RoHS

COMPLIANT

HALOGEN FREE

GREEN

(5-2008)

Thin Film Microwave Resistor

Product may not be to scale

The MIC resistor chips on alumina are designed with low shunt capacitance. Most lower value resistor geometrics are compatible with strip lines, making them ideally suited for microwave circuits.

These chips are manufactured using Vishay Electro-Films (EFI) sophisticated Thin Film equipment and manufacturing technology. The MICs are 100 % electrically tested and visually inspected to MIL-STD-883.

FEATURES

- Wire bondable
- High frequency
- Small single chip size: 0.020" x 0.040"
- Case: 0402
- Microwave resistance range: 20 Ω to 1 $k\Omega$
- Overall resistance range: 20 Ω to 20 k Ω
- Alumina substrate
- Low stray capacitance: < 0.2 pF
- Resistor material: Tantalum nitride, self passivating
- Moisture resistant
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

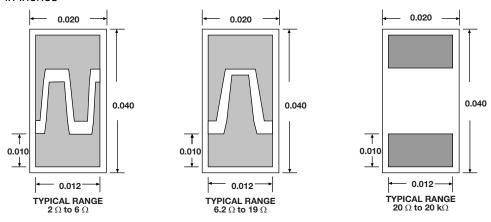
APPLICATIONS

Vishay EFI MIC chip resistors provide excellent high-frequency response and are ideally suited for prototyping.

Typical application areas are:

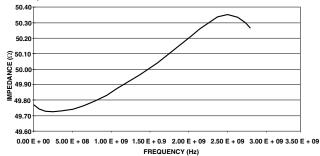
- Amplifiers
- Oscillators
- Attenuators
- Couplers
- Filters

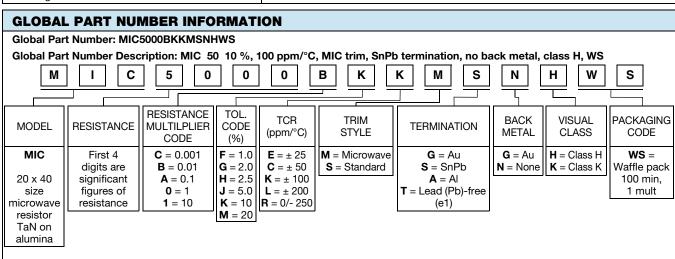
TEMPERATURE COEFFICIENT OF RESISTANCE, VALUES, AND TOLERANCES		
PARAMETER	VALUE	UNIT
Resistance Range	2 to 20K	Ω
Tolerances	± 1	%
TCR	± 25, ± 50, ± 100, ± 200	ppm/°C


Note

• Only 20 Ω to 1 k Ω are standard strip line designs for microwave applications

STANDARD ELECTRICAL SPECIFICATIONS		
PARAMETER	VALUE	UNIT
Noise, MIL-STD-202, Method 308	- 20 typ.	dB
Moisture Resistance, MIL-STD-202, Method 106	± 0.1 max. Δ <i>R/R</i>	%
Stability, 1000 h, + 125 °C, 62 mW	± 0.2 max. Δ <i>R</i> / <i>R</i>	%
Operating Temperature Range	- 55 to + 125	°C
Thermal Shock, MIL-STD-202, Method 107, Test Condition F	± 0.1 max. Δ <i>R/R</i>	%
High Temperature Exposure + 150 °C, 1000 h	± 0.2 max. Δ <i>R</i> / <i>R</i>	%
Dielectric Voltage Breakdown	400	V
Insulation Resistance	10 ¹² min.	Ω
Operating Voltage	100 max.	V
DC Power Rating at + 70 °C (Derated to Zero at 150 °C)	0.125 max.	W
5 x Rated Power Short-Time Overload, + 25 °C, 5 s	± 0.1 max. ΔR/R	%


DIMENSIONS in inches


SCHEMATIC

IMPEDANCE VS. FREQUENCY 50 Ω , 20 mil x 40 mil SIZE

MECHANICAL SPECIFICATIONS		
PARAMETER		
Chip Size	0.020" x 0.040" ± 0.003" (0.5 mm x 1.0 mm ± 0.076 mm)	
Chip Thickness	0.010" ± 0.002" (0.254 mm ± 0.05 mm)	
Chip Substrate Material	99.6 % alumina, 2 μ" to 4 μ" finish	
Resistor Material	Tantalum nitride, self-passivating	
Bonding Pad Size	0.010" x 0.012" (0.254 mm x 0.30 mm) min.	
Number of Pads	2	
Pad Material	25 kÅ minimum gold standard	
Backing	None	

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.