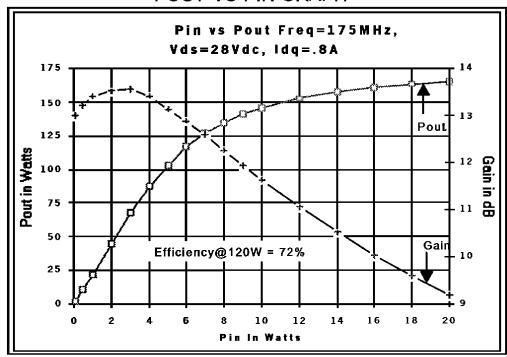

RF FIELD-EFFECT POWER TRANSISTOR

DESCRIPTION:

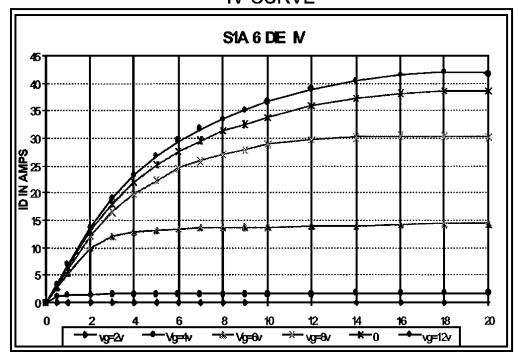
The **MRF141** is a N-Channel Enhancement-Mode MOSFET RF Power Transistor Designed for 175 MHz 150 W Transmitter and Amplifier Applications.

MAXIMUM RATINGS

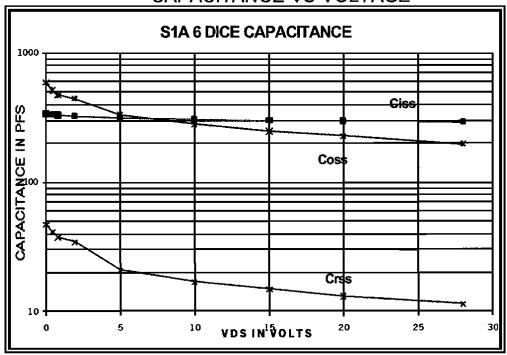
I _D	16 A				
V_{DSS}	65 V				
V_{GS}	±40 V				
P _{DISS}	300 W @ T _C = 25 °C				
T_J	-65 °C to +200 °C				
T _{STG}	-65 °C to +200 °C				
θ_{JC}	0.6 °C/W				


CHARACTERISTICS T_C = 25 °C

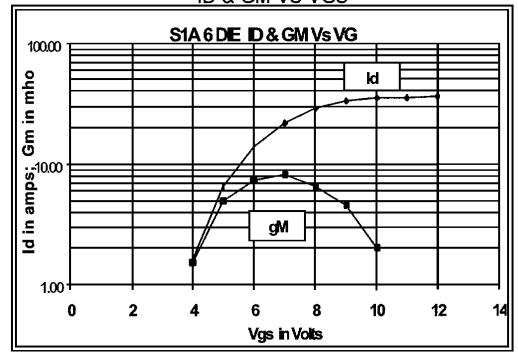
SYMBOL	TEST CONDITIONS	MINIMUM	TYPICAL	MAXIMUM	UNITS	
BV _{DSS}	I _D = 100 mA	65			V	
I _{DSS}	V _{DS} = 28 V V _{GS} = 0 V			5.0	mA	
I _{GSS}	V _{DS} = 0 V V _{GS} = 20 V			1.0	μА	
V _{GS(th)}	I _D = 100 mA V _{DS} = 10 V	1.0		5.0	V	
V _{DS(on)}	I _D = 10 A V _{GS} = 10 V			5.0	V	
g fs	$I_D = 5.0 \text{ A}$ $V_{DS} = 10 \text{ V}$	5.0			mhos	
C _{iss} C _{oss} C _{rss}	$V_{DS} = 28 \text{ V}$ $V_{GS} = 0 \text{ V}$ $f = 1.0 \text{ MHz}$		350 420 40		pF	
G _{ps}	$V_{DD} = 28 \text{ V}$ $I_{DQ} = 250 \text{ mA}$ $P_{out} = 150 \text{ W}$ (PEP) $f = 175 \text{ MHz}$	16	20 10		dB	
η IMD _(d3) IMD _(d11)	$V_{DD} = 28 \text{ V}$ $I_{DQ} = 250 \text{ mA}$ $P_{out} = 150 \text{ W}$ (PEP) $I_{D(max)} = 5.95 \text{ A}$ $f = 30 \text{ to } 30.001 \text{ MHz}$	40	-30 -60	-28	% dB dB	
Ψ	$V_{DD} = 28 \text{ V}$ $I_{DQ} = 250 \text{ mA}$ $P_{out} = 150 \text{ W}$ (PEP) $f_1 = 30 \text{ to } 30.001 \text{ MHz}$ $V_{SWR} = 30:1$	NO	NO DEGRADATION IN OUTPUT POWER			

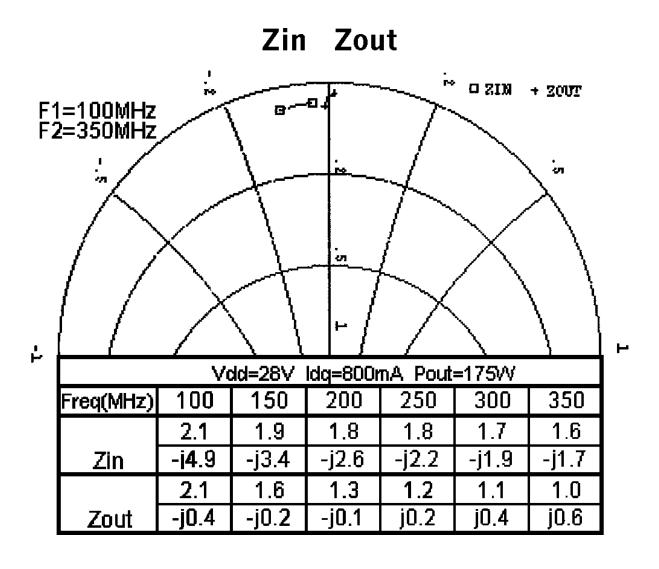

ADVANCED SEMICONDUCTOR, INC.

POUT VS PIN GRAPH



IV CURVE




CAPACITANCE VS VOLTAGE

ID & GM VS VGS

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.