74AHC1G66-Q100; 74AHCT1G66-Q100 Single-pole single-throw analog switch Rev. 1 — 27 January 2015 Product data sheet ### 1. General description 74AHC1G66-Q100 and 74AHCT1G66-Q100 are high-speed Si-gate CMOS devices. They are single-pole single-throw analog switches. The switch has two input/output pins (Y and Z) and an active HIGH enable input pin (E). When pin E is LOW, the analog switch is turned off. This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications. #### 2. Features and benefits - Automotive product qualification in accordance with AEC-Q100 (Grade 1) - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C - Very low ON resistance: - 26 Ω (typ.) at $V_{CC} = 3.0 \text{ V}$ - 16 Ω (typ.) at $V_{CC} = 4.5 \text{ V}$ - 14 Ω (typ.) at $V_{CC} = 5.5 \text{ V}$ - High noise immunity - Low power dissipation - Balanced propagation delays - Multiple package options - ESD protection: - MIL-STD-883, method 3015 exceeds 2000 V - ◆ HBM JESD22-A114F exceeds 2000 V - ♦ MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω) ### 3. Ordering information Table 1. Ordering information | Type number | Package | | | | | | | | | | |-------------------|-------------------|--------|--|----------|--|--|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | | | 74AHC1G66GW-Q100 | −40 °C to +125 °C | TSSOP5 | plastic thin shrink small outline package; | SOT353-1 | | | | | | | | 74AHCT1G66GW-Q100 | | | 5 leads; body width 1.25 mm | | | | | | | | | 74AHC1G66GV-Q100 | −40 °C to +125 °C | SC-74A | plastic surface-mounted package; 5 leads | SOT753 | | | | | | | | 74AHCT1G66GV-Q100 | | | | | | | | | | | ### 4. Marking #### Table 2. Marking codes | Type number | Marking | |-------------------|---------| | 74AHC1G66GW-Q100 | AL | | 74AHCT1G66GW-Q100 | CL | | 74AHC1G66GV-Q100 | A66 | | 74AHCT1G66GV-Q100 | C66 | ### 5. Functional diagram ### 6. Pinning information #### 6.1 Pinning #### 6.2 Pin description Table 3. Pin description | Symbol | Pin | Description | |-----------------|-----|-----------------------------| | Υ | 1 | independent input or output | | Z | 2 | independent input or output | | GND | 3 | ground (0 V) | | E | 4 | enable input (active HIGH) | | V _{CC} | 5 | supply voltage | ### 7. Functional description #### Table 4. Function table[1] | Input E | Switch | |---------|--------| | L | OFF | | Н | ON | ^[1] H = HIGH voltage level; L = LOW voltage level. ## 8. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | Min | Max | Unit | |------------------|-------------------------|---|-----|------------|------|------| | V _{CC} | supply voltage | | | -0.5 | +7.0 | V | | I _{IK} | input clamping current | V _I < -0.5 V | [1] | -20 | - | mA | | I _{SK} | switch clamping current | $V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$ | [1] | - | ±20 | mA | | I _{SW} | switch current | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ | | - | ±25 | mA | | I _{CC} | supply current | | | - | 75 | mA | | I _{GND} | ground current | | | −75 | - | mA | | T _{stg} | storage temperature | | | -65 | +150 | °C | | P _{tot} | total power dissipation | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ | [2] | - | 250 | mW | ^[1] The input and output voltage ratings may be exceeded if the input and output voltage ratings are observed. ### 9. Recommended operating conditions Table 6. Recommended operating conditions Voltages are referenced to GND (ground = 0 V).[1] | Symbol | Parameter | Conditions | 74AHC1G66-Q100 | | | 74AHCT1G66-Q100 | | | Unit | |-----------------|----------------|------------|----------------|-----|-----------------|-----------------|-----|-----------------|------| | | | | Min | Тур | Max | Min | Тур | Max | | | V _{CC} | supply voltage | | 2.0 | 5.0 | 5.5 | 4.5 | 5.0 | 5.5 | V | | VI | input voltage | | 0 | - | 5.5 | 0 | - | 5.5 | V | | V _{SW} | switch voltage | | 0 | - | V _{CC} | 0 | - | V _{CC} | ٧ | 74AHC_AHCT1G66_Q100 ^[2] For TSSOP5 and SC-74A packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K. Table 6. Recommended operating conditions ...continued Voltages are referenced to GND (ground = 0 V).[1] | Symbol | Parameter | Conditions | 74AHC1G66-Q100 | | | 74AHCT1G66-Q100 | | | Unit | | |------------------|---------------------------------|----------------------------------|----------------|-----|-----|-----------------|-----|-----|------|------| | | | | | Min | Тур | Max | Min | Тур | Max | | | T _{amb} | ambient temperature | | | -40 | +25 | +125 | -40 | +25 | +125 | °C | | Δt/ΔV | Δt/ΔV input transition rise and | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ | [2] | - | - | 100 | - | - | - | ns/V | | fall rate | | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | [2] | - | - | 20 | - | - | 20 | ns/V | ^[1] To avoid drawing V_{CC} current from pin Z, when switch-current flows in pin Y, the voltage drop across the bidirectional switch must not exceed 0.4 V. If switch-current flows into pin Z, no V_{CC} current flows out of terminal Y. In this case, there is no limit for the voltage drop across the switch. However, the voltage at pins Y and Z may not exceed V_{CC} or GND. #### 10. Static characteristics #### Table 7. Static characteristics Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | 25 °C | | -40 °C | to +85 °C | -40 °C to +125 °C | | Unit | |---------------------|---------------------------------|---|------|-------|------|--------|-----------|-------------------|------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74AHC1 | G66-Q100 | | ' | | | | | | 1 | | | V _{IH} | HIGH-level | V _{CC} = 2.0 V | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | | input voltage | V _{CC} = 3.0 V | 2.1 | - | - | 2.1 | - | 2.1 | - | V | | | | V _{CC} = 5.5 V | 3.85 | - | - | 3.85 | - | 3.85 | - | V | | V _{IL} | LOW-level | V _{CC} = 2.0 V | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | | input voltage | V _{CC} = 3.0 V | - | - | 0.9 | - | 0.9 | - | 0.9 | V | | | | V _{CC} = 5.5 V | - | - | 1.65 | - | 1.65 | - | 1.65 | V | | I _I | input leakage
current | V _I = 5.5 V or GND;
V _{CC} = 5.5 V | - | - | 0.1 | - | 1.0 | - | 2.0 | μΑ | | I _{S(OFF)} | OFF-state
leakage
current | Y or Z; V _{CC} = 5.5 V;
see <u>Figure 4</u> | - | - | 0.1 | - | 1.0 | - | 4.0 | μΑ | | I _{S(ON)} | ON-state
leakage
current | Y or Z; V _{CC} = 5.5 V;
see <u>Figure 5</u> | - | - | 0.1 | - | 1.0 | - | 4.0 | μΑ | | I _{CC} | supply current | E, Y or Z = V_{CC} or GND;
$V_{CC} = 5.5 \text{ V}$ | - | - | 1.0 | - | 10 | - | 40 | μА | | Cı | input
capacitance | E input | - | 2.0 | 10 | - | 10 | - | 10 | pF | | C _{S(ON)} | ON-state capacitance | Y or Z input or output | - | 4.0 | 10 | - | 10 | - | 10 | pF | | 74AHCT | 1G66-Q100 | | | 1 | | | 1 | | 1 | | | V _{IH} | HIGH-level input voltage | V _{CC} = 4.5 V to 5.5 V | 2.0 | - | - | 2.0 | - | 2.0 | - | V | | V _{IL} | LOW-level input voltage | V _{CC} = 4.5 V to 5.5 V | - | - | 0.8 | - | 0.8 | - | 0.8 | V | | I _I | input leakage
current | V _I = 5.5 V or GND;
V _{CC} = 5.5 V | - | - | 0.1 | - | 1.0 | - | 2.0 | μΑ | ^[2] Applies to control signal levels. **Table 7. Static characteristics** ...continued Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | 25 °C | | -40 °C 1 | to +85 °C | –40 °C t | o +125 °C | Unit | |---------------------|---------------------------------|--|-----|-------|------|----------|-----------|----------|-----------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | I _{S(OFF)} | OFF-state
leakage
current | Y or Z; V _{CC} = 5.5 V;
see <u>Figure 4</u> | - | - | 0.1 | - | 1.0 | - | 4.0 | μΑ | | I _{S(ON)} | ON-state
leakage
current | Y or Z; V _{CC} = 5.5 V;
see <u>Figure 5</u> | - | - | 0.1 | - | 1.0 | - | 4.0 | μΑ | | I _{CC} | supply current | E, Y or Z = V_{CC} or GND;
$V_{CC} = 5.5 \text{ V}$ | - | - | 1.0 | - | 10 | - | 40 | μΑ | | Δl _{CC} | additional supply current | per input pin; $V_I = 3.4 \text{ V}$; other inputs at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 5.5 \text{ V}$ | - | - | 1.35 | - | 1.5 | - | 1.5 | mA | | Cı | input
capacitance | E input | - | 2.0 | 10 | - | 10 | - | 10 | pF | | C _{S(ON)} | ON-state capacitance | Y or Z input or output | - | 4.0 | 10 | - | 10 | - | 10 | pF | #### 10.1 Test circuits $V_I = V_{CC}$ or GND and $V_O = GND$ or V_{CC} . Fig 4. Test circuit for measuring OFF-state leakage current $V_I = V_{CC}$ or GND and $V_O =$ open circuit. Fig 5. Test circuit for measuring ON-state leakage current #### 10.2 ON resistance Table 8. ON resistance At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graph see Figure 7 11. | Symbol | Parameter | Conditions | 25 | °C | -40 °C to +85 °C | –40 °C to +125 °C | Unit | |-----------------------|----------------------|--|--------|-----|------------------|-------------------|------| | | | | Тур | max | Max | Max | | | 74AHC10 | 666-Q100 and 74 | 1AHCT1G66-Q100 | | | | | | | R _{ON(peak)} | ON resistance | V _I = V _{CC} to GND; see <u>Figure 6</u> | | | | | | | | (peak) | I _{SW} = 1.0 mA; V _{CC} = 2.0 V | 148[1] | - | - | - | Ω | | | | I_{SW} = 10 mA; V_{CC} = 3.0 V to 3.6 V | 28 | 50 | 70 | 110 | Ω | | | | I_{SW} = 10 mA; V_{CC} = 4.5 V to 5.5 V | 15 | 30 | 40 | 60 | Ω | | R _{ON(rail)} | ON resistance (rail) | V _I = GND; see Figure 6 | | | | | | | | | I _{SW} = 1.0 mA; V _{CC} = 2.0 V | 30 | - | - | - | Ω | | | | I_{SW} = 10 mA; V_{CC} = 3.0 V to 3.6 V | 20 | 50 | 65 | 90 | Ω | | | | I_{SW} = 10 mA; V_{CC} = 4.5 V to 5.5 V | 15 | 22 | 26 | 40 | Ω | | | | V _I = V _{CC} ; see <u>Figure 6</u> | | | | | | | | | I _{SW} = 1.0 mA; V _{CC} = 2.0 V | 28 | - | - | - | Ω | | | | I_{SW} = 10 mA; V_{CC} = 3.0 V to 3.6 V | 18 | 50 | 65 | 90 | Ω | | | | I_{SW} = 10 mA; V_{CC} = 4.5 V to 5.5 V | 13 | 22 | 26 | 40 | Ω | ^[1] At supply voltages approaching 2 V, the analog switch ON resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using this supply voltage. #### 10.3 ON resistance test circuit and graphs ### 11. Dynamic characteristics Table 9. Dynamic characteristics Voltages are referenced to GND (ground = 0 V); $C_L = 50 \ pF$; unless otherwise specified; For test circuit, see <u>Figure 10</u>. | Symbol | Parameter | Conditions | | 25 ° | °C | -40 °C to +85 °C | -40 °C to +125 °C | Unit | |------------------|-------------------------------------|---|--------|-------------|------|------------------|-------------------|------| | | | | Тур | [1] | max | Max | Max | | | 74AHC1 | G66-Q100 | | ' | | | | | | | t _{pd} | propagation | Y to Z or Z to Y; see Figure 8 | [2] | | | | | | | | delay | V _{CC} = 2.0 V | 2.: | 2 | 5.0 | 6.0 | 7.0 | ns | | | | V _{CC} = 3.0 V to 3.6 V | 1.0 | 0 | 2.0 | 3.0 | 4.0 | ns | | | | V _{CC} = 4.5 V to 5.5 V | 0.0 | 6 | 1.0 | 2.0 | 3.0 | ns | | t _{en} | enable time | E to Y or Z; see Figure 9 | [2] | | | | | | | | | $V_{CC} = 2.0 \text{ V}; C_L = 15 \text{ pF}$ | 7.0 | 0 | 25.0 | 33.0 | 40.0 | ns | | | | V _{CC} = 2.0 V | 11. | .0 | 35.0 | 46.0 | 57.0 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $C_L = 15 \text{ pF}$ | 4.0 | 0 | 11.0 | 14.0 | 18.0 | ns | | | | V _{CC} = 3.0 V to 3.6 V | 5.8 | 8 | 15.0 | 20.0 | 25.0 | ns | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V};$ $C_L = 15 \text{ pF}$ | 3.0 | 0 | 8.0 | 10.0 | 13.0 | ns | | | | V _{CC} = 4.5 V to 5.5 V | 4.0 | 0 | 11.0 | 13.0 | 17.0 | ns | | t _{dis} | disable time | E to Y or Z; see Figure 9 | [2] | | | | | | | | | $V_{CC} = 2.0 \text{ V}; C_L = 15 \text{ pF}$ | 9.0 | 0 | 25.0 | 33.0 | 40.0 | ns | | | | V _{CC} = 2.0 V | 13. | .0 | 35.0 | 46.0 | 57.0 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $C_L = 15 \text{ pF}$ | 6.0 | 0 | 11.0 | 14.0 | 18.0 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | 8.4 | 4 | 15.0 | 20.0 | 25.0 | ns | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V};$ $C_L = 15 \text{ pF}$ | 5.0 | 0 | 8.0 | 10.0 | 13.0 | ns | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | 6. | 1 | 11.0 | 13.0 | 17.0 | ns | | C _{PD} | power
dissipation
capacitance | $V_I = GND$ to V_{CC} | [3] 13 | 3 | - | - | - | pF | | 74AHCT | 1G66-Q100 | | | | | | | | | t _{pd} | propagation | Y to Z or Z to Y; see Figure 8 | [2] | | | | | | | | delay | V _{CC} = 4.5 V to 5.5 V | 0. | 7 | 1.0 | 2.0 | 3.0 | ns | | t _{en} | enable time | E to Y or Z; see Figure 9 | [2] | | | | | | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V};$ $C_L = 15 \text{ pF}$ | 3.0 | 0 | 7.0 | 10.0 | 13.0 | ns | | | | V _{CC} = 4.5 V to 5.5 V | 4. | 7 | 10.0 | 13.0 | 17.0 | ns | | t _{dis} | disable time | E to Y or Z; see Figure 9 | [2] | | | | | | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V};$ $C_L = 15 \text{ pF}$ | 5.0 | 0 | 8.0 | 10.0 | 13.0 | ns | | | | V _{CC} = 4.5 V to 5.5 V | 6. | 5 | 11.0 | 13.0 | 17.0 | ns | #### Table 9. Dynamic characteristics ...continued Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$; unless otherwise specified; For test circuit, see <u>Figure 10</u>. | Symbol | Parameter | Conditions | 25 °C | | -40 °C to +85 °C | -40 °C to +125 °C | Unit | |-----------------|-------------------------------------|------------------------------------|--------|-----|------------------|-------------------|------| | | | | Typ[1] | max | Max | Max | | | C _{PD} | power
dissipation
capacitance | $V_I = GND \text{ to } V_{CC}$ [3] | 15 | - | - | - | pF | - [1] All typical values are measured at V_{CC} = 2.0 V, V_{CC} = 3.3 V, V_{CC} = 5.0 V and T_{amb} = 25 °C. - [2] t_{pd} is the same as t_{PLH} and t_{PHL} . t_{en} is the same as t_{PZL} and t_{PZH} . t_{dis} is the same as t_{PLZ} and t_{PHZ}. [3] C_{PD} is used to determine the dynamic power dissipation P_D (μW). $$P_D = C_{PD} \times V_{CC}{}^2 \times f_i + \Sigma \; ((C_L \times C_{SW}) \times V_{CC}{}^2 \times f_o) \; \text{where:} \;$$ f_i = input frequency in MHz; fo = output frequency in MHz; C_L = output load capacitance in pF; C_{SW} = maximum switch capacitance in pF (see Table 7); V_{CC} = supply voltage in Volt; $\Sigma ((C_L \times C_{SW}) \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$ #### 11.1 Waveforms and test circuit Measurement points are given in <u>Table 10</u>. Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load. Fig 8. Input (Y or Z) to output (Z or Y) propagation delays Table 10. Measurement points | Туре | Input | Output | | | |-----------------|--------------------|--------------------|-------------------------|-------------------------| | | V _M | V _M | V_X | V_{Y} | | 74AHC1G66-Q100 | 0.5V _{CC} | 0.5V _{CC} | V _{OL} + 0.3 V | V _{OH} – 0.3 V | | 74AHCT1G66-Q100 | 1.5 V | 1.5 V | V _{OL} + 0.3 V | V _{OH} – 0.3 V | S1 = Test selection switch. Fig 10. Test circuit for measuring switching times R_L = Load resistance. C_L = Load capacitance including jig and probe capacitance. Table 11. Test data | Туре | Input | | Load | | S1 position | | | | |-----------------|------------------------|---------------------------------|----------------|----------------|-------------------------------------|-------------------------------------|-------------------------------------|--| | | VI | t _r , t _f | C _L | R _L | t _{PHL} , t _{PLH} | t _{PZH} , t _{PHZ} | t _{PZL} , t _{PLZ} | | | 74AHC1G66-Q100 | GND to V _{CC} | 3 ns | 15 pF, 50 pF | 1 kΩ | open | GND | V _{CC} | | | 74AHCT1G66-Q100 | GND to 3 V | 3 ns | 15 pF, 50 pF | 1 kΩ | open | GND | V _{CC} | | #### 11.2 Additional dynamic characteristics Table 12. Additional dynamic characteristics for 74AHC1G66-Q100 and 74AHCT1G66-Q100 GND = 0 V; $t_r = t_f = 3.0 \text{ ns}$; $C_L = 50 \text{ pF}$; unless otherwise specified. All typical values are measured at $T_{amb} = 25 \text{ }^{\circ}\text{C}$. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------------------|----------------------------------|---|-------|-------|-----|------| | THD total harmonic | | $f_i = 1 \text{ kHz}$; $R_L = 10 \text{ k}\Omega$; see Figure 11 | | | | | | | distortion | V _{CC} = 3.0 V to 3.6 V | - | 0.025 | - | % | | | V _{CC} = 4.5 V to 5.5 V | - | 0.015 | - | % | | | | | $f_i = 10 \text{ kHz}$; $R_L = 10 \text{ k}\Omega$; see Figure 11 | | | | | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } V_I = 2.5 \text{ V}$ | - | 0.025 | - | % | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } V_I = 4.0 \text{ V}$ | - | 0.015 | - | % | Table 12. Additional dynamic characteristics for 74AHC1G66-Q100 and 74AHCT1G66-Q100 ... continued $GND = 0 \ V$; $t_r = t_f = 3.0 \ ns$; $C_L = 50 \ pF$; unless otherwise specified. All typical values are measured at $T_{amb} = 25 \ ^{\circ}C$. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------------|--------------------------|---|-----|-----|-----|------| | f _(-3dB) | –3 dB frequency response | $R_L = 50 \Omega$; $C_L = 10 pF$;
see Figure 12 and 13 | | | | | | | | V _{CC} = 3.0 V to 3.6 V | - | 230 | - | MHz | | | | V _{CC} = 4.5 V to 5.5 V | - | 280 | - | MHz | | α_{iso} | isolation (OFF-state) | $R_L = 600 \Omega$; $f_i = 1 MHz$; see Figure 14 | | | | | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; V_{I} = 2.5 \text{ V}$ | - | -50 | - | dB | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; V_I = 4.0 \text{ V}$ | - | -50 | - | dB | [1] Adjust input voltage V_1 to 0 dBm level (0 dBm =1 mW into 50 Ω). #### 11.3 Test circuits and graphs #### Test conditions: $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } V_{I} = 2.5 \text{ V (p-p)}.$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; V_I = 4.0 \text{ V (p-p)}.$ Fig 11. Test circuit for measuring total harmonic distortion With f_i = 1 MHz, adjust the switch input voltage for a 0 dBm level at the switch output (0 dBm = 1 mW into 50 Ω). Then increase the input f_i frequency until the dB meter reads -3 dB. Fig 12. Test circuit for measuring the -3 dB frequency response Adjust the switch input voltage for a 0 dBm level (0 dBm = 1 mW into 600 Ω). Fig 14. Test circuit for measuring isolation (OFF-state) ### 12. Package outline TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm SOT353-1 | UNIT | A
max. | A ₁ | A ₂ | А3 | bp | С | D ⁽¹⁾ | E(1) | е | e ₁ | HE | L | Lp | v | w | у | Z ⁽¹⁾ | θ | |------|-----------|----------------|----------------|------|--------------|--------------|------------------|--------------|------|----------------|-------------|-------|--------------|-----|-----|-----|------------------|----------| | mm | 1.1 | 0.1
0 | 1.0
0.8 | 0.15 | 0.30
0.15 | 0.25
0.08 | 2.25
1.85 | 1.35
1.15 | 0.65 | 1.3 | 2.25
2.0 | 0.425 | 0.46
0.21 | 0.3 | 0.1 | 0.1 | 0.60
0.15 | 7°
0° | 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|-----|--------|----------|------------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT353-1 | | MO-203 | SC-88A | | | 00-09-01
03-02-19 | Fig 15. Package outline SOT353-1 (TSSOP5) 74AHC_AHCT1G66_Q100 All information provided in this document is subject to legal disclaimers. Fig 16. Package outline SOT753 (SC-74A) 74AHC_AHCT1G66_Q100 ### 13. Abbreviations #### Table 13. Abbreviations | Acronym | Description | |---------|---| | CDM | Charged Device Model | | CMOS | Complementary Metal-Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | НВМ | Human Body Model | | MIL | Military | | MM | Machine Model | ## 14. Revision history #### Table 14. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |-------------------------|--------------|--------------------|---------------|------------| | 74AHC_AHCT1G66_Q100 v.1 | 20150127 | Product data sheet | - | - | ### 15. Legal information #### 15.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com. #### 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 15.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia. Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer. 74AHC_AHCT1G66_Q100 No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. #### 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. #### 16. Contact information For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com ### 17. Contents | 1 | General description | |------|---| | 2 | Features and benefits 1 | | 3 | Ordering information 1 | | 4 | Marking 2 | | 5 | Functional diagram 2 | | 6 | Pinning information | | 6.1 | Pinning | | 6.2 | Pin description | | 7 | Functional description 3 | | 8 | Limiting values 3 | | 9 | Recommended operating conditions 3 | | 10 | Static characteristics 4 | | 10.1 | Test circuits 5 | | 10.2 | ON resistance | | 10.3 | ON resistance test circuit and graphs 6 | | 11 | Dynamic characteristics 7 | | 11.1 | Waveforms and test circuit 8 | | 11.2 | Additional dynamic characteristics 10 | | 11.3 | Test circuits and graphs | | 12 | Package outline | | 13 | Abbreviations15 | | 14 | Revision history 15 | | 15 | Legal information 16 | | 15.1 | Data sheet status | | 15.2 | Definitions | | 15.3 | Disclaimers | | 15.4 | Trademarks17 | | 16 | Contact information 17 | | 17 | Contents 18 | Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.