

Value Line Transmitter

Applications

- Ultra low-power wireless applications operating in the 315/433/868/915 MHz ISM/SRD bands
- Wireless alarm and security systems
- Industrial monitoring and control

Key Features

RF Performance

- Programmable output power up to +12 dBm
- Programmable data rate from 0.6 to 600 kbps
- Frequency bands: 300 348 MHz, 387 464 MHz, and 779 928 MHz
- 2-FSK, 4-FSK, GFSK, and OOK supported

Digital Features

- Flexible support for packet oriented systems
- On-chip support for sync word insertion, flexible packet length, and automatic CRC calculation

Product Description

The **CC115L** is a cost optimized sub-1 GHz RF transmitter. The circuit is based on the popular **CC1101** RF transceiver, and RF performance characteristics are identical. The **CC115L** value line transmitter together with the **CC113L** value line receiver enables a low cost RF link.

The RF transmitter is integrated with a highly configurable baseband modulator. The modem supports various modulation formats and has a configurable data rates from 0.6 to 600 kbps.

CC115L provides extensive hardware support for packet handling, data buffering and burst transmissions.

- Remote Controls
- Toys
- Home and building automation
- Active RFID

Low-Power Features

- 200 nA sleep mode current consumption
- Fast start-up time; 240 µs from sleep to TX mode
- 64-byte TX FIFO

General

- Few external components; Fully integrated frequency synthesizer
- Green package: RoHS compliant and no antimony or bromine
- Small size (QLP 4x4 mm package, 20 pins)
- Suited for systems targeting compliance with EN 300 220 V2.3.1 (Europe) and FCC CFR Part 15 (US)
- Support for asynchronous and synchronous serial transmit mode for backwards compatibility with existing radio communication protocols.

The main operating parameters and the 64byte transmit FIFO of **CC1151** can be controlled via an SPI interface. In a typical system, the **CC1151** will be used together with a microcontroller and a few additional passive components.

This product shall not be used in any of the following products or systems without prior express written permission from Texas Instruments:

implantable cardiac rhythm management systems, including without limitation pacemakers, defibrillators and cardiac resynchronization devices, external cardiac rhythm management systems that communicate directly with one or more implantable medical devices; or other devices used to monitor or treat cardiac function, including without limitation pressure sensors, biochemical sensors and neurostimulators.

orner devices used to monitor or treat cardiac function, including without limitation pressure sensors, biochemical sensors and neurostimulato Please contact lpw-medical-approval@list.ti.com if your application might fall within the category described above.

Abbreviations

Abbreviations used in this data sheet are described below.

2-FSK	Binary Frequency Shift Keying	MCU	Microcontroller Unit
4-FSK	Quaternary Frequency Shift Keying	MSB	Most Significant Bit
ADC	Analog to Digital Converter	N/A	Not Applicable
AMR	Automatic Meter Reading	NRZ	Non Return to Zero (Coding)
BOM	Bill of Material	OOK	On-Off Keying
BT	Bandwidth-Time product	PA	Power Amplifier
CFR	Code of Federal Regulations	PCB	Printed Circuit Board
CRC	Cyclic Redundancy Check	PD	Power Down
CW	Continuous Wave (Unmodulated Carrier)	PER	Packet Error Rate
DC	Direct Current	PLL	Phase Locked Loop
ESR	Equivalent Series Resistance	POR	Power-On Reset
FCC	Federal Communications Commission	QLP	Quad Leadless Package
FIFO	First-In-First-Out	QPSK	Quadrature Phase Shift Keying
FS	Frequency Synthesizer	RC	Resistor-Capacitor
GFSK	Gaussian shaped Frequency Shift Keying	RF	Radio Frequency
IF	Intermediate Frequency	SPI	Serial Peripheral Interface
I/Q	In-Phase/Quadrature	SRD	Short Range Devices
ISM	Industrial, Scientific, Medical	ТХ	Transmit, Transmit Mode
LC	Inductor-Capacitor	VCO	Voltage Controlled Oscillator
LO	Local Oscillator	XOSC	Crystal Oscillator
LSB	Least Significant Bit	XTAL	Crystal

Table Of Contents

APPL	ICATIONS	.1
KEY I	FEATURES	.1
RF PE	RFORMANCE	.1
DIGIT	AL FEATURES	.1
LOW-	POWER FEATURES	.1
GENE	RAL	.1
PROD	UCT DESCRIPTION	.1
	EVIATIONS	
TABL	E OF CONTENTS	3
1	ABSOLUTE MAXIMUM RATINGS	
2	OPERATING CONDITIONS	
3	GENERAL CHARACTERISTICS	
4	ELECTRICAL SPECIFICATIONS	
4.1	CURRENT CONSUMPTION	
4.2	RF TRANSMIT SECTION	
4.3	CRYSTAL OSCILLATOR	
4.4 4.5	FREQUENCY SYNTHESIZER CHARACTERISTICS	
4.6	POWER-ON RESET	
5	PIN CONFIGURATION	
6	CIRCUIT DESCRIPTION	
7	APPLICATION CIRCUIT	
7.1	BIAS RESISTOR	
7.2	BALUN AND RF MATCHING	
7.3	CRYSTAL	
7.4 7.5	REFERENCE SIGNAL	
7.6	POWER SUPPLY DECOUPLING	
7.7	PCB LAYOUT RECOMMENDATIONS	
8	CONFIGURATION OVERVIEW	17
9	CONFIGURATION SOFTWARE	18
10	4-WIRE SERIAL CONFIGURATION AND DATA INTERFACE	18
10.1	CHIP STATUS BYTE	
10.2	REGISTER ACCESS	
10.3 10.4	SPI READ Command Strobes	
10.4	TX FIFO Access	
10.6	PATABLE Access	21
11	MICROCONTROLLER INTERFACE AND PIN CONFIGURATION	22
11.1	CONFIGURATION INTERFACE	
11.2	GENERAL CONTROL AND STATUS PINS	
12	DATA RATE PROGRAMMING	
13	PACKET HANDLING HARDWARE SUPPORT	
13.1 13.2	PACKET FORMAT PACKET HANDLING	
13.2	PACKET HANDLING IN FIRMWARE	
14	MODULATION FORMATS	
14.1	FREQUENCY SHIFT KEYING	
14.2	AMPLITUDE MODULATION	27
15	RADIO CONTROL	
15.1	POWER-ON START-UP SEQUENCE	
15.2	CRYSTAL CONTROL	29

15.3	VOLTAGE REGULATOR CONTROL.	. 29
15.4	TRANSMIT MODE (TX)	. 29
15.5	TIMING	
16	TX FIFO	.31
17	FREQUENCY PROGRAMMING	
18	VCO	.32
18.1	VCO AND PLL SELF-CALIBRATION	
19	VOLTAGE REGULATORS	.32
20	OUTPUT POWER PROGRAMMING	.33
21	GENERAL PURPOSE / TEST OUTPUT CONTROL PINS	.34
22	ASYNCHRONOUS AND SYNCHRONOUS SERIAL OPERATION	.36
22.1	ASYNCHRONOUS SERIAL OPERATION	
22.2	SYNCHRONOUS SERIAL OPERATION	. 36
23	SYSTEM CONSIDERATIONS AND GUIDELINES	.36
23.1	SRD REGULATIONS	
23.2	CALIBRATION IN MULTI-CHANNEL SYSTEMS	
23.3	WIDEBAND MODULATION WHEN NOT USING SPREAD SPECTRUM	. 37
23.4	DATA BURST TRANSMISSIONS	
23.5	CONTINUOUS TRANSMISSIONS	
23.6	INCREASING OUTPUT POWER	. 38
24	CONFIGURATION REGISTERS	.38
24.1	CONFIGURATION REGISTER DETAILS - REGISTERS WITH PRESERVED VALUES IN SLEEP STATE	.42
24.2	CONFIGURATION REGISTER DETAILS - REGISTERS THAT LOOSE PROGRAMMING IN SLEEP STATE	. 50
24.3	STATUS REGISTER DETAILS	. 50
25	DEVELOPMENT KIT ORDERING INFORMATION	.52
26	REFERENCES	.53
27	GENERAL INFORMATION	. 54
27.1	DOCUMENT HISTORY	. 54

1 Absolute Maximum Ratings

Under no circumstances must the absolute maximum ratings given in Table 1 be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

Parameter	Min	Max	Units	Condition
Supply voltage	-0.3	3.9	V	All supply pins must have the same voltage
Voltage on any digital pin	-0.3	VDD + 0.3, max 3.9	V	
Voltage on the pins RF_P, RF_N, DCOUPL, RBIAS	-0.3	2.0	V	
Voltage ramp-up rate		120	kV/µs	
Input RF level		+10	dBm	
Storage temperature range	-50	150	°C	
Solder reflow temperature		260	°C	According to IPC/JEDEC J-STD-020
ESD		750	V	According to JEDEC STD 22, method A114, Human Body Model (HBM)
ESD		400	V	According to JEDEC STD 22, C101C, Charged Device Model (CDM)

Table 1: Absolute Maximum Ratings

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

2 **Operating Conditions**

The operating conditions for *CC115L* are listed Table 2 in below.

Parameter	Min	Max	Unit	Condition
Operating temperature	-40	85	°C	
Operating supply voltage	1.8	3.6	V	All supply pins must have the same voltage

Table 2: Operating Conditions

3 General Characteristics

Parameter	Min	Max	Unit	Condition/Note
Frequency range	300	348	MHz	
	387	464	MHz	If using a 27 MHz crystal, the lower frequency limit for this band is 392 MHz
	779	928	MHz	
Data rate	0.6	500	kBaud	2-FSK
	0.6	250	kBaud	GFSK and OOK
	0.6	300	kBaud	4-FSK (the data rate in kbps will be twice the baud rate)
				Optional Manchester encoding (the data rate in kbps will be half the baud rate)

Table 3: General Characteristics

4 Electrical Specifications

4.1 Current Consumption

 $T_A = 25^{\circ}C$, VDD = 3.0 V if nothing else stated. All measurement results are obtained using [1] and [2].

Parameter	Min	Тур	Мах	Unit	Condition
Current consumption in power down modes		0.2	1	μA	Voltage regulator to digital part off, register values retained (SLEEP state). All GDO pins programmed to 0x2F (HW to 0)
		100		μA	Voltage regulator to digital part off, register values retained, XOSC running (SLEEP state with MCSM0.OSC_FORCE_ON set)
		165		μA	Voltage regulator to digital part on, all other modules in power down (XOFF state)
Current consumption		1.7		mA	Only voltage regulator to digital part and crystal oscillator running (IDLE state)
		8.4		mA	Only the frequency synthesizer is running (FSTXON state). This current consumption is also representative for the other intermediate states when going from IDLE to TX, including the calibration state
Current consumption,		27.4	Transmit mode, +10 dBm output power		
315 MHz		15.0		mA	Transmit mode, 0 dBm output power
		12.3		mA	Transmit mode, –6 dBm output power
Current consumption,		29.2		mA	Transmit mode, +10 dBm output power
433 MHz		16.0		mA	Transmit mode, 0 dBm output power
		13.1		mA	Transmit mode, –6 dBm output power
Current consumption,		34.2		mA	Transmit mode, +12 dBm output power, 868 MHz
868/915 MHz		30.0		mA	Transmit mode, +10 dBm output power, 868 MHz
		16.8		mA	Transmit mode, 0 dBm output power, 868 MHz
		16.4		mA	Transmit mode, –6 dBm output power, 868 MHz.
		33.4		mA	Transmit mode, +11 dBm output power, 915 MHz
		30.7		mA	Transmit mode, +10 dBm output power, 915 MHz
		17.2		mA	Transmit mode, 0 dBm output power, 915 MHz
		17.0		mA	Transmit mode, –6 dBm output power, 915 MHz

Table 4: Current Consumption

	Supply Voltage VDD = 1.8 V			Supply VDD =	/ Voltage 3.0 V	9	Supply Voltage VDD = 3.6 V		
Temperature [°C]	-40	25	85	-40	25	85	-40	25	85
Current [mA], PATABLE=0xC0, +12 dBm	32.7	31.5	30.5	35.3	34.2	33.3	35.5	34.4	33.5
Current [mA], PATABLE=0xC5, +10 dBm	30.1	29.2	28.3	30.9	30.0	29.4	31.1	30.3	29.6
Current [mA], PATABLE=0x50, 0 dBm		16.0	15.6	17.3	16.8	16.4	17.6	17.1	16.7

Table 5: Typical TX Current Consumption over Temperature and Supply Voltage, 868 MHz

	Supply Voltage VDD = 1.8 V			Supply VDD =	v Voltage 3.0 V)	Supply Voltage VDD = 3.6 V		
Temperature [°C]	-40	25	85	-40	25	85	-40	25	85
Current [mA], PATABLE=0xC0, +11 dBm		30.7	29.8	34.6	33.4	32.5	34.8	33.6	32.7
Current [mA], PATABLE=0xC3, +10 dBm	30.9	29.8	28.9	31.7	30.7	30.0	31.9	31.0	30.2
Current [mA], PATABLE=0x8E, 0 dBm		16.8	16.4	17.6	17.2	16.9	17.8	17.4	17.1

Table 6: Typical TX Current Consumption over Temperature and Supply Voltage, 915 MHz

4.2 **RF Transmit Section**

 $T_A = 25^{\circ}C$, VDD = 3.0 V, +10 dBm if nothing else stated. All measurement results are obtained using [1] and [2].

Parameter	Min	Тур	Max	Unit	Condition/Note
Differential load impedance					Differential impedance as seen from the RF-port (RF_P and RF_N) towards the antenna.
315 MHz		122 + j31		Ω	
433 MHz		116 + j41		Ω	
868/915 MHz		86.5 + j43		Ω	
Output power, highest setting					Output power is programmable, and full range is available in all frequency bands. Output power may be restricted by regulatory limits. See also Design Note DN013 [7], which
315 MHz		+10		dBm	gives the output power and harmonics when using multi-layer
433 MHz		+10		dBm	inductors. The output power is then typically +10 dBm when operating at 868/915 MHz.
868 MHz		+12		dBm	Delivered to a 50 Ω single-ended load via the RF matching
915 MHz		+11		dBm	network in [1] and [2]
Output power, lowest setting		-30		dBm	Output power is programmable, and full range is available in all frequency bands
					Delivered to a 50 Ω single-ended load via the RF matching network in [1] and [2]
Harmonics, radiated					Measured on [1] and [2] with CW, maximum output power
2 nd Harm, 433 MHz 3 rd Harm, 433 MHz		-49 -40		dBm dBm	The antennas used during the radiated measurements (SMAFF-433 from R.W. Badland and Nearson S331 868/915) play a part in attenuating the harmonics
2 nd Harm, 868 MHz 3 rd Harm, 868 MHz		-47 -55		dBm dBm	
2 nd Harm, 915 MHz 3 rd Harm, 915 MHz		-50 -54		dBm dBm	Note: All harmonics are below –41.2 dBm when operating in the 902 - 928 MHz band
Harmonics, conducted					Measured with +10 dBm CW at 315 MHz and 433 MHz
315 MHz		< −35 < −53		dBm dBm	Frequencies below 960 MHz Frequencies above 960 MHz
433 MHz		-43 < -45		dBm dBm	Frequencies below 1 GHz Frequencies above 1 GHz
868 MHz 2 nd Harm other harmonics		-36 < -46		dBm dBm	Measured with +12 dBm CW at 868 MHz
915 MHz 2 nd Harm		-34		dBm	Measured with +11 dBm CW at 915 MHz (requirement is -20 dBc under FCC 15.247)
other harmonics		< -50		dBm	

Parameter	Min	Тур	Max	Unit	Condition/Note
Spurious emissions conducted, harmonics not included					Measured with +10 dBm CW at 315 MHz and 433 MHz
315 MHz		< -58 < -53		dBm dBm	Frequencies below 960 MHz Frequencies above 960 MHz
433 MHz		< -50 < -54 < -56		dBm dBm dBm	Frequencies below 1 GHz Frequencies above 1 GHz Frequencies within 47-74, 87.5-118, 174-230, 470-862 MHz
868 MHz		< -50 < -52 < -53		dBm dBm dBm	Measured with +12 dBm CW at 868 MHz Frequencies below 1 GHz Frequencies above 1 GHz Frequencies within 47-74, 87.5-118, 174-230, 470-862 MHz
					All radiated spurious emissions are within the limits of ETSI. The peak conducted spurious emission is -53 dBm at 699 MHz (868 MHz - 169 MHz), which is in a frequency band limited to -54 dBm by EN 300 220 V2.3.1. An alternative filter can be used to reduce the emission at 699 MHz below -54 dBm, for conducted measurements, and is shown in Figure 4. See more information in DN017 [5].
					For compliance with modulation bandwidth requirements under EN 300 220 V2.3.1 in the 863 to 870 MHz frequency range it is recommended to use a 26 MHz crystal for frequencies below 869 MHz and a 27 MHz crystal for frequencies above 869 MHz.
915 MHz		< −51 < −54		dBm dBm	Measured with +11 dBm CW at 915 MHz Frequencies below 960 MHz Frequencies above 960 MHz
TX latency		8		bit	Serial operation. Time from sampling the data on the transmitter data input pin until it is observed on the RF output ports

Table 7: RF Transmit Section

		Supply Voltage VDD = 1.8 V			/ Volta 3.0 V	ge	Supply Voltage VDD = 3.6 V		
Temperature [°C]	-40	25	85	-40	25	85	-40	25	85
Output Power [dBm], PATABLE=0xC0, +12 dBm		11	10	12	12	11	12	12	11
Output Power [dBm], PATABLE=0xC5, +10 dBm	11	10	9	11	10	10	11	10	10
Output Power [dBm], PATABLE=0x50, 0 dBm		0	-1	2	1	0	2	1	0

Table 8: Typical Variation in Output Power over Temperature and Supply Voltage, 868 MHz

	Supply VDD =		ge	Supply VDD =		ge	Supply VDD =		ge
Temperature [°C]	-40	25	85	-40	25	85	-40	25	85
Output Power [dBm], PATABLE=0xC0, +11 dBm	11	10	10	12	11	11	12	11	11
Output Power [dBm], PATABLE=0x8E, +0 dBm	2	1	0	2	1	0	2	1	0

Table 9: Typical Variation in Output Power over Temperature and Supply Voltage, 915 MHz

4.3 Crystal Oscillator

Parameter	Min	Тур	Max	Unit	Condition/Note	
Crystal frequency	26	26	27	MHz	For compliance with modulation bandwidth requirements under EN 300 220 V2.3.1 in the 863 to 870 MHz frequency range it is recommended to use a 26 MHz crystal for frequencies below 869 MHz and a 27 MHz crystal for frequencies above 869 MHz.	
Tolerance		±40		ppm	This is the total tolerance including a) initial tolerance, b) crystal loading, c) aging, and d) temperature dependence. The acceptable crystal tolerance depends on RF frequency and channel spacing / bandwidth.	
Load capacitance	10	13	20	pF	Simulated over operating conditions	
ESR			100	Ω		
Start-up time		150		μs	This parameter is to a large degree crystal dependent. Measured on [1] and [2] using crystal AT-41CD2 from NDK	

 $T_A = 25^{\circ}C$, VDD = 3.0 V if nothing else is stated. All measurement results obtained using [1] and [2].

Table 10: Crystal Oscillator Parameters

4.4 Frequency Synthesizer Characteristics

 $T_A = 25^{\circ}C$, VDD = 3.0 V if nothing else is stated. All measurement results are obtained using [1] and [2]. Min figures are given using a 27 MHz crystal. Typ. and max figures are given using a 26 MHz crystal.

Parameter	Min	Тур	Max	Unit	Condition/Note
Programmed frequency resolution	397	F _{XOSC} /2	412	Hz	26 - 27 MHz crystal. The resolution (in Hz) is equal for all frequency bands
Synthesizer frequency tolerance		±40		ppm	Given by crystal used. Required accuracy (including temperature and aging) depends on frequency band and channel bandwidth / spacing
RF carrier phase noise		-92		dBc/Hz	@ 50 kHz offset from carrier
RF carrier phase noise		-92		dBc/Hz	@ 100 kHz offset from carrier
RF carrier phase noise		-92		dBc/Hz	@ 200 kHz offset from carrier
RF carrier phase noise		-98		dBc/Hz	@ 500 kHz offset from carrier
RF carrier phase noise		-107		dBc/Hz	@ 1 MHz offset from carrier
RF carrier phase noise		-113		dBc/Hz	@ 2 MHz offset from carrier
RF carrier phase noise		-119		dBc/Hz	@ 5 MHz offset from carrier
RF carrier phase noise		-129		dBc/Hz	@ 10 MHz offset from carrier
PLL turn-on time (See Table 20)	72	75	75	μS	Time from leaving the IDLE state until arriving in the FSTXON or TX state, when not performing calibration. Crystal oscillator running.
PLL calibration time (See Table 21)	685	712	724	μs	Calibration can be initiated manually or automatically before entering or after leaving TX

4.5 DC Characteristics

 $T_A = 25^{\circ}C$ if nothing else stated.

Digital Inputs/Outputs	Min	Мах	Unit	Condition
Logic "0" input voltage	0	0.7	V	
Logic "1" input voltage	VDD – 0.7	VDD	V	
Logic "0" output voltage	0	0.5	V	For up to 4 mA output current
Logic "1" output voltage	VDD – 0.3	VDD	V	For up to 4 mA output current
Logic "0" input current	N/A	-50	nA	Input equals 0 V
Logic "1" input current	N/A	50	nA	Input equals VDD

Table 12: DC Characteristics

4.6 Power-On Reset

For proper Power-On-Reset functionality the power supply should comply with the requirements in Table 13 below. Otherwise, the chip should be assumed to have unknown state until transmitting an SRES strobe over the SPI interface. See Section 15.1 on page 28 for further details.

Parameter	Min	Тур	Max	Unit	Condition/Note
Power-up ramp-up time			5	ms	From 0 V until reaching 1.8 V
Power off time	1			ms	Minimum time between power-on and power-off

Table 13: Power-On Reset Requirements

5 Pin Configuration

The **CC115L** pin-out is shown in Figure 1 and Table 14. See Section 21 for details on the I/O configuration.

Figure 1: Pinout Top View

Note: The exposed die attach pad **must** be connected to a solid ground plane as this is the main ground connection for the chip

Pin #	Pin Name	Pin type	Description
1	SCLK	Digital Input	Serial configuration interface, clock input
2	SO (GDO1)	Digital Output	Serial configuration interface, data output
			Optional general output pin when CSn is high
3	GDO2	Digital Output	Digital output pin for general use:
			Test signals
			TX FIFO status signals
			Clock output, down-divided from XOSC
4	DVDD	Power (Digital)	1.8 - $3.6\ V$ digital power supply for digital I/O's and for the digital core voltage regulator
5	DCOUPL	Power (Digital)	1.6 - 2.0 V digital power supply output for decoupling
			NOTE: This pin is intended for use with the CC115L only. It cannot be used to provide supply voltage to other devices
6	GDO0	Digital I/O	Digital output pin for general use:
			Test signals
			TX FIFO status signals
			Clock output, down-divided from XOSC
			Serial input TX data
7	CSn	Digital Input	Serial configuration interface, chip select
8	XOSC_Q1	Analog I/O	Crystal oscillator pin 1, or external clock input
9	AVDD	Power (Analog)	1.8 - 3.6 V analog power supply connection
10	XOSC_Q2	Analog I/O	Crystal oscillator pin 2
11	AVDD	Power (Analog)	1.8 - 3.6 V analog power supply connection
12	RF_P	RF I/O	Positive RF output signal from PA in transmit mode
13	RF_N	RF I/O	Negative RF output signal from PA in transmit mode
14	AVDD	Power (Analog)	1.8 - 3.6 V analog power supply connection
15	AVDD	Power (Analog)	1.8 - 3.6 V analog power supply connection
16	GND	Ground (Analog)	Analog ground connection
17	RBIAS	Analog I/O	External bias resistor for reference current
18	DGUARD	Power (Digital)	Power supply connection for digital noise isolation
19	GND	Ground (Digital)	Ground connection for digital noise isolation
20	SI	Digital Input	Serial configuration interface, data input

Table 14: Pinout Overview

6 Circuit Description

Figure 2: **CC115L** Simplified Block Diagram

A simplified block diagram of *CC115L* is shown in Figure 2.

The **CC115L** transmitter is based on direct synthesis of the RF frequency. The frequency synthesizer includes a completely on-chip LC VCO.

A crystal is to be connected to XOSC_Q1 and XOSC_Q2. The crystal oscillator generates the

7 Application Circuit

The low cost application circuits ([10] and [11]), which use multi layer inductors, are shown in Figure 3 and Figure 4 (see Table 15 for component values).

The designs in [1] and [2] were used for **CC115L** characterization. The 315 MHz and 433 MHz design [1] use inexpensive multi-layer inductors similar to the low cost application circuit while the 868 MHz and 915 MHz design [2] use wire-wound inductors. Wire-wound inductors give better output power and

7.1 Bias Resistor

The 56 k Ω bias resistor R171 is used to set an

reference frequency for the synthesizer, as well as clocks for the digital part.

A 4-wire SPI serial interface is used for configuration and data buffer access.

The digital baseband includes support for channel configuration, packet handling, and data buffering.

attenuation of harmonics compared to using multi-layer inductors.

Refer to design note DN032 [9] for information about performance when using wire-wound inductors from different vendors. See also Design Note DN013 [7], which gives the output power and harmonics when using *multi-layer* inductors. The output power is then typically +10 dBm when operating at 868/915 MHz.

accurate bias current.

7.2 Balun and RF Matching

The balun and LC filter component values and their placement are important to keep the performance optimized. Gerber files and schematics for the reference designs are available for download from the TI website

The components between the RF_N/RF_P pins and the point where the two signals are joined together (C131, C122, L122, and L132 in Figure 3 and L121, L131, C121, L122, C131, C122, and L132 in Figure 4) form a balun that converts the differential RF signal on **CC115L** to a single-ended RF signal. C124 is needed for DC blocking.

L123, L124, and C123 (plus C125 in Figure 3) form a low-pass filter for harmonics attenuation.

The balun and LC filter components also matches the **CC1151** input impedance to a 50 Ω load. C126 provides DC blocking and is only needed if there is a DC path in the antenna. For the application circuit in Figure 4, this component may also be used for additional filtering, see section 7.5.

Figure 3: Typical Application and Evaluation Circuit 315/433 MHz (excluding supply decoupling capacitors)

CC115L

Figure 4: Typical Application and Evaluation Circuit 868/915 MHz
(excluding supply decoupling capacitors)

Component	Value at 315 MHz	Value at 433 MHz	Value at 868/915 MHz		
			Without C127 and L125	With C127 and L125	
C121			1 pF	1 pF	
C122	6.8 pF	3.9 pF	1.5 pF	1.5 pF	
C123	12 pF	8.2 pF	3.3 pF	3.3 pF	
C124	220 pF	220 pF	100 pF	100 pF	
C125	6.8 pF	5.6 pF			
C126	220 pF	220 pF	100 pF	12 pF	
C127				47 pF	
C131	6.8 pF	3.9 pF	1.5 pF	1.5 pF	
L121			12 nH	12 nH	
L122	33 nH	27 nH	18 nH	18 nH	
L123	18 nH	22 nH	12 nH	12 nH	
L124	33 nH	27 nH	12 nH	12 nH	
L125				3.3 nH	
L131			12 nH	12 nH	
L132	33 nH	27 nH	18 nH	18 nH	

Table 15: External Components

7.3 Crystal

A crystal in the frequency range 26 - 27 MHz must be connected between the XOSC_Q1 and XOSC_Q2 pins. The oscillator is designed for parallel mode operation of the crystal. In addition, loading capacitors (C81 and C101) for the crystal are required. The loading capacitor values depend on the total load capacitance, C_L , specified for the crystal. The total load capacitance seen between the

crystal terminals should equal C_{L} for the crystal to oscillate at the specified frequency.

$$C_L = \frac{1}{\frac{1}{C_{81}} + \frac{1}{C_{101}}} + C_{parasitic}$$

The parasitic capacitance is constituted by pin input capacitance and PCB stray capacitance. Total parasitic capacitance is typically 2.5 pF.

The crystal oscillator is amplitude regulated. This means that a high current is used to start up the oscillations. When the amplitude builds up, the current is reduced to what is necessary to maintain approximately 0.4 Vpp signal swing. This ensures a fast start-up, and keeps the drive level to a minimum. The ESR of the crystal should be within the specification in

7.4 Reference Signal

The chip can alternatively be operated with a reference signal from 26 to 27 MHz instead of a crystal. This input clock can either be a full-swing digital signal (0 V to VDD) or a sine wave of maximum 1 V peak-peak amplitude. The reference signal must be connected to the XOSC_Q1 input. The sine wave must be

7.5 Additional Filtering

In the 868/915 MHz reference design [10], C127 and L125 together with C126 build an optional filter to reduce emission at carrier frequency - 169 MHz. This filter is necessary for applications with an external antenna connector that seek compliance with ETSI EN 300 220 V2.3.1. For more information, see DN017 [5].

7.6 Power Supply Decoupling

The power supply must be properly decoupled close to the supply pins. Note that decoupling capacitors are not shown in the application circuit. The placement and the size of the

7.7 PCB Layout Recommendations

The top layer should be used for signal routing, and the open areas should be filled with metallization connected to ground using several vias.

The area under the chip is used for grounding and shall be connected to the bottom ground plane with several vias for good thermal performance and sufficiently low inductance to ground. order to ensure a reliable start-up (see Section 4.3 on page 9).

The initial tolerance, temperature drift, aging and load pulling should be carefully specified in order to meet the required frequency accuracy in a certain application.

Avoid routing digital signals with sharp edges close to XOSC_Q1 PCB track or underneath the crystal Q1 pad as this may shift the crystal dc operating point and result in duty cycle variation.

For compliance with modulation bandwidth requirements under EN 300 220 V2.3.1 in the 863 to 870 MHz frequency range it is recommended to use a 26 MHz crystal for frequencies below 869 MHz and a 27 MHz crystal for frequencies above 869 MHz.

connected to XOSC_Q1 using a serial capacitor. When using a full-swing digital signal, this capacitor can be omitted. The XOSC_Q2 line must be left un-connected. C81 and C101 can be omitted when using a reference signal.

If this filtering is not necessary, C126 will work as a DC block (only necessary if there is a DC path in the antenna). C127 and L125 should in that case be left unmounted.

Additional external components (e.g. an RF SAW filter) may be used in order to improve the performance in specific applications.

decoupling capacitors are very important to achieve the optimum performance ([10] and [11] should be followed closely).

In [10] and [11] and [2], 5 vias are placed inside the exposed die attached pad. These vias should be "tented" (covered with solder mask) on the component side of the PCB to avoid migration of solder through the vias during the solder reflow process.

The solder paste coverage should not be 100%. If it is, out gassing may occur during the reflow process, which may cause defects (splattering, solder balling). Using "tented" vias reduces the solder paste coverage below

100%. See Figure 5 for top solder resist and top paste masks.

Each decoupling capacitor should be placed as close as possible to the supply pin it is supposed to decouple. Each decoupling capacitor should be connected to the power line (or power plane) by separate vias. The best routing is from the power line (or power plane) to the decoupling capacitor and then to the **CC1151** supply pin. Supply power filtering is very important.

Each decoupling capacitor ground pad should be connected to the ground plane by separate vias. Direct connections between neighboring power pins will increase noise coupling and should be avoided unless absolutely necessary. Routing in the ground plane underneath the chip or the balun/RF matching circuit, or between the chip's ground vias and the decoupling capacitor's ground vias should be avoided. This improves the grounding and ensures the shortest possible current return path. Avoid routing digital signals with sharp edges close to XOSC_Q1 PCB track or underneath the crystal Q1 pad as this may shift the crystal dc operating point and result in duty cycle variation.

The external components should ideally be as small as possible (0402 is recommended) and surface mount devices are highly recommended. Please note that components with different sizes than those specified may have differing characteristics.

Precaution should be used when placing the microcontroller in order to avoid noise interfering with the RF circuitry.

A CC11xL Development Kit with a fully assembled **CC115L** Evaluation Module is available. It is strongly advised that this reference layout is followed very closely in order to get the best performance. The schematic, BOM and layout Gerber files are all available from the TI website ([10] and [11]).

Figure 5: Left: Top Solder Resist Mask (Negative). Right: Top Paste Mask. Circles are Vias

8 Configuration Overview

CC115L can be configured to achieve optimum performance for many different applications. Configuration is done using the SPI interface. See Section 10 for more description of the SPI interface. The following key parameters can be programmed:

- Power-down / power up mode
- Crystal oscillator power-up / power-down
- Carrier frequency / RF channel
- Transmit mode
- Data rate
- Modulation format

- RF output power
- Data buffering with the 64-byte TX FIFO
- Packet radio hardware support

Details of each configuration register can be found in Section 24, starting on page 38.

Figure 6 shows a simplified state diagram that explains the main *CC1151* states together with typical usage and current consumption. For detailed information on controlling the *CC1151* state machine, and a complete state diagram, see Section 15, starting on page 28.

Figure 6: Simplified Radio Control State Diagram with Typical Current Consumption

9 Configuration Software

CC115L can be configured using the SmartRF[™] Studio software [4]. The SmartRF Studio software is highly recommended for obtaining optimum register settings, and for evaluating performance and functionality.

10 4-wire Serial Configuration and Data Interface

CC115L is configured via a simple 4-wire SPIcompatible interface (SI, SO, SCLK and CSn) where **CC115L** is the slave. This interface is also used to write buffered data. All transfers on the SPI interface are done most significant bit first.

All transactions on the SPI interface start with a header byte containing a R/W bit, a burst access bit (B), and a 6-bit address ($A_5 - A_0$).

The CSn pin must be kept low during transfers on the SPI bus. If CSn goes high during the transfer of a header byte or during read/write After chip reset, all the registers have default values as shown in the tables in Section 24.1. The optimum register setting might differ from the default value. After a reset all registers that shall be different from the default value therefore needs to be programmed through the SPI interface.

from/to a register, the transfer will be cancelled. The timing for the address and data transfer on the SPI interface is shown in Figure 7 with reference to Table 16.

When CSn is pulled low, the MCU must wait until **CC1151** SO pin goes low before starting to transfer the header byte. This indicates that the crystal is running. Unless the chip was in the SLEEP or XOFF states, the SO pin will always go low immediately after pulling CSn low.

Figure 7: Configuration Registers Write and Read Operations

Parameter	Description		Min	Мах	Units
f _{SCLK}	SCLK frequency 100 ns delay inserted between address byte and data byte (single acce address and data, and between each data byte (burst access).	-	10	MHz	
	SCLK frequency, single access. No delay between address and data by	/te	-	9	
	SCLK frequency, burst access No delay between address and data byte, or between data bytes	-	6.5		
t _{sp,pd}	CSn low to positive edge on SCLK, in power-down mode	150	-	μs	
t _{sp}	CSn low to positive edge on SCLK, in active mode	20	-	ns	
t _{ch}	Clock high	50	-	ns	
t _{cl}	Clock low	50	-	ns	
t _{rise}	Clock rise time		-	40	ns
t _{fall}	Clock fall time		-	40	ns
t _{sd}	Setup data (negative SCLK edge) to positive edge on SCLK	Single access	55	-	ns
	$(t_{sd} applies between address and data bytes, and between data bytes)$	Burst access	76	-	
t _{hd}	Hold data after positive edge on SCLK				ns
t _{ns}	Negative edge on SCLK to CSn high.	20	-	ns	

Table 16: SPI Interface Timing Requirements

Note: The minimum $t_{sp,pd}$ figure in Table 16 can be used in cases where the user does not read the CHIP_RDYn signal. CSn low to positive edge on SCLK when the chip is woken from power-down depends on the start-up time of the crystal being used. The 150 µs in Table 16 is the crystal oscillator start-up time measured on [1] and [2] using crystal AT-41CD2 from NDK.

10.1 Chip Status Byte

When the header byte, data byte, or command strobe is sent on the SPI interface, the chip status byte is sent by the **CC115L** on the SO pin. The status byte contains key status signals, useful for the MCU. The first bit, s7, is the CHIP_RDYn signal and this signal must go low before the first positive edge of SCLK. The CHIP_RDYn signal indicates that the crystal is running.

Bits 6, 5, and 4 comprise the STATE value. This value reflects the state of the chip. The XOSC and power to the digital core are on in the IDLE state, but all other modules are in power down. The frequency and channel configuration should only be updated when the chip is in this state.

The last four bits (3:0) in the status byte contains FIFO BYTES AVAILABLE. For these bits to give any valid information, the R/W bit in the header byte must be set to 0. The FIFO BYTES AVAILABLE field will then contain the number of bytes that can be ТΧ FIFO. When written to the FIFO BYTES AVAILABLE=15, 15 or more bytes can be written.

Table 17 gives a status byte summary

Bits	Name	Descri	Description					
7	CHIP_RDYn		Stays high until power and crystal have stabilized. Should always be low when using the SPI interface.					
6:4	STATE[2:0]	Indicate	es the current main state m	achine mode				
		Value	State	Description				
		000	IDLE	IDLE state (Also reported for some transitional states instead of SETTLING or CALIBRATE)				
		001	Reserved					
		010	ТХ	Transmit mode				
		011	FSTXON	Fast TX ready				
		100	CALIBRATE	Frequency synthesizer calibration is running				
		101	SETTLING	PLL is settling				
		110	Reserved					
		111	TXFIFO_UNDERFLOW	TX FIFO has underflowed. Acknowledge with SFTX				
3:0	FIFO_BYTES_AVAILABLE[3:0]	The nu	The number of bytes that can be written to the TX FIFO					

Table 17: Status Byte Summary

10.2 Register Access

The configuration registers on the **CC115L** are located on SPI addresses from 0x00 to 0x2E. Table 29 on page 40 lists all configuration registers. It is highly recommended to use SmartRF Studio [4] to generate optimum register settings. The detailed description of each register is found in Section 24.1 and 24.2, starting on page 42. All configuration registers can be both written to and read. The R/W bit controls if the register should be written to or read. When writing to registers, the status byte is sent on the SO pin each time a header byte or data byte is transmitted on the SI pin. When reading from registers, the status byte is sent on the SO pin each time a header byte is transmitted on the SI pin.

10.3 SPI Read

When reading register fields over the SPI interface while the register fields are updated by the radio hardware (e.g. MARCSTATE or TXBYTES), there is a small, but finite, probability that a single read from the register

Registers with consecutive addresses can be accessed in an efficient way by setting the burst bit (B) in the header byte. The address bits $(A_5 - A_0)$ set the start address in an internal address counter. This counter is incremented by one each new byte (every 8 clock pulses). The burst access is either a read or a write access and must be terminated by setting CSn high.

For register addresses in the range 0x30 - 0x3D, the burst bit is used to select between status registers when burst bit is one, and command strobes when burst bit is zero. See more in Section 10.3 below. Because of this, burst access is not available for status registers and they must be accessed one at a time. The status registers can only be read.

is being corrupt. As an example, the probability of any single read from TXBYTES being corrupt, assuming the maximum data rate is used, is approximately 80 ppm. Refer to the **CC115L** Errata Notes [3] for more details.

10.4 Command Strobes

Command Strobes may be viewed as single byte instructions to **CC1151**. By addressing a command strobe register, internal sequences will be started. These commands are used to disable the crystal oscillator, enable TX mode, enable calibration etc. The 9 command strobes are listed in Table 28 on page 39.

Note: An SIDLE strobe will clear all pending command strobes until IDLE state is reached. This means that if for example an SIDLE strobe is issued while the radio is in TX state, any other command strobes issued before the radio reaches IDLE state will be ignored.

The command strobe registers are accessed by transferring a single header byte (no data is being transferred). That is, only the R/W bit, the burst access bit (set to 0), and the six address bits (in the range 0x30 through 0x3D) are written. The R/W bit should be set to zero if the FIFO_BYTES_AVAILABLE field in the status byte should be interpreted.

When writing command strobes, the status byte is sent on the SO pin.

A command strobe may be followed by any other SPI access without pulling CSn high. However, if an SRES strobe is being issued, one will have to wait for SO to go low again before the next header byte can be issued as shown in Figure 8. The command strobes are executed immediately, with the exception of the SPWD and the SXOFF strobes, which are executed when CSn goes high.

Figure 8: SRES Command Strobe

10.5 TX FIFO Access

The 64-byte TX FIFO is accessed through the 0x3F address. The TX FIFO is write-only and the R/W bit should therefore be zero.

The burst bit is used to determine if the TX FIFO access is a single byte access or a burst access. The single byte access method expects a header byte with the burst bit set to zero and one data byte. After the data byte, a new header byte is expected; hence CSn can remain low. The burst access method expects one header byte and then consecutive data bytes until terminating the access by setting CSn high.

The following header bytes access the TX FIFO:

- 0x3F: Single byte access to TX FIFO
- 0x7F: Burst access to TX FIFO

10.6 PATABLE Access

The 0x3E address is used to access the PATABLE, which is used for selecting PA power control settings. The SPI expects one or two data bytes after receiving the address (the burst bit must be set if two bytes are to be written). For OOK, two bytes should be written

When writing to the TX FIFO, the status byte (see Section 10.1) is output on SO for each new data byte as shown in Figure 7. This status byte can be used to detect TX FIFO underflow while writing data to the TX FIFO. Note that the status byte contains the number of bytes free before writing the byte in progress to the TX FIFO. When the last byte that fits in the TX FIFO. When the last byte that fits in the TX FIFO is transmitted on SI, the status byte received concurrently on SO will indicate that one byte is free in the TX FIFO.

The TX FIFO may be flushed by issuing a SFTX command strobe. A SFTX command strobe can only be issued in the IDLE, or TXFIFO_UNDERFLOW states. The TX FIFO is flushed when going to the SLEEP state.

Figure 9 gives a brief overview of different register access types possible.

to PATABLE; the first byte after the address will set the logic 0 power level and the second byte written will set the logic 1 power level. For all other modulations formats, only one byte should be written to PATABLE. Use SmartRF

Studio [4] or DN013 [7] for recommended register values for a given output power.

The PATABLE can also be read by setting the R/W bit to 1. The read operation can be done as a single byte or burst access, depending on how many bytes should be read (one or two). Note that pulling CSn high will reset the index counter to zero, meaning that burst access needs to be used for reading/writing the second PATABLE entry. For the same reason,

if one byte is written to the PATABLE and this value is to be read out, CSn must be set high before the read access in order to set the index counter back to zero.

Note that the content of the PATABLE is lost when entering the SLEEP state, except for the first byte, meaning that if OOK is used, the PATABLE needs to be reprogrammed when waking up from SLEEP.

Csn	1
Command strobe(s)	Header _{Strobe} Header _{Strobe} Header _{Strobe}
Read or write register(s)	Header _{Reg} Data Header _{Reg} Data Header _{Reg} Data
Read or write consecutive register(s)	Header _{Regn} Data Data n+1 Data
Write n + 1 bytes to the TX FIFO	Header _{TX FIFO} Data _{Byte 0} Data _{Byte 1} Data _{Byte 2} Data _{Byte n-1} Data _{Byte n}
Combinations	Header _{Reg} Data Header _{Reg} Data Header _{Strobe} Header _{Strobe} Data

Figure 9: Register Access Types

11 Microcontroller Interface and Pin Configuration

In a typical system, *CC115L* will interface to a microcontroller. This microcontroller must be able to:

• Program **CC115L** into different modes

11.1 Configuration Interface

The microcontroller uses four I/O pins for the SPI configuration interface (SI, SO, SCLK and

11.2 General Control and Status Pins

The **CC115L** has two dedicated configurable pins (GDO0 and GDO2) and one shared pin (GDO1) that can output internal status information useful for control software. These pins can be used to generate interrupts on the MCU. See Section 21 on page 34 for more details on the signals that can be programmed.

- Write buffered data
- Read back status information via the 4-wire SPI-bus configuration interface (SI, SO, SCLK and CSn)

CSn). The SPI is described in Section 10 on page 18.

GDO1 is shared with the SO pin in the SPI interface. The default setting for GDO1/SO is 3-state output. By selecting any other of the programming options, the GDO1/SO pin will become a generic pin. When CSn is low, the pin will always function as a normal SO pin.

In the synchronous and asynchronous serial modes, the GDO0 pin is used as a serial TX data input pin while in transmit mode.

12 Data Rate Programming

The data rate used when transmitting is programmed by the MDMCFG3.DRATE_M and the MDMCFG4.DRATE_E configuration registers. The data rate is given by the formula below. As the formula shows, the programmed data rate depends on the crystal frequency.

$$R_{DATA} = \frac{(256 + DRATE _M) \cdot 2^{DRATE_E}}{2^{28}} \cdot f_{XOSC}$$

The following approach can be used to find suitable values for a given data rate:

$$DRATE _ E = \log_2 \left(\frac{R_{DATA} \cdot 2^{20}}{f_{XOSC}} \right)$$
$$DRATE _ M = \frac{R_{DATA} \cdot 2^{28}}{f_{XOSC} \cdot 2^{DRATE_E}} - 256$$

If DRATE_M is rounded to the nearest integer and becomes 256, increment DRATE_E and use DRATE M = 0.

The data rate can be set from 0.6 kBaud to 500 kBaud with the minimum step size

according to Table 18 below. See Table 3 for the minimum and maximum data rates for the different modulation formats.

Min Data Rate [kBaud]	Typical Data Rate [kBaud]	Max Data Rate [kBaud]	Data rate Step Size [kBaud]
0.6	1.0	0.79	0.0015
0.79	1.2	1.58	0.0031
1.59	2.4	3.17	0.0062
3.17	4.8	6.33	0.0124
6.35	9.6	12.7	0.0248
12.7	19.6	25.3	0.0496
25.4	38.4	50.7	0.0992
50.8	76.8	101.4	0.1984
101.6	153.6	202.8	0.3967
203.1	250	405.5	0.7935
406.3	500	500	1.5869

Table 18: Data Rate Step Size(assuming a 26 MHz crystal)

13 Packet Handling Hardware Support

The **CC115L** has built-in hardware support for packet oriented radio protocols.

The packet handler can be configured to add the following elements to the packet stored in the TX FIFO:

- A programmable number of preamble bytes
- A two byte synchronization (sync) word. Can be duplicated to give a 4-byte sync word. It is not possible to only insert preamble or only insert a sync word
- A CRC checksum computed over the data field.

13.1 Packet Format

The format of the data packet can be configured and consists of the following items (see Figure 10):

- Preamble
- Synchronization word

 In a system where the *CC115L* is transmitting packets to the *CC110L*, *CC113L* or *CC1101*, the recommended setting is 4byte preamble and 4-byte sync word, except for 500 kBaud data rate where the recommended preamble length is 8 bytes.

Note: Register fields that control the packet handling features should only be altered when *CC115L* is in the IDLE state.

- Optional length byte
- Optional address byte
- Payload
- Optional 2 byte CRC

Figure 10: Packet Format

The preamble pattern is an alternating sequence of ones and zeros (10101010...). The minimum length of the preamble is programmable through the value of MDMCFG1.NUM PREAMBLE. When enabling TX. the modulator will start transmitting the preamble. When the programmed number of preamble bytes has been transmitted, the modulator will send the sync word and then data from the TX FIFO if data is available. If the TX FIFO is empty, the modulator will continue to send preamble bytes until the first byte is written to the TX FIFO. The modulator will then send the sync word and then the data bytes.

The synchronization word is a two-byte value set in the SYNC1 and SYNC0 registers. If the **CC110L**, **CC113L**, or **CC1101** are used at the receiving end, they will need the sync word for byte synchronization of the incoming packet. The synchronization word is automatically inserted by the **CC115L**. A one-byte sync word can be emulated by setting the SYNC1 value to the preamble pattern. It is also possible to emulate a 32 bit sync word by setting MDMCFG2.SYNC_MODE

to 3. The sync word will then be repeated twice.

CC115L supports both constant packet length protocols and variable length protocols. Variable or fixed packet length mode can be used for packets up to 255 bytes. For longer packets, infinite packet length mode must be used.

Fixed packet length mode is selected by setting PKTCTRL0.LENGTH_CONFIG=0. The desired packet length is set by the PKTLEN register. This value must be different from 0.

In variable packet length mode, PKTCTRL0.LENGTH_CONFIG=1, the packet length is configured by the first byte transmitted after the sync word. The packet length is defined as the payload data, excluding the length byte and the optional CRC. The PKTLEN value must be different from 0

With PKTCTRL0.LENGTH_CONFIG=2, the packet length is set to infinite and transmission will continue until turned off manually. As described in the next section, this can be used to support packet formats with different length configuration than natively supported by **CC115L**. One should make sure that TX mode is not turned off during the transmission of the first half of any byte. Refer to the **CC115L** Errata Notes [3] for more details.

Note: The minimum packet length supported (excluding the optional length byte and CRC) is one byte of payload data.

13.1.1 Packet Length > 255

The packet automation control register, PKTCTRL0, can be reprogrammed during TX. This opens the possibility to transmit packets that are longer than 256 bytes and still be able to use the packet handling hardware support. At the start of the packet, the infinite packet length mode (PKTCTRL0.LENGTH_CONFIG=2) must be active and the PKTLEN register is set to mod(length, 256). When less than 256 bytes remains of the packet, the MCU disables infinite packet length mode and activates fixed packet length mode (PKTCTRL0.LENGTH_CONFIG=0). When the internal byte counter reaches the PKTLEN value, the transmission ends (the radio enters the state determined by TXOFF_MODE). Automatic CRC appending/checking can also be used (by setting PKTCTRL0.CRC_EN=1).

When for example a 600-byte packet is to be transmitted, the MCU should do the following (see also Figure 11)

- Set PKTCTRL0.LENGTH CONFIG=2.
- Pre-program the PKTLEN register to mod(600, 256) = 88.
- Transmit at least 345 bytes (600 255), for example by filling the 64-byte TX FIFO six times (384 bytes transmitted).
- Set PKTCTRL0.LENGTH CONFIG=0.
- The transmission ends when the packet counter reaches 88. A total of 600 bytes are transmitted.

Figure 11: Packet Length > 255

13.2 Packet Handling

The payload that is to be transmitted must be written into the TX FIFO. The first byte written must be the length byte when variable packet length is enabled. The length byte has a value equal to the payload of the packet (including the optional address byte). If the receiver is the **CC110L**, **CC113L**, or **CC110T**, and address recognition is enabled, the second byte written to the TX FIFO must be the address byte.

If fixed packet length is enabled, the first byte written to the TX FIFO should be the address (assuming the receiver uses address recognition).

The modulator will first send the programmed number of preamble bytes. If data is available in the TX FIFO, the modulator will send the two-byte (optionally 4-byte) sync word followed by the payload in the TX FIFO. If CRC is enabled, the checksum is calculated over all the data pulled from the TX FIFO, and the result is sent as two extra bytes following the payload data. If the TX FIFO runs empty before the complete packet has been transmitted, the radio will enter TXFIFO UNDERFLOW state. The only way to exit this state is by issuing an SFTX strobe. Writing to the TX FIFO after it has underflowed will not restart TX mode.

13.3 Packet Handling in Firmware

When implementing a packet oriented radio protocol in firmware, the MCU needs to know when a packet has been transmitted. Additionally, for packets longer than 64 bytes, the TX FIFO needs to be refilled while in TX. This means that the MCU needs to know the number of bytes that can be written to the TX FIFO. There are two possible solutions to get the necessary status information:

a) Interrupt Driven Solution

The GDO pins can be used to give an interrupt when a sync word has been transmitted or when a complete packet has been transmitted by setting IOCFGx.GDOx_CFG=0x06. In addition, there are two configurations for the IOCFGx.GDOx_CFG register that can be used as an interrupt source to provide information on how many bytes that are in the TX FIFO (IOCFGx.GDOx_CFG=0x02 and

14 Modulation Formats

CC115L supports amplitude, frequency, and phase shift modulation formats. The desired modulation format is set in the MDMCFG2.MOD_FORMAT register. Optionally, the data stream can be Manchester coded by

14.1 Frequency Shift Keying

CC115L supports 2-(G)FSK and 4-FSK modulation. When selecting 4-FSK, the preamble and sync word is sent using 2-FSK (see Figure 12).

The frequency deviation is programmed with the DEVIATION_M and DEVIATION_E values in the DEVIATN register. The value has an exponent/mantissa form, and the resultant deviation is given by:

$f_{dev} = \frac{f_{xosc}}{2^{17}} \cdot (8 + DEVIATION)$	$_M) \cdot 2^{DEVIATION_E}$
---	-----------------------------

IOCFGx.GDOx_CFG=0x03). See Table 27 for more information.

b) SPI Polling

The PKTSTATUS register can be polled at a given rate to get information about the current GDO2 and GDO0 values. The TXBYTES register can be polled at a given rate to get information about the number of bytes in the TX FIFO. Alternatively, the number of bytes in the TX FIFO can be read from the chip status byte returned on the MISO line each time a header byte, data byte, or command strobe is sent on the SPI bus.

It is recommended to employ an interrupt driven solution due to a small, but finite, probability that a single read from registers PKTSTATUS and TXBYTES is being corrupt. The same is the case when reading the chip status byte (see Section 10.3 and the **CC1151** Errata Notes [3]).

the	modulator	by	setting
MDMCFG2.	MANCHESTER	EN=1.	

Note: Manchester encoding is not supported at the same time as using 4-FSK modulation.

The symbol encoding is shown in Table 19.

Format	Symbol	Coding
2-FSK/GFSK	ʻ0'	- Deviation
	'1'	+ Deviation
4-FSK	'01'	- Deviation
	'00'	- 1/3. Deviation
	'10'	+1/3.Deviation
	'11'	+ Deviation

Table 19: Symbol Encoding for 2-FSK/GFSK and 4-FSK Modulation

Figure 12: Data Sent Over the Air (MDMCFG2.MOD FORMAT=100)

14.2 Amplitude Modulation

The amplitude modulation supported by **CC115L** is On-Off Keying (OOK). OOK modulation simply turns the PA on or off to modulate ones and zeros respectively.

15 Radio Control

The DEVIATN register setting has no effect when using OOK.

Figure 13: Complete Radio Control State Diagram

CC115L has a built-in state machine that is used to switch between different operational states (modes). The change of state is done either by using command strobes or by internal events such as TX FIFO underflow.

A simplified state diagram, together with typical usage and current consumption, is

15.1 Power-On Start-Up Sequence

When the power supply is turned on, the system must be reset. This is achieved by one of the two sequences described below, i.e. automatic power-on reset (POR) or manual reset. After the automatic power-on reset or manual reset, it is also recommended to change the signal that is output on the GDO0 pin. The default setting is to output a clock signal with a frequency of CLK_XOSC/192. However, to optimize performance in TX, an alternative GDO setting from the settings found in Table 27 on page 35 should be selected.

15.1.1 Automatic POR

A power-on reset circuit is included in the **CC1151**. The minimum requirements stated in Table 13 must be followed for the power-on reset to function properly. The internal power-up sequence is completed when CHIP_RDYn goes low. CHIP_RDYn is observed on the SO pin after CSn is pulled low. See Section 10.1 for more details on CHIP_RDYn.

When the **CC115L** reset is completed, the chip will be in the IDLE state and the crystal oscillator will be running. If the chip has had sufficient time for the crystal oscillator to stabilize after the power-on-reset, the SO pin will go low immediately after taking CSn low. If CSn is taken low before reset is completed, the SO pin will first go high, indicating that the crystal oscillator is not stabilized, before going low as shown in Figure 14.

Figure 14: Power-On Reset

shown in Figure 6 on page 17. The complete radio control state diagram is shown in Figure 13. The numbers refer to the state number readable in the MARCSTATE status register. This register is primarily for test purposes.

15.1.2 Manual Reset

The other global reset possibility on **CC115L** uses the SRES command strobe. By issuing this strobe, all internal registers and states are set to the default, IDLE state. The manual power-up sequence is as follows (see Figure 15):

- Set SCLK = 1 and SI = 0.
- Strobe CSn low / high.
- Hold CSn low and then high for at least 40 µs relative to pulling CSn low
- Pull CSn low and wait for SO to go low (CHIP RDYn).
- Issue the SRES strobe on the SI line.
- When SO goes low again, reset is complete and the chip is in the IDLE state.

Figure 15: Power-On Reset with SRES

Note that the above reset procedure is only required just after the power supply is first turned on. If the user wants to reset the **CC115L** after this, it is only necessary to issue an SRES command strobe.

15.2 Crystal Control

The crystal oscillator (XOSC) is either automatically controlled or always on, if MCSM0.XOSC FORCE ON is set.

In the automatic mode, the XOSC will be turned off if the SXOFF or SPWD command strobes are issued; the state machine then goes to XOFF or SLEEP respectively. This can only be done from the IDLE state. The XOSC will be turned off when CSn is released (goes high). The XOSC will be automatically turned on again when CSn goes low. The

15.3 Voltage Regulator Control

The voltage regulator to the digital core is controlled by the radio controller. When the chip enters the SLEEP state which is the state with the lowest current consumption, the voltage regulator is disabled. This occurs after CSn is released when a SPWD command

15.4 Transmit Mode (TX)

Transmit mode is activated directly by the MCU by using the STX command strobe.

The frequency synthesizer must be calibrated regularly. **CC1151** has one manual calibration option (using the SCAL strobe), and three automatic calibration options that are controlled by the MCSM0.FS AUTOCAL setting:

- Calibrate when going from IDLE to TX or FSTXON
- Calibrate when going from TX to IDLE automatically¹
- Calibrate every fourth time when going from TX to IDLE automatically³

If the radio goes from TX to IDLE by issuing an SIDLE strobe, calibration will not be

state machine will then go to the IDLE state. The SO pin on the SPI interface must be pulled low before the SPI interface is ready to be used as described in Section 10.1 on page 19.

If the XOSC is forced on, the crystal will always stay on even in the SLEEP state.

Crystal oscillator start-up time depends on crystal ESR and load capacitances. The electrical specification for the crystal oscillator can be found in Section 4.3 on page 9.

strobe has been sent on the SPI interface. The chip is then in the SLEEP state. Setting CSn low again will turn on the regulator and crystal oscillator and make the chip enter the IDLE state.

performed. The calibration takes a constant number of XOSC cycles; see Table 20 for timing details regarding calibration.

When TX is active the chip will remain in the TX state until the current packet has been successfully transmitted. Then the state will change as indicated by the MCSM1.TXOFF_MODE setting. The possible destinations are:

- IDLE
- FSTXON: Frequency synthesizer on and ready at the TX frequency. Activate TX with STX
- TX: Start sending preamble

The SIDLE command strobe can always be used to force the radio controller to go to the IDLE state.

¹ Not forced in IDLE by issuing an SIDLE strobe

15.5 Timing

15.5.1 Overall State Transition Times

The main radio controller needs to wait in certain states in order to make sure that the internal analog/digital parts have settled down and are ready to operate in the new states. A number of factors are important for the state transition times:

- The crystal oscillator frequency, f_{xosc}
- OOK used or not
- The data rate in cases where OOK is used

• The value of the TESTO, TEST1, and FSCAL3 registers

Table 20 shows timing in crystal clock cycles for key state transitions.

Note that the TX to IDLE transition time is a function of data rate ($f_{baudrate}$). When OOK is used (i.e. FREND0.PA_POWER=001_b), TX to IDLE will require 1/8· $f_{baudrate}$ longer times than the time stated in Table 20.

Description	Transition Time (FREND0.PA_POWER=0)	Transition Time [µs]
IDLE to TX/FSTXON, no calibration	1954/f _{xosc}	75.2
IDLE to TX/FSTXON, with calibration	1953/f _{xosc} + FS calibration Time	799
TX to IDLE, no calibration	~0.25/f _{baudrate}	~1
TX to IDLE, with calibration	~0.25/f _{baudrate} + FS calibration Time	725
Manual calibration	283/f _{xosc} + FS calibration Time	735

Table 20: Overall State Transition Times (Example for 26 MHz crystal oscillator, 250 kBaud data rate, and TEST0 = 0x0B (maximum calibration time)).

15.5.2 Frequency Synthesizer Calibration Time

Table 21 summarizes the frequency synthesizer (FS) calibration times for possible settings of TESTO and FSCAL3.CHP_CURR_CAL_EN. Setting FSCAL3.CHP_CURR_CAL_EN to 00_b disables the charge pump calibration stage. TESTO is set to the values recommended by SmartRF

Studio software [4]. The possible values for TESTO when operating with different frequency bands are 0x09 and 0x0B. The SmartRF Studio software [4] always sets FSCAL3.CHP CURR CAL EN to 10_b .

The calibration time can be reduced from 712/724 μ s to 145/157 μ s. See Section 23.2 on page 37 for more details.

TEST0	FSCAL3.CHP_CURR_CAL_EN	FS Calibration Time f _{xosc} = 26 MHz	FS Calibration Time f _{xosc} = 27 MHz
0x09	00 _b	3764/f _{xosc} = 145 µs	3764/f _{xosc} = 139 μs
0x09	10 _b	18506/f _{xosc} = 712 µs	18506/f _{xosc} = 685 µs
0x0B	00 _b	4073/f _{xosc} = 157 μs	4073/f _{xosc} = 151 µs
0x0B	10 _b	18815/f _{xosc} = 724 µs	18815/f _{xosc} =697 μs

Table 21. Frequency Synthesizer Calibration Times (26/27 MHz crystal)

16 TX FIFO

The **CC115L** contains a 64-byte TX FIFO for data to be transmitted and the SPI interface is used to write to the TX FIFO (see Section 10.5 for more details). The FIFO controller will detect underflow in the TX FIFO.

When writing to the TX FIFO it is the responsibility of the MCU to avoid TX FIFO overflow. A TX FIFO overflow will result in an error in the TX FIFO content.

The chip status byte that is available on the SO pin while transferring the SPI header contains the fill grade of the TX FIFO (R/W = 0). Section 10.1 on page 19 contains more details on this.

The number of bytes in the TX FIFO can also be read from the status register TXBYTES.NUM TXBYTES.

The 4-bit FIFOTHR.FIFO_THR setting is used to program threshold points in the TX FIFO.

Table 22 lists the 16 FIFO_THR settings and the corresponding thresholds for the TX FIFO.

FIFO_THR	Bytes in TX FIFO
0 (0000)	61
1 (0001)	57
2 (0010)	53
3 (0011)	49
4 (0100)	45
5 (0101)	41
6 (0110)	37
7 (0111)	33
8 (1000)	29
9 (1001)	25
10 (1010)	21
11 (1011)	17
12 (1100)	13
13 (1101)	9
14 (1110)	5
15 (1111)	1

 Table 22: FIFO_THR Settings and the

 Corresponding TX FIFO Thresholds

17 Frequency Programming

The frequency programming in **CC115L** is designed to minimize the programming needed when changing frequency.

To set up a system with channel numbers, the desired channel spacing is programmed with the MDMCFG0.CHANSPC_M and MDMCFG1.CHANSPC E registers. The channel

A signal will assert when the number of bytes in the TX FIFO is equal to or higher than the programmed threshold. This signal can be viewed on the GDO pins (see Table 27 on page 35).

Figure 16 shows the number of bytes in the TX FIFO when the threshold signal toggles in the case of FIFO_THR=13. Figure 17 shows the signal on the GDO pin as the TX FIFO is filled above the threshold, and then drained below in the case of FIFO_THR=13.

Figure 16 Example of TX FIFO at Threshold

Figure 17: Number of Bytes in TX FIFO vs. the GDO Signal (GDOx_CFG=0x02 and FIFO_THR=13)

spacing registers are mantissa and exponent respectively. The base or start frequency is set by the 24 bit frequency word located in the FREQ2, FREQ1, and FREQ0 registers. This word will typically be set to the centre of the lowest channel frequency that is to be used.

The desired channel number is programmed with the 8-bit channel number register,

CHANNR.CHAN, which is multiplied by the channel offset. The resultant carrier frequency

$$f_{carrier} = \frac{f_{XOSC}}{2^{16}} \cdot (FREQ + CHAN \cdot ((256 + CHANSPC _M) \cdot 2^{CHANSPC _E-2}))$$

is given by:

With a 26 MHz crystal the maximum channel spacing is 405 kHz. To get e.g. 1 MHz channel spacing, one solution is to use 333 kHz channel spacing and select each third channel in CHANNR.CHAN.

The preferred IF frequency is programmed with the FSCTRL1.FREQ_IF register. The IF frequency is given by:

18 VCO

The VCO is completely integrated on-chip.

18.1 VCO and PLL Self-Calibration

The VCO characteristics vary with temperature and supply voltage changes as well as with the desired operating frequency. In order to ensure reliable operation, **CC115L** includes frequency synthesizer self-calibration circuitry. This calibration should be done regularly, and must be performed after turning on power and before using a new frequency (or channel). The number of XOSC cycles for completing the PLL calibration is given in Table 20 on page 30.

The calibration can be initiated automatically or manually. The synthesizer can be automatically calibrated each time the synthesizer is turned on, or each time the synthesizer is turned off automatically. This is configured with the MCSM0.FS_AUTOCAL register setting. In manual mode, the calibration is initiated when the SCAL command strobe is activated in the IDLE mode.

19 Voltage Regulators

CC115L contains several on-chip linear voltage regulators that generate the supply voltages needed by low-voltage modules. These voltage regulators are invisible to the user, and can be viewed as integral parts of the various modules. The user must however make sure that the absolute maximum ratings and required pin voltages in Table 1 and Table 14 are not exceeded.

By setting the CSn pin low, the voltage regulator to the digital core turns on and the crystal oscillator starts. The SO pin on the SPI interface must go low before the first positive

$$f_{IF} = \frac{f_{XOSC}}{2^{10}} \cdot FREQ_IF$$

If any frequency programming register is altered when the frequency synthesizer is running, the synthesizer may give an undesired response. Hence, the frequency should only be updated when the radio is in the IDLE state

Note: The calibration values are maintained in SLEEP mode, so the calibration is still valid after waking up from SLEEP mode unless supply voltage or temperature has changed significantly.

To check that the PLL is in lock, the user can program register $IOCFGx.GDOx_CFG$ to 0x0A, and use the lock detector output available on the GDOx pin as an interrupt for the MCU (x = 0,1, or 2). A positive transition on the GDOx pin means that the PLL is in lock. As an alternative the user can read register FSCAL1. The PLL is in lock if the register content is different from 0x3F. Refer also to the **CC115L** Errata Notes [3].

For more robust operation, the source code could include a check so that the PLL is recalibrated until PLL lock is achieved if the PLL does not lock the first time.

edge of SCLK (setup time is given in Table 16).

If the chip is programmed to enter power-down mode (SPWD strobe issued), the power will be turned off after CSn goes high. The power and crystal oscillator will be turned on again when CSn goes low.

The voltage regulator for the digital core requires one external decoupling capacitor.

The voltage regulator output should only be used for driving the **CC115L**.

20 Output Power Programming

The RF output power level from the device has two levels of programmability. The PATABLE register can hold two user selected output power settings and the FRENDO.PA_POWER value selects the PATABLE entry to use (0 or 1). PATABLE must be programmed in burst mode if writing to other entries than PATABLE[0].See Section 10.6 on page 21 for more programming details.

For OOK modulation, FRENDO.PA_POWER should be 1 and the logic 0 and logic 1 power levels shall be programmed to index 0 and 1 respectively. For all other modulation formats, the desired output power should be programmed to index 0. Table 25 contains recommended PATABLE settings for various output levels and frequency bands. DN013 [7] gives the complete tables for the different frequency bands using multi-layer inductors. Using PA settings from 0x61 to 0x6F is not allowed. Table 26 contains output power and current consumption for default PATABLE setting (0xC6). The measurements are done on ([2]).

Note: All content of the PATABLE except for the first byte (index 0) is lost when entering the SLEEP state.

	868 MHz		915 MHz	
Output Power [dBm]	Setting	Current Consumption, Typ. [mA]	Setting	Current Consumption, Typ. [mA]
12/11	0xC0	34.2	0xC0	33.4
10	0xC5	30.0	0xC3	30.7
7	0xCD	25.8	0xCC	25.7
5	0x86	19.9	0x84	20.2
0	0x50	16.8	0x8E	17.2
-6	0x37	16.4	0x38	17.0
-10	0x26	14.5	0x27	14.8
-15	0x1D	13.3	0x1E	13.3
-20	0x17	12.6	0x0E	12.5
-30	0x03	12.0	0x03	11.9

 Table 23: Optimum PATABLE
 Settings for Various Output Power Levels Using Wire-Wound

 Inductors in 868/915 MHz Frequency Bands

	868 MHz		915 MHz	
Default Power Setting	Output Power [dBm]	Current Consumption, Typ. [mA]	Output Power [dBm]	Current Consumption, Typ. [mA]
0xC6	9.6	29.4	8.9	28.7

Table 24: Output Power and Current Consumption for Default PATABLE Setting Using Wire-Wound Inductors in 868/915 MHz Frequency Bands

	868 MHz		915 MHz	
Output Power [dBm]	Setting	Current Consumption, Typ. [mA]	Setting	Current Consumption, Typ. [mA]
10	0xC2	32.4	0xC0	31.8
7	0xCB	26.8	0xC7	26.9
5	0x81	21.0	0xCD	24.3
0	0x50	16.9	0x8E	16.7
-10	0x27	15.0	0x27	14.9
-15	0x1E	13.4	0x1E	13.4
-20	0x0F	12.7	0x0E	12.6
-30	0x03	12.1	0x03	12.0

Table 25: Optimum PATABLE Settings for Various Output Power Levels Using Multi-layer Inductors in 868/915 MHz Frequency Bands

	868 MHz		915 MHz	
Default Power Setting	Output Power [dBm]	Current Consumption, Typ. [mA]	Output Power [dBm]	Current Consumption, Typ. [mA]
0xC6	8.5	29.5	7.2	27.4

Table 26: Output Power and Current Consumption for Default PATABLE Setting Using Multi-layer Inductors in 868/915 MHz Frequency Bands

21 General Purpose / Test Output Control Pins

The three digital output pins GDO0, GDO1, and GDO2 are general control pins configured with IOCFG0.GDO0 CFG, IOCFG1.GDO1 CFG, and IOCFG2.GDO2 CFG respectively. Table 27 shows frequency by writing to IOCFG0.GDO0 CFG. the different signals that can be monitored on the If the IOCFGx.GDOx CFG setting is less than GDO pins. These signals can be used as inputs to the MCU. GDO1 is the same pin as the SO pin on the SPI interface, thus the output programmed on this pin will only be valid when CSn is high. The default hardwired until the CHIP RDYn signal goes low. value for GDO1 is 3-stated which is useful when If the IOCFGx.GDOx CFG setting is 0x20 or the SPI interface is shared with other devices. The default value for GDO0 is а 135 - 141 kHz clock output (XOSC frequency

divided by 192). Since the XOSC is turned on at

power-on-reset, this can be used to clock the MCU in systems with only one crystal. When the MCU is up and running, it can change the clock

0x20 and IOCFGx GDOx INV is 0 (1), the GDO0 and GDO2 pins will be hardwired to 0 (1), and the GDO1 pin will be hardwired to 1 (0) in the SLEEP state. These signals will be

higher, the GDO pins will work as programmed also in SLEEP state. As an example, GDO1 is high impedance in all states if IOCFG1.GDO1 CFG=0x2E.

GDOx_CFG[5:0]	Description		
0 (0x00) - 1 (0x01)	Reserved - used f	or test.	
2 (0x02)	Associated to the TX FIFO: Asserts when the TX FIFO is filled at or above the TX FIFO threshold. De-asserts when the TX FIFO is below the same threshold.		
3 (0x03)	Associated to the below the TX FIF	TX FIFO: Asserts when TX FIFO is full. De-asserts when the TX FIFO is drained D threshold.	
4 (0x04)	Reserved - used f	or test.	
5 (0x05)	Asserts when the	TX FIFO has underflowed. De-asserts when the FIFO is flushed.	
6 (0x06)	Asserts when sync word has been sent, and de-asserts at the end of the packet. The pin will de- assert if the TX FIFO underflows.		
7 (0x07) - 9 (0x09)	Reserved - used f	or test.	
10 (0x0A)		out. The PLL is in lock if the lock detector output has a positive transition or is gh. To check for PLL lock the lock detector output should be used as an interrupt for	
11 (0x0B)		chronous to the data in synchronous serial mode. by CC115L on the rising edge of the serial clock when GDOx_INV=0.	
12 (0x0C)	Serial Synchronou	us Data Output. Used for synchronous serial mode.	
13 (0x0D)	Serial Data Outpu	t. Used for asynchronous serial mode.	
14 (0x0E) - 26 (0x1A)	Reserved - used f	or test.	
27 (0x1B)	PA_PD. Note: PA_PD will have the same signal level in SLEEP and TX states. To control an external PA in applications where the SLEEP state is used it is recommended to use $gDOx_CFGx=0x2F$ instead.		
28 (0x1C) - 40 (0x28)	Reserved - used f	or test.	
41 (0x29)	CHIP_RDYn.		
42 (0x2A)	Reserved - used f	or test.	
43 (0x2B)	XOSC_STABLE.		
44 (0x2C) - 45 (0x2D)	Reserved - used f	or test.	
46 (0x2E)	High impedance (3-state).	
47 (0x2F)	HW to 0 (HW1 ac	hieved by setting GDOx_INV=1). Can be used to control an external PA	
48 (0x30)	CLK_XOSC/1	Note: There are 3 GDO pins, but only one CLK_XOSC/n can be selected as an	
49 (0x31)	CLK_XOSC/1.5	output at any time. If CLK_XOSC/n is to be monitored on one of the GDO pins, the other two GDO pins must be configured to values less than 0x30. The GDO0	
50 (0x32)	CLK_XOSC/2	default value is CLK_XOSC/192.	
51 (0x33)	CLK_XOSC/3	To optimize RF performance, these signals should not be used while the radio is	
52 (0x34)	CLK_XOSC/4	in TX mode.	
53 (0x35)	CLK_XOSC/6		
54 (0x36)	CLK_XOSC/8		
55 (0x37)	CLK_XOSC/12		
56 (0x38)	CLK_XOSC/16		
57 (0x39)	CLK_XOSC/24		
58 (0x3A)	CLK_XOSC/32		
59 (0x3B)	CLK_XOSC/48		
60 (0x3C)	CLK_XOSC/64		
61 (0x3D)	CLK_XOSC/96		
62 (0x3E)	CLK_XOSC/128		
63 (0x3F)	CLK_XOSC/192		

Table 27: GDOx Signal Selection (x = 0, 1, or 2)

22 Asynchronous and Synchronous Serial Operation

Several features and modes of operation have been included in the **CC115L** to provide backward compatibility with previous Chipcon products and other existing RF communication systems. For new systems, it is recommended

22.1 Asynchronous Serial Operation

Asynchronous transfer is included in the **CC115L** for backward compatibility with systems that are already using the asynchronous data transfer.

When asynchronous transfer is enabled, all packet handling support is disabled and it is not possible to use Manchester encoding.

Asynchronous serial mode is enabled by setting PKTCTRL0.PKT FORMAT to 3.

22.2 Synchronous Serial Operation

PKTCTRL0.PKT FORMAT Setting to 1 enables synchronous serial mode. When using this mode, sync detection should be disabled with CRC calculation together (MDMCFG2.SYNC MODE=000 and PKTCTRL0.CRC EN=0). Infinite packet length mode should be used (PKTCTRL0.LENGTH CONFIG=10_b).

23 System Considerations and Guidelines

23.1 SRD Regulations

International regulations and national laws regulate the use of radio receivers and transmitters. Short Range Devices (SRDs) for license free operation below 1 GHz are usually operated in the 315 MHz, 433 MHz, 868 MHz, or 915 MHz frequency bands. The **CC115L** is specifically designed for such use with its 300 - 348 MHz, 387 - 464 MHz, and 779 - 928 MHz operating ranges. The most important regulations when using the **CC115L** in the 315 MHz, 433 MHz, 868 MHz, or 915 MHz frequency bands are EN 300 220 V2.3.1 (Europe) and FCC CFR47 part 15 (USA).

to use the built-in packet handling features, as they can give more robust communication, significantly offload the microcontroller, and simplify software development.

Strobing STX will configure the GDO0 pin as data input (TX data) regardless of the content of the IOCFG0 register.

The **CC115L** modulator samples the level of the asynchronous input 8 times faster than the programmed data rate. The timing requirement for the asynchronous stream is that the error in the bit period must be less than one eighth of the programmed data rate.

In synchronous serial mode, data is transferred on a two-wire serial interface. The **CC115L** provides a clock that is used to set up new data on the data input line. Data input (TX data) is on the GDO0 pin. This pin will automatically be configured as an input when TX is active. The TX latency is 8 bits.

The MCU must handle preamble and sync word insertion in software, together with CRC calculation and insertion.

For compliance with modulation bandwidth requirements under EN 300 220 V2.3.1 in the 863 to 870 MHz frequency range it is recommended to use a 26 MHz crystal for frequencies below 869 MHz and a 27 MHz crystal for frequencies above 869 MHz.

Please note that compliance with regulations is dependent on the complete system performance. It is the customer's responsibility to ensure that the system complies with regulations.
23.2 Calibration in Multi-Channel Systems

CC115L is highly suited for multi-channel systems due to its agile frequency synthesizer and effective communication interface.

Charge pump current, VCO current, and VCO capacitance array calibration data is required for each frequency when implementing a multichannel system. There are 3 ways of obtaining the calibration data from the chip:

1) Calibration for every frequency change. The PLL calibration time is 712/724 μ s (26 MHz crystal and TEST0 = 0x09/0B, see Table 21). The blanking interval between each frequency is then 787/799 μ s.

2) Perform all necessary calibration at startup and store the resulting FSCAL3, FSCAL2, and FSCAL1 register values in MCU memory. The VCO capacitance calibration FSCAL1 register value must be found for each RF frequency to be used. The VCO current calibration value and the charge pump current calibration value available in FSCAL2 and FSCAL3 respectively are not dependent on the RF frequency, so the same value can therefore be used for all RF frequencies for these two registers. Between each frequency change, the calibration process can then be replaced by writing the FSCAL3, FSCAL2 and FSCAL1 register values that corresponds to the next RF frequency. The PLL turn on time is approximately 75 µs (Table 20). The blanking interval between each frequency hop is then approximately 75 µs.

3) Run calibration on a single frequency at startup. Next write 0 to FSCAL3[5:4] to disable the charge pump calibration. After writing to FSCAL3[5:4], strobe STX with MCSM0.FS AUTOCAL=1 for each new frequency. That is, VCO current and VCO capacitance calibration is done, but not charge pump current calibration. When charge pump current calibration is disabled the calibration time is reduced from $712/724 \ \mu s$ to $145/157 \ \mu s$ (26 MHz crystal and TEST0 = 0x09/0B, see Table 21). The blanking interval between each frequency hop is then 220/232 µs.

There is a trade-off between blanking time and memory space needed for storing calibration data in non-volatile memory. Solution 2) above gives the shortest blanking interval, but requires more memory space to store calibration values. This solution also requires that the supply voltage and temperature do not vary much in order to have a robust solution. Solution 3) gives 567 µs smaller blanking interval than solution 1).

The recommended settings for TEST0.VCO_SEL_CAL_EN change with frequency. This means that one should always use SmartRF Studio [4] to get the correct settings for a specific frequency before doing a calibration, regardless of which calibration method is being used.

Note: The content in the TESTO register is not retained in SLEEP state, thus it is necessary to re-write this register when returning from the SLEEP state.

23.3 Wideband Modulation when not Using Spread Spectrum

Digital modulation systems under FCC part 15.247 include 2-FSK, GFSK, and 4-FSK modulation. A maximum peak output power of 1 W (+30 dBm) is allowed if the 6 dB bandwidth of the modulated signal exceeds 500 kHz. In addition, the peak power spectral density conducted to the antenna shall not be greater than +8 dBm in any 3 kHz band.

23.4 Data Burst Transmissions

The high maximum data rate of **CC115L** opens up for burst transmissions. A low average data rate link (e.g. 10 kBaud) can be realized by using a higher over-the-air data rate. Buffering the data and transmitting in bursts at high data rate (e.g. 500 kBaud) will reduce the time in Operating at high data rates and frequency separation, the **CC115L** is suited for systems targeting compliance with digital modulation system as defined by FCC part 15.247. An external power amplifier such as **CC1190** [8] is needed to increase the output above +11 dBm. Please refer to DN006 [6] for further details concerning wideband modulation and **CC115L**.

TX mode, and hence also reduce the average current consumption significantly. Reducing the time in TX mode will reduce the likelihood of collisions with other systems in the same frequency range.

23.5 Continuous Transmissions

In data streaming applications, the **CC115L** opens up for continuous transmissions at 500 kBaud effective data rate. As the modulation is done with a closed loop PLL, there is no limitation in the length of a

23.6 Increasing Output Power

The PA portion of the *CC1190* [8] can be used together with *CC115L* in applications

24 Configuration Registers

The configuration of **CC115L** is done by programming 8-bit registers. The optimum configuration data based on selected system parameters are most easily found by using the SmartRF Studio software [4]. Complete descriptions of the registers are given in the following tables. After chip reset, all the registers have default values as shown in the tables. The optimum register setting might differ from the default value. After a reset, all registers that shall be different from the default value therefore needs to be programmed through the SPI interface.

There are 9 command strobe registers listed in Table 28. Accessing these registers will initiate the change of an internal state or mode. There are 34 normal 8-bit configuration registers listed in Table 29, and SmartRF Studio [4] will provide recommended settings for these registers². transmission (open loop modulation used in some radios often prevents this kind of continuous data streaming and reduces the effective data rate).

where increased output power is needed.

There are also 5 status registers that are listed in Table 30. These registers, which are readonly, contain information about the status of *C0115L*.

The TX FIFO is accessed through one 8-bit register. During the header byte transfer and while writing data to a register or the TX FIFO, a status byte is returned on the SO line. This status byte is described in Table 17 on page 20.

Table 31 summarizes the SPI address space. The address to use is given by adding the base address to the left and the burst and read/write bits on the top. Note that the burst bit has different meaning for base addresses above and below 0x2F.

value to them. Addresses marked as "Reserved" must be configured according to SmartRF Studio[4].

²Addresses marked as "Not Used" can be part of a burst access and one can write a dummy

Address	Strobe Name	Description
0x30	SRES	Reset chip.
0x31	SFSTXON	Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).
0x32	SXOFF	Turn off crystal oscillator.
0x33	SCAL	Calibrate frequency synthesizer and turn it off. SCAL can be strobed from IDLE mode without setting manual calibration mode (MCSM0.FS_AUTOCAL=0)
0x34	Reserved	
0x35	STX	In IDLE state: Enable TX. Perform calibration first if MCSM0.FS_AUTOCAL=1.
0x36	SIDLE	Enter IDLE state
0x37 - 0x38	Reserved	
0x39	SPWD	Enter power down mode when CSn goes high.
0x3A	Reserved	
0x3B	SFTX	Flush the TX FIFO buffer. Only issue SFTX in IDLE or TXFIFO_UNDERFLOW states.
0x3C	Reserved	
0x3D	SNOP	No operation. May be used to get access to the chip status byte.

Table 28: Command Strobes

Address	dress Register Description		Preserved in SLEEP State	Details on Page Number
0x00	IOCFG2	GDO2 output pin configuration	Yes	42
0x01	IOCFG1	GDO1 output pin configuration	Yes	42
0x02	IOCFG0	GDO0 output pin configuration	Yes	42
0x03	FIFOTHR	TX FIFO threshold	Yes	43
0x04	SYNC1	Sync word, high byte	Yes	43
0x05	SYNC0	Sync word, low byte	Yes	43
0x06	PKTLEN	Packet length	Yes	43
0x07	Not Used			
0x08	PKTCTRL0	Packet automation control	Yes	44
0x09	Not Used			
0x0A	CHANNR	Channel number	Yes	44
0x0B	Not Used			
0x0C	FSCTRL0	Frequency synthesizer control	Yes	44
0x0D	FREQ2	Frequency control word, high byte	Yes	44
0x0E	FREQ1	Frequency control word, middle byte	Yes	45
0x0F	FREQ0	Frequency control word, low byte	Yes	45
0x10	MDMCFG4	Modem configuration	Yes	45
0x11	MDMCFG3	Modem configuration	Yes	45
0x12	MDMCFG2	Modem configuration	Yes	46
0x13	MDMCFG1	Modem configuration	Yes	46
0x14	MDMCFG0	Modem configuration	Yes	47
0x15	DEVIATN	Modem deviation setting	Yes	47
0x16	Not Used			
0x17	MCSM1	Main Radio Control State Machine Configuration	Yes	47
0x18	MCSM0	Main Radio Control State Machine configuration	Yes	48
0x19 - 0x1F	Not Used			
0x20	Reserved			48
0x21	Not Used			
0x22	FREND0	Front end TX configuration	Yes	49
0x23	FSCAL3	Frequency synthesizer calibration	Yes	49
0x24	FSCAL2	Frequency synthesizer calibration	Yes	49

Address	Register	Description	Preserved in SLEEP State	Details on Page Number
0x25	FSCAL1	Frequency synthesizer calibration	Yes	49
0x26	FSCAL0	Frequency synthesizer calibration	Yes	49
0x27 - 0x28	Not Used			
0x29 - 0x2B	RESERVED		No	50
0x2C	TEST2	Various test settings	No	50
0x2D	TEST1	Various test settings	No	50
0x2E	TEST0	Various test settings	No	50

 Table 29: Configuration Registers Overview

Address	Register	Description	Details on Page Number
0x30 (0xF0)	PARTNUM	Part number for <i>CC115L</i>	50
0x31 (0xF1)	VERSION	Current version number	50
0x32 - 0x34 (0xF2 - 0xF4)	Reserved		
0x35 (0xF5)	MARCSTATE	Control state machine state	51
0x36 - 0x37 (0xF6 - 0xF7)	Reserved		
0x38 (0xF8)	PKTSTATUS	Current GDOx status and packet status	52
0x39 (0xF9)	Reserved		
0x3A (0xFA)	TXBYTES	Underflow and number of bytes in the TX FIFO	52
0x3B - 0x3D (0xFB - 0xFD)	Reserved		

Table 30: Status Registers Overview

CC115L

	Write Single Byte	Burst	Read Single Byte	Burst					
	+0x00	+0x40	+0x80	+0xC0					
0x00		IC	DCFG2						
0x01		IC	DCFG1						
0x02	IOCFG0								
0x03	FIFOTHR								
0x04		S	SYNC1						
0x05		S	YNC0						
0x06		PI	KTLEN						
0x07		No	ot Used						
0x08		PK.	TCTRL0						
0x09		No	ot Used						
0x0A		CH	HANNR						
0x0B		No	ot Used						
0x0C		FS	CTRL0						
0x0D			REQ2						
0x0E		F	REQ1		υ				
0x0F		F	REQ0		ldi				
0x10			MCFG4		oss				
0x11			MCFG3		ğ				
0x12			MCFG2		esse				
0x13			MCFG1		R/W configuration registers, burst access possible				
0x14			MCFG0		šta				
0x15			EVIATN		nıs				
0x16			ot Used		<u>م</u>				
0x17			ICSM1		ers				
0x18		Μ	ICSM0		list				
0x19			ot Used						
0x1A			ot Used		u u				
0x1B			ot Used		atic				
0x1C			ot Used		l				
0x1D			ot Used						
0x1E			ot Used		Ī				
0x1F		Not Used							
0x20		Not Used							
0x21		Not Used							
0x22			REND0						
0x23			SCAL3		-				
0x24		FSCAL2							
0x25	FSCAL1								
0x26	FSCAL0								
0x27	Not Used								
0x28	Not Used RESERVED								
0x29									
0x2A		RESERVED							
0x2B			SERVED		-				
0x2C 0x2D			EST2 EST1		-				
			EST0		-				
0x2E 0x2F			t Used		-				
0x2F 0x30	SRES	INC	SRES	PARTNUM					
	SFSTXON		SFSTXON		-				
0x31 0x32	SXOFF		SXOFF	Reserved	<i>"</i>				
0x32 0x33	SCAL		SCAL	Reserved	ier; srs				
0x33 0x34	Reserved		Reserved	Reserved	gist iste				
0x34 0x35	STX		STX	MARCSTATE	Command Strobes, Status registers (read only) and multi byte registers				
0x35 0x36	SIDLE		SIDLE	Reserved	e c				
0x30 0x37	Reserved		Reserved	Reserved	byt b				
0x37 0x38	Reserved		Reserved	PKTSTATUS	S I				
0x38 0x39	SPWD		SPWD	Reserved	mu				
0x39 0x3A	Reserved		Reserved	TXBYTES	2 P				
0x3A 0x3B	SFTX		SFTX	Reserved	arst				
0x3B 0x3C	Reserved		Reserved	Reserved	₽Š				
	Reserved SNOP		SNOP	Reserved	an or				
U^3D				DESEIVED					
0x3D 0x3E	PATABLE		PATABLE	PATABLE	n n n				

Table 3 ^r	1: SP	Address	Space
----------------------	-------	---------	-------

24.1 Configuration Register Details - Registers with preserved values in SLEEP state

Bit	Field Name	Reset	R/W	Description
7			R0	Not used
6	GDO2_INV	0	R/W	Invert output, i.e. select active low (1) / high (0)
5:0	GDO2_CFG[5:0]	41 (101001)	R/W	Default is CHP_RDYn (See Table 27 on page 35).

0x00: IOCFG2 - GDO2 Output Pin Configuration

0x01: IOCFG1 - GDO1 Output Pin Configuration

Bit	Field Name	Reset	R/W	Description
7	GDO_DS	0	R/W	Set high (1) or low (0) output drive strength on the GDO pins.
6	GDO1_INV	0	R/W	Invert output, i.e. select active low (1) / high (0)
5:0	GDO1_CFG[5:0]	46 (101110)	R/W	Default is 3-state (See Table 27 on page 35).

0x02: IOCFG0 - GDO0 Output Pin Configuration

Bit	Field Name	Reset	R/W	Description
7		0	R/W	Use setting from SmartRF Studio [4]
6	GDO0_INV	0	R/W	Invert output, i.e. select active low (1) / high (0)
5:0	GDO0_CFG[5:0]	63 (111111)	R/W	Default is CLK_XOSC/192 (See Table 27 on page 35).
				It is recommended to disable the clock output in initialization, in order to optimize RF performance.

Bit	Field Name	Reset	R/W	Description	
7:4		0 (00)	R/W	Use setting from SmartRF	Studio [4]
3:0	FIFO_THR[3:0]	7 (0111)	R/W		X FIFO. The threshold is exceeded when the FIFO is equal to or higher than the threshold value.
				Setting	Bytes in TX FIFO
				0 (0000)	61
				1 (0001)	57
				2 (0010)	53
				3 (0011)	49
				4 (0100)	45
				5 (0101)	41
				6 (0110)	37
				7 (0111)	33
				8 (1000)	29
				9 (1001)	25
				10 (1010)	21
				11 (1011)	17
				12 (1100)	13
				13 (1101)	9
				14 (1110)	5
				15 (1111)	1

0x03: FIFOTHR - TX FIFO Thresholds

0x04: SYNC1 - Sync Word, High Byte

Bit	Field Name	Reset	R/W	Description
7:0	SYNC[15:8]	211 (0xD3)	R/W	8 MSB of 16-bit sync word

0x05: SYNC0 - Sync Word, Low Byte

Bit	Field Name	Reset	R/W	Description
7:0	SYNC[7:0]	145 (0x91)	R/W	8 LSB of 16-bit sync word

0x06: PKTLEN - Packet Length

Bit	Field Name	Reset	R/W	Description
7:0	PACKET_LENGTH	255 (0xFF)	R/W	Indicates the packet length when fixed packet length mode is enabled. This value must be different from 0

Bit	Field Name	Reset	R/W	Descriptio	on	
7			R0	Not used		
6		1	R/W	Use setting from SmartRF Studio [4]		
5:4	PKT_FORMAT[1:0]	0 (00)	R/W	Format of	Format of TX data	
				Setting	Packet format	
				0 (00)	Normal mode, use TX FIFO	
				1 (01)	Synchronous serial mode, Data in on GDO0	
				2 (10)	Random TX mode; sends random data using PN9 generator. Used for test.	
				3 (11)	Asynchronous serial mode, Data in on GDO0	
3		0	R0	Not used		
2	CRC_EN	1	R/W	1: CRC ca	Iculation enabled	
				0: CRC ca	Iculation disabled	
1:0	LENGTH_CONFIG[1:0]	1 (01)	R/W	Configure	the packet length	
				Setting	Packet length configuration	
				0 (00)	Fixed packet length mode. Length configured in PKTLEN register	
				1 (01)	Variable packet length mode. Packet length configured by the first byte written to the TX FIFO	
				2 (10)	Infinite packet length mode	
				3 (11)	Reserved	

0x08: PKTCTRL0 - Packet Automation Control

0x0A: CHANNR - Channel Number

Bit	Field Name	Reset	R/W	Description
7:0	CHAN[7:0]	0 (0x00)	R/W	The 8-bit unsigned channel number, which is multiplied by the channel spacing setting and added to the base frequency.

0x0C: FSCTRL0 - Frequency Synthesizer Control

Bit	Field Name	Reset	R/W	Description
7:0	FREQOFF[7:0]	0 (0x00)	R/W	Frequency offset added to the base frequency before being used by the frequency synthesizer. (2s-complement). Resolution is $F_{XTAL}/2^{14}$ (1.59kHz-1.65kHz); range is ±202 kHz to ±210 kHz, dependent of XTAL frequency.

Bit	Field Name	Reset	R/W	Description
7:6	FREQ[23:22]	0 (00)	R	FREQ[23:22] is always 0 (the FREQ2 register is less than 36 with 26 - 27 MHz crystal)
5:0	FREQ[21:16]	30 (011110)	R/W	FREQ[23:0] is the base frequency for the frequency synthesiser in increments of $f_{xoso}/2^{16}$. $f_{carrier} = \frac{f_{xosc}}{2^{16}} \cdot FREQ[23:0]$

0x0E: FREQ1 - Frequency Control Word, Middle Byte

Bit	Field Name	Reset	R/W	Description
7:0	FREQ[15:8]	196 (0xC4)	R/W	Ref. FREQ2 register

0x0F: FREQ0 - Frequency Control Word, Low Byte

Bit	Field Name	Reset	R/W	Description
7:0	FREQ[7:0]	236 (0xEC)	R/W	Ref. FREQ2 register

0x10: MDMCFG4 - Modem Configuration

Bit	Field Name	Reset	R/W	Description
7:4		8 (1000)	R/W	Use setting from SmartRF Studio [4]
3:0	DRATE_E[3:0]	12 (1100)	R/W	The exponent of the user specified symbol rate

0x11: MDMCFG3 - Modem Configuration

Bit	Field Name	Reset	R/W	Description
7:0	DRATE_M[7:0]	34 (0x22)	R/W	The mantissa of the user specified symbol rate. The symbol rate is configured using an unsigned, floating-point number with 9-bit mantissa and 4-bit exponent. The 9 th bit is a hidden '1'. The resulting data rate is: $R_{DATA} = \frac{(256 + DRATE - M) \cdot 2^{DRATE - E}}{2^{28}} \cdot f_{XOSC}$ The default values give a data rate of 115.051 kBaud (closest setting to 115.2 kBaud), assuming a 26.0 MHz crystal.

Bit	Field Name	Reset	R/W	Description	
7		0	R/W	Use setting from SmartRF S	tudio [4]
6:4	MOD_FORMAT[2:0]	0 (000)	R/W	The modulation format of the	e radio signal
				Setting	Modulation format
				0 (000)	2-FSK
				1 (001)	GFSK
				2 (010)	Reserved
				3 (011)	ООК
				4 (100)	4-FSK
				5 (101)	Reserved
				6 (110)	Reserved
				7 (111)	Reserved
				4-FSK modulation cannot be encoding.	e used together with Manchester
3	MANCHESTER_EN	0	R/W	Enables Manchester encodi	ng.
				0 = Disable	
				1 = Enable	
				Manchester encoding canno serial mode or 4-FSK modul	t be used when using asynchronous ation
2:0	SYNC_MODE[2:0]	2 (010)	R/W	Number of sync bits transmi	tted
				Setting	Sync-word qualifier mode
				0 (000)	No preamble/sync
				1 (001)	16 bits sync word
				2 (010)	Reserved
				3 (011)	32 bits sync word
				4 (100) - 7 (111)	Reserved

0x12: MDMCFG2 - Modem Configuration

0x13: MDMCFG1 - Modem Configuration

Bit	Field Name	Reset	R/W	Description	Description	
7		0	R/W	Use setting from SmartRF Studio [4]		
6:4	NUM_PREAMBLE[2:0]	2 (010)	R/W	Sets the minimum number of preamble bytes to be transmitted		
				Setting	Number of preamble bytes	
				0 (000)	2	
				1 (001)	3	
				2 (010)	4	
				3 (011)	6	
				4 (100)	8	
				5 (101)	12	
				6 (110)	16	
				7 (111)	24	
3:2			R0	Not used		
1:0	CHANSPC_E[1:0]	2 (10)	R/W	2 bit exponent	of channel spacing	

0x14: MDMCFG0 - Modem Configuration

Bit	Field Name	Reset	R/W	Description
7:0	CHANSPC_M[7:0]	248 (0xF8)	R/W	8-bit mantissa of channel spacing. The channel spacing is multiplied by the channel number CHAN and added to the base frequency. It is unsigned and has the format: $\Delta f_{CHANNEL} = \frac{f_{XOSC}}{2^{18}} \cdot (256 + CHANSPC_M) \cdot 2^{CHANSPC_E}$ The default values give 199.951 kHz channel spacing (the closest setting to 200 kHz), assuming 26.0 MHz crystal frequency.

0x15: DEVIATN - Modem Deviation Setting

Bit	Field Name	Reset	R/W	Description	
7			R0	Not used.	
6:4	DEVIATION_E[2:0]	4 (100)	R/W	Deviation exponent.	
3			R0	Not used.	
2:0	DEVIATION_M[2:0]	7 (111)	R/W	2-FSK/ Specifies the nominal frequency deviation GFSK/ a '0' (-DEVIATN) and '1' (+DEVIATN) in a 4-FSK exponent format, interpreted as a 4-bit valimplicit 1. The resulting frequency deviation $f_{dev} = \frac{f_{xosc}}{2^{17}} \cdot (8 + DEVIATION _M) \cdot $ The default values give ±47.607 kHz deviation 26.0 MHz crystal frequency.	a mantissa- alue with MSB ion is given by: 2 ^{DEVIATION_E}
				OOK This setting has no effect	

0x17: MCSM1 - Main Radio Control State Machine Configuration

Bit	Field Name	Reset	R/W	Description		
7:6			R0	Not used	Not used	
5:2		3 (1100)	R/W	Use setting	Use setting from SmartRF Studio [4]	
1:0	TXOFF_MODE[1:0]	0 (00)	R/W	Select what should happen when a packet has been sent		
				Setting	Next state after finishing packet transmission	
				0 (00)	IDLE	
				1 (01)	FSTXON	
				2 (10)	Stay in TX (start sending preamble)	
				3 (11)	Reserved	

Bit	Field Name	Reset	R/W	Descriptio	on	
7:6			R0	Not used		
5:4	FS_AUTOCAL[1:0]	0 (00)	R/W	Automatic	ally calibrate when g	joing to to/from TX mode
				Setting	When to perform a	automatic calibration
				0 (00)	Never (manually c	alibrate using SCAL strobe)
				1 (01)	When going from	IDLE to TX or FSTXON
				2 (10)	When going from automatically	TX back to IDLE
				3 (11)	Every 4 th time whe automatically	en going from TX to IDLE
3:2	PO_TIMEOUT	1 (01)	R/W		e after the XOSC ha	the six-bit ripple counter as settled before CHP_RDYn
				shall be set time to sta (PO_TIME	et so that the regulat	oower-down, PO_TIMEOUT ed digital supply voltage has DYn goes low ed). Typical start-up time for
					operation it is recor	nmended to use (OSC is off during power-
				Setting	Expire count	Timeout after XOSC start
				0 (00)	1	Approx. 2.3 - 2.4 µs
				1 (01)	16	Approx. 37 - 39 µs
				2 (10)	64	Approx. 149 - 155 µs
				3 (11)	256	Approx. 597 - 620 µs
				Exact time	out depends on cry	stal frequency.
1		0	R/W			
0	XOSC_FORCE_ON	0	R/W	Force the	XOSC to stay on in	the SLEEP state.

0x18: MCSM0 - Main Radio Control State Machine Configuration

0x20: RESERVED

Bit	Field Name	Reset	R/W	Description
7:3		31 (11111)	R/W	Use setting from SmartRF Studio [4]
2			R0	Not used
1:0		0 (00)	R/W	See SmartRF Studio [4] for setting

³ Note that the XOSC_STABLE signal will be asserted at the same time as the CHIP_RDYn signal; i.e. the PO_TIMEOUT delays both signals and does not insert a delay between the signals.

Bit	Field Name	Reset	R/W	Description
7:6			R0	Not used
5:4	LODIV_BUF_CURRENT_TX[1:0]	1 (01)	R/W	Adjusts current TX LO buffer (input to PA). The value to use in this field is given by the SmartRF Studio software [4].
3			R0	Not used
2:0	PA_POWER[2:0]	0 (000)	R/W	Selects PA power setting. This value is an index to the PATABLE, which can be programmed with up to 2 different PA settings. When using OOK, PA_POWER should be 001, and for all other modulation formats it should be 000. Please see Sections 10.6 and Section 20 for more details.

0x22: FREND0 - Front End TX Configuration

0x23: FSCAL3 - Frequency Synthesizer Calibration

Bit	Field Name	Reset	R/W	Description
7:6	FSCAL3[7:6]	2 (10)	R/W	Frequency synthesizer calibration configuration. The value to write in this field before calibration is given by the SmartRF Studio software [4].
5:4	CHP_CURR_CAL_EN[1:0]	2 (10)	R/W	Disable charge pump calibration stage when 0.
3:0	FSCAL3[3:0]	9 (1001)	R/W	Frequency synthesizer calibration result register. Digital bit vector defining the charge pump output current, on an exponential scale: $I_OUT = I_0.2^{FSCAL3(3:0)/4}$ Please see Section 23.2 for more details.

0x24: FSCAL2 - Frequency Synthesizer Calibration

Bit	Field Name	Reset	R/W	Description
7:6			R0	Not used
5	VCO_CORE_H_EN	0	R/W	Choose high (1) / low (0) VCO
4:0	FSCAL2[4:0]	10 (01010)	R/W	Frequency synthesizer calibration result register. VCO current calibration result and override value. Please see Section 23.2 for more details.

0x25: FSCAL1 - Frequency Synthesizer Calibration

Bit	Field Name	Reset	R/W	Description
7:6			R0	Not used
5:0	FSCAL1[5:0]	32 (0x20)	R/W	Frequency synthesizer calibration result register. Capacitor array setting for VCO coarse tuning. Please see Section 23.2 for more details.

0x26: FSCAL0 - Frequency Synthesizer Calibration

Bit	Field Name	Reset	R/W	Description
7			R0	Not used
6:0	FSCAL0[6:0]	13 (0x0D)	R/W	Frequency synthesizer calibration control. The value to use in this register is given by the SmartRF Studio software [4].

24.2 Configuration Register Details - Registers that Loose Programming in SLEEP State 0x29: RESERVED

Bit	Field Name	Reset	R/W	Description
7:0		89 (0x59)	R/W	Use setting from SmartRF Studio [4]

0x2A: RESERVED

Bit	Field Name	Reset	R/W	Description
7:0		127 (0x7F)	R/W	Use setting from SmartRF Studio [4]

0x2B: RESERVED

Bit	Field Name	Reset	R/W	Description					
7:0		63 (0x3F)	R/W	Use setting from SmartRF Studio [4]					

0x2C: TEST2 - Various Test Settings

Bit	Field Name	Reset	R/W	Description			
7:0	TEST2[7:0]	136 (0x88)	R/W	Use setting from SmartRF Studio [4]			

0x2D: TEST1 - Various Test Settings

Bit	Field Name	Reset	R/W	Description			
7:0	TEST1[7:0]	49 (0x31)	R/W	Use setting from SmartRF Studio [4]			

0x2E: TEST0 - Various Test Settings

Bit	Field Name	Reset	R/W	Description				
7:2	TEST0[7:2]	2 (000010)	R/W	Use setting from SmartRF Studio [4]				
1	VCO_SEL_CAL_EN	1	R/W	Enable VCO selection calibration stage when 1				
0	TEST0[0]	1	R/W	Use setting from SmartRF Studio [4]				

24.3 Status Register Details

0x30 (0xF0): PARTNUM - Chip ID

Bit	Field Name	Reset	R/W	Description			
7:0	PARTNUM[7:0]	0 (0x00)	R	Chip part number			

0x31 (0xF1): VERSION - Chip ID

Bit	Field Name	Reset	R/W	Description			
7:0	VERSION[7:0]	9 (0x09)	R	Chip version number.			

Bit	Field Name	Reset	R/W	Description							
7:5			R0	Not used							
4:0	MARC_STATE[4:0]		R	Main Radio Control FSM State							
				Value	State name	State (Figure 13, page 27)					
				0 (0x00)	SLEEP	SLEEP					
				1 (0x01)	IDLE	IDLE					
				2 (0x02)	XOFF	XOFF					
				3 (0x03)	VCOON_MC	MANCAL					
				4 (0x04)	REGON_MC	MANCAL					
				5 (0x05)	MANCAL	MANCAL					
				6 (0x06)	VCOON	FS_WAKEUP					
				7 (0x07)	REGON	FS_WAKEUP					
				8 (0x08)	STARTCAL	CALIBRATE					
				9 (0x09)	BWBOOST	SETTLING					
				10 (0x0A)	FS_LOCK	SETTLING					
				11 (0x0B)	Reserved						
				12 (0x0C)	ENDCAL	CALIBRATE					
				13 (0x0D) Reserved		·					
				- 17 (0x11)							
				18 (0x12)	FSTXON	FSTXON					
				19 (0x13)	ТХ	ТХ					
				20 (0x14)	TX_END	ТХ					
				21 (0x15)	Reserved						
				22 (0x16)	TXFIFO_UNDERFLOW	TXFIFO_UNDERFLOW					
					EEP or XOFF state numbers p enter the IDLE mode from the						

0x35 (0xF5): MARCSTATE - Main Radio Control State Machine State

0x38 (0xF8): PKTSTATUS - Current GDOx Status and Packet Status

Bit	Field Name	Reset	R/W	Description
7:3			R	Reserved
2	GDO2		R Current GDO2 value. Note: the reading gives the non-inverted irrespective of what IOCFG2.GDO2_INV is programmed to. It is not recommended to check for PLL lock by reading PKTSTATUS[2] with GDO2_CFG=0x0A.	
1			R0	Not used
0	GDO0		R	Current GDO0 value. Note: the reading gives the non-inverted value irrespective of what IOCFG0.GDO0_INV is programmed to.
				It is not recommended to check for PLL lock by reading PKTSTATUS[0] with GDO0_CFG=0x0A.

0x3A (0xFA): TXBYTES - Underflow and Number of Bytes

Bit	Field Name Reset		R/W	Description
7	TXFIFO_UNDERFLOW		R	
6:0	NUM_TXBYTES		R	Number of bytes in TX FIFO

25 Development Kit Ordering Information

Orderable Evaluation Module	Description	Minimum Order Quantity		
CC11xLDK-868-915	CC11xL Development Kit, 868/915 MHz	1		
CC11xLEMK-433	CC11xL Evaluation Module Kit, 433 MHz	1		

Figure 18: Development Kit Ordering Information

26 References

- [1] Characterization Design 315 433 MHz
 (Identical to the CC1101EM 315 433 MHz Reference Design (swrr046.zip))
- [2] Characterization Design 868 915 MHz
 (Identical to the CC1101EM 868 915 MHz Reference Design (swrr045.zip))
- [3] CC115L Errata Notes (swrz036.pdf)
- [4] SmartRF Studio (swrc176.zip)
- [5] DN017 CC11xx 868/915 MHz RF Matching (swra168.pdf)
- [6] DN006 CC11xx Settings for FCC 15.247 Solutions (swra123.pdf)
- [7] DN013 Programming Output Power on CC1101 (swra168.pdf)
- [8] CC1190 Data Sheet (swrs08.pdf)
- [9] DN032 Options for Cost Optimizes CC11xx Matching (swra346.pdf)
- [10] CC110LEM / CC115LEM 433 MHz Reference Design (swrr081.zip)
- [11] CC110LEM / CC115LEM 868 915 MHz Reference Design (swrr082.zip)

27 General Information

27.1 Document History

Revision	Date	Description/Changes
SWRA105	05.24.2011	Initial Release
SWRS105A	08.09.2011	Added two registers (CHANNR and MDMCFG0) in addition to the MDMCFG1.CHANSPC_E register field. Changes made to Section 17. Hyperlinks added to the CC110LEM / CC115LEM 433 MHz Reference Design and the CC110LEM / CC115LEM 868 - 915 MHz Reference Design

Table 32: Document History

21-Mar-2013

PACKAGING INFORMATION

[Orderable Device	Status	Package Type	•		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
		(1)		Drawing			(2)		(3)		(4)	
	CC115LRGPR	ACTIVE	QFN	RGP	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC115L	Samples
	CC115LRGPT	ACTIVE	QFN	RGP	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	CC115L	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CC115LRGPR	QFN	RGP	20	3000	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q2
CC115LRGPT	QFN	RGP	20	250	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CC115LRGPR	QFN	RGP	20	3000	338.1	338.1	20.6
CC115LRGPT	QFN	RGP	20	250	338.1	338.1	20.6

MECHANICAL DATA

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α.

- Β. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.

D. The package thermal pad must be soldered to the board for thermal and mechanical performance.

- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. E.
- 🖄 Check thermal pad mechanical drawing in the product datasheet for nominal lead length dimensions.

RGP (S-PVQFN-N20)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: A. All linear dimensions are in millimeters

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications				
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive			
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications			
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers			
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps			
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy			
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial			
Interface	interface.ti.com	Medical	www.ti.com/medical			
Logic	logic.ti.com	Security	www.ti.com/security			
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense			
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video			
RFID	www.ti-rfid.com					
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com			
Wireless Connectivity	www.ti.com/wirelessconnectivity					

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.