

ADVANCED CAR SIGNAL PROCESSOR

- FULLY INTEGRATED SIGNAL PROCESSOR OPTIMIZED FOR CAR RADIO APPLICATIONS
- FULY PROGRAMMABLE BY I²C BUS
- INCLUDES AUDIOPROCESSOR, STEREO-DECODER WITH NOISE BLAMKER AND MULTIPATH DETECTOR
- SOFTMUTE FUNCTION
- PROGRAMMABLE ROLL-OFF COMPENSATION
- NO EXTERNAL COMPONENTS

DESCRIPTION

BLOCK DIAGRAM

The TDA7411 is the successor of the TDA7407 in the CSP family introduced by the TDA7460/61. It uses the same innovative concepts and design technologies allowing fully software programmability through I^2C bus and overall cost optimization for the system designer.

The device includes a three band audio processor with extended configurable input and output stag-

TQFP44 ORDERING NUMBER: TDA7411

es and absence of external components for filter settings, a last generation stereo decoder with multi path detector and a sophisticated stereo blend, high cut control and noise cancellation circuitry.

Strength points of the CSP approach are flexibility and overall cost/room saving in the application, combined with high performances.

October 2003

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.5	V
T _{amb}	Operating Ambient Temperature Range	-40 to 85	°C
T _{stg}	Operating Storage Temperature Range	-55 to 150	°C

SUPPLY

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		7.5	8	10	V
IS	Supply Current	$V_{S} = 9V$		45		mA
SVRR	Ripple Rejection @ 1KHz	Audioprocessor (all filters flat)		60		dB
		Stereodecoder + Audioprocessor		55		dB

ESD

All pins are protected against ESD according to the MIL883 standard.

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Parameter	Value	Unit
$R_{\text{th-j pins}}$	Thermal Resistance Junction to pins Max	85	°C/W

PIN DESCRIPTION

Nr.	Name	Function	Туре
1	AUXL	Quasi Differential Input Left	I
2	AUXC	Quasi Differential Input Common	I
3	AUXR	Quasi Differential Input Right	1
4	CDCHR+	Full Differential Input Right Plus	I
5	CDCHR-	Full Differential Input Right Minus (not used in quasi differential mode)	I
6	CDCHL-	Full Differential Input Left Minus (CDCHCom in Qdiff mode)	I
7	CDCHL+	Full Differential Input Left Plus	I
8	NV+	Mono Differential Input Plus	I
9	NV-	Mono Differential Input Minus	I
10	AM	AM Input	I
11	MPX	FM Stereo Decoder Input	I
12	Level	Level Input Stereo Decoder	I
13	MPin	Multi Path Input	_
14	MPout	Multi Path Output	0
15	Qual	Stereo Decoder Quality Output	0
16	AFS	Alternative Frequency Search Drive	
17	Mute	Soft Mute Drive	I
18	SDA	I ² C Data Line	I/O
19	SCL	I ² C Clock Line	1
20	FreeR	Free Right Speaker Output	0
21	FreeL	Free Left Speaker Output	0
22	OutLR	Rear Left Speaker Output	0
23	OutRR	Rear Right Speaker Output	0
24	OutRF	Front Right Speaker Output	0
25	OutLF	Front Left Speaker Output	0
26	GND	Supply Ground	S
27	VS	Supply Voltage	S
28	ACin3L	Pre-speaker Input Three Left	I
29	ACin3R	Pre-speaker Input Three Right	I
30	ACin2R	Pre-speaker Input Two Right	I
31	ACin2L	Pre-speaker Input Two Left	I
32	ACin1L	Pre-speaker Input Three Left	1
33	ACin1R	Pre-speaker Input Three Right	I
34	ACin0R	Pre-speaker Input Zero Right	1
35	ACin0L	Pre-speaker Input Zero Left	I
-36	ACoutL	Pre-speaker Output Left	0
37	ACoutR	Pre-speaker Output Right	0
38	SubR	Sub Channel Selector Output Right	0
39	SubL	Sub Channel Selector Output Left	0
40	Cref	Reference Capacitor Pin	0
41	MDL	Mini Disk Input Left	I
42	MDR	Mini Disk Input Right	I
43	CDR	Compact Disk Input Right (Test mode Output)	I
44	CDL	Compact Disk Input Left	I

Pin type legenda: I = Input ; O = Output; I/O = Input/Output; S = Supply; nc = not connected.

57

AUDIO PROCESSOR PART

Input Multiplexer

- full differential stereo input configurable as quasi-differential input
- quasi differential auxiliary stereo input
- mini disk stereo input configurable as mono differential input
- compact disk stereo input
- mono differential navigation input
- AM mono input
- second multiplexer for sub channel output

Volume control

- 1dB attenuator
- Max. gain 15dB
- Max. attenuation 79dB

Bass Control

- 2nd order frequency response
- Center frequency programmable in 4(5) steps
- DC gain programmable
- ±15 x 1dB steps

Mid Control

- 2nd order frequency response
- Center frequency programmable in 4 steps
- Q-factor programmable in 2 steps
- ±15 x 1dB steps

Treble Control

- 2nd order frequency response
- Center frequency programmable in 4 steps
- ±15 x 1dB steps

Speaker Control

- 6 independent speaker controls in 1dB steps
- max. gain 15dB
- max. attenuation 79dB
- implemented soft mute capability
- speaker input multiplexer

Mute Functions

- independent direct fast mute controlled by I²C interface
- independent soft mute for Front L/R, Rear and Free controlled by I²C interface
- digitally controlled soft mute with 4 programmable mute-times
- pin controlled soft mute

soft mute monitor function @ Mute pin

ybsolete Productls

5/43

ELECTRICAL CHARACTERISTICS

 $(V_S = 8V; T_{amb} = 25^{\circ}C; R_L = 10K\Omega; all gains = 0dB; f = 1KHz; unless otherwise specified)$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
INPUT SE	LECTOR					
R _{in}	Input Resistance	all inputs except Phone	70	100	130	KΩ
V _{CL}	Clipping Level	THD < 0.3%	1.6	1.7		VRMS
S _{IN}	Input Separation		80	100		dB
G _{IN MIN}	Min. Input Gain		-0.5	0	0.5	dB
GIN MAX	Max. Input Gain		14	15	16	dB
G _{STEP}	Step Resolution		0.5	1	1.5	dB
V _{DC}	DC Steps	Adjacent Gain Step	-5	0.5	5	mV
		G _{MIN} to G _{MAX}	-10	5	10	mV
FULL AN	D QUASI DIFFERENTIAL STEREO	INPUT	-	-	-	
R _{in}	Input Resistance (see Figure 1)	Differential	70	100	130	KΩ
		Common Mode	70	100	130	KΩ
CMRR	Common Mode Rejection Ratio	V _{CM} = 1V _{RMS} @ 1KHz	45	70	10	dB
		V _{CM} = 1V _{RMS} @ 10KHz	45	60	12	dB
e _N	Output Noise @ Speaker Outputs	20Hz to 20KHz flat; all stages 0dB		9	15	μV
MONO DI	FFERENTIAL INPUT (NV and MD i	n differential mode)		-0'	<u>у</u>	
R _{in}	Input Resistance	Differential	40	56		KΩ
CMRR	Common Mode Rejection Ratio	V _{CM} = 1V _{RMS} @ 1KHz	40	70		dB
		V _{CM} = 1V _{RMS} @ 10KHz	40	60		dB
VOLUME	CONTROL	1015				
G _{MAX}	Max Gain		14	15	16	dB
A _{MAX}	Max Attenuation	-55	74	79		dB
ASTEP	Step Resolution		0.5	1	1.5	dB
EA	Attenuation Set Error	G = -20 to +20dB	-1.25	0	+1.25	dB
	1	G = -60 to +20dB	-4	0	+3	dB
ΕT	Tracking Error	51			2	dB
V _{DC}	DC Steps	Adjacent Attenuation Steps		0.1	3	mV
	AUG	From 0dB to GMIN		0.5	5	mV
SOFT MU	TE/AFS			-		-
A _{MUTE}	Mute Attenuation		80	100		dB
Τ _D	Delay Time	T1		0.24		ms
	No.	T2		0.48		ms
	0	ТЗ		10.1		ms
<u> </u>	~	T4		20.2		ms
VTH low	Low Threshold for Mute/AFS-Pin ¹				1	V
V _{TH high}	High Threshold for SM -Pin			1.8		V
V _{TH high}	High Threshold for AFS -Pin			2.4		V
VSMon	Monitor Voltage for SMon			2.4	T	V
R _{PD}	Internal Pull-up Resistor			100		KΩ
BASS CO	NTROL				•	
CRANGE	Control Range		±13	±15	±17	dB
A _{STEP}	Step Resolution		0.5	1	1.5	dB

ELECTRICAL CHARACTERISTICS (continued)

 $(V_S = 8V; T_{amb} = 25^{\circ}C; R_L = 10K\Omega; all gains = 0dB; f = 1KHz; unless otherwise specified)$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
f _C	Center Frequency	f _{C1}	54	60	66	Hz
		f _{C2}	63	70	77	Hz
		f _{C3}	72	80	88	Hz
		f _{C4}	90	100	110	Hz
				(150) ⁽²⁾		
QBASS	Quality Factor	Q ₁	0.9	1	1.1	
		Q ₂	1.1	1.25	1.4	
		Q ₃	1.3	1.5	1.7	
		Q4	1.8	2	2.2	
DC _{GAIN}	Bass-DC-Gain	DC = off	-1	0	1	dB
		DC = on	3.5	4.4	5.5	dB
MID CON	•					_
CRANGE	Control Range		±13	±15	±17	dB
ASTEP	Step Resolution		0.5	1	1.5	dB
f _C	Center Frequency	f _{C1}	450	500	550	Hz
		f _{C2}	0.9	1	1.1	kHz
		f _{C3}	1.35	1.5	1.65	kHz
		f _{C4}	1.8	2	2.2	kHz
Q _{BASS}	Quality Factor	Q1	0.9	1	1.1	
		Q ₂	1.8	2	2.2	
TREBLE	CONTROL		•	•		
G _{MAX}	Control Range	-105	±13	±15	±17	dB
A _{STEP}	Step Resolution	<u>O</u> V	0.5	1	1.5	dB
f _C	Center Frequency	f _{C1}	8	10	12	KHz
	1	fc2	10	12.5	15	KHz
	*	f _{C3}	12	15	18	KHz
	G	f _{C4}	14	17.5	21	KH
SPEAKE	R ATTENUATORS			1		
R _{in}	Impedance @ACin0,2,3		35	50	65	kΩ
R _{in}	Impedance @ACin1	R _{in1}	35	50	65	kΩ
	×C	R _{in2}	28	40	52	kΩ
		R _{in3}	21	30	39	kΩ
G _{MAX}	Max. Gain		13	15	17	dB
AMAX	Max. Attenuation		-74	-79		dB
ASTEP	Step Resolution		0.5	1	1.5	dB
A _{MUTE}	Output Mute Attenuation		80	90		dB
EE	Attenuation Set Error				±2	dB
V _{DC}	DC Steps	Adjacent Attenuation Steps	-5	0.1	5	m۷
		.,	1 -	1	-	1
V _{CLIP}	Clipping Level	d = 0.3%	1.6	1.8		V _{RM}
RL	Output Load Resistance		2	-		kΩ
CL	Output Load Capacitance				10	nF

ELECTRICAL CHARACTERISTICS (continued)

 $(V_S = 8V; T_{amb} = 25^{\circ}C; R_L = 10K\Omega; all gains = 0dB; f = 1KHz; unless otherwise specified)$

Rout Output Impedance 30 120 Vpc DC Voltage Level 3.8 4 4.2 GENERAL eno Output Noise BW = 20Hz - 20KHz output muted all gains = 0dB 3 10 6.5 15 6.5 15 6.5 15 S/N Signal to Noise Ratio all gains = 0dB,flat; Vo = 2V _{RMS} 102 110 10 d Distortion all stages 0dB Mass, treble at +12dB; a-weighted; Vo = 2.6V _{RMS} 0.04 0.1 d Distortion all stages 0dB Mono Diff Inputs, Vout = 0.75V _{RMS} 0.04 0.1 All other inputs, Vout = 1V _{RMS} ; Bass & Treble = 12dB 0.05 0.15 0.15 0.15 Sc Channel Separation L/R Vour=1V _{RMS} ; Bass & Treble = 12dB 0.05 0.15 BUS INPUTS Internal POR Voltage 3 3 1 1 0 1 VIL Input Low Voltage 2.5 1 1 0.4 0.4 VIH Input Low Voltage SDA Vo = 1.6mA 0.4		Parameter	Test Condition	Min.	Тур.	Max.	I
		Output Impedance			30	120	
	V _{DC}	DC Voltage Level		3.8	4	4.2	
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c } \hline \end{tabular} \\ \hline \$	GENERA	L					
$ \frac{\text{all gains = 0dB}}{\text{signal to Noise Ratio}} = \frac{\text{all gains = 0dB}}{\text{all gains = 0dB}} \frac{6.5}{6.5} = \frac{15}{6.5} = \frac{11}{6.5} = $	e _{NO}	Output Noise				10	
$\begin{tabular}{ c c c c } \hline \end{tabular} \end{tabular}$							
$ \begin{array}{ c c c c c } S/N & Signal to Noise Ratio & all gains = 0dB;flat; V_O = 2V_{RMS} & 102 & 110 & \\ \hline bass, treble at +12dB; & 96 & 100 & \\ a-weighted; V_O = 2.6V_{RMS} & 96 & 100 & \\ a-weighted; V_O = 2.6V_{RMS} & 96 & 100 & \\ \hline a-weighted; V_O = 2.6V_{RMS} & 96 & 100 & \\ \hline a-weighted; V_O = 2.6V_{RMS} & & \\ \hline a-weighted; V_O = 2.6V_{RMS} & \\ \hline a-weighted; V_O = 1.00 & \\ \hline a-weighted; V_O = 2.6V_{RMS} & \\ \hline a-weighted; V_O = 1.00 & \\ \hline a-$						10	-
$\begin{tabular}{ c c c c c } \hline heas, treble at +12dB; a-weighted; V_O = 2.6V_{RMS} & 96 & 100 & a-weighted; V_O = 2.6V_{RMS} & 96 & 100 & 0.1 & 0.0$	S/N	Signal to Noise Ratio	all gains = 0dB;flat; $V_0 = 2V_{RMS}$	102			
$ \begin{array}{ c c c c } \hline \mbox{all stages 0dB} & \mbox{all stages 0dB} & \mbox{all other inputs, Vout = 0.75V_{RMS}} & \mbox{all other inputs, Vout = 1V_{RMS}} & \mbox{all other inputs, Vout = 12dB} & \mbox{all other inputs, Vout = 12dB} & \mbox{all other inputs, Vout = 12dB} & \mbox{all other inputs, Vout = 0.00} & \mbox{all other inputs} & all other in$		5	-				
$\begin{tabular}{ c c c c c } \hline \end{tabular} & \end{tabular}$							
$\begin{tabular}{ c c c c } \hline All other inputs, V_{out} = 1V_{RMS} & & & & & & & \\ \hline V_{OUT} = 1V_{RMS} ; Bass & Treble = 12dB & & & 0.05 & 0.15 \\ \hline V_{OUT} = 1V_{RMS} ; Bass & Treble = 12dB & & 0.05 & 0.15 \\ \hline S_{C} & Channel Separation L/R & & & & & & & \\ \hline S_{C} & Total Tracking Error & A_V = 0 to -20dB & -1 & 0 & 1 & \\ \hline A_V = -20 to -60dB & -2 & 0 & 2 & \\ \hline V_{POR} & Internal POR Voltage & & & & & & & & \\ \hline V_{POR} & Internal POR Voltage & & & & & & & & & & \\ \hline SUS INPUTS & & & & & & & & & & \\ \hline V_{IL} & Input Low Voltage & & & & & & & & & & & & & \\ \hline V_{IL} & Input Low Voltage & & & & & & & & & & & & & & & & \\ \hline V_{IN} & Input Current & V_{IN} = 0.4V & & & & & & & & & & & & & & & & \\ \hline V_{O} & Output Voltage SDA & V_{O} = 1.6mA & & & & & & & & & & & & & & & & & & &$	d	Distortion			0.04	0.1	
$\begin{tabular}{ c c c c c } \hline $V_{OUT}=1V_{RMS}$; Bass & Treble = 12dB & 0.05 & 0.15 \\ \hline S_C & Channel Separation L/R & & & & & & & & & & & & & & & & & & &$							
$\begin{tabular}{ c c c c c c } \hline S_C & Channel Separation L/R & & & & & & & & & & & & & & & & & & &$					0.05	0.45	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{OUT} =1V _{RMS} ; Bass & Ireble = 12dB			0.15	
$A_V = -20$ to $-60dB$ -2 0 2 V_{POR} Internal POR Voltage 3 3 BUS INPUTS V_{IL} Input Low Voltage 0.8 V_{IH} Input High Voltage 2.5 0.8 V_{IH} Input Current $V_{IN} = 0.4V$ -5 5 V_O Output Voltage SDA Acknowledge $V_O = 1.6mA$ 0.4							P
V_{POR} Internal POR Voltage3BUS INPUTS V_{IL} Input Low Voltage0.8 V_{IH} Input High Voltage2.5 I_{IN} Input Current $V_{IN} = 0.4V$ -5 V_O Output Voltage SDA Acknowledge $V_O = 1.6mA$ 0.4	ΕŢ	Iotal Iracking Error					
BUS INPUTS VIL Input Low Voltage 0.8 VIH Input High Voltage 2.5 Input Output Voltage SDA V0 = 1.6mA 0.4			$A_V = -20$ to -60 dB	-2		2	
V_{IL} Input Low Voltage0.8 V_{IH} Input High Voltage2.5 I_{IN} Input Current $V_{IN} = 0.4V$ -5 V_O Output Voltage SDA Acknowledge $V_O = 1.6mA$ 0.4		9			3		
V _{IH} Input High Voltage2.5I _{IN} Input Current $V_{IN} = 0.4V$ -55V_OOutput Voltage SDA Acknowledge $V_O = 1.6mA$ 0.4				$\overline{\mathbf{v}}$			r
I _{IN} Input Current $V_{IN} = 0.4V$ -55V_OOutput Voltage SDA Acknowledge $V_O = 1.6mA$ 0.4						0.8	
VoOutput Voltage SDA AcknowledgeVo = 1.6mA0.4	VIH						
Acknowledge	I _{IN}	Input Current		-5		5	
1) The SM and AFS pin are active low (Mute = 0) 2) See description of Audio processor Part section 1.8.	Vo		V _O = 1.6mA			0.4	
50	2) See desc	ription of Audio processor Part sectio	n 1.8.				

57

DESCRIPTION OF THE AUDIOPROCESSOR PART

Input Multiplexer

- CDCH full differential input configurable as quasi-differential input
- auxiliary quasi-differential input
- CD stereo
- MD stereo configurable as mono-differential phone input
- mono-differential NV input
- AM mono
- and stereo decoder input.

Figure 1. Input Selectors TDA7411

8/43

Input stages

In the basic configuration one full differential, one quasi-differential, two single ended stereo, one monodifferential and two tuner (AM and MPX) inputs are available. In addition the ac coupling input Acin0 can be used as single ended input for the input multiplexer.

The full-differential input can be switched into quasi-differential mode (see Fig. 2) and the MD single ended input can be used as mono-differential input (see Fig.1).

AutoZero

In order to reduce the number of pins there is no AC coupling between the In-Gain and the following stage, so that any offset generated by or before the In-Gain-stage would be transferred or even amplified to the output. To avoid that effect a special Offset-cancellation-stage called AutoZero is implemented. This stage is located after the In-Gain-stage to eliminate all offsets generated by the stereo decoder, the Input-Stages and the In-Gain (Please notice that externally generated offsets, e.g. generated through the leakage current of the coupling capacitors, are not canceled).

The auto-zeroing is started every time the DATA-BYTE 0 is selected and takes a time of max. 0.3ms. To avoid audible clicks the audio processor is muted before the tone control stage during this time.

AutoZero-Remain

In some cases, for example if the μ P is executing a refresh cycle of the IIC-Bus-programming, it is not useful to start a new AutoZero action because no new source is selected and an undesired mute would appear at the outputs. For such applications the TDA7411 could be switched in the **AutoZero-Remain-Mode** (Bit 6 of the sub address byte). If this bit is set to high, the DATABYTE 0 could be loaded without invoking the AutoZero and the old adjustment-value remains.

Sub Channel Multiplexer

All input stages are available as source in the sub channel multiplexer. The selected source is buffered and available at the pins SubR, SubL.

Mute Capability of Audio Processor

The main channel and the sub channel of the TDA7411 can be muted after the Source selectors. This mute (no soft mute!) must be started by I^2C bus.

The digitally controlled SoftMute stages are placed in the speaker and allow muting/demuting of the signal with an I^2C -bus programmable slope. The mute process can either be activated by the SoftMute pin or by the I^2C -bus. The slope is realized in a special S-shaped curve to mute slowly in the critical regions (see Figure 3).

Figure 3. Soft mute-Timing

Note: Please notice that a started Mute-action is always terminated and could not be interrupted by a change of the mute -signal.

Using the IIC bus control the soft mute can be activated independently for FrontL, FrontR, Rear and Free. For timing purposes the Bit 3 of the I2C-bus output register is set to 1 as soon as the soft mute of any speaker is started until the end of demuting of all speakers. The Mute pin is able to work as monitor for the same signal. The standard function of the pin is not influenced by the monitor function.

A7

obsolete Produl

Bass

There are four parameters programmable in the bass stage:

Attenuation

Figure 4 shows the attenuation as a function of frequency at a center frequency of 80Hz.

Figure 4. Bass Control @ $f_C = 80Hz$, Q = 1

Center Frequency

Figure 5 shows the four possible center frequencies 60, 70, 80 and 100Hz.

Figure 5.

A7/

Quality Factors

Figure 6 shows the four possible quality factors 1, 1.25, 1.5 and 2.

Figure 6. Bass Quality factors @ Gain = 14dB, f_C = 80Hz

DC Mode

In this mode the DC-gain is increased by 5.1dB. In addition the programmed center frequency and quality factor is decreased by 25%, which can be used to reach alternative center frequencies or quality factors.

Figure 7. Bass normal and DC Mode @ Gain = 14dB, f_C = 80Hz

<u>Note:</u> In general the center frequency, Q and DC-mode can be set independently. The exception from this rule is the mode (5/xx1111xx) where the center frequency is set to 150Hz instead of 100Hz.

MID

There are 3 parameters programmable in the mid stage:

Attenuation

Figure 8 shows the attenuation as a function of frequency at a center frequency of 1kHz.

Figure 8. Mid Control @ f_C = 1kHz, Q = 1

Center Frequency

Figure 9 shows the four possible center frequencies 500Hz, 1kHz, 1.5kHz and 2kHz.

Figure 9.

Quality Factor

Figure 10 shows the two possible quality factors 1 and 2 at a center frequency of 1kHz.

Figure 10. Mid Q-factor @ f_C = 1kHz, Gain=14dB

TREBLE

There are two parameters programmable in the treble stage:

Attenuation

Figure 11 shows the attenuation as a function of frequency at a center frequency of 17.5kHz.

Figure 11. Treble Control @ f_C = 17.5kHz

Center Frequency

Figure 12 shows the four possible center frequencies 10k, 12.5k, 15k and 17.5kHz.

Figure 12. Treble Center Frequencies @ Gain = 14dB

Speaker Coupling

In some applications additional signal manipulations are desired, for example surround-sound or moreband-equalizing. For this purpose an AC-Coupling with four different AC-Coupling inputs is placed before the speaker-attenuators.

The input-impedance of the AC-Inputs is always $50k\Omega$ with exception of AC input ACin1, which has programmable input impedance. For ACin3 exists an internal mixing stage and an internal mono low pass filter, which is available as input only for the speaker FreeL/R.

There are two possibilities for internal DC Coupling:

- main channel after the bass filter
- main channel after the middle filter (same as at ACout pin)

The I²C bus programming tables shows the possible speaker sources.

A7

Low Pass Filter

Figure 13 shows the five possible corner frequencies of the low pass filter:

Figure 13. Low Pass Corner Frequencies

Anti-Radiation-Filter

An Anti-Radiation-Filter is implemented to suppress the radiation at the SC-clock-frequency and its harmonics. This radiation is only present if the stereo decoder is selected and/or SC-Filters are active (<>0dB). If not, the filter can be switched off in order to optimize the noise-performance.

Speaker Attenuator

The speaker-attenuators have exactly the same control range like the Volume-stage. Every stereo speaker stage has an implemented independently I²C controlled and Mute pin controlled SoftMute stage (see section mute capability of AP).

STEREODECODER PART

Features:

- no external components necessary
- PLL with adjustment free, fully integrated VCO
- automatic pilot dependent MONO/STEREO switching
- very high suppression of intermodulation and interference
- programmable Roll-Off compensation
- dedicated RDS-Soft mute
- High cut- and Stereo blend-characteristics programmable in a wide range
- internal Noise blanker with several threshold controls
- alternative frequency search function
- Multipath-detector with programmable internal/external influence
- I²C-bus control of all necessary functions

ELECTRICAL CHARACTERISTICS

 $(V_S = 8V; deemphasis time constant = 50\mu s, V_{MPX} = 500mV(75KHz deviation), fm= 1KHz, Gv = 6dB, T_{amb} = 27^{\circ}C; unless otherwise specified)$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{in}	MPX Input Level	G _v = 3.5dB		0.5	1.25	V _{RMS}
R _{in}	Input Resistance	10	70	100	130	KΩ
G _{MIN}	Min. Input Gain	10-	1.5	3.5	4.5	dB
GMAX	Max. Input Gain	601	8.5	11	12.5	dB
GSTEP	Step Resolution	05	1.75	2.5	3.25	dB
SVRR	Supply Voltage Ripple Rejection	Vripple = 100mV; f = 1KHz	35	60		dB
α	Max. channel Separation		30	50		dB
THD	Total Harmonic Distortion	S		0.02	0.3	%
$\frac{S+N}{N}$	Signal plus Noise to Noise Ratio	A-weighted, $S = 2V_{RMS}$	80	91		dB
MONO/ST	TEREO-SWITCH	•	1		1	1
V _{PTHST1}	Pilot Threshold Voltage	for Stereo, PTH = 1	10	15	25	mV
V _{PTHST0}	Pilot Threshold Voltage	for Stereo, PTH = 0	15	25	35	mV
V _{PTHMO1}	Pilot Threshold Voltage	for Mono, PTH = 1	7	12	17	mV
V _{PTHMO0}	Pilot Threshold Voltage	for Mono, PTH = 1	10	19	25	mV
PLL		•	1		1	1
Δf/f	Capture Range		0.5			%
DEEMPH	ASIS and HIGHCUT	•				
t _{HC50}	Deemphasis Time Constant	Bit 7, Subadr, 10 = 0, V _{LEVEL} >> V _{HCH}	25	50	75	μs
t _{HC75}	Deemphasis Time Constant	Bit 7, Subadr, 10 = 1, V _{LEVEL} >> V _{HCH}	50	75	100	μs
t _{HC50}	Highcut Time Constant	Bit 7, Subadr, 10 = 0, $V_{LEVEL} >> V_{HCL}$	100	150	200	μs
t _{HC75}	Highcut Time Constant	Bit 7, Subadr, 10 = 1, $V_{LEVEL} >> V_{HCL}$	150	225	300	μs

ELECTRICAL CHARACTERISTICS (continued)

(V_S = 8V; deemphasis time constant = 50μ s, V_{MPX} = 500mV(75KHz deviation), fm= 1KHz, Gv = 6dB, T_{amb} = 27° C; unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
STEREOR	BLEND-and HIGHCUT-CONTROL					
REF5V	Internal Reference Voltage		4.7	5	5.3	V
T _{CREF5V}	Temperature Coefficient			3300		ppm
L _{Gmin}	Min. LEVEL Gain		-1	0	1	dB
L _{Gmax}	Max. LEVEL Gain		8	10	12	dB
L _{Gstep}	LEVEL Gain Step Resolution		0.3	0.67	1	dB
VSBL _{min}	Min. Voltage for Mono		25	29	33	%REF5
VSBL _{max}	Min. Voltage for Mono		54	58	62	%REF5
VSBL _{step}	Step Resolution		2.2	4.2	6.2	%REF5\
VHCH _{min}	Min. Voltage for NO Highcut		38	42	46	%REF5
VHCH _{max}	Min. Voltage for NO Highcut		62	66	70	%REF5
VHCH _{step}	Step Resolution		5	8.4	12	%REF5
VHCLmin	Min. Voltage for FULL Highcut		12	17	22	%VHC
VHCLmax	Max. Voltage for FULL Highcut		28	33	38	%VHC
VHCL _{step}	Step Resolution		2.2	4.2	6.2	%VHCH
Carrier ar	nd harmonic suppression at the output	t	0			
α19	Pilot Signal f = 19KHz	. 0	40	50		dB
α38	Subcarrier f = 38KHz		1		75	dB
α57	Subcarrier f = 57KHz				62	dB
α76	Subcarrier f = 76KHz	S			90	dB
Intermod	ulation (Note 1)	00				
α2	$f_{mod} = 10 KHz, f_{spur} = 1 KHz$	0			65	dB
α3	f _{mod} = 13KHz, f _{spur} = 1KHz				75	dB
Traffic Ra	tio (Note 2)					
α57	Signal f = 57KHz				70	dB
SCA - Su	osidiary Communications Authoorization	ion (Note 3)				
α67	Signal f = 67KHz				75	dB
ACI - Adja	acent Channel Interference (Note 4)					<u> </u>
α114	Signal f = 114KHz				95	dB
α190	Signal f = 190KHz				84	dB

Notes to the characteristics:

1. Intermodulation Suppression:

measured with: 91% pilot signal; fm = 10kHz or 13kHz.

2. Traffic Radio (V.F.) Suppression: measured with: 91% stereo signal; 9% pilot signal; fm=1kHz; 5% sub-

carrier (f = 57kHz, fm = 23Hz AM, m = 60%)

$$\alpha$$
57(V.W > F.) = $\frac{V_{O(signal)(at1kHz)}}{V}$

VO(spurious)(at1kHz±23kHz)

3. SCA (Subsidiary Communications Authorization) measured with: 81% mono signal; 9% pilot signal; fm = 1kHz; 10%SCA - subcarrier (fs = 67kHz, unmodulated).

$$\alpha 67 = \frac{V_{O(signal)(at1kHz)}}{V_{O(spurious)(at9kHz)}}; F_{s} = (2 \times 38kHz) - 67kHz$$

4. ACI (Adjacent Channel Interference):

$$\alpha 114 = \frac{V_{O(signal)(at1kHz)}}{V_{O(spurious)(at4kHz)}}; F_s = 110kHz - (3 x 38kHz)$$

$$\alpha 114 = \frac{V_{O(signal)(at1kHz)}}{V_{O(spurious)(at4kHz)}}; F_s = 186kHz - (5 x 38kHz)$$

measured with: 90% mono signal; 9% pilot signal; fm =1kHz; 1% spurious signal(fs = 110kHz or 186kHz, roductle unmodulated).

NOISE BLANKER PART

Features:

- internal 2nd order 140kHz high-pass filter
- programmable trigger threshold
- trigger threshold dependent on high frequency noise with programmable gain
- additional circuits for deviation- and fieldstrength-dependent trigger adjustment
- very low offset current during hold time due to opamps with MOS inputs

• •

- 4 selectable pulse suppression times
- programmable noise rectifier charge/discharge current

	Symbol	Parameter	Test Condition	1	Min.	Тур.	Max.	Unit
	V _{TR}	Trigger Threshold ^{0) 1)}	meas. with V _{PEAK} = 0.9V	NBT = 111	(C)	30	(C)	mV _{OP}
		000		NBT = 110	(C)	35	(C)	тV _{OP}
		010		NBT = 101	(C)	40	(C)	mV _{OP}
		C C		NBT = 100	(C)	45	(C)	mV _{OP}
		etei		NBT = 011	(C)	50	(C)	тV _{OP}
				NBT = 010	(C)	55	(C)	mV _{OP}
	SU			NBT = 001	(C)	60	(C)	mV _{OP}
	\mathbf{O}			NBT = 000	(c)	65	(C)	mV _{OP}
	VTRNOISE	Noise Controlled Trigger	meas. with $V_{PEAK} = 1.5V$	NCT = 00	(C)	260	(C)	mV _{OP}
		Threshold ²⁾		NCT = 01	(C)	220	(C)	mV _{OP}
				NCT = 10	(c)	180	(C)	mV _{OP}
				NCT = 11	(C)	140	(C)	mV _{OP}
	V _{RECT}	Rectifier Voltage	$V_{MPX} = 0mV$	NRD ⁶⁾ = 00	0.5	0.9	1.3	V
			V _{MPX} = 50mV; f = 150KHz		1.5	1.7	2.1	V
			V _{MPX} = 200mV; f = 150KHz			3.5		V

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	1	Min.	Тур.	Max.	Unit
VRECT DEV	deviation dependent	means. with	OVD = 11	0.5	0.9(off)	1.3	VOP
	rectifier Voltage 3)	V _{MPX} = 500mV (75KHz dev.)	OVD = 10	0.9	1.2	1.5	V _{OP}
			OVD = 01	1.7	2.0	2.3	V _{OP}
			OVD = 00	2.5	2.8	3.1	VOP
V _{RECT FS}	Fieldstrength Controlled	means. with	FSC = 11	0.5	0.9(off)	1.3	V
	Rectifier Voltage 4)	V _{MPX} = 0mV V _{LEVE} L << V _{SBL}	FSC = 10	0.9	1.4	1.5	V
		(fully mono)	FSC = 01	1.7	1.9	2.3	V
			FSC = 00	2.1	2.4	3.1	V
Τ _S	Suppression Pulse	Signal HOLDNin Testmode	BLT = 00		38		μs
	Duration ⁵⁾	E	BLT = 10		32		μs
			BLT = 01		25.5		μs
			BLT = 00		22		μs
V _{RECTADJ}	Noise Rectifier discharge	Signal PEAK in Testmode	NRD = 00 ⁶⁾	(c)	0.3	(c)	V/ms
	adjustment ⁶⁾		NRD = 01 ⁶⁾	(c)	0.8	(c)	V/ms
			NRD = 10 ⁶⁾	(c)	1.3	(c)	V/ms
			NRD = 11 ⁶⁾	(c)	2.0	(C)	V/ms
SR _{PEAK}	Noise Rectifier Charge	Signal PEAK in Testmode	PCH = 0 ⁷⁾	(C)	10	(C)	mV/μs
			PCH = 1 ⁷⁾	(C)	20	(C)	mV/μs
V _{ADJMP}	Noise Rectifier adjustment	Signal PEAK in Testmode	MPNB = 00 ⁸⁾	(C)	0.3	(C)	V/ms
	through Multipath ⁸⁾	-	MPNB = 01 ⁸⁾	(c)	0.5	(c)	V/ms
		5	MPNB = 10 ⁸⁾	(c)	0.7	(c)	V/ms
			MPNB = 11 ⁸⁾	(c)	0.9	(C)	V/ms

ELECTRICAL CHARACTERISTICS (continued)

(c) = by design/characterization functionally guaranteed through dedicated test mode structure

0) All Thresholds are measured using a pulse with TR =2 μ s, TH_{IGH} = 2 μ s and T_F = 10 μ s. The repetition rate must not increase the PEAK voltage.

Figure 14. Timing

1) NBT represents the Noiseblanker Byte bits D_2 , D_0 for the noise blanker trigger threshold

2) NAT represents the Noiseblanker Byte bit pair D₄, D₃ for the noise controlled triggeradjustment

3) OVD represents the Noiseblanker Byte bit pair D7, D6 for the over deviation detector

4) FSC represents the Fieldstrength Byte bit pair D₁, D₀ for the fieldstrength control

5) BLT represents the Speaker RR Byte bit pair D_7 , D_6 for the blanktime adjustment

6) NRD represents the Configuration-Byte bit pair D_1 , D_0 for the noise rectifier discharge-adjustment

7) PCH represents the Stereodecoder-Byte bit D₅ for the noise rectifier charge-current adjustment

8) MPNB represents the HighCut-Byte bit D_7 and the Fieldstrength-Byte D_7 for the noise rectifier multipath adjustment

Figure 15. Trigger Threshold vs. V_{PEAK}

Figure 16. Deviation Controlled Trigger Adjustment

Figure 17. Field strength Controlled Trigger Adjustment

21/43

MULTIPATH DETECTOR

Features:

- internal 19kHz band-pass filter
- programmable band-pass and rectifier gain
- two pin solution fully independent usable for external programming
- selectable internal influence on Stereoblend

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
f _{CMP}	Center frequency of Multipath- Bandpass	stereo decoder locked on Pilot tone		19		kHz
GBPMP	Band pass Gain	bits D_2 , D_1 configuration byte = 00		6		dB
		bits D_2 , D_1 configuration byte = 01		12	19	dB
		bits D_2 , D_1 configuration byte = 10		16	Cr,	dB
		bits D_2 , D_1 configuration byte = 11		18	5	dB
Grectmp	Rectifier Gain	bits D_7 , D_6 configuration byte = 00	25	7.6		dB
		bits D_7 , D_6 configuration byte = 01		4.6		dB
		bits D_7 , D_6 configuration byte = 10		0		dB
		bits D_7 , D_6 configuration byte = 11		off		
I _{CHMP}	Rectifier Charge Current	bit D_5 , configuration byte = 0 bit D_5 , configuration byte = 1		0.2 0.4		μA
IDISMP	Rectifier Discharge Current	5	0.5	1	1.5	mA
-						<u> </u>

QUALITY DETECTOR

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
A	Multipath Influence Factor	Addr12 / Bit 5+6	00 01 10 11		0.2 0.3 0.4 0.5		dB dB dB dB
A	Noise Influence Factor	Addr16 / Bit 1+2	00 01 10 11		15 12 9 6		dB dB dB dB

FUNCTIONAL DESCRIPTION OF STERO DECODER

Figure 18. Block diagram of the stereo decoder

The stereo decoder-part of the TDA7411 (see Fig. 18) contains all functions necessary to demodulate the MPX-signal like pilot tone-dependent MONO/STEREO-switching as well as "stereoblend" and "highcut". Adaptations like programmable input gain, roll-off compensation, selectable deemphasis time constant and a programmable field strength input allow using different IF-devices.

InGain + Infilter

The InGain stage allows adjusting the MPX-signal to a magnitude of about 1Vrms internally, which is the recommended value. The 4.th order input filter has a corner frequency of 80kHz and is used to attenuate spikes and noise and acts as an anti-aliasing filter for the following switch capacitor filters.

Demodulator

In the demodulator block the left and the right channel are separated from the MPX-signal. In this stage also the 19-kHz pilot tone is canceled. For reaching a high channel separation the TDA7411 offers an I2C-bus programmable roll-off adjustment, which is able to compensate the low pass behavior of the tuner section. If the tuner's attenuation at 38kHz is in a range from 13.8% to 24.6% the A673 needs no external network in front of the MPX-pin. Within this range an adjustment to obtain at least 40dB channel separation is possible. The bits for this adjustment are located together with the field strength adjustment in one byte. This gives the possibility to perform an optimization step during the production of the car radio where the channel separation and the field strength control are trimmed. The setup of the stereoblend characteristics, which is programmable in a wide range.

Deemphasis and Highcut

The deemphasis low pass allows to choose between a time constant of 50µs and 75µs (bit D7, stereo decoder byte). The highcut control range will be in both cases $\tau_{HC} = 2x \tau_{Deemp}$. Inside the highcut control range (between VHCH and VHCL) the LEVEL signal is converted into a 5-bit word, which controls the low pass time constant between τ_{Deemp} ...3x τ_{Deemp} . Thereby the resolution will remain always 5 bits indepen-

dently of the absolute voltage range between the VHCH- and VHCL-values. The highcut function can be switched off by I2C-bus (bit D7, Field strength byte set to "0"). The setup of the highcut characteristics is described in 2.9.

PLL and Pilot tone-Detector

The PLL has the task to lock on the 19kHz pilot tone during a stereo-transmission to allow a correct demodulation. The included pilot tone-detector enables the demodulation if the pilot tone reaches the selected pilot tone threshold V_{PTHST}. Two different thresholds are available. By reading the status byte of the A673 via I²C-bus the detector output (signal STEREO, see block diagram) can be checked.

Field Strength Control

The field strength input is used to control the highcut- and the stereoblend-function. In addition the signal can be also used to control the noise blanker thresholds and as input for the multipath detector.

LEVEL-Input and -Gain

To suppress undesired high frequency modulation on the highcut- and stereoblend-function the LEVEL signal is low pass filtered firstly. The filter is a combination of a 1.st-order RC-low pass at 53kHz (working as anti-aliasing filter) and a 1.st-order switched capacitor low pass at 2.2kHz. The second stage is a programmable gain stage to adapt the LEVEL signal internally to different IF-devices (see test mode section 5: LEVELINTERN). The gain is widely programmable in 16 steps from 0dB to 10dB (step=0.67dB). These 4 bits are located together with the Roll-Off bits in the "Stereo decoder-Adjustment"-byte to simplify a possible adaptation during the production of the car radio.

Stereoblend Control

The stereoblend control block converts the internal LEVEL-voltage (LEVELINTERN) into a demodulator compatible analog signal, which is used to control the channel separation between 0dB and the maximum separation. Internally this control range has a fixed upper limit, which is the internal reference voltage REF5V. The lower limit can be programmed between 29.2 and 58% of REF5V in 4.167% steps (see figs.19, 20).

To adjust the external LEVEL-voltage to the internal range two values must be defined: the LEVEL gain L_G and VSBL (see fig. 20). To adjust the voltage where the full channel separation is reached (VST) the LEVEL gain LG has to be defined. The following equation can be used to estimate the gain:

Figure 19. Internal stereo blend characteristics

The gain can be programmed through 4 bits in the "Stereo Decoder Adjustment"-byte. The MONO-voltage VMO (0dB channel separation) can be chosen selecting VSBL.

All necessary internal reference voltages like REF5V are derived from a bandgap circuit. Therefore they have a temperature coefficient near zero. This is useful if the fieldstrength signal is also temperature compensated. But most of the IF-devices are applying a LEVEL-voltage with a TC of 3300ppm. The A673 offers this TC for the reference voltages, too. The TC is selectable with bit D₇ of the "stereo decoder adjustment"-byte.

INTERNAL INTERNAL SETUP OF VST SETUP OF VMO VOLTAGES VOLTAGES LEVEL INTERN LEVEL INTERN REF 5V REF 5V LEVEL 58% VSBL 29 VSBI t VMO VST VST VMO FIELDSTRENGHT VOLTAGE FIELDSTRENGHT VOLTAGE modAU639

Figure 20. Relation Between Internal and External LEVEL Voltages and Setup of Stereoblend

Highcut Control

The highcut control set-up is similar to the stereoblend control set-up: the starting point VHCH can be set with 2 bits to be 42, 50, 58 or 66% of REF5V whereas the range can be set to be 17, 22, 28 or 33% of VHCH (see fig. 21).

Functional Description of the Noise Blanker

In the automotive environment spikes produced by the ignition and for example the wiper-motor disturb the MPX-signal. The aim of the noise blanker part is to cancel the audible influence of the spikes. Therefore the output of the stereo decoder is held at the actual voltage for a time between 22 and 38µs (programmable). The block diagram of the noise blanker is given in fig.22

A7

Figure 22. Block diagram of the noise blanker

In a first stage the spikes must be detected but to avoid a wrong triggering on high frequency (white) noise a complex trigger control is implemented. Behind the trigger stage a pulse former generates the "blank-ing"-pulse. An own biasing circuit supplies the noise blanker in order to avoid any cross talk to the signal path.

Trigger Path

The incoming MPX signal is high pass filtered, amplified and rectified. This second order high pass filter has a corner-frequency of 140kHz. The rectified signal, RECT, is low pass filtered to generate a signal called PEAK. Also noise with a frequency 140kHz increases the PEAK voltage. The resulting voltage can be adjusted by use of the noise rectifier discharge current. The PEAK voltage is fed to a threshold generator, which adds to the PEAK-voltage a DC-dependent threshold VTH. Both signals, RECT and PEAK+VTH are fed to a comparator, which triggers a re-triggerable monoflop. The monoflop's output activates the sample-and-hold circuits in the signal path for the selected duration.

Automatic Noise Controlled Threshold Adjustment (ATC)

There are mainly two independent possibilities for programming the trigger threshold:

1. the low threshold in 8 steps (bits D_0 to D_2 of the noise blanker byte)

2. and the noise adjusted threshold in 4 steps (bits D₃ and D₄ of the noise blanker-byte, see fig. 15).

The low threshold is active in combination with a good MPX signal without any noise; the PEAK voltage is less than 1V. The sensitivity in this operation is high.

If the MPX signal is noisy (low fieldstrength) the PEAK voltage increases due to the higher noise, which is also rectified. With increasing of the PEAK voltage the trigger threshold increases, too. This particular gain is programmable in 4 steps (see fig. 17).

Á7/

ADDITIONAL THRESHOLD CONTROL MECHANISM

Automatic Threshold Control by the Stereoblend voltage

Besides the noise controlled threshold adjustment there is an additional possibility for influencing the trigger threshold. It is depending on the stereoblend control.

The point where the MPX signal starts to become noisy is fixed by the RF part. Therefore also the starting point of the normal noise-controlled trigger adjustment is fixed (fig. 17). In some cases the behavior of the noise blanker can be improved by increasing the threshold even in a region of higher fieldstrength. Sometimes a wrong triggering occurs for the MPX signal often shows distortion in this range, which can be avoided even if using a low threshold. Because of the overlap of this range and the range of the stereo/ mono transition it can be controlled by stereoblend. This threshold increase is programmable in 3 steps or switched off with bits D_0 and D_1 of the fieldstrength control-byte.

Over Deviation Detector

If the system is tuned to stations with a high deviation the noise blanker can trigger on the higher frequencies of the modulation. To avoid this wrong behavior, which causes noise in the output signal, the noise blanker offers a deviation-dependent threshold adjustment. By rectifying the MPX signal a further signal representing the actual deviation is obtained. It is used to increase the PEAK voltage. Offset and gain of this circuit are programmable in 3 steps with the bits D_6 and D_7 of the stereo decoder-byte (the first step turns off the detector, see fig. 16).

Multipath-Level

To react on high repetitive spikes caused by a Multipath-situation, the discharge-time of the PEAK voltage can be decreased depending on the voltage-level at Pin MPout. There are two ways to do this. One way is to switch on the linear influence of the Multipath-Level on the PEAK-signal (D7 of field strength control byte). In this case the discharge slew rate is 1V/ms¹. The second possibility is to activate a function, which switches to the 18k discharge if the Multipath-Level is below 2.5V (D7 of High-Cut-Control-Byte).

¹ The slew rate is measured with $R_{Discharge}$ = infinite and V_{MPout} = 2.5V

Functional Description of the Multipath-Detector

Using the internal Multipath-Detector the audible effects of a multipath condition can be minimized. A multipath-condition is detected by rectifying the 19kHz spectrum in the fieldstrength signal. An external capacitor is used to define the attack- and decay-times (see block diagram, fig. 23). The MP_OUT-pin is used as detector-output connected to a capacitor of about 47nF and additionally the MP_IN-pin is selected to be the fieldstrength input. Using this configuration an external adaptation to the user's requirement is possible without affecting the "normal" fieldstrength input (LEVEL) for the stereo decoder. This application is given in fig. 29.

To keep the old value of the Multipath Detector during an AF-jump, the MP-Hold switch can disconnect the external capacitor. This switch is controlled directly by the AFS-Pin.

Selecting the "internal influence" in the configuration byte the channel separation is automatically reduced during a multipath condition according to the voltage appearing at the MP_OUT-pin. A possible application is shown in fig. 29.

Figure 23. Block Diagram of Multi path Detector

Programming

To obtain a good multipath performance an adaptation is necessary. Therefore the gain of the 19kHzbandpass is programmable in four steps as well as the rectifier gain. The attack- and decay-times can be set by the external capacitor value.

Quality Detector

The A673 offers a quality detector output, which gives a voltage representing the FM-reception conditions. To calculate this voltage the MPX-noise and the multipath-detector output are summed according to the following formula:

$$V_{\text{Qual}} = 1.6 (V_{\text{Noise}} - 0.8 \text{ V}) + a (\text{REF5V} - V_{\text{Mpout}}).$$

The noise-signal is the PEAK-signal without additional influences (see noise blanker description). The factor 'a' can by programmed from 0.6 to 1.05. The output is a low impedance output able to drive external circuitry as well as simply fed to an AD-converter for RDS applications.

AF Search Control

The TDA7411 is supplied with several functionality to support AF-checks using the stereo decoder. As mentioned already before the high impedance mute feature avoids any clicks during the jump condition. It is possible at the same time to evaluate the noise- and multipath-content of the alternate frequency by using the Quality detector output. Therefore the multipath-detector is switched automatically to a small time-constant.

One additional pin (AFS) is implemented in order to separate the audio processor-mute and stereo decoder AF-functions. In Figure 24 the block diagram and control-functions of the complete AFS-functionality is shown (please not the pins FAS and SM are active low as well as all control-bits indicated by an over bar).

Figure 24. Mute Control Logic

Test Mode

During the test mode which can be activated by setting bit D0 of the testing-byte and bit D5 of the sub address byte to "1" several internal signals are available at the CDR pin. During this mode the input resistance of 100kOhm is disconnected from the pin. The internal signals available are shown in the data byte specification.

57

I²C BUS INTERFACE DESCRIPTION

Interface Protocol

The interface protocol comprises:

-a start condition (S)

-a chip address byte (the LSB bit determines read / write transmission)

-a subaddress byte

-a sequence of data (N-bytes + acknowledge)

-a stop condition (P)

CHIP ADDRE	SS	SUBAD	DDRESS	DATA 1 to DA	TA n
MSB	LSB	I MSB	LSB	MSB	LSB
S 1 0 0 0 1	1 0 R/W ACK	A4 AZ T I	A3 A2 A1 A0 ACK	DATA	ACK P
D03AU1526					

S = Start

ACK = Acknowledge AZ = AutoZero-Remain T = Testing I = Autoincrement P = StopMAX CLOCK SPEED 500kbits/s

Auto increment

te Productis If bit I in the subaddress byte is set to "1", the autoincrement of the subaddress is enabled.

TRANSMITTED DATA (send mode)

MSB							LSB				
Х	Х	Х	LSx	ST	SM	х	Х				
SM = Soft mute activated											
ST = Stereo											
X = Not Used	lot Used										

The transmitted data is automatically updated after each ACK.

Transmission can be repeated without new chip address.

Reset Condition

A power on reset is invoked if the supply voltage is below than 3.5V. After that the following data are written automatically into the registers of all sub addresses:

MSB							LSB
1	1	1	1	1	1	1	0

The programming after POR is marked bold face / underlined in the programming tables. With that programming all the outputs are muted to Vr^{ef}.

SUBADDRESS (receive mode)

MSB							LSB	FUNCTION	Byte
l ₃	l ₂	I ₁	I ₀	A ₃	A ₂	A ₁	A ₀	TONCTION	(dec
	0 1							Auto Zero Remain ² off on	
		0 1						Test Mode ³ off on	
			0 1					Auto Increment Mode ⁴ off on	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1				0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0	0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0	0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Input Selector (main) Volume Treble Bass Speaker Attenuator Left Front Speaker Attenuator Right Front Speaker Attenuator Left Rear Speaker Attenuator Right Rear Soft Mute / Bass Programming Stereo Decoder Noise Blanker High Cut Control Field Strength. & Quality Configuration EEPROM Testing New Quality / Control Middle Filter	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
					Ν	lew imp	lemente	ed sub addresses	
1 1 1 1 1 1		0	25	0 0 0 0 0 0 1	0 0 1 1 1 1 0	1 0 0 1 1 0	0 1 0 1 0 1 0	Input Selector (sub) Speaker Attenuator Left Free Speaker Attenuator Right Free Configuration Front Configuration Rear Configuration Free Mute	18 19 20 21 22 23 24

DATA BYTE SPECIFICATION

The status after Power-On-Reset is marked bold face / underlined in the programming tables.

Input Selector (0)

MSB							LSB	FUNCTION		
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION		
					0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	Source Selector CDCH AUX CD MD/phone NV Acin0 AM FM		
	0 0 : 1 1	0 0 : 1 1	0 0 : 1 1	0 1 : 0 1				In-Gain 15dB 14dB : 1 dB <u>0 dB</u>		
0 1								CDCH Input Configuration quasi differential full differential		
Volume and Speaker Attenuation (1, 4, 5, 6, 7, 19, 20)										
MSB		-		-			LSB	FUNCTION		

Volume and Speaker Attenuation (1, 4, 5, 6, 7, 19, 20)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	DO	FUNCTION
1	0	0	0	1	1	1	1	+15dB
:	:	:	:	:	:		:	:
1	0	0	0	0	0	0	1	+1dB
0	0	0	0	0	0	0	0	0dB
0	0	0	0	0	0	0	0	0dB
0	0	0	0	0	0	0	1	-1dB
:	:	:	:		:	:	:	:
0	0	0	0	1	1	1	1	-15dB
0	0	0	1	0	0	0	0	-16dB
:	:			:	:	:	:	:
0	1	0	0	1	1	1	0	-78dB
0	1	0	0	1	1	1	1	-79dB
Х	1	1	Х	Х	Х	Х	Х	Mute
05	210							

Treble Filter (2)

							LSB	EUNCTION			
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION			
				0 0 : 1 1	0 0 : 1 1	0 0 : 1 1	0 1 : 0 1	Treble Steps 15dB 14dB : 1 dB 0 dB			
			0 1					Boost / Cut Cut Boost Treble Center-frequency			
	0 0 1 1	0 1 0 1						10.0 kHz 12.5 kHz 15.0 kHz 17.5 kHz			
1								unused must be "1"			
Bass Filter (3)											

Bass Filter (3)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	FONCTION
				0 0	0 0	0 0	0 1	Bass Steps 15dB 14dB
				1 1	1 1	1	0	<u>1 dB</u> 0 dB
			0 1			, O		Boost / Cut Cut Boost
	0 0 1 1	0 1 0 1	6	JC	52.			Bass Quality Factor 1.00 1.25 1.50 2.00
0 1		P	\mathcal{O}					DC Mode Off On
056	slet	0		1				I

Speaker Attenuators (4-7)

Please refer to Volume Programming.

Soft Mute and Bass Programming (8)

MSB							LSB	FUNCTION				
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION				
							0	Not used Must be "0"				
					0 0 1 1	0 1 0 1		Mute Time Mute Time = 0.24ms Mute Time = 0.48ms Mute Time = 10.1ms Mute Time = 20.2ms				
				1				Not used Must be "1"				
		0 0 1 1 1	0 1 0 1 1					Bass Center-Frequency 60 Hz 70 Hz 80 Hz 100 Hz 150 Hz (if Q =2)				
0 0 1 1	0 1 0 1							Noise Blanker Time 38µs 25.5µs 32µs 22µs				
	Stereo Decoder (9)											
MSB						-	LSB	FUNCTION				

Stereo Decoder (9)

	MSB						-	LSB	FUNCTION
	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
					Ô,	2		0 1	<u>STD Unmuted</u> STD Muted
			Q			0 0 1 1	0 1 0 1		IN-Gain 11 dB IN-Gain 8.5 dB IN-Gain 6 dB I <u>N-Gain 3.5 dB</u>
		1et	6		0 1				Stereo Decoder Off <u>On</u>
	3	S.		0 1					Forced MONO MONO/STEREO switch automatically
C	Y		0 1						Noise Blanker PEAK charge current low Noise Blanker PEAK charge current high
		0 1							Pilot Threshold HIGH Pilot Threshold LOW
	0 1								Deemphasis 50µs <u>Deemphasis 75µs</u>

Noise Blanker (10)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
					0	0	0	Low Threshold 65mV
					0	0	1	Low Threshold 60mV
					0	1	0	Low Threshold 55mV
					0	1	1	Low Threshold 50mV
					1	0	0	Low Threshold 45mV
					1	0	1	Low Threshold 40mV
					1	1	0	Low Threshold 35mV
					1	1	1	Low Threshold 30mV
			0	0				Noise Controlled Threshold 320mV
			0	1				Noise Controlled Threshold 260mV
			1	0				Noise Controlled Threshold 200mV
			1	1				Noise Controlled Threshold 140mV
		0						Noise Blanker OFF
		1						Noise Blanker ON
0	0							Over Deviation Adjust 2.8V
0	1							Over Deviation Adjust 2.0V
1	0							Over Deviation Adjust 1.2V
1	1							Over Deviation Detector OFF
High-C	ut (11)				orodule			
MOD							1.00	

High-Cut (11)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
							0 1	<u>High-Cut OFF</u> High-Cut ON
					0 0 1 1	0 1 0 1	05	max. High-Cut 2dB max. High-Cut 5dB max. High-Cut 7dB max. High-Cut 10dB
			0 0 1 1	0 1 0 1	5			VHCH at 42% REF5V VHCH at 50% REF5V VHCH at 58% REF5V VHCH at 66% REF5V
	0 0 1 1	0 1 0 1	,0 ⁰					VHCL at 16.7% VHCH VHCL at 22.2% VHCH VHCL at 27.8% VHCH VHCL at 33.3% VHCH
0 1	let	0						Strong Multipath Influence on PEAK 18k Off On (18k discharge if V _{MPout} ≤ 2.5V)

Field Strength Control (12)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
					0	0	0	VSBL at 29% REF5V
					0	0	1	VSBL at 33% REF5V
					0	1	0	VSBL at 38% REF5V
					0	1	1	VSBL at 42% REF5V
					1	0	0	VSBL at 46% REF5V
					1	Ő	1	VSBL at 50% REF5V
					1	1	0	VSBL at 54% REF5V
					1	1	1	VSBL at 58% REF5V
			0 0 1 1	0 1 0 1				Noise Blanker Field Strength Adjust 2.3V Noise Blanker Field Strength Adjust 1.8V Noise Blanker Field Strength Adjust 1.3V Noise Blanker Field Strength Adjust OFF
	0 0 1 1	0 1 0 1						Quality Detector Coefficient a=0.6 Quality Detector Coefficient a=0.75 Quality Detector Coefficient a=0.9 Quality Detector Coefficient a=1.05
0 1								Multipath Influence on PEAK Discharge Off -1 V/ms
onfig	uration	(13)			proord			
MSB							LSB	

Configuration (13)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
						0 0 1	0 1 0 1	Noise Rectifier Discharge Resistor R = infinite $R_{DC} = 56k$ $\underline{R_{DC} = 33k}$ $R_{DC} = 18k$
				0 1 0 1	0011			Multipath Detector Band pass Gain 6dB 12dB 16dB <u>18dB</u>
		0	0					Multipath Detector internal influence ON OFF
	1et	0 1						Multipath Detector Charge Current 0.2µA <u>0.4µA</u>
0 0 1 1	0 1 0 1							Multipath Detector Rectifier Gain Gain = 7.6dB Gain = 4.6dB Gain = 0dB Disabled

A7/

(

Stereo Decoder Adjustment (14)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Roll-Off Compensation
0					0	0	0	Not allowed
0					0	0	1	7.2%
0					0	1	0	9.4%
:						:	:	:
0					1	0	0	13.7%
: 0					:	:	:	:
0					1	1	1	20.2%
1					0	0	0	Not allowed
1					0	0	1	19.6%
1					0	1	0	21.5%
:					:	:	:	:
1					1	0	0	25.3%
:					:	:	:	:
1					1	1	1	31.0%
								LEVEL Gain
	0	0	0	0				0dB
	0	0	0	1				0.66dB
	0	0	1	0				1.33dB
	:	:	:	:				
	1	1	1	1				10dB
Testing	g (15)						·	p100
MSB							LSB	FUNCTION

Testing (15)

MSB		_					LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
1	1	1	1	1	1	1	0	default value, see note
								Stereo Decoder Test Signals
							0	OFF
								Test Signals enabled if bit D ₅ of the sub
								address (test mode-bit) is set to "1", too
						0		External Clock
						1		Internal Clock
					C			Test Signals at CDR
		0	0	0	0			VHCCH
		0	0	0	1			Level intern
		0	0		0			Pilot magnitude
		0	0	1	1			VCOCON; VCO Control Voltage
		0	. 1	0	0			Pilot threshold
		0		0	1			HOLDN
		0	1	1	0			NB threshold
		0	1	1	1			F228
	X	U 1	0	0	0			VHCCL
	101	1	0	0	1			VSBL
6		1	0	1	0			Not used
6		1	0	1	1			Not used
72		1	1	0	0			PEAK
		1	1	0	1			Not used
		1	1	1	0			REF5V
		1	1	1	1			Not used
								VCO
	0							OFF
	1							ON
								Audio Processor Test Mode
0								Enabled if bit D ₅ of the sub address (test
								mode-bit) is set to "1", too
1								OFF

Note: This byte is used for testing or evaluation purposes only and must not set to other values than the default "11111110" in the application!

(

New Quality / Control (16)

MSB							LSB	FUNCTION				
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION				
							0 1	Reference Generation Internal Reference-Divider External Reference Force				
					0 0 1 1	0 1 0 1		Quality Noise-Gain 15 dB 12 dB 9 dB <u>6 dB</u>				
				0 1				SC-Clock-Mode Fast Mode Normal Mode				
			0 1					AutoZero Off <u>On</u>				
		0 1						Smoothing Filter On Off				
	0 1							Enable AF-Pin Enable Pin Disable Pin				
0 1								AF-Pin ST-Decoder-Mute-Influence On Off				
Middle	Middle Filter (17)											
MSB							I SB					

Middle Filter (17)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
								Attenuation
			0	0	0	0	0	-15dB
			0	0		0	1	-14dB
			0		1	1	0	-1 dB
			0		1	1	1	0 dB
			. 1	1	1	1	1	0 dB
		0		1	1	1	0	<u>+1 dB</u>
			:	:	:	:	:	:
		\mathbf{O}	1	0	0	0	1	+14 dB
		0	1	0	0	0	0	+15dB
	10							Middle Center-frequency
	0	0						500 Hz
3	0	1						1.0 kHz
V	1	0						1.5 kHz
1	1	1						2.0 kHz
								Mid Q Factor
0								1.0
1								2.0

Input Selector Sub (18)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
					0 0 0 1	0 0 1 1 0 0	0 1 0 1 0	Source Selector CDCH AUX CD MD/phone NV Acin0
					1 1	1 1	0 1	AM FM
	1	1	1	1				Unused Must be "1"
0 1								MD Input Mode Phone MD

Configuration Front Speaker (21)

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	- FUNCTION
					0 0 0 1 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0	Source Selector Middle filter output Bass filter output NV Phone ACin0 ACin1 <u>ACin2</u> ACin3
				0 1				Interrupt Left Interrupt No interrupt
			0 1					Interrupt Right Interrupt No interrupt
		0	$\sqrt{0}$					Interrupt Source Left Phone <u>NV</u>
	0	0)						Interrupt Source Right Phone <u>NV</u>
-5),							Not used Must be "1"

Configuration Rear Speaker (22)

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Image: Constraint of the second secon	MSB							LSB	FUNCTION
0 0 0 0 0 Middle filter output 0 0 1 Bass filter output 0 NV 0 1 0 1 Bass filter output 0 0 1 0 1 NV 0 1 0 1 0 1 Phone ACin0 1 0 1 0 ACin1 1 1 1 1 ACin3 0 1 1 1 ACin3 0 1 1 1 ACin3 1 1 1 30k Sok 1 1 1 30k Must be "1"	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
1 1 1 0 0 0 0 Middle filter output 0 1 0 1 0 NV 0 1 1 0 NV 0 1 1 Phone 1 0 1 1 Phone 1 0 1 ACin0 1 1 1 0 ACin1 1 1 1 1 ACin3 0 0 1 1 ACin3 0 0 1 50k 1 1 1 30k	D7	D ₆	D_5	D ₄	D ₃	D ₂	D ₁	D ₀	
0 0 Not allowed (50k) S0k 0 1 50k 40k 30k 1 1 1 Unused Must be "1"						0 0	0 1 1 0 0 1	1 0 1 0 1 0	Middle filter output Bass filter output NV Phone ACin0 ACin1 <u>ACin2</u>
1 1 1 <u>Must be "1"</u>				0 1	1 0				Not allowed (50k) 50k 40k
Configuration Rear Speaker (23)	1	1	1						
MSB LSB		uration	Rear Sp	oeaker ((23)				odulo

Configuration Rear Speaker (23)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
					0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	Source Selector Middle filter output Bass filter output NV Phone ACin1 ACin2 ACin3 ACin3_lowpass
			1					Unused Must be "1"
0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1	KOC C					Low Pass Corner Frequency flat 50 Hz 60 Hz 80 Hz 100 Hz 120 Hz not allowed (120 Hz) not allowed (120 Hz)

A7/

Mute Configuration (24)

MSB	LSB							FUNCTION	
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION	
							0 1	Front Left Speaker Muted Unmuted	
						0 1		Front Right Speaker Muted <u>Unmuted</u>	
					0 1			Rear Speaker Muted <u>Unmuted</u>	
				0 1				Smoothing Bass off on	
			0 1					Free Speaker Muted <u>Unmuted</u>	
		0 1						Smoothing Low Pass off on	
	0 1							Main Channel Muted Unmuted	
0 1								Sub Channel Muted <u>Unmuted</u>	
APPLICATION CIRCUIT									

APPLICATION CIRCUIT

Figure 25. Standard Application

DIM.		mm		inch					
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
A			1.60			0.063			
A1	0.05		0.15	0.002		0.006			
A2	1.35	1.40	1.45	0.053	0.055	0.057			
В	0.30	0.37	0.45	0.012	0.015	0.018			
С	0.09		0.20	0.004		0.008			
D	11.80	12.00	12.20	0.464	0.472	0.480			
D1	9.80	10.00	10.20	0.386	0.394	0.401			
D3		8.00			0.315				
E	11.80	12.00	12.20	0.464	0.472	0.480			
E1	9.80	10.00	10.20	0.386	0.394	0.401			
E3		8.00			0.315				
е		0.80			0.031				
L	0.45	0.60	0.75	0.018	0.024	0.030			
L1		1.00			0.039				
k	0° (min.), 3.5° (typ.), 7° (max.)								

OUTLINE AND
MECHANICAL DATA Image: constraint of the second second

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.