximum Dynamic V _{OL}	5.0	$C_L = 50 pF$	0.3	0.8	V
V _{OLV} ⁽³⁾	Quiet Output Minimum Dynamic V _{OL}	5.0	$C_L = 50 pF$	-0.3	-0.8	V
V _{IHD} ⁽³⁾	Minimum HIGH Level Dynamic Input Voltage	5.0	$C_L = 50 pF$		3.5	V
V _{ILD} ⁽³⁾	Maximum LOW Level Dynamic Input Voltage	5.0	$C_L = 50 pF$		1.5	V

Note:

2. Parameter guaranteed by design.

AC Electrical Characteristics

		Vcc		т	A = 25°	С	T _A = - to +	–40°C 85°C	
Symbol	Parameter	(Ŭ)	Conditions	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay,	3.3 ± 0.3	$C_L = 15 pF$		6.2	9.7	1.0	11.5	ns
	I_n to Z_n		$C_L = 50 pF$		8.7	13.2	1.0	15.0	
		5.0 ± 0.5	$C_L = 15 pF$		4.1	6.4	1.0	7.5	ns
			$C_L = 50 pF$		5.6	8.4	1.0	9.5	
t _{PLH} , t _{PHL}	Propagation Delay,	3.3 ± 0.3	$C_L = 15 pF$		8.4	13.2	1.0	15.5	ns
	S to Z _n		$C_L = 50 pF$		10.9	16.7	1.0	19.0	
		5.0 ± 0.5	$C_L = 15 pF$		5.3	8.1	1.0	9.5	ns
			$C_L = 50 pF$		6.8	10.1	1.0	11.5	
t _{PLH} , t _{PHL}	Propagation Delay,	3.3 ± 0.3	$C_L = 15 pF$		8.7	13.6	1.0	16.0	ns
	E to Z _n		$C_L = 50 pF$		11.2	17.1	1.0	19.5	
		5.0 ± 0.5	$C_L = 15 pF$		5.6	8.6	1.0	10.0	ns
			$C_L = 50 pF$		7.1	10.6	1.0	12.0	
C _{IN}	Input Capacitance		V _{CC} = Open		4	10		10	pF
C _{PD}	Power Dissipation Capacitance		(3)		20				pF

Note:

3. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®	<i>i-l</i> o™	Power-SPM™	٦
Across the board. Around the world.™	ImpliedDisconnect™	PowerTrench [®]	٦
ActiveArrav™	IntelliMAX™	Programmable Active Droop™	٦
Bottomless™	ISOPLANAR™	QFET®	٦
Build it Now™	MICROCOUPI FR™	QS™	٦
CoolFET™	MicroPak™	QT Optoelectronics [™]	Т
CROSSVOLT™	MICROWIRE™	Quiet Series™	Т
CTL™	Motion-SPM [™]	RapidConfigure™	ι
Current Transfer Logic™	MSX™	RapidConnect™	ί
DOME™	MSXPro™	ScalarPump™	ι
E ² CMOS™	OCX™	SMART START™	١
EcoSPARK [®]	OCXPro™	SPM®	٧
EnSigna™	OPTOLOGIC®	STEALTH™	
FACT Quiet Series™	OPTOPLANAR [®]	SuperFET™	
FACT®	PACMAN™	SuperSOT™3	
FAST®	PDP-SPM™	SuperSOT™6	
FASTr™	POP™	SuperSOT™8	
FPS™	Power220 [®]	SyncFET™	
FRFET®	Power247 [®]	TCM™	
GlobalOptoisolator™	PowerEdge™	The Power Franchise [®]	
GTO™	PowerSaver™	() [™]	
HiSeC™			

⊺inyBoost™ FinyBuck™ linyLogic[®] ΓINYOPTO™ FinyPower™ TinyWire™ ruTranslation™ ιSerDes™ UHC® UniFET™ VCX™ Nire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.
<u>.</u>		Rev. 126

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: 74VHC157M 74VHC157MTCX 74VHC157SJX 74VHC157MX 74VHC157MTC

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.