LM723QML Voltage Regulator

Literature Number: SNVS310

LM723QML Voltage Regulator General Description

The LM723 is a voltage regulator designed primarily for series regulator applications. By itself, it will supply output currents up to 150 mA; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting.

The LM723 is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.

Features

- 150 mA output current without external pass transistor
- Output currents in excess of 10A possible by adding external transistors
- Input voltage 40V max
- Output voltage adjustable from 2V to 37V
- Can be used as either a linear or a switching regulator

Ordering Information

NS PART NUMBER	SMD PART NUMBER	NS PACKAGE NUMBER	PACKAGE DISCRIPTION
LM723E/883		E20A	20LD LEADLESS CHIP CARRIER
LM723H/883		H10C	10LD T0–100, METAL CAN
LM723J/883		J14A	14LD CERDIP

February 2005

Equivalent Circuit*

*Pin numbers refer to metal can package.

Schematic Diagram

www.national.com

Absolute Maximum	Ratings (Note 1)
Pulse Voltage from V ⁺ to	
V ⁻ (50 ms)	50V
Continuous Voltage from	
V ⁺ to V ⁻	40V
Input-Output Voltage	
Differential	40V
Maximum Amplifier Input	
Voltage	
Either Input	8.5V
Differential	5V
Current from V _Z	25 mA
Current from V _{REF}	15 mA
Internal Power Dissipation	
Metal Can (Note 2)	800 mW
Cavity DIP (Note 2)	900 mW
LCC (Note 2)	900 mW
Operating Temperature	$-55^{\circ}C \le T_A \le +125^{\circ}C$
Range	
Maximum T _J	+150°C
Storage Temperature	
Range	$-65^{\circ}C \le T_A \le +150^{\circ}C$

Lead Temperature	300°C
(Soldering, 4 sec. max.)	
Thermal Resistance	
θ_{JA}	
Cerdip	
(Still Air)	100°C/W
Cerdip	
(500LF/ Min Air flow)	61°C/W
Metal Can	
(Still Air)	156°C/W
Metal Can	
(500LF/ Min Air flow)	89°C/W
LCC	
(Still Air)	96°C/W
LCC	
(500LF/ Min Air flow)	70°C/W
θ _{JC}	
CERDIP	22°C/W
Metal Can	37°C/W
LCC	27°C/W
ESD Tolerance (Note 3)	500V

Quality Conformance Inspection

MIL-STD-883, Method 5005 — Group A

Subgroup	Description	Temp(°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

LM723QMI

Electrical Characteristics

DC Parameters (Note 9)

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- group:
V _{rline} L	Line Regulation	$12V \le V_{\text{IN}} \le 15V, \ V_{\text{OUT}} = 5V,$		-0.1	0.1	%V _{OUT}	1
		$I_{L} = 1mA$		-0.2	0.2	%V _{OUT}	2
				-0.3	0.3	%V _{OUT}	3
		$12V \leq V_{\text{IN}} \leq 40V, V_{\text{OUT}} = 2V, \\ I_{\text{L}} = 1\text{mA}$		-0.2	0.2	%V _{OUT}	1
		$9.5V \leq V_{\text{IN}} \leq 40V, \ V_{\text{OUT}} = 5V, \ I_{\text{L}} = 1\text{mA}$		-0.3	0.3	%V _{OUT}	1
V _{rload}	Load Regulation	$1\text{mA} \le \text{I}_{\text{L}} \le 50\text{mA}, \text{ V}_{\text{IN}} = 12\text{V},$		-0.15	0.15	%V _{OUT}	1
		V _{OUT} = 5V		-0.4	0.4	%V _{OUT}	2
				-0.6	0.6	%V _{OUT}	3
		$1mA \le I_L \le 10mA, V_{IN} = 40V,$ $V_{OUT} = 37V$		-0.5	0.5	%V _{OUT}	1
		$6mA \le I_L \le 12mA, V_{IN} = 10V, \\ V_{OUT} = 7.5V$		-0.2	0.2	%V _{OUT}	1
V _{REF}	Voltage Reference	I _{REF} = 1mA, V _{IN} = 12V		6.95	7.35	V	1
				6.9	7.4	V	2, 3
I _{SCD}	Standby Current	$V_{IN} = 30V, I_L = I_{REF} = 0,$		0.5	3	mA	1
		$V_{OUT} = V_{REF}$		0.5	2.4	mA	2
				0.5	3.5	mA	3
I _{os}	Short Circuit Current	$V_{OUT} = 5V, V_{IN} = 12V, R_{SC} = 10\Omega,$ $R_L = 0$		45	85	mA	1
Vz	Zener Voltage	V _{IN} = 40V, V _{OUT} = 7.15V, I _Z = 1mA	(Note 8) (Note 10)	5.58	6.82	V	1
V _{OUT}	Output Voltage	$V_{IN} = 12V, V_{OUT} = 5V, I_{L} = 1mA$,	4.5	5.5	V	1, 2, 3

Electrical Characteristics

AC Parameters (Note 9)

Symbol	Parameter	Conditions	Not es	Min	Max	Units	Sub- groups
Delta V _{OUT}	Ripple Rejection	$f = 120H_Z$, $C_{REF} = 0$, $V_{INS} = 2V_{RMS}$		55		dB	4
Delta V _{IN}		$f = 120H_Z, C_{REF} = 5\mu F,$		67		dB	4
		$V_{INS} = 2V_{RMS}$					

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum available power dissipation at any temperature is $P_d = (T_{JMAX} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is less. See derating curves for maximum power rating above 25°C.

Note 3: Human body model, 1.5 k Ω in series with 100 pF.

Note 4: L1 is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in. air gap.

Note 5: Figures in parentheses may be used if R1/R2 divider is placed on opposite input of error amp.

Note 6: Replace R1/R2 in figures with divider shown in *Figure 13*.

Note 7: V⁺ and V_{CC} must be connected to a +3V or greater supply.

Note 8: For metal can applications where V_Z is required, an external 6.2V zener diode should be connected in series with V_{OUT} .

Note 9: Unless otherwise specified, $T_A = 25^{\circ}$ C, $V_{IN} = V^+ = V_C = 12V$, $V^- = 0$, $V_{OUT} = 5V$, $I_L = 1$ mA, $R_{SC} = 0$, $C_1 = 100$ pF, $C_{REF} = 0$ and divider impedance as seen by error amplifier $\leq 10 \text{ k}\Omega$ connected as shown in *Figure 1* Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken into account separately for high dissipation conditions.

Note 10: Tested for DIPS only.

Typical Performance Characteristics (Continued)

Output Impedence vs Frequency 10 V_{OUT} = +5V V_{IN} = +12V R_{SC} = O **OUTPUT IMPEDANCE (**2) T_A = 25°C 1.0 50 m A 0.1 .01 100 1k 10k 100k 1M FREQUENCY (Hz)

20120430

Maximum Power Ratings

Noise vs Filter Capacitor (C_{REF} in Circuit of *Figure 1* (Bandwidth 100 Hz to 10 kHz)

Power Dissipation vs Ambient Temperature

TABLE 1. Resistor Values (k Ω) for Standard Output Voltage

			•					•	•				
Positive	Applicable	Fix	ed	C	Output	:	Negative		Fi	ced	59	% Out	put
Output	Figures	Out	tput	Ad	justab	le	Output	Applicable	Out	tput	A	djusta	ble
Voltage		±5	5%	±10%	∕₀ (Not	e 6)	Voltage	Figures	±{	5%		±10%	6
	(Note 5)	R1	R2	R1	P1	R2			R1	R2	R1	P1	R2
+3.0	1, 5, 6, 9, 12 (4)	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	102	2.2	10	91
+3.6	1, 5, 6, 9, 12 (4)	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240
+5.0	1, 5, 6, 9, 12 (4)	2.15	4.99	0.75	0.5	2.2	-6 (Note 7)	3, (10)	3.57	2.43	1.2	0.5	0.75
+6.0	1, 5, 6, 9, 12 (4)	1.15	6.04	0.5	0.5	2.7	-9	3, 10	3.48	5.36	1.2	0.5	2.0
+9.0	2, 4, (5, 6, 9, 12)	1.87	7.15	0.75	1.0	2.7	-12	3, 10	3.57	8.45	1.2	0.5	3.3
+12	2, 4, (5, 6, 9, 12)	4.87	7.15	2.0	1.0	3.0	-15	3, 10	3.65	11.5	1.2	0.5	4.3
+15	2, 4, (5, 6, 9, 12)	7.87	7.15	3.3	1.0	3.0	-28	3, 10	3.57	24.3	1.2	0.5	10
+28	2, 4, (5, 6, 9, 12)	21.0	7.15	5.6	1.0	2.0	-45	8	3.57	41.2	2.2	10	33
+45	7	3.57	48.7	2.2	10	39	-100	8	3.57	97.6	2.2	10	91
+75	7	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240

TABLE 2. Formulae for Intermediate Output Voltages

Outputs from +2 to +7 volts (Figure 1 Figures 4, 5, 6, 9, 12)	Outputs from +4 to +250 volts (<i>Figure 7</i>)	Current Limiting
$V_{OUT} = \left(V_{REF} \times \frac{R2}{R1 + R2}\right)$	$V_{OUT} = \left(rac{V_{REF}}{2} imes rac{R2 - R1}{R1} ight); R3 = R4$	$I_{LIMIT} = \frac{V_{SENSE}}{R_{SC}}$
Outputs from +7 to +37 volts	Outputs from -6 to -250 volts	Foldback Current Limiting
(Figures 2, 4, 5, 6, 9, 12)	(Figures 3, 8, 10)	$I_{\text{KNEE}} = \left(\frac{V_{\text{OUT}} \text{R3}}{\text{R}_{\text{SC}} \text{R4}} + \frac{V_{\text{SENSE}} (\text{R3} + \text{R4})}{\text{R}_{\text{SC}} \text{R4}}\right)$
$V_{OUT} = \left(V_{REF} \times \frac{R1 + R2}{R2}\right)$	$V_{OUT} = \left(\frac{V_{REF}}{2} \times \frac{R1 + R2}{R1}\right); R3 = R4$	$I_{\text{SHORT CKT}} = \left(\frac{V_{\text{SENSE}}}{R_{\text{SC}}} \times \frac{R3 + R4}{R4}\right)$

Typical Applications

for minimum temperature drift.

Typical Performance

Regulated Output Voltage	5V
Line Regulation ($\Delta V_{IN} = 3V$)	0.5mV
Load Regulation ($\Delta I_{L} = 50 \text{ mA}$)	1.5mV

FIGURE 1. Basic Low Voltage Regulator $(V_{OUT} = 2 \text{ to } 7 \text{ Volts})$

for minimum temperature drift. R3 may be eliminated for minimum component count.

Typical Performance

Regulated Output Voltage	15V
Line Regulation ($\Delta V_{IN} = 3V$)	1.5 mV
Load Regulation ($\Delta I_{L} = 50 \text{ mA}$)	4.5 mV

FIGURE 2. Basic High Voltage Regulator (V_{OUT} = 7 to 37 Volts)

Typical Performance

Regulated Output Voltage	–15V
Line Regulation ($\Delta V_{IN} = 3V$)	1 mV
Load Regulation ($\Delta I_{L} = 100 \text{ mA}$)	2 mV

FIGURE 3. Negative Voltage Regulator

Typical Performance

Regulated Output Voltage	+15V
Line Regulation ($\Delta V_{IN} = 3V$)	1.5 mV
Load Regulation ($\Delta I_{L} = 1A$)	15 mV

FIGURE 4. Positive Voltage Regulator (External NPN Pass Transistor)

Typical Performance

Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 3V$)	0.5 mV
Load Regulation ($\Delta I_{L} = 1A$)	5 mV

FIGURE 5. Positive Voltage Regulator (External PNP Pass Transistor)

Typical Performance

Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 3V$)	0.5 mV
Load Regulation ($\Delta I_L = 10 \text{ mA}$)	1 mV
Short Circuit Current	20 mA

FIGURE 6. Foldback Current Limiting

Typical Performance

Regulated Output Voltage	+50V
Line Regulation ($\Delta V_{IN} = 20V$)	15 mV
Load Regulation ($\Delta I_{L} = 50 \text{ mA}$)	20 mV

FIGURE 8. Negative Floating Regulator

Typical Performance

Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 30V$)	10 mV
Load Regulation ($\Delta I_L = 2A$)	80 mV

FIGURE 9. Positive Switching Regulator(Note 4)

Typical Performance

Regulated Output Voltage	-15V
Line Regulation ($\Delta V_{IN} = 20V$)	8 mV
Load Regulation ($\Delta I_L = 2A$)	6 mV

FIGURE 10. Negative Switching Regulator(Note 4)

Note: Current limit transistor may be used for shutdown if current limiting is not required.

Typical Performance

Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 3V$)	0.5 mV
Load Regulation ($\Delta I_L = 50 \text{ mA}$)	1.5 mV

FIGURE 11. Remote Shutdown Regulator with Current Limiting

Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 10V$)	0.5 mV
Load Regulation ($\Delta I_{L} = 100 \text{ mA}$)	1.5 mV

FIGURE 12. Shunt Regulator

FIGURE 13. Output Voltage Adjust (Note 6)

Revision History Section

Date				
Released	Revision	Section	Originator	Changes
02/15/05	A	New Release, Corporate format	L. Lytle	1 MDS data sheet converted into one Corp. data sheet format. MNLM723-X, Rev. 1A0. MDS data sheet will be archived. AC and Drift parameters removed from specifcation because they only applied to the JAN B/S devices, covered in a separate datasheet.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

www.national.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Products		Applications	
	Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
	Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
	Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
	DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
	DSP	dsp.ti.com	Industrial	www.ti.com/industrial
	Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
	Interface	interface.ti.com	Security	www.ti.com/security
	Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
	Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
	Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
	RFID	www.ti-rfid.com		
	OMAP Mobile Processors	www.ti.com/omap		
	Wireless Connectivity	www.ti.com/wirelessconnectivity		
			u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.