Power MOSFET # 60 V, 5.0 m Ω , 109 A, Single N-Channel #### **Features** - Small Footprint (3.3 x 3.3 mm) for Compact Design - Low R_{DS(on)} to Minimize Conduction Losses - Low Capacitance to Minimize Driver Losses - NVTFS5C658NLWF Wettable Flanks Product - AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant #### **MAXIMUM RATINGS** (T_J = 25°C unless otherwise noted) | Parameter | | | Symbol | Value | Unit | |---|-------------------------------------|------------------------|-----------------------------------|----------------|------| | Drain-to-Source Voltag | Drain-to-Source Voltage | | | 60 | V | | Gate-to-Source Voltage | Э | | V _{GS} | ±20 | V | | Continuous Drain Cur- | | T _C = 25°C | I _D | 109 | Α | | rent $R_{\theta JC}$ (Notes 1, 2, 3, 4) | Steady | T _C = 100°C | | 77 | | | Power Dissipation | State | T _C = 25°C | P_{D} | 114 | W | | R _{θJC} (Notes 1, 2, 3) | | T _C = 100°C | | 57 | | | Continuous Drain Cur- | | T _A = 25°C | I _D | 18 | Α | | rent R _{0JA} (Notes 1 & 3, 4) | Steady | T _A = 100°C | | 15 | | | Power Dissipation | State | T _A = 25°C | P_{D} | 3.2 | W | | R _{θJA} (Notes 1, 3) | | T _A = 100°C | | 2.2 | | | Pulsed Drain Current | $T_A = 25^{\circ}C, t_p = 10 \mu s$ | | I _{DM} | 440 | Α | | Operating Junction and Storage Temperature | | | T _J , T _{stg} | -55 to
+175 | °C | | Source Current (Body Diode) | | | I _S | 127 | Α | | Single Pulse Drain-to-Source Avalanche
Energy (I _{L(pk)} = 5.0 A) | | | E _{AS} | 142 | mJ | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | TL | 260 | °C | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL RESISTANCE MAXIMUM RATINGS (Note 1) | Parameter | Symbol | Value | Unit | |---|-----------------|-------|------| | Junction-to-Case - Steady State (Note 3) | $R_{\theta JC}$ | 1.3 | °C/W | | Junction-to-Ambient - Steady State (Note 3) | $R_{\theta JA}$ | 47 | | - The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. - 2. Psi (Ψ) is used as required per JESD51-12 for packages in which substantially less than 100% of the heat flows to single case surface. - 3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad. - 4. Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle. ### ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | R _{DS(on)} MAX | I _D MAX | | |----------------------|-------------------------|--------------------|--| | 60 V | 5.0 m Ω @ 10 V | 109 A | | | 60 V | 7.3 m Ω @ 4.5 V | 109 A | | ### N-Channel #### **MARKING DIAGRAM** XXXX = Specific Device Code = Assembly Location = Year ww = Work Week = Pb-Free Package (Note: Microdot may be in either location) #### ORDERING INFORMATION See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet. # **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |-----------------------------------|----------------------|---|-----------------------------|-----|------|-----|------| | OFF CHARACTERISTICS | - | - | | | - | - | - | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0 \text{ V}, I_D$ | = 250 μΑ | 60 | | | V | | Zero Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0 V, | T _J = 25°C | | | 10 | μΑ | | | | $V_{DS} = 60 \text{ V}$ | T _J = 125°C | | | 250 | | | Gate-to-Source Leakage Current | I _{GSS} | $V_{DS} = 0 \text{ V}, V_{C}$ | iS = 20 V | | | 100 | nA | | ON CHARACTERISTICS (Note 5) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_{E}$ |) = 75 μΑ | 1.2 | | 2.2 | V | | Drain-to-Source On Resistance | R _{DS(on)} | V _{GS} = 10 V, I | _D = 50 A | | 4.2 | 5.0 | mΩ | | | | V _{GS} = 4.5 V, | _D = 50 A | | 5.8 | 7.3 | | | Forward Transconductance | 9 _{FS} | V _{DS} = 15 V, I | _D = 50 A | | 100 | | S | | CHARGES AND CAPACITANCES | | | | | | | | | Input Capacitance | C _{iss} | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$
$V_{DS} = 25 \text{ V}$ | | | 1935 | | pF | | Output Capacitance | C _{oss} | | | | 890 | | | | Reverse Transfer Capacitance | C _{rss} | | | | 16 | | 1 | | Total Gate Charge | Q _{G(TOT)} | $V_{GS} = 4.5 \text{ V}, V_{DS} = 48 \text{ V}, I_{D} = 50 \text{ A}$ | | | 12 | | nC | | Threshold Gate Charge | Q _{G(TH)} | | | | 3.5 | | nC | | Gate-to-Source Charge | Q_GS | | | | 7 | | | | Gate-to-Drain Charge | Q_GD | | | | 2.4 | | | | Total Gate Charge | Q _{G(TOT)} | V _{GS} = 10 V, V _{DS} = | 48 V, I _D = 50 A | | 27 | | nC | | SWITCHING CHARACTERISTICS (No | ote 6) | | | | • | • | | | Turn-On Delay Time | t _{d(on)} | | | | 16 | | ns | | Rise Time | t _r | VGS = 4.5 V. VI | ns = 48 V. | | 96 | | | | Turn-Off Delay Time | t _{d(off)} | $V_{GS} = 4.5 \text{ V, V}_{I}$ $I_{D} = 50$ | Ä | | 36 | | | | Fall Time | t _f | | | | 105 | | | | DRAIN-SOURCE DIODE CHARACTEI | RISTICS | | | | | | | | Forward Diode Voltage | V_{SD} | $V_{GS} = 0 V$ | T _J = 25°C | | 0.9 | 1.2 | V | | | | I _S = 50 A | T _J = 125°C | | 0.8 | | | | Reverse Recovery Time | t _{RR} | | 1 | | 39 | | ns | | Charge Time | t _a | V_{GS} = 0 V, dI_S/dt = 100 A/ μ s, I_S = 50 A | | | 21 | | 1 | | Discharge Time | t _b | | | | 18 | | 1 | | Reverse Recovery Charge | Q_{RR} | | | | 15 | | nC | ^{5.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. 6. Switching characteristics are independent of operating junction temperatures. #### **TYPICAL CHARACTERISTICS** T_J, JUNCTION TEMPERATURE (°C) Figure 5. On-Resistance Variation with Temperature V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 6. Drain-to-Source Leakage Current vs. Voltage #### **TYPICAL CHARACTERISTICS** Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge Figure 9. Resistive Switching Time Variation vs. Gate Resistance Figure 10. Diode Forward Voltage vs. Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Drain Current vs. Time in Avalanche #### **TYPICAL CHARACTERISTICS** Figure 13. Thermal Characteristics #### **DEVICE ORDERING INFORMATION** | Device | Marking | Package | Shipping [†] | |-------------------|---------|--------------------|-----------------------| | NVTFS5C658NLTAG | 658L | WDFN8
(Pb-Free) | 1500 / Tape & Reel | | NVTFS5C658NLWFTAG | 58LW | WDFN8
(Pb-Free) | 1500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### WDFN8 3.3x3.3, 0.65P CASE 511AB ISSUE D **DATE 23 APR 2012** #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. | | MILLIMETERS | | INCHES | | | | |-----|-------------|----------|--------|----------|----------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.70 | 0.75 | 0.80 | 0.028 | 0.030 | 0.031 | | A1 | 0.00 | | 0.05 | 0.000 | | 0.002 | | b | 0.23 | 0.30 | 0.40 | 0.009 | 0.012 | 0.016 | | С | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 | | D | - | 3.30 BSC | ; | 0 | .130 BSC | | | D1 | 2.95 | 3.05 | 3.15 | 0.116 | 0.120 | 0.124 | | D2 | 1.98 | 2.11 | 2.24 | 0.078 | 0.083 | 0.088 | | Е | | 3.30 BSC | ; | 0 | .130 BSC |) | | E1 | 2.95 | 3.05 | 3.15 | 0.116 | 0.120 | 0.124 | | E2 | 1.47 | 1.60 | 1.73 | 0.058 | 0.063 | 0.068 | | E3 | 0.23 | 0.30 | 0.40 | 0.009 | 0.012 | 0.016 | | е | 0.65 BSC | | (| 0.026 BS | 0 | | | G | 0.30 | 0.41 | 0.51 | 0.012 | 0.016 | 0.020 | | K | 0.65 | 0.80 | 0.95 | 0.026 | 0.032 | 0.037 | | L | 0.30 | 0.43 | 0.56 | 0.012 | 0.017 | 0.022 | | L1 | 0.06 | 0.13 | 0.20 | 0.002 | 0.005 | 0.008 | | M | 1.40 | 1.50 | 1.60 | 0.055 | 0.059 | 0.063 | | θ | 0 ° | | 12 ° | 0 ° | | 12 ° | ## 0.10 С A B \oplus 0.05 С E3_ D2 G-**BOTTOM VIEW** ### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location Α = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. DIMENSION: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON30561E | Electronic versions | |------------------|---------------------------|--| | STATUS: | ON SEMICONDUCTOR STANDARD | accessed directly from versions are unco | | NEW STANDARD: | REF TO JEDEC MO-240 | "CONTROLLED CO | | DESCRIPTION: | WDFN8 3.3X3.3, 0.65P | | ns are uncontrolled except when rom the Document Repository. Printed controlled except when stamped OPY" in red. PAGE 1 OF 2 | DOCUMENT | NUMBER: | |------------|---------| | 98AON30561 | E | PAGE 2 OF 2 | ISSUE | REVISION | DATE | |-------|---|-------------| | 0 | RELEASED FOR PRODUCTION. REQ. BY B. MOSHER. | 30 MAY 2008 | | Α | ADDED GENERIC MARKING INFORMATION. REQ. BY B. MOSHER. | 07 AUG 2008 | | В | CHANGED MAX DIMENSION "B" FROM 0.41MM TO 0.40MM. REQ. BY NK THEN. | 20 JAN 2009 | | С | ADDED DIMENSION E3. REQ. BY N. ZAINAL. | 04 NOV 2011 | | D | CORRECTED DIMENSION K VALUES. REQ. BY D. TRUHITTE. | 23 APR 2012 | ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, ne patern rights for the rights of others. Scilled products are not designed, interfleed, or adultorized for use as components in systems interfleed for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. © Semiconductor Components Industries, LLC, 2012 Case Outline Number: April, 2012 - Rev. D 511AB ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов; - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.