SYSMAC
Programmable Controllers

C200HS

OPERATION MANUAL

OMmRoON




C200HS Programmable Controllers

Operation Manual

Revised February 2002







Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

/N\DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

&WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1994
All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.



Vi



TABLE OF CONTENTS

PRECAUTIONS. ... . Xiil
lintended AUdIENCE . . . .. ot e Xiv
2General PreCallionS . . . ..o ittt Xiv
3Safety Precautions . . .. ..ot Xiv
4 Operating Environment Precautions . . . ... ..ot Xiv
SApplication PreCaltioNS . .. ... . XV
6 Conformance to EC DITeCliVES . . . ..ottt XVi

SECTION 1

Introduction . ...... ... ... 1
I-1 OVEIVIBIV ottt e e e e e e e 2
1-2 TheOrigins of PC LOGIC ... iv ittt e e e 2
1-3 PCTermiNolOgy . . ...ttt e e e e e e e 3
1-4 OMRON Product Terminology . ... ..ottt e e 3
1-5 Overview of PC OpEration . . ... ..ottt e e 4
1-6  Peripheral DeVICES . . . ..ot e 5
1-7 Avalable Manuals . ... ... 5
1-8 New C200HS FEEIUIES . . . .o vttt e et et e e e et e e e 6

SECTION 2

Hardware Considerations . ........................ 15
2-1 CPU COMPONENES . . .ttt e e e e e e et et e ettt et e 16
2-2  PC Configuralion . ... ...ttt e e 18
2-3  CPU Capabilities ... ..ottt e e 19
2-4  MemOry Cassattes . . .ottt 20
2-5 Installing Memory CassetteS . ... ..ot 21
2-6 CPUDIP SWItCh . . ..o 23

SECTION 3

Memory Areas . ........... i 25
-1 INrOdUCHION . oot e 26
32 Data Area SITUCIUME . . ..ottt e e 27
3-3 IR (Internal Relay) Area . ... ..o 31
3-4 SR (Special Relay) Area .. ... ..ot 33
35 AR (Auxiliary Relay) Area ... 48
3-6 DM (DataMemory) Ar€a . . ...ttt e e e e 55
3-7 HR (Holding Relay) Area . ..... ...t e 60
3-8 TC (TIMer/CoUuNter) AFBA . ... ottt e e e e e e 60
39 LR (LINKRE@y) Area . ... ..o 61
10 UM A8 . .ot et ettt e e e e e 61
3-11 TR (Temporary Relay) Ara .. ... ...ttt e 61

SECTION 4

Writing and InputtingtheProgram ................. 63
4-1 BasiC Procedure . ... ... e 64
4-2  Instruction Terminology . . ... ...ttt e 64
4-3  Program CapaCity . . ...ttt e 65
4-4 Basic Ladder Diagrams ... ...ttt 65
4-5 The Programming CONSOIE ... ... .ttt e e 78
4-6  Preparation for Operation . ... ...t e 80
4-7 Inputting, Modifying, and Checkingthe Program .. ........ ... ... ... ... ... 92
4-8  Controlling Bit StatUS . . ... .ot e 108
4-9 Work Bits (Internal Relays) .. ......oiii i 110
4-10 Programming PreCautions . . ... ...ttt 112
4-11 Program EXECULION . . .. ot e 114

vii



viii

SECTION 5
| nstruction Set

NOLAION . .ot e e e e
INSITUCLION FOrMAL . . ..ottt e e e e e e e e e e e

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28

6-1
6-2
6-3
6-4

81

Data Areas, Defi

TABLE OF CONTENTS

ner Values,and Flags ........ ...

Differentiated INSIrUCLIONS . . .. ... ot e
EXpansion INSIFUCLIONS . . . . ..o e
Coding Right-hand INStrUCLiONS . . . .. ..o e

Instruction Set L
Ladder Diagram
Bit Control Instr

IS Lt e e
INSITUCLIONS . . .ot e e e e
(1 1o 1

INTERLOCK and INTERLOCK CLEAR —IL(02) and ILC(03) ... .....oovvvvnn. ..
JUMP and JUMP END — JMP(04) and IME(05) . . . .+« eeeeee e

END — END(01)

NO OPERATION —NOP(00) . . .« vttt e ettt et ettt et
Timer and Counter INSITUCLIONS . . .. oottt e e e e e e e e

Data Shifting .
Data Movement

Data COMPAriSON . ..ottt ittt e e e et e e e e e e e
Data CONVEISION . . ..ottt e e e e e e e e e e e e
BCD CalCUlaliONS . . . .o ettt e e et e e e e
Binary Calculations . ... ... ..ot e
Specia Math InStructions . . ... ...
LOGIC INSIIUCLIONS . . . o oo e e e

Subroutines and

Interrupt Control . . ... o

SEEP INSIFUCLIONS . . . o
Special INSIUCHIONS . . . oo
NEtWOrk INStrUCtiONS . . ..o e e e
Serial Communications INSITUCLIONS .. ... .ttt e e et e
Advanced /O INStrUCHIONS . . ..ot e e e e e

SECTION 6
Program Execution Timing . .......................

Cycle Time ...
Calculating Cycl

ETIME .

Instruction EXecution TIMES . ... ..ottt e e et
/O RESPONSE TIME . . . oottt e e e e e e e

SECTION 7

Program Monitoring and Execution ................
7-1 Monitoring Operation and ModifyingData . . ......... ..o,

SECTION 8
CommMUNICALIONS . .. ot

Introduction ..

8-2 Parameters for Host Link and RS-232C Communications . ...........c.vvueinnn.n.

SECTION 9
Memory Cassette Operations ......................

MemOory Cassattes . . ...
Memory Cassette Settingsand Flags . ... ... .o

9-1
9-2
9-3
9-4

UM Area Data
IOM Area Data

118
118
118
119
120
122
125
129
130
135
137
138
138
138
150
158
169
181
205
220
234
250
254
267
276
292
298
302

317

318
322
324
333

345

346

373

374
374



TABLE OF CONTENTS

SECTION 10

Troubleshooting ............. i, 391
10-1 Alarm INICAOrS . . . oo ettt e e e e e 392
10-2 Programmed Alarms and Error MESSagES . . .. o c oo ittt e i 392
10-3 Reading and Clearing Errorsand MeSSages .. ... .ot 392
10-4 ErrOr MESSa0ES . . o o ot ittt it et et e e e e e e 392
10-5 Error Flags . ..o 397
10-6 HOSELINK EITOrs . ..o 399

SECTION 11

Host Link Commands ............ ... ... ... 401
11-1 Communications ProCedure . . ... ...t 402
11-2 Command and Response FOrMALS . . ... ..o ittt e 404
11-3 Host Link ComMmMandS . . . . ..ottt e e e e e e 407
11-4 HOSt LinK ErTOrs . ..o e e 431

Appendices
A Standard MOEIS .. ... 433
B Programming INSrUCtIONS . . ... .o e 443
C Error and Arithmetic Flag Operation . . .. ... ..ot 449
D MEMOIY Ar8S . ..ottt e e e e e e e 453
E PO SBUD . oot 461
F Word Assignment Recording Sheets .. ... ... e 465
G Program Coding Sheet . ... ... i 471
H Data Conversion Tables . ... ... o 473
I Extended ASCI . ... 475

GloSsary ..o 477

INAEX ..o 493

Revison History .......... ... i 499



About this Manual:

This manual describes the operation of the C200HS C-series Programmable Controllers, and it includes
the sections described below. Installation information is provided in the C200HS Programmable Control-
ler Installation Guide. A table of other manuals that can be used in conjunction with this manual is provided
in Section 1 Introduction. Provided in Section 2 Hardware Considerations is a description of the differ-
ences between the older CPUs and the new CPUs described in this manual.

Please read this manual completely and be sure you understand the information provided before attempt-
ing to operate the C200HS. Be sure to read the precautions in the following section.

Section 1 Introduction explains the background and some of the basic terms used in ladder-diagram
programming. It also provides an overview of the process of programming and operating a PC and ex-
plains basic terminology used with OMRON PCs. Descriptions of Peripheral Devices used with the
C200HS PCs and a table of other manuals available to use with this manual for special PC applications
are also provided.

Section 2 Hardware Considerations explains basic aspects of the overall PC configuration and de-
scribes the indicators that are referred to in other sections of this manual.

Section 3 Memory Areas takes a look at the way memory is divided and allocated and explains the infor-
mation provided there to aid in programming. It explains how I/O is managed in memory and how bits in
memory correspond to specific 1/0 points. It also provides information on System DM, a special area in
C200HS PCs that provides the user with flexible control of PC operating parameters.

Section 4 Writing and Entering Programs explains the basics of ladder-diagram programming, looking
at the elements that make up the parts of a ladder-diagram program and explaining how execution of this
program is controlled. It also explains how to convert ladder diagrams into mnemonic code so that the
programs can be entered using a Programming Console.

Section 5 Instruction Set describes all of the instructions used in programming.

Section 6 Program Execution Timing explains the cycling process used to execute the program and
tells how to coordinate inputs and outputs so that they occur at the proper times.

Section 7 Program Debugging and Execution explains the Programming Console procedures used to
input and debug the program and to monitor and control operation.

Section 8 Communications provides an overview of the communications features provided by the
C200HS.

Section 9 Memory Cassette Operations describes how to manage both UM Area and IOM data via
Memory Cassettes. mounted in the CPU.

Section 10 Troubleshooting providesinformation on error indications and other means of reducing down-
time. Information in this section is also useful when debugging programs.

Section 11 Host Link Commands explains the methods and procedures for using host link commands,
which can be used for host link communications via the C200HS ports.

The Appendices provide tables of standard OMRON products available for the C200HS PCs, reference
tables of instructions and Programming Console operations, coding sheet to help in programming and
parameter input, and other information helpful in PC operation.

&WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

Xi



PRECAUTIONS

This section provides general precautions for using the Programmable Controller (PC) and related devices.

Theinformation contained in this section isimportant for the safe and reliable application of the PC. You must read
this section and under stand the infor mation contained before attempting to set up or operatea PC system.

lintended AUAIENCE . .. .. ot e Xiv
2General PreCautioNS . . . ..ottt Xiv
3Safety Precautions . . . . ... Xiv
4 Operating ENVironment PreCautions . .. ..o vttt ittt et ettt Xiv
SAPPICAion PreCautionS . . . . ..ottt e e XV
6 Conformanceto EC DIreCtiVES . .. ..ottt e e e XVi

Xiii



Operating Environment Precautions 4

1

2

3

4

Xiv

Intended Audience

This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

e Personnel in charge of installing FA systems.
* Personnel in charge of designing FA systems.
e Personnel in charge of managing FA systems and facilities.

General Precautions

/\\WARNING

The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement
machines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating OMRON PCs.
Be sure to read this manual before attempting to use the software and keep this
manual close at hand for reference during operation.

It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the abovementioned
applications.

Safety Precautions

/N WARNING

/N WARNING

Never attempt to disassemble any Units while power is being supplied. Doing so
may result in serious electrical shock or electrocution.

Never touch any of the terminals while power is being supplied. Doing so may
result in serious electrical shock or electrocution.

Operating Environment Precautions

Do not operate the control system in the following places.
* Where the PC is exposed to direct sunlight.
* Where the ambient temperature is below 0°C or over 55°C.

* Where the PC may be affected by condensation due to radical temperature
changes.

e Where the ambient humidity is below 10% or over 90%.

* Where there is any corrosive or inflammable gas.

* Where there is excessive dust, saline air, or metal powder.
* Where the PC is affected by vibration or shock.

e Where any water, oil, or chemical may splash on the PC.



Application Precautions

5

&Caution

The operating environment of the PC System can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC System. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions

/N WARNING

&Caution

&Caution

Observe the following precautions when using the PC.

Failure to abide by the following precautions could lead to serious or possibly
fatal injury. Always heed these precautions.

¢ Always ground the system to 100 Q or less when installing the system to pro-
tect against electrical shock.

o Always turn off the power supply to the PC before attempting any of the follow-
ing. Performing any of the following with the power supply turned on may lead
to electrical shock:

e Mounting or dismounting Power Supply Units, /O Units, CPU Units,
Memory Units, or any other Units.

e Assembling any devices or racks.
e Connecting or disconnecting any cables or wiring.

Failure to abide by the following precautions could lead to faulty operation or the
PC or the system or could damage the PC or PC Units. Always heed these pre-
cautions.

» Use the Units only with the power supplies and voltages specified in the opera-
tion manuals. Other power supplies and voltages may damage the Units.

» Take measures to stabilize the power supply to conform to the rated supply if it
is not stable.

» Provide circuit breakers and other safety measures to provide protection
against shorts in external wiring.

¢ Do not apply voltages exceeding the rated input voltage to Input Units. The
Input Units may be destroyed.

* Do not apply voltages exceeding the maximum switching capacity to Output
Units. The Output Units may be destroyed.

¢ Always disconnect the LG terminal when performing withstand voltage tests.

e Install all Units according to instructions in the operation manuals. Improper
installation may cause faulty operation.

¢ Provide proper shielding when installing in the following locations:
e Locations subject to static electricity or other sources of noise.
e Locations subject to strong electromagnetic fields.
e Locations subject to possible exposure to radiation.
e Locations near to power supply lines.

* Be sure to tighten Backplane screws, terminal screws, and cable connector
screws securely.

* Do not attempt to take any Units apart, to repair any Units, or to modify any
Units in any way.

The following precautions are necessary to ensure the general safety of the sys-
tem. Always heed these precautions.

¢ Provide double safety mechanisms to handle incorrect signals that can be
generated by broken signal lines or momentary power interruptions.

» Provide external interlock circuits, limit circuits, and other safety circuits in
addition to any provided within the PC to ensure safety.

XV



Conformance to EC Directives Section 6

6 Conformance to EC Directives

Observe the following precautions when installing the C200HS-CPU01-EC and
C200HS-CPU21-EC that conform to the EC Directives.

Provide reinforced insulation or double insulation for the DC power source con-
nected to the DC I/O Unit and for the Power Supply Unit.

Use a separate power source for the DC I/O Unit from the external power supply
for the Relay Output Unit.

XVi



SECTION 1
| ntroduction

This section gives a brief overview of the history of Programmable Controllers and explains terms commonly used in ladder-
diagram programming. It also provides an overview of the process of programming and operating a PC and explains basic
terminology used with OMRON PCs. Descriptions of peripheral devices used with the C200HS, a table of other manuals
available to use with this manual for special PC applications, and a description of the new features of the C200HS are also
provided.

T-1 0 OVEIVIBIN ettt et e e e e e e e e e
1-2 TheOriginsof PCLOGIC .. ...ttt e e et
1-3 PCTEMINOIOQY . .. ittt et e e e e e e e e
1-4 OMRON Product Terminology . ... ...vvuieie ittt et eens
1-5 Overview of PC OPEration . .. ...ttt e e e e
1-6  Peripheral DeVICES . ... oot
1-7 AvalableManuals . ... ...
1-8 New C200HS FaIUIES . . . oottt e e e e e
1-8-1 Improved Memory Capabilities . ......... ..
1-8-2  Faster EXECUtION TIMES . .. oottt e e e e e
1-8-3  Larger Instruction Set . ...t
1-8-4 Wide Selection of Special /O UNItS . ...
1-8-5 Improved Interrupt FUNCLiONS . ... .. .ot
1-8-6 SYSMAC NET Link and SYSMAC LINK Capabilities....................
1-8-7  BUilt-iNn RS-232C CONNECLON . . ..ot v ettt et i
1-8-8 MoreFlexible PC Settings . . . ..o oo
1-8-9 Debuggingand MaintenanCe . . ......covieiei ittt
1-8-10 New Programming Console Operations . .............uieiiineennnennn..
1-8-11 Peripheral DeviCeS . .. oot
1-8-12 USing C200H Programs . . . . .ottt e e e e e et e e

© O© OO N~NOOTOLEA, WWNN

el
R OO0OO0OOoOo



The Origins of PC Log_]ic

Section 1-2

1-1 Overview

A PC (Programmable Controller) is basically a CPU (Central Processing Unit)
containing a program and connected to input and output (1/O) devices. The pro-
gram controls the PC so that when an input signal from an input device turns ON,
the appropriate response is made. The response normally involves turning ON
an output signal to some sort of output device. The input devices could be photo-
electric sensors, pushbuttons on control panels, limit switches, or any other de-
vice that can produce a signal that can be input into the PC. The output devices
could be solenoids, switches activating indicator lamps, relays turning on mo-
tors, or any other devices that can be activated by signals output from the PC.

For example, a sensor detecting a passing product turns ON an input to the PC.
The PC responds by turning ON an output that activates a pusher that pushes
the product onto another conveyor for further processing. Another sensor, posi-
tioned higher than the first, turns ON a different input to indicate that the product
is too tall. The PC responds by turning on another pusher positioned before the
pusher mentioned above to push the too-tall product into a rejection box.

Although this example involves only two inputs and two outputs, it is typical of the
type of control operation that PCs can achieve. Actually even this example is
much more complex than it may at first appear because of the timing that would
be required, i.e., “How does the PC know when to activate each pusher?” Much
more complicated operations, however, are also possible. The problem is how
to get the desired control signals from available inputs at appropriate times.
To achieve proper control, the C200HS uses a form of PC logic called ladder-dia-
gram programming. This manual is written to explain ladder-diagram program-
ming and to prepare the reader to program and operate the C200HS.

1-2 The Origins of PC Logic

Relay vs. PC Terminology

PCs historically originate in relay-based control systems. And although the inte-
grated circuits and internal logic of the PC have taken the place of the discrete
relays, timers, counters, and other such devices, actual PC operation proceeds
as if those discrete devices were still in place. PC control, however, also pro-
vides computer capabilities and accuracy to achieve a great deal more flexibility
and reliability than is possible with relays.

The symbols and other control concepts used to describe PC operation also
come from relay-based control and form the basis of the ladder-diagram pro-
gramming method. Most of the terms used to describe these symbols and con-
cepts, however, have come in from computer terminology.

The terminology used throughout this manual is somewhat different from relay
terminology, but the concepts are the same.

The following table shows the relationship between relay terms and the PC
terms used for OMRON PCs.

Relay term PC equivalent
contact input or condition
coll output or work bit
NO relay normally open condition
NC relay normally closed condition

Actually there is not a total equivalence between these terms. The term condi-
tion is only used to describe ladder diagram programs in general and is specifi-
cally equivalent to one of certain set of basic instructions. The terms input and
output are not used in programming per se, except in reference to 1/O bits that
are assigned to input and output signals coming into and leaving the PC. Nor-
mally open conditions and normally closed conditions are explained in 4-4 Basic
Ladder Diagrams.



OMRON Product Terminol ogy Section 1-4

1-3 PC Terminology

PC

Inputs and Outputs

Controlled System and
Control System

Although also provided in the Glossary at the back of this manual, the following
terms are crucial to understanding PC operation and are thus explained here.

Because the C200HS is a Rack PC, there is no one product that is a C200HS
PC. That is why we talk about the configuration of the PC, because a PC is a
configuration of smaller Units.

To have a functional PC, you would need to have a CPU Rack with at least one
Unit mounted to it that provides I/O points. When we refer to the PC, however, we
are generally talking about the CPU and all of the Units directly controlled by it
through the program. This does not include the I/O devices connected to PC in-
puts and outputs.

If you are not familiar with the terms used above to describe a PC, refer to Sec-
tion 2 Hardware Considerations for explanations.

A device connected to the PC that sends a signal to the PC is called an input
device; the signal it sends is called an input signal. A signal enters the PC
through terminals or through pins on a connector on a Unit. The place where a
signal enters the PC is called an input point. This input point is allocated a loca-
tion in memory that reflects its status, i.e., either ON or OFF. This memory loca-
tion is called an input bit. The CPU, in its normal processing cycle, monitors the
status of all input points and turns ON or OFF corresponding input bits accord-
ingly.

There are also output bits in memory that are allocated to output points on
Units through which output signals are sent to output devices, i.e., an output
bit is turned ON to send a signal to an output device through an output point. The
CPU periodically turns output points ON or OFF according to the status of the
output bits.

These terms are used when describing different aspects of PC operation. When
programming, one is concerned with what information is held in memory, and so
I/O bits are referred to. When talking about the Units that connect the PC to the
controlled system and the places on these Units where signals enter and leave
the PC, I/O points are referred to. When wiring these 1/O points, the physical
counterparts of the I/O points, either terminals or connector pins, are referred to.
When talking about the signals that enter or leave the PC, one refers to input
signals and output signals, or sometimes just inputs and outputs. It all depends
on what aspect of PC operation is being talked about.

The Control System includes the PC and all I/O devices it uses to control an ex-
ternal system. A sensor that provides information to achieve control is an input
device that is clearly part of the Control System. The controlled system is the
external system that is being controlled by the PC program through these 1/0
devices. I/0O devices can sometimes be considered part of the controlled sys-
tem, e.g., a motor used to drive a conveyor belt.

1-4 OMRON Product Terminology

OMRON products are divided into several functional groups that have generic
names. Appendix A Standard Models list products according to these groups.
The term Unit is used to refer to all of the OMRON PC products. Although a Unit
is any one of the building blocks that goes together to form a C200HS PC, its
meaning is generally, but not always, limited in context to refer to the Units that
are mounted to a Rack. Most, but not all, of these products have names that end
with the word Unit.

The largest group of OMRON products is the I/O Units. These include all of the
Rack-mounting Units that provide non-dedicated input or output points for gen-
eral use. I/0O Units come with a variety of point connections and specifications.

3



Overview of PC Operation

Section 1-5

High-density I/O Units are designed to provide high-density I/0O capability and
include Group 2 High-density /0 Units and Special /0O High-density 1/O Units.
Special I/0 Units are dedicated Units that are designed to meet specific needs.
These include some of the High-density 1/O Units, Position Control Units, High-
speed Counter Units, and Analog I/O Units.

Link Units are used to create Link Systems that link more than one PC or link a
single PC to remote 1/O points. Link Units include Remote I/O Units, PC Link
Units, Host Link Units, SYSMAC NET Link Units, and SYSMAC LINK Units.
SYSMAC NET Link and SYSMAC LINK Units can be used with the CPU11 only.

Other product groups include Programming Devices, Peripheral Devices,
and DIN Rail Products.

1-5 Overview of PC Operation

1,23.

Control System Design

The following are the basic steps involved in programming and operating a
C200HS. Assuming you have already purchased one or more of these PCs, you
must have a reasonable idea of the required information for steps one and two,
which are discussed briefly below. This manual is written to explain steps three
through six, eight, and nine. The relevant sections of this manual that provide
more information are listed with each of these steps.

1. Determine what the controlled system must do, in what order, and at what
times.

2. Determine what Racks and what Units will be required. Refer to the C200HS
Installation Guide. If a Link System is required, refer to the appropriate Sys-
tem Manual.

3. On paper, assign all input and output devices to I/O points on Units and de-
termine which 1/O bits will be allocated to each. If the PC includes Special 1/0
Units or Link Systems, refer to the individual Operation Manuals or System
Manuals for details on I/O bit allocation. (Section 3 Memory Areas)

4. Using relay ladder symbols, write a program that represents the sequence
of required operations and their inter-relationships. Be sure to also program
appropriate responses for all possible emergency situations. (Section 4
Writing and Inputting the Program, Section 5 Instruction Set, Section 6 Pro-
gram Execution Timing)

5. Input the program and all required operating parameters into the PC. (Sec-
tion 4-7 Inputting, Modifying, and Checking the Program.)

6. Debug the program, first to eliminate any syntax errors, and then to find ex-
ecution errors. (Section 4-7 Inputting, Modifying, and Checking the Pro-
gram, Section 7 Program Monitoring and Execution, and Section 10
Troubleshooting)

7. Wire the PC to the controlled system. This step can actually be started as
soon as step 3 has been completed. Refer to the C200HS Installation Guide
and to Operation Manuals and System Manuals for details on individual
Units.

8. Test the program in an actual control situation and carry out fine tuning as
required. (Section 7 Program Monitoring and Execution and Section 10
Troubleshooting)

9. Record two copies of the finished program on masters and store them safely
in different locations. (Section 4-7 Inputting, Modifying, and Checking the
Program)

Designing the Control System is the first step in automating any process. A PC
can be programmed and operated only after the overall Control System is fully
understood. Designing the Control System requires, first of all, a thorough un-
derstanding of the system that is to be controlled. The first step in designing a
Control System is thus determining the requirements of the controlled system.



Available Manuals

Section 1-7

Input/Output Requirements

Sequence, Timing, and
Relationships

Unit Requirements

The first thing that must be assessed is the number of input and output points
that the controlled system will require. This is done by identifying each device
that is to send an input signal to the PC or which is to receive an output signal
from the PC. Keep in mind that the number of I/O points available depends on
the configuration of the PC. Refer to 3-3 IR Area for details on 1/O capacity and
the allocation of 1/O bits to I/O points.

Next, determine the sequence in which control operations are to occur and the
relative timing of the operations. Identify the physical relationships between the
I/O devices as well as the kinds of responses that should occur between them.
For instance, a photoelectric switch might be functionally tied to a motor by way
of a counter within the PC. When the PC receives an input from a start switch, it
could start the motor. The PC could then stop the motor when the counter has
received a specified number of input signals from the photoelectric switch.
Each of the related tasks must be similarly determined, from the beginning of the
control operation to the end.

The actual Units that will be mounted or connected to PC Racks must be deter-
mined according to the requirements of the I/O devices. Actual hardware specifi-
cations, such as voltage and current levels, as well as functional considerations,
such as those that require Special I/O Units or Link Systems will need to be con-
sidered. In many cases, Special I/O Units, Intelligent I/O Units, or Link Systems
can greatly reduce the programming burden. Details on these Units and Link
Systems are available in appropriate Operation Manuals and System Manuals.
Once the entire Control System has been designed, the task of programming,
debugging, and operation as described in the remaining sections of this manual
can begin.

1-6 Peripheral Devices

Programming Console

Ladder Support Software:
LSS

The following peripheral devices can be used in programming, either to input/
debug/monitor the PC program or to interface the PC to external devices to out-
put the program or memory area data. Model numbers for all devices listed be-
low are provided in Appendix A Standard Models. OMRON product names have
been placed in bold when introduced in the following descriptions.

A Programming Console is the simplest form of programming device for OM-
RON PCs. All Programming Consoles are connected directly to the CPU without
requiring a separate interface.

LSS is designed to run on IBM AT/XT compatibles and allows you to perform all
the operations of the Programming Console as well as many additional ones. PC
programs can be written on-screen in ladder-diagram form as well as in mne-
monic form. As the program is written, it is displayed on a display, making confir-
mation and modification quick and easy. Syntax checks may also be performed
on the programs before they are downloaded to the PC.

The LSS is available on either 5” or 3.5” disks.

A computer running the LSS is connected to the C200HS via the Peripheral Port
on the CPU using the CQM1-CIF02 cable.

1-7 Available Manuals

The following table lists other manuals that may be required to program and/or
operate the C200HS. Operation Manuals and/or Operation Guides are also pro-
vided with individual Units and are required for wiring and other specifications.

Name Cat. No. Contents
GPC Operation Manual ws4 Programming procedures for the GPC
(Graphics Programming Console)
FIT Operation Manual W150 Programming procedures for using the FIT
(Factory Intelligent Terminal




New C200HS Features Section 1-8
Name Cat. No. Contents
SYSMAC Support Software Operation Manuals W247/W248 | Programming procedures for using the SSS
Data Access Console Operation Guide W173 Data area monitoring and data modification
procedures for the Data Access Console
Printer Interface Unit Operation Guide w107 Procedures for interfacing a PC to a printer
PROM Writer Operation Guide W155 Procedures for writing programs to EPROM chips
Floppy Disk Interface Unit Operation Guide W119 Procedures for interfacing PCs to floppy disk drives
Wired Remote /O System Manual W120 Information on building a Wired Remote 1/0O System
(SYSMAC BUS) to enable remote 1/O capability
Optical Remote I/O System Manual W136 Information on building an Optical Remote /O
(SYSMAC BUS) System to enable remote 1/O capability
PC Link System Manual W135 Information on building a PC Link System to
automatically transfer data between PCs
Host Link System Manual w143 Information on building a Host Link System to
(SYSMAC WAY) manage PCs from a ‘host’ computer
SYSMAC NET Link Unit Operation Manual w114 Information on building a SYSMAC NET Link
System and thus create an optical LAN integrating
PCs with computers and other peripheral devices
SYSMAC LINK System Manual W174 Information on building a SYSMAC LINK System to
enable automatic data transfer, programming, and
programmed data transfer between the PCs in the
System
High-speed Counter Unit Operation Manual w141 Information on High-speed Counter Unit
Position Control Unit Operation Manuals NC111: W137 | Information on Position Control Unit
NC112: W128
NC211: W166
Analog I/0 Units Operation Guide w127 Information on the C200H-ADO001, C200H-DA001
Analog I/0 Units
Analog Input Unit Operation Manual w229 Information on the C200H-ADO002 Analog Input Unit
Temperature Sensor Unit Operation Guide w124 Information on Temperature Sensor Unit
ASCII Unit Operation Manual W165 Information on ASCII Unit
ID Sensor Unit Operation Guide W153 Information on ID Sensor Unit
Voice Unit Operation Manual W172 Information on Voice Unit
Fuzzy Logic Unit Operation Manual W208 Information on Fuzzy Logic Unit
Fuzzy Support Software Operation Manual w210 Information on the Fuzzy Support Software which
supports the Fuzzy Logic Units
Temperature Control Unit Operation Manual W225 Information on Temperature Control Unit
Heat/Cool Temperature Control Unit Operation W240 Information on Heating and Cooling Temperature
Manual Control Unit
PID Control Unit Operation Manual w241 Information on PID Control Unit
Cam Positioner Unit Operation Manual W224 Information on Cam Positioner Unit

1-8 New C200HS Features

The C200HS CPUs (C200HS-CPUO1-E, C200HS-CPUO03-E, C200HS-
CPU21-E, C200HS-CPU23-E, C200HS-CPU31-E, and C200HS-CPU33-E)
have a number of new features that the C200H CPUs lacked. The new C200HS
features are described briefly in this section. The C200HS-CPUO1-E, C200HS-
CPU21-E, C200HS-CPU31-E use an AC power supply and the C200HS-
CPUO03-E, C200HS-CPU23-E, and C200HS-CPU33-E use DC.

In addition, the C200HS-CPU21-E, C200HS-CPU23-E, C200HS-CPUS31-E,
and C200HS-CPU33-E CPUs have an RS-232C connector. The C200HS-
CPU31-E and C200HS-CPUS33-E CPUs support the SYSMAC NET Link Unit
and SYSMAC LINK Unit.



New C200HS Features

Section 1-8

1-8-1 Improved Memory Capabilities

Internal Memory (UM)

Memory Cassettes

Note

Clock Function

Increased SR Area

Increased DM Area

Fixed DM and Expansion
DM Areas

The C200HS CPUs come equipped with 16 KW of RAM in the PC itself, so a very
large memory capacity is available without purchasing a separate Memory Unit.
Furthermore, the Ladder Program Area has been increased to 15.2 KW.

Two types of Memory Cassettes are available for storage of data such as the
program. The PC can be set to transfer data from the Memory Cassette to UM
automatically when the PC is turned on.

Model Specifications
C200HS-ME16K 16-K Word EEPROM

C200HS-MP16K 16-K Word EPROM

C200H Memory Cassettes cannot be used in the C200HS.

The C200HS CPUs have a built-in clock. It is not necessary to purchase a
Memory Unit equipped with a clock, as it was with the C200H-CPU21-E.

In addition to the conventional areas of the C200H, the following areas have
been added for the internal auxiliary relays and special auxiliary relays of the
C200H. The SR area has been increased substantially to provide more work
words and words dedicated to new instructions. The SR area now ranges from
SR 236 to SR 299. (The SR area ends at SR 255 in C200H CPUs.) By using
additional areas, the user can use Special I/O Units and Remote 1/O Units with-
out worrying the empty areas.

Conventional areas | IR Area 1 (without I/0 area): IR 030 to 235
SR Area 1: SR 236 to 255
Additional areas IR Area 2: IR 300 to 511
SR Area 2: SR 256 to 299

The number of operands and instruction execution time will be increased when
SR 256 to SR 511 are used in basic instructions.

The Read/Write DM area has been increased substantially, too. It now ranges
from DM 0000 to DM 6143, compared to DM 0000 to DM 0999 in C200H CPUs.

The 6000 words from DM 0000 to DM 5999 are available for use in the program.
(DM 6000 to DM 6143 are used for the History Log and other functions.)

The Fixed DM Area, used to store initializing data for Special I/O Units, has been
decreased in size. It now contains the 512 words from DM 6144 to DM 6655,
compared to 1000 words (DM 1000 to DM 1999) in C200H CPUs.

On the other hand, up to 3000 words of UM can be allocated as expansion DM.
Expansion DM is allocated in 1000-word units in DM 7000 to DM 9999.

C200H data stored in words DM 1000 to DM 1999 can be used in C200HS PCs
by converting these 1000 words to ROM in the C200HS'’s DM area (DM 7000 to
DM 7999) and then automatically transferring them to DM 1000 to DM 1999
when the C200HS is turned on.

1-8-2 Faster Execution Times

Instruction Execution Time

END Processing Time

Basic instructions in the C200HS are executed in % of the time required in the
C200H. Other instructions are executed in just }4 of the time.

The time required for the cycle’'s overhead processes depend on the system
configuration, but these processes are executed in about }4 of the time required
in the C200H.



New C200HS Features

Section 1-8

I/O Refreshing Time

The 1/O refreshing time has been reduced for all units, as shown in the following
table.

I/O Unit Time Required for Refreshing
Standard I/O Units 14 of the C200H I/O refreshing time
Group-2 High-density I/O Units 14 of the C200H I/O refreshing time
Special I/O Units 4£ of the C200H 1/O refreshing time

1-8-3 Larger Instruction Set

Improved Instructions

Expansion Instructions

New Instructions

Advanced programming is facilitated by the 225 application instructions avail-
able with the C200HS-CPUO01-E, C200HS-CPUO03-E, C200HS-CPU21-E, and
C200HS-CPU23-E, or the 229 application instructions available with the
C200HS-CPU31-E and C200HS-CPU33-E. In addition, programming has been
simplified by the addition of convenient instructions and macro functions. The
new instructions and functions are covered in detail in Section 5 Instruction Set.

Additional functions have been added to the 7 instructions in the following table.

Instruction Additional Function(s)
DIST(80) Stack operation. The stack can contain up to 999 words.
COLL(81) FIFO/LIFO stack operation. The stack can contain up to 999 words.
MLPX(76) 4-t0-256 decoder capability.
DMPX(77) 256-t0-8 encoder capability.

ADB(50) Signed binary data can be added.
SBB(51) Signed binary data can be subtracted.
INT(89) Can be used to set scheduled interrupts in 1 ms units and control

input interrupts.

A group of 47 instructions have been designated as expansion instructions. An
expansion instruction does not have a fixed function code; one of the 18 expan-
sion instruction function codes must be assigned to it before it can be used in a
program. An instructions tables, which allocates functions codes to expansion
instructions, must be transferred to the C200HS before the expansion instruc-
tions can be used.

A total of 36 new instructions have been added to the C200HS. These instruc-
tions are listed below. (Instructions with (--) for function codes are expansion
instructions, which do not have fixed function codes. Some expansion instruc-
tion do have default function codes. The SET and RESET instructions are basic
instructions, MACRO and TRACE MEMORY SAMPLE instructions are applied
instructions, and the other instructions are expansion applied instructions. A de-
fault function number is assigned to the TOTALIZING TIMER, TRANSFER
BITS, AREA RANGE COMPARE, MACRO, AND TRACE MEMORY SAMPLE
instructions.




New C200HS Features

Section 1-8

TRSM(45) TRACE MEMORY SAMPLE
MCRO(99) MACRO

MAX(--)
MIN(--)
SUM(--)
SRCH(--)
FPD(--)
PID(--)
HEX(--)
XDMR(--)
DSW(--)
TKY(--)
MTR(--)
HKY(--)
ADBL(--)
SBBL(--)
MBSL(--)
DBSL(-)

FIND MAXIMUM

FIND MINIMUM

SUM

DATA SEARCH

FAILURE POINT DETECTION

PID CONTROL

ASCII TO HEX

EXPANSION DM READ

DIGITAL SWITCH INPUT
TEN-KEY INPUT

MATRIX INPUT

16-KEY INPUT

DOUBLE BINARY ADD

DOUBLE BINARY SUBTRACT
DOUBLE SIGNED BINARY MULTIPLY
DOUBLE SIGNED BINARY DIVIDE

MBS(--)
DBS(--)
FCS(-)
7SEG(--)
RXD(--)
TXD(--)
CPS(--)
CPSL(-)
NEG(--)
NEGL(--)
ZCPL(-)
AVG(--)
SCL(-)
SET
RSET
TTIM(87)
XFRB(62)
ZCP(88)

1-8-4 Wide Selection of Special I/O Units

C200HS Systems can be configured in a variety of ways, using High-density I/O
Units, High-speed Counters, Position Control Units, Analog I/O Units, Tempera-
ture Sensor Units, ASCII Units, Voice Units, ID Sensor Units, Fuzzy Logic Units,
Cam Positioner Units, and so on.

1-8-5 Improved Interrupt Functions

Scheduled Interrupts

Input Interrupts

SIGNED BINARY MULTIPLY
SIGNED BINARY DIVIDE

FRAME CHECKSUM

7-SEGMENT DISPLAY OUTPUT
RECEIVE

TRANSMIT

SIGNED BINARY COMPARE
SIGNED DOUBLE BINARY COMPARE
2'S COMPLEMENT

DOUBLE 2'S COMPLEMENT
DOUBLE AREA RANGE COMPARE
AVERAGE VALUE

SCALE

SET

RESET

TOTALIZING TIMER

TRANSFER BITS

AREA RANGE COMPARE

The C200HS’s scheduled interrupt function has been improved so that the inter-

rupt interval can be set in 1 ms units rather than the 10 ms units in the C200H.
When the interrupt mode is set to C200HS mode, the interrupt response time is
only 1 ms max. (excluding the input ON/OFF delays). When a Communications
Unit is used with the C200HS-CPU31-E/CPU33-E CPU, the interrupt response

time is 10 ms max.

Up to 8 interrupt subroutines can be executed by inputs to a C200HS-INTO1 In-

terrupt Input Unit mounted to the C200HS. When the interrupt mode is set to
C200HS mode, the interrupt response time is only 1 ms max. (excluding the in-
put ON/OFF delays). When a Communications Unit is used with the C200HS-
CPU31-E/CPU33-E CPU, the interrupt response time is 10 ms max.

1-8-6 SYSMAC NET Link and SYSMAC LINK Capabilities

The SYSMAC NET Link and SYSMAC LINK Systems are high-speed FA net-
works which can be used with the C200HS-CPU31-E and C200HS-CPU33-E
CPUs and the following Units:

SYSMAC NET Link Unit:
SYSMAC LINK Units:

C200HS-SNT32

C200HS-SLK12 (optical fiber cable)
C200HS-SLK22 (coaxial cable)

Data can be exchanged with the PCs in a SYSMAC NET Link or SYSMAC LINK
System using the SEND and RECYV instructions.



New C200H S Features Section 1-8

1-8-7 Built-in RS-232C Connector

Host link communications are possible using the RS-232C connector built into
the C200HS-CPU21-E/CPU23-E/CPU31-E/CPU33-E CPU. By using the TXD
and RXD instructions, RS-232C communications is possible without using time-
consuming procedures. A 1-to-1 link using the LR Area or an NT link with the
Programmable Terminal (PT) allows high-speed communications.

1-8-8 More Flexible PC Settings

With its default settings, the C200HS can be used like a C200H PC, but the
C200HS’s new settings provide more flexibility and allow it to be adjusted to fit
particular applications. These new settings are described below.

DIP Switch Settings The 6 pins on the C200HS’s DIP switch are used to write-protect part of UM, set
the CPU to automatically transfer Memory Card data to UM, and other functions.

UM Area Allocation Portions of the UM area can be allocated for use as the Expansion DM Area and
I/O Comment Area. (Most of the UM area is used to store the ladder program.)

PC Setup DM 6600 to DM 6655 is set aside for PC Setup data. The PC Setup determines
many operating parameters, including the startup mode and initial Special I/0
Unit area.

1-8-9 Debugging and Maintenance

Data Trace A data trace function has been added, allowing bit status or word content to be
traced in real time.

Differential Monitor The C200HS supports differential monitoring from either the Programming Con-
sole or LSS. The operator can detect OFF-to-ON or ON-to-OFF transition in a
specified bit.

Error Log Area The C200HS supports all of the C200H-CPU31-E error history area functions

and also records the time and date of power interruptions. The C200HS’s error
log area is DM 6000 to DM 6030 (not DM 0969 to DM 0999 as in the C200H-
CPU31-E).

1-8-10 New Programming Console Operations

The following Programming Console operations are supported by the C200HS

in addition to those supported by the C200H.

e Constants can be input in decimal form.

» Monitor displays can be switched between hexadecimal and normal or long
decimal form.

o OFF to ON and ON to OFF transitions in bit status can be monitored (differen-
tial monitoring).

¢ Function codes can be allocated to expansion instructions and current func-
tion code allocations can be read.

¢ UM area allocations can be set.

e The clock in the C200HS can be read and set.

¢ In addition to the TERMINAL mode supported in the C200H, the C200HS has
an EXTENDED TERMINAL mode in which all of the Programming Console’s
keys can be used to the status of Key Bits.

e The memory clear operation has been separated into an operation to clear the
user program excluding I/0O comments and UM area allocation information,
and one to clear the user program, I/O comments , and UM area allocation in-

formation.
1-8-11 Peripheral Devices
Peripheral Device With the C200H a Peripheral Device had to be connected through a Peripheral
Connection Interface Unit or Host Link Unit, but with the C200HS Peripheral Devices can be

connected to the PC through a CQM1-CIF02 Connecting Cable.

10



New C200HS Features

Section 1-8

/O Comments Stored in PC

Online Editing

By allocating a part of UM as the I1/O Comment area, it is no longer necessary to
read I/O Comments from a Peripheral Device’s floppy disk. If the Peripheral De-
vice is connected to the C200HS online, the ladder diagram can be viewed with
I/O comments.

A “CYCLE TIME OVER” error will no longer be generated when the program in
the PC itself is being edited online.

1-8-12 Using C200H Programs

Precautions

Using Internal Memory

1,2, 3.

Programs developed for the C200H can be very easily transferred for use in the
C200HS. This section provides the steps necessary to achieve this. Two proce-
dures are provided: one for transferring using only internal CPU memory and
one for transferring via Memory Cassettes.

Detailed procedures for the individual steps involved in transferring programs
can be found in the Version-3 LSS Operation Manuals. You will also require a
CQM1-CIF02 Connecting Cable to connect the computer running LSS to the
C200HS.

Observe the following precautions when transferring C200H programs to the

C200HS.

¢ If a C200H program including the SET SYSTEM instruction (SYS(49)) is trans-
ferred to the C200HS, the operating parameters set by this instruction will be
transferred to the C200HS’s PC Setup area (DM 6600, DM 6601, and
DM 6655) and overwrite any current settings. Be sure to confirm that the set-
tings in these words are correct before using the C200HS after program trans-
fer.

o If the C200H program accesses the C200H’s error log in DM 0969 to DM 0999,
the addresses of the words being accessed must be changed to DM 6000 to
DM 6030, which is the error log area for the C200HS.

o Any programs that rely on the execution cycle time (i.e., on the time require to
execute any one part of all of the program) must be adjusted when used on the
C200HS, which provides a much faster cycle time.

The following procedure outlines the steps to transfer C200H programs to the
user memory inside the C200HS.

1. Transfer the program and any other required data to the LSS work area. This

data can be transferred from a C200H CPU, from floppy disk, or from a
C200HS Memory Unit.
To transfer from a C200H CPU, set the PC for the LSS to the C200H, con-
nect the LSS to the C200H, go online, and transfer the program and any oth-
er require data to the LSS work area. You will probably want to transfer DM
data and the I/O table, if you have created an I/O table for the C200H.

or To transfer from floppy disk, set the PC for the LSS to the C200H in the offline
mode and load the program and any other require data to the LSS work
area. You will probably want to load DM data and the I/O table, if you have
created an /O table for the C200H.

or To transfer from a C200H-MP831, set the PC for the LSS to the C200H in the
offline mode and read data from the Memory Unit into the LSS work area.

2. Go offline if the LSS is not already offline.

. Change the PC setting for the LSS to the C200HS.

4. If you want to transfer I/O comments together with the program to the
C200HS, allocate UM area for /O comments.

5. Connect the LSS to the C200HS and go online.

6. Make sure that pin 1 on the C200HS’s CPU is OFF to enable writing to the
UM area.

w

1



New C200HS Features

Section 1-8

Using Memory Cassettes

12

1,2, 3.

8.
9.

. Transfer the program and and any other require data to the C200HS. You

will probably want to transfer DM data and the 1/O table, if you have created
an 1/O table for the C200H.

Turn the C200HS off and then back on to reset it.
Test program execution before attempting actual operation.

The following procedure outlines the steps to transfer C200H programs to the
C200HS via EEPROM or EPROM Memory Cassettes. This will allow you to read
the program data from the Memory Cassette automatically at C200HS startup.
The first four steps of this procedure is the same as those used for transferring
directly to the C200HS’s internal memory (UM area).

1.

or

or

or

Transfer the program and any other required data to the LSS work area. This
data can be transferred from a C200H CPU, from floppy disk, or from a
C200HS Memory Unit.

To transfer from a C200H CPU, set the PC for the LSS to the C200H, con-
nect the LSS to the C200H, go online, and transfer the program and any oth-
er require data to the LSS work area. You will probably want to transfer DM
data and the I/O table, if you have created an 1/O table for the C200H.

To transfer from floppy disk, set the PC for the LSS to the C200H in the offline
mode and load the program and any other require data to the LSS work
area. You will probably want to load DM data and the I/O table, if you have
created an /O table for the C200H.

To transfer from a C200H-MP831, set the PC for the LSS to the C200H in the
offline mode and read data from the Memory Unit into the LSS work area.

. Go offline if the LSS is not already offline.
. Change the PC setting for the LSS to the C200HS.
. If you want to transfer /O comments together with the program to the

C200HS, allocate UM area for I1/O comments.

. Allocate expansion DM words DM 7000 to DM 7999 in the UM area using the

UM allocation operation from the LSS.

. Copy DM 1000 through DM 1999 to DM 7000 through DM 7999.
. Write “0100” to DM 6602 to automatically transfer the contents of DM 7000

through DM 7999 to DM 1000 through DM 1999 at startup.

. To transfer to an EEPROM Memory Cassette, use the following procedure.

a) Connect the LSS to the C200HS and go online.
b) Make sure that pin 1 on the C200HS’s CPU is OFF to enable writing to
the UM area.

¢) Transfer the program and any other require data to the C200HS. You will
probably want to transfer DM data and the 1/O table, if you have created
an 1/0 table for the C200H. Make sure you specify transfer of the Expan-
sion DM Area and, if desired, the /O Comment Area.

d) Turn ON SR 27000 from the LSS to transfer UM data to the Memory Cas-
sette and continue from step 9.

To transfer to an EPROM Memory Cassette, use the following procedure.

a) Connect an PROM Writer to the LSS and write the data to the EPROM
chip using the LSS EPROM writing operation.

e) Setthe ROM type selector on the Memory Cassette to the correct capac-
ity.

f) Mount the ROM chip to the Memory Cassette.

g) Mount a EPROM Memory Cassette to the C200HS.

. Turn ON pin 2 on the C200HS’s DIP switch to enable automatic transfer of

Memory Cassette data to the CPU at startup.



New C200H S Features Section 1-8

10. Turn the C200HS off and then back on to reset it and transfer data from the
Memory Cassette to the CPU.

11. Test program execution before attempting actual operation.

13



SECTION 2
Hardware Consderations

This section provides information on hardware aspects of the C200HS that are relevant to programming and software opera-
tion. These include CPU Components, basic PC configuration, CPU capabilities, and Memory Cassettes. Thisinformation is
covered in detail in the C200HS Installation Guide.

2-1  CPU COMPONENS . . vttt ettt e e e e e e e 16

2-1-1 CPUINAICAOrS . . oot e e 17

2-1-2  Peripheral Device Connection ...t 18
2-2  PCCONFIQUIELION . . . ottt et et e e e e e e e e e e 18
2-3 CPU Capahilities . ..ot 19
2-4  MemOry CassalleS .. ...ttt 20
2-5 Installing Memory CassetteS . ... ..ot 21
2-6 CPUDIP SWItCN ..o e 23

15



CPU Components

Section 2-1

2-1 CPU Components

There are two groups of CPUs available, one that uses an AC power supply, and
one that uses a DC power supply. Select one of the models shown below accord-
ing to requirements of your control system.

&Caution

16

CPU model Power supply voltage

C200HS-CPUO1-E/CPU21-E/CPU31-E | 100 to 120 VAC or 200 to 240 VAC

(voltage selector)

C200HS-CPUO03-E/CPU23-E/CPU33-E |24 VDC

The CPU21-E, CPU23-E, CPU31-E, and CPU33-E CPUs have an RS-232C
connector. The CPU31-E and CPU33-E CPUs support the SYSMAC NET Link
Unit and SYSMAC LINK Unit.

ply to a DC-type CPU.

Be sure to check the power supply used by the CPU. Absolutely do not provide an AC power sup-

The following diagram shows the main CPU components.

Indicators

Power fuse (MF51NR, 5.2 dia. x 20 mm)
C200HS-CPUO1-E: 2 A, 250 V
C200HS-CPUO3-E: 5 A, 125V

CPU01

SYSMAC C200HS omron
PROGRAMMABLE CONTROLLER

Removable terminal block

Battery/switch compartment

The backup lithium battery (C200H-BAT09)
and the DIP switch for setting C200HS opera-
tions are contained. An optional Memory Cas-
sette can also be mounted.

— Cable connector for Peripheral Devices
(Peripheral port)



CPU Components

Section 2-1

C200HS-CPU21-E/CPU23-E/CPU31-E/CPU33-

—t

Memory Casette compartment

E

Power fuse (MF51NR, 5.2 dia. x 20 mm):
C200HS-CPU21-E/CPU31-E: 2 A, 250 V
C200HS-CPU23-E/CPU33-E: 5 A, 125V

Indicators

Bus connector:
Available only with the CPU31-E

Removable terminal block

and CPUS33-E. Use this connector
when SYSMAC NET Link Unit or

SYSMAC LINK Unit is used.

RS-232C
connector

Cable connector for
peripheral devices

Battery/Switch compartment

2-1-1 CPU Indicators

CPU indicators provide visual information on the general operation of the PC.
Although not substitutes for proper error programming using the flags and other
error indicators provided in the data areas of memory, these indicators provide
ready confirmation of proper operation.

CPU Indicators

RUN indicator (green)
Lights when the PC is
operating normally.

COMM
ouT
INHIBIT

— ALM (blinking red)
Blinks if an error occurs that
does not stop the CPU.

— ERR (solid red)

CPU indicators are shown and described below. (CPU01-E/03-E shown below.)
— COMM/COMML1 (orange):

Lights when a peripheral device is in operation.
COMM2 (orange):

Available only with the CPU21-E, CPU23-E, CPU31-E,
and CPU33-E. Lights when the CPU is communicating
via the RS-232C connector.  powER (green)

Lights when power is
supplied to the CPU.

FUSE
250VAC
2A

S

OUT INHIBIT (red)
Lights when the Load OFF
flag (SR bit 25215) turns ON,
at which time all the outputs
are turned OFF.

Lights if an error occurs that stops the
CPU, at which time the RUN indicator
turns OFF and the outputs are turned

OFF.

17



PC Configuration

Section 2-2

2-1-2 Peripheral Device Connection

Programming Console

IBM PC/AT with LSS

A Programming Console or IBM PC/AT running LSS can be used to program
and monitor the C200HS PCs.

A C200H-PR027-E or CQM1-PROO01-E Programming Console can be con-
nected as shown in the following diagram. The C200H-PR027-E is connected
via the C200H-CN222 or C200H-CN422 Programming Console Connecting
Cable, which must be purchased separately. A Connecting Cable is provided
with the CQM1-PROO01-E.

Programming Console

An IBM PC/AT or compatible computer can be connected as shown in the follow-
ing diagram. The LSS is available on either 3.5” disks (C500-SF312-EV3) or
5.25” disks (C500-SF711-EV3). Only version 3 or later of the LSS supports
C200HS functionality.

]
Connecting Cable

IBM PC/AT

2-2 PC Configuration

CPU Racks

18

The basic PC configuration consists of two types of Rack: a CPU Rack and Ex-
pansion I/0O Racks. The Expansion I/O Racks are not a required part of the basic
system. They are used to increase the number of I1/O points. An illustration of
these Racks is provided in 3-3 IR Area. A third type of Rack, called a Slave Rack,
can be used when the PC is provided with a Remote I/O System.

A C200HS CPU Rack consists of three components: (1) The CPU Backplane, to
which the CPU and other Units are mounted. (2) The CPU, which executes the
program and controls the PC. (3) Other Units, such as I/O Units, Special 1/0
Units, and Link Units, which provide the physical I/O terminals corresponding to
I/O points.

A C200HS CPU Rack can be used alone or it can be connected to other Racks to
provide additional I/O points. The CPU Rack provides three, five, eight, or ten
slots to which these other Units can be mounted depending on the backplane
used.



CPU Capalbilities

Section 2-3

Expansion I/O Racks

Unit Mounting Position

An Expansion I/0O Rack can be thought of as an extension of the PC because it
provides additional slots to which other Units can be mounted. It is built onto an
Expansion 1/0O Backplane to which a Power Supply and up to ten other Units are
mounted.

An Expansion 1/0 Rack is always connected to the CPU via the connectors on
the Backplanes, allowing communication between the two Racks. Up to two Ex-
pansion 1/0O Racks can be connected in series to the CPU Rack.

Only I/O Units and Special I/O Units can be mounted to Slave Racks. All /0
Units, Special I/O Units, Group-2 High-density I/O Units, Remote I/O Master
Units, PC and Host Link Units, can be mounted to any slot on all other Racks.
Interrupt Input Units must be mounted to C200H-BC[][]1-V2 Backplanes.

Refer to the C200HS Installation Guide for details about which slots can be used
for which Units and other details about PC configuration. The way in which I/O
points on Units are allocated in memory is described in 3-3 IR Area.

2-3 CPU Capabilities

The following tables compare the capabilities of C200H and C200HS CPUSs.

C200H
Function C200H
CPU21-E CPU23-E CPU31-E
Built-in clock/calendar No (see note) No (see note) Yes
Error log No No Yes
Data Trace No No No
Differential Monitor No No No
Expansion DM No No No
General-use DM 1000 words 970 words
Ladder Program capacity 6974 words (in Memory Unit)
SR Area SR 236 to SR 255
New instructions: No No No
(See 1-8-3 Larger Instruction Set for a list of the
36 new instructions.)
Network Instructions: No No Yes
NETWORK SEND - SEND(90)
NETWORK RECEIVE - RECV(98)
Power Supply AC DC AC

Note The C200H-CPU21-E/CPU23-E can

use the C200H-MR433/MR833/

ME432/ME832 Memory Units’ clock.

19



Memory Cassettes Section 2-4

C200HS
Function C200HS
CPUO1-E | CPU21-E | CPU31-E | CPUO3-E | CPU23-E | CPUS33-E

Built-in clock/calendar Yes
Error log Yes!
Data Trace Yes
Differential Monitor Yes
Expansion DM 3K words max.2
General-use DM 6K words
Ladder Program capacity 15.2K words max2
SR Area SR 236 to SR 255 and SR 256 to SR 299
New instructions: Yes
(See 1-8-3 Larger Instruction Set for a list of the
36 new instructions.)
Network Instructions: No No Yes No No Yes
NETWORK SEND - SEND(90)
NETWORK RECEIVE - RECV(98)
Power Supply AC DC

Note 1. The C200HS CPUs record the time and date of power interruptions.

2. Part of the 16K-word UM can be allocated to Expansion DM and 1/O com-
ments.

2-4 Memory Cassettes

The C200HS comes equipped with a built-in RAM for the user’s program, so a
normal program be created even without installing a Memory Cassette. An op-
tional Memory Cassette, however, can be used. There are two types of Memory
Cassette available, each with a capacity of 16K words. For instructions on instal-
ling Memory Cassettes, refer to 2-5 Installing Memory Cassettes.

The following table shows the Memory Cassettes which can be used with the
C200HS PCs. These Memory Cassettes cannot be used in C200H PCs.

Memory Capacity Model number Comments
EEPROM 16K words | C200HS-ME16K | ---

EPROM 16K words | C200HS-MP16K | The EPROM chip is not included

with the Memory Cassette; it must

be purchased separately.

Note Memory Cassettes for the C200HS cannot be used with the C200H, and
Memory Units for the C200H cannot be used with the C200HS.

C200HS-ME[]16K When a Memory Cassette is installed in the CPU, reading and writing of the

(EEPROM) user memory (UM) and 1/O data is made possible. There is no need for a
backup power supply. The Memory Cassette can be removed from the CPU
and used for storing data.

“To o
g o
L O I:I EZOOHS—ME'IGKQ

20



I nstalling Memory Cassettes

Section 2-5

C200HS-MP[J16K (EPROM)

The program is written using a PROM Writer. The ROM is mounted to the

Memory Casette and then installed in the CPU. I/O data cannot be stored.

2-5

_(j_ OMRON C200HS-MP16K
O [O] Uoﬁ
1e) o
19) o
o o
& B
OO o
19) o
) O (o]
=2
XN=le o o
w3 0O o
—— Oy el O
A T

Installing Memory Cassettes

An optional Memory Cassette can be installed in the C200HS. (The C200H
Memory Unit cannot be used with the C200HS.) The two types of Memory Cas-
settes are described in 2-4 Memory Cassettes. To install a Memory Cassette,
follow the procedure outlined below.

&Caution

Be careful to always turn the power off before inserting or removing a Memory Cassette. If a

Memory Cassette is inserted into or removed from the CPU with the power on, it may cause the
CPU to malfunction or cause damage to the memory.

1,2 3.

1. Set the DIP switch. For an EEPROM Memory Cassette, set pin no. 1 (write

protect) to either ON or OFF. Setting it to ON will protect the program in the
memory from being overwritten. Setting it to OFF will allow the program to
be overwritten. (The factory setting is OFF.)

For an EPROM Memory Cassette, set pin no. 1 (ROM Type Selector) ac-
cording to the type of ROM that is to be mounted.

Pinno. 1 ROM type Model Capacity Access speed
OFF 27256 ROM-JD-B 16K words 150 ns
ON 27512 ROM-KD-B 32K words* 150 ns

Note *Only 16K words accessible.

2. Write to EPROM (if using an EPROM Memory Cassette). Using a PROM
Writer, write the program to EPROM. Then mount the EPROM chip to the
Memory Cassette, with the notched end facing upwards as shown in the il-
lustration below.

) — OMRON C200HS-MP16K
O [O] Uoﬁ
0 o
o o
o o
&k
o0 o
o o
) O (e}
a—2 |9 9
Nl o o
N § OO [o)
—— Oy ol O
2 i

21



I nstalling Memory Cassettes Section 2-5

3. Remove the bracket from the Memory Cassette, as shown in the illustration
below.

7 i
g ° Metal bracket

2

ON
N

/

4. Check that the connector side goes in first and that the Cassette’s circuit
components face right and then insert the Cassette into the CPU. The Cas-
sette slides in along a track in the CPU.

5. Replace the Memory Cassette bracket over the Cassette and tighten the
screw that holds the bracket.

2,

22



CPU DIP Switch

Section 2-6

2-6  CPU DIP Switch

The DIP switch on C200HS CPUs is located between the Memory Cassette
compartment and battery.

The 6 pins on the DIP switch control 6 of the CPU’s operating parameters.

Pin no.

Item

Setting

Function

Memory protect

ON

Program Memory and read-only DM (DM 6144 to DM 6655)
data cannot be overwritten from a Peripheral Device.

OFF

Program Memory and read-only DM (DM 6144 to DM 6655)
data can be overwritten from a Peripheral Device.

Automatic transfer of Memory
Cassette contents

ON

The contents of the Memory Cassette will be automatically
transferred to the internal RAM at start-up.

OFF

The contents will not be automatically transferred.

Message language

ON

Programming Console messages will be displayed in English.

OFF

Programming Console messages will be displayed in the
language stored in system ROM. (Messages will be displayed
in Japanese with the Japanese version of system ROM.)

Expansion instruction setting

ON

Expansion instructions set by user. Normally ON when using a
host computer for programming/monitoring.

OFF

Expansion instructions set to defaults.

Communications parameters

ON

Standard communications parameters (see note) will be set for
the following serial communications ports.

o Built-in RS-232C port

e Peripheral port (only when a CQM1-CIF01/-CIFO2 Cable is
connected. Does not apply to Programming Console.)

Note 1. Standard communications parameters are as fol-
lows:
Serial communications mode: Host Link or peripher-
al bus; start bits: 1; data length: 7 bits; parity: even;
stop bits: 2; baud rate: 9,600 bps

2. The CX-Programmer running on a personal comput-
er can be connected to the peripheral port via the pe-
ripheral bus using the above standard communica-
tions parameters.

OFF

The communications parameters for the following serial
communications ports will be set in PC Setup as follows:

o Built-in RS-232C port: DM 6645 and DM 6646

e Peripheral port: DM 6650 and DM 6651

Note When the CX-Programmer is connected to the peripheral
port with the peripheral bus, either set bits 00 to 03 of DM
6650 to 0 Hex (for standard parameters), or set bits 12 to
15 of DM 6650 to 0 Hex and bits 00 to 03 of DM 6650 to 1
Hex (for Host Link or peripheral bus) separately.

Expansion TERMINAL mode
setting when AR 0709 is ON

ON

Expansion TERMINAL mode; AR 0712 ON.

OFF

Normal mode; AR 0712: OFF

Note The above settings apply to CPUs manufactured from July 1995 (lot number **75 for July 1995). For CPUs
manufactured before July 1995 (lot number **65 for June 1995), only 1 stop bit will be set and the baud rate
will be 2,400 bps.

23



SECTION 3
Memory Areas

Varioustypes of data are required to achieve effective and correct control. To facilitate managing this data, the PC is provided
with various memory areasfor data, each of which performs a different function. The areas generally accessible by the user
for usein programming are classified as data areas. The other memory areaisthe UM Area, where the user’s program is
actually stored. This section describes these areas individually and provides information that will be necessary to use them. As
amatter of convention, the TR areais described in this section, even though it is not strictly a memory area.

-1 INtrOAUCHION ..ot e e 26
32 DAl@Ar@ASITUCIUIE . . . .ottt et e ettt e e e e e 27
3-3  IR(Internal Relay) ArEa. . . ..ottt 31
34 SR (Special REEY) ArBa ... ot 33
3-4-1  SYSMACNET/SYSMACLINK System ... 37
3-4-2 ReMOLE 1/O Systems . . . . .o 39
3-4-3 Link System Flagsand Control BitS. ........ ...ttt 39
3-4-4  Forced StatUSHOIA Bit . ... 41
34-5 /O StAUSHOIA Bit . . ..ot 12
346 OULPUL OFF Bil . . oottt e e 12
3-4-7 FAL (Failure Alarm) Area . ... ...ttt e e 42
3-4-8 Low Battery Flag . . ... ..o 42
34-9 CyceTimeError Flag ... e 43
3-4-10 /O Verification Error Flag . ... ..ot 43
34-11  First Cycle Flag ..ot e 43
3-4-12  Clock PUISE BItS . . ..o 43
3413 SEEP I Ag . o o vttt 44
3-4-14  Group-2 Ermor Flag . . ..o oo a4
3-4-15 Specid UnitError Flag . .. ... 44
3-4-16 Instruction Execution Error Flag, ER ... ... .. .. i 44
3-4-17  ArithmetiC Flags . . . ..o s 44
3-4-18  Interrupt SUDFOULINE ATEES . . . . oo\ttt et e e e 45
3-4-19 RS-232C Port CommuniCatioNS AT8S . . . . . oot i e ettt e 45
3-4-20  Peripheral Port CommuniCatioNS ATEaS . . .. ..o o vttt e 46
3-4-21  Memory Cassette ATE8S . . ... oottt 46
3-4-22  DataTransfer Error BitS . ... ..ot e 47
3-4-23 Ladder Diagram Memory ATEa8S . . ...ttt it e et 47
3-4-24  Memory Error FIags . . . ..o o 47
3-4-25 DataSaveFlags ... ..o 47
3-4-26  Transfer Error Flags . ... ..ot 48
3-4-27  PC SEUP EIror Flags . . ..ot e e 48
35 AR (Auxiliary Relay) Area . ... ..o e 48
351 Restarting Special /O UNITS . .. ..ottt 50
352  SlaveRack Error Flags . . ..ot 50
3-5-3  Group-2 Error Flags . . ..o oo 50
3-5-4  Optical /O Unitand I/O Terminal Error Flags .. ... 50
3-55 SYSMACLINK System DataLink SEttings . ... ..o 51
3-5-6 Error HIiStory BitS . . .. oo 51
35-7  ActveNOAE FIagS . ...t 52
3-5-8  SYSMACLINK/SYSMAC NET Link System ServiceTime ...................... 52
3-59  Caendar/Clock Areaand BitS .. .......ooiiiit s 52
3-5-10 TERMINAL ModeKey BitS . ... ..ottt e 53
3-5-11  Power OFF COUNLEY . ..ottt e e e e e e e et 54
3512 CyceTimeFlag . ..o 54
3-5-13 LinkUnitMounted Flags . ... ... oi i e 54
3-5-14 CPU-mounting DeviceMounted Flag .. ...t 54
3515 FPD Trigger Bit ..o e 54
3-5-16 DataTracing Flagsand Control Bits ............. ... 54
3-5-17 Cycle TiIMeINdiCators . .. ... ...t e 54
3-6 DM (DaaMemOry) AT . . ..ottt et e et e e e 55
3-6-1 EXpanSioN DM ATE8 . . .. oottt e 56
3-6-2  SpeCial /O UNItD@A . . ..ottt et 56
3-6-3 Error HIStOry ArEa . .. oo e e 57
364 PO SaIUD .« o vttt 58
37 HR(HOdiNg Rel@y) Area .. ...t e e 60
3-8  TC(TIMEr/COUNE) ATEA . . ..ottt ettt et e e e e e e ettt e 60
39  LR(LINKREAY) Ara . ...t e e 61
310 UM ATG. . oottt ettt ettt 61
3-11 TR (Temporary ReEl@y) Ara ... ...t e e e 61

25



I ntroduction

Section 3-1

3-1 Introduction
Details, including the name, size, and range of each area are summarized in the
following table. Data and memory areas are normally referred to by their acro-
nyms, e.g., the IR Area, the SR Area, etc.
Area Size Range Comments

1/0 Area 480 bits IR 000 to IR 029 1/0 words are allocated to the CPU Rack and
Expansion 1/0O Racks by slot position.!

Group-2 High-density | 320 bits IR 030 to IR 049 Allocated to Group-2 High-density I/O Units and

1/0 Unit and B7A to Group-2 B7A Interface Units 0 to 91

Interface Unit Area

SYSMAC BUS Area 800 bits IR 050 to IR 099 Allocated to Remote 1/O Slave Racks 0 to 4.1

Special I/O Unit Area 1,600 bits IR 100 to IR 199 Allocated to Special /O Units 0 to 9.1

Optical I/O Unit and 1/0 | 512 bits IR 200 to IR 231 Allocated to Optical I/O Units and I/O

Terminal Area Terminals.!

Work Area 1 64 bits IR 232 to IR 235 For use as work bits in the program.

Special Relay Area 1 312 bits SR 23600 to SR Contains system clocks, flags, control bits, and

25507 status information.
Special Relay Area 2 704 bits SR 256 to SR 299 Contains flags, control bits, and status informa-
(298 to 299 reserved | tion.
by system)
Macro Area 64 bits SR 290 to SR 293 Inputs
64 bits SR 294 to SR 297 Outputs

Work Area 2 3,392 bits IR 300 to IR 511 For use as work bits in the program.

Temporary Relay Area | 8 bits TR 00 to TR 07 Used to temporarily store and retrieve execution
conditions when programming certain types of
branching ladder diagrams.

Holding Relay Area 1,600 bits HR 00 to HR 99 Used to store data and to retain the data values
when the power to the PC is turned off.

Auxiliary Relay Area 448 buts AR 00 to AR 27 Contains flags and bits for special functions. Re-
tains status during power failure.

Link Relay Area 1,024 bits LR 0O to LR 63 Used for data links in the PC Link System.!

Timer/Counter Area

512 counters/
timers

TC 000to TC 511

Used to define timers and counters, and to
access completion flags, PV, and SV.

Interval timers 0 through 2 and high-speed
counters 0 through 2 provided in separate area.

TIM 000 through TIM 015 can be refreshed via
interrupt processing as high-speed timers.

Data Memory Area 6,144 words DM 0000 to DM 6143 | Read/Write
1,000 words DM 0000 to DM 0999 | Normal DM.
1,000 words DM 1000 to DM 1999 | Special I/O Unit Area?
4,000 words DM 2000 to DM 5999 | Normal DM.
31 words DM 6000 to DM 6030 | History Log
(44 words) DM 6100 to DM 6143 | Link test area (reserved)
Fixed DM Area 512 words DM 6144 to DM 6599 | Fixed DM Area (read only)
| 56 words DM 6600 to DM 6655 | PC Setup
Expansion DM Area 3,000 words max. DM 7000 to DM 9999 | Read only

26

Note

purposes.

1. These can be used as work words and bits when not used for their allocated

2. The PC Setup can be set to use DM 7000 through DM 7999 as the Special

1/0 Area.




Data Area Structure

Section 3-2

Work Bits and Words

Flags and Control Bits

When some bits and words in certain data areas are not being used for their in-
tended purpose, they can be used in programming as required to control other
bits. Words and bits available for use in this fashion are called work words and
work bits. Most, but not all, unused bits can be used as work bits. Those that can
be used are described area-by-area in the remainder of this section. Actual ap-
plication of work bits and work words is described in Section 4 Writing and Input-
ting the Program.

Some data areas contain flags and/or control bits. Flags are bits that are auto-
matically turned ON and OFF to indicate particular operation status. Although
some flags can be turned ON and OFF by the user, most flags are read only; they
cannot be controlled directly.

Control bits are bits turned ON and OFF by the user to control specific aspects of
operation. Any bit given a name using the word bit rather than the word flag is a
control bit, e.g., Restart bits are control bits.

3-2 Data Area Structure

When designating a data area, the acronym for the area is always required for
any but the IR and SR areas. Although the acronyms for the IR and SR areas are
often given for clarity in text explanations, they are not required, and not entered,
when programming. Any data area designation without an acronym is assumed
to be in either the IR or SR area. Because IR and SR addresses run consecu-
tively, the word or bit addresses are sufficient to differentiate these two areas.

An actual data location within any data area but the TC area is designated by its
address. The address designates the bit or word within the area where the de-
sired data is located. The TC area consists of TC numbers, each of which is used
for a specific timer or counter defined in the program. Refer to 3-8 TC Area for
more details on TC numbers and to 5-14 Timer and Counter Instructions for in-
formation on their application.

The rest of the data areas (i.e., the IR, SR, HR, DM, AR, and LR areas) consist of
words, each of which consists of 16 bits numbered 00 through 15 from right to
left. IR words 000 and 001 are shown below with bit numbers. Here, the content
of each word is shown as all zeros. Bit 00 is called the rightmost bit; bit 15, the
leftmost bit.

The term least significant bit is often used for rightmost bit; the term most signifi-
cant bit, for leftmost bit. These terms are not used in this manual because a
single data word is often split into two or more parts, with each part used for dif-
ferent parameters or operands. When this is done, the rightmost bits of a word
may actually become the most significant bits, i.e., the leftmost bits in another
word,when combined with other bits to form a new word.

Bit number 13 12 11 10 09 08 07 06 05 04 03 02 01 00
IRwordooo [0 [o]Jof[o]Jofof[fo]Jof[o]Jo[o|[o]Jo[o]ofoOo|]|
IRwordool [ o0 [o]Jof[o]Jof[of[o]J]o[lo]o[o|[o]of[o]ofo]

The DM area is accessible by word only; you cannot designate an individual bit
within a DM word. Data in the IR, SR, HR, AR, and LR areas is accessible either
by word or by bit, depending on the instruction in which the data is being used.

To designate one of these areas by word, all that is necessary is the acronym (if
required) and the two-, three-, or four-digit word address. To designhate an area
by bit, the word address is combined with the bit number as a single four- or five-
digit address. The following table show examples of this. The two rightmost dig-
its of a bit designation must indicate a bit between 00 and 15, i.e., the rightmost
digit must be 5 or less the next digit to the left, either O or 1.

27



Data Area Structure

Section 3-2

Data Structure

The same TC number can be used to designate either the present value (PV) of
the timer or counter, or a bit that functions as the Completion Flag for the timer or
counter. This is explained in more detail in 3-8 TC Area.

Area Word designation Bit designation
IR 000 00015 (leftmost bit in word 000)
SR 252 25200 (rightmost bit in word 252)
DM DM 1250 Not possible
TC TC 215 (designates PV) TC 215 (designates completion flag)
LR LR 12 LR 1200

Word data input as decimal values is stored in binary-coded decimal (BCD);
word data entered as hexadecimal is stored in binary form. Each four bits of a
word represents one digit, either a hexadecimal or decimal digit, numerically
equivalent to the value of the binary bits. One word of data thus contains four
digits, which are numbered from right to left. These digit numbers and the corre-
sponding bit numbers for one word are shown below.

Digit number 3 2 1 0
Bit number 15 13 12'11 10 09 08 '07 06 05 04'03 02 0L 00
Contents [o]Jo[ofoJof[o]Jofo|[o]J]o[o]J]of[o|]of[ofo]

Converting Different Forms
of Data

28

When referring to the entire word, the digit numbered 0 is called the rightmost
digit; the one numbered 3, the leftmost digit.

When inputting data into data areas, it must be input in the proper form for the
intended purpose. This is no problem when designating individual bits, which
are merely turned ON (equivalent to a binary value of 1) or OFF (a binary value of
0). When inputting word data, however, it is important to input it either as decimal
or as hexadecimal, depending on what is called for by the instruction it is to be
used for. Section 5 Instruction Set specifies when a particular form of data is re-
quired for an instruction.

Binary and hexadecimal can be easily converted back and forth because each
four bits of a binary number is numerically equivalent to one digit of a hexadeci-
mal number. The binary number 0101111101011111 is converted to hexadeci-
mal by considering each set of four bits in order from the right. Binary 1111 is
hexadecimal F; binary 0101 is hexadecimal 5. The hexadecimal equivalent
would thus be 5F5F, or 24,415 in decimal (163 x5 + 162 x 15 + 16 x 5 + 15).

Decimal and BCD are easily converted back and forth. In this case, each BCD
digit (i.e., each group of four BCD bits) is numerically equivalent of the corre-
sponding decimal digit. The BCD bits 0101011101010111 are converted to deci-
mal by considering each four bits from the right. Binary 0101 is decimal 5; binary
0111 is decimal 7. The decimal equivalent would thus be 5,757. Note that this is
not the same numeric value as the hexadecimal equivalent of
0101011101010111, which would be 5,757 hexadecimal, or 22,359 in decimal
(163x5+162x7+16Xx5+7).

Because the numeric equivalent of each four BCD binary bits must be numeri-
cally equivalent to a decimal value, any four bit combination numerically greater
then 9 cannot be used, e.g., 1011 is not allowed because it is numerically equiva-
lent to 11, which cannot be expressed as a single digit in decimal notation. The
binary bits 1011 are of course allowed in hexadecimal are a equivalent to the
hexadecimal digit C.

There are instructions provided to convert data either direction between BCD
and hexadecimal. Refer to 5-18 Data Conversion for details. Tables of binary
equivalents to hexadecimal and BCD digits are provided in the appendices for
reference.



Data Area Structure

Section 3-2

Decimal Points

Decimal points are used in timers only. The least significant digit represents
tenths of a second. All arithmetic instructions operate on integers only.

Signed and Unsigned Binary Data

Unsigned binary

Digit value

Bit number

Contents

Signed Binary

Sign indicator
Digit value

Bit number

Contents

This section explains signed and unsigned binary data formats. Many instruc-
tions can use either signed or unsigned data and a few (CPS(—), CPSL(—),
DBS(—), DBSL(—), MBS(—), and MBSL(—)) use signed data exclusively.

Unsigned binary is the standard format used in OMRON PCs. Data in this manu-
al are unsigned unless otherwise stated. Unsigned binary values are always
positive and range from 0 ($0000) to 65,535 ($FFFF). Eight-digit values range
from 0 ($0000 0000) to 4,294,967,295 ($FFFF FFFF).

163 162 161 160

15

14

13 12 11 10 09 08|O7 06 05 O4|03 02 01 00|

[oJofofofoJoJoJofofJoJoJoJofjofofol]

-

Signed binary data can have either a positive and negative value. The sign is
indicated by the status of bit 15. If bit 15 is OFF, the number is positive and if bit 15
is ON, the number is negative. Positive signed binary values range from O
($0000) to 32,767 ($7FFF), and negative signed binary values range from
—32,768 ($8000) to —1 ($FFFF).

163 162 161 160

15

14

13 12|11 10 09 08|07 06 05 04|03 02 01 00|

[oJofofofoJoJojofofJoJoJoJofjofofol]

Eight-digit positive values range from 0 ($0000 0000) to 2,147,483,647 ($7FFF
FFFF), and eight-digit negative values range from —2,147,483,648 ($8000
0000) to —1 ($FFFF FFFF).

29



Data Area Structure

The following table shows the corresponding decimal, 16-bit hexadecimal, and

32-bit hexadecimal values.

Decimal 16-bit Hex 32-bit Hex
2147483647 | 7FFFFFFF
2147483646 — | 7FFFFFFE

32768 — 00008000

32767 7FFF 00007FFF

32766 7FFE 00007FFE

2 0002 00000002

1 0001 00000001

0 0000 00000000

-1 FFFF | FFFFFFFF

2 FFFE | FFFFFFFE

—32767 8001 FFFF8001
—32768 8000 FFFF8000
—32769 __ | FFFFTFFF
2147483647 — | 80000001
—2147483648 — 80000000

Section 3-2

Converting Decimal to

Signed Binary

Bit number

Contents

Bit number

Contents

Bit number

Contents

30

Positive signed binary data is identical to unsigned binary data (up to 32,767)
and can be converted using BIN(100). The following procedure converts nega-
tive decimal values between —32,768 and —1 to signed binary. In this example
—12345 is converted to CFC?7.

1. First take the absolute value (12345) and convert to unsigned binary:

15 14 13 12 "11 10 09 08|07 06 05 O4|03 02 01 00

[oJoJafafoJoJoJojoJofJrfJrJafJofofu1l]

2. Next take the complement:

15 14 13 12 "11 10 09 08'07 06 05 O4|03 02 01 O00

[tlrfofofrfJrJafafafrfoJoJoJaf1fo]

3. Finally add one:
[

15 14 13 12 "11 10 09 08'07 06 05 O4|03 02 01 00

[tlrfofofrfJrJafafafrfoJoJoJaf1]1]

Reverse the procedure to convert negative signed binary data to decimal.



IR Area

Section 3-3

3-3 IR (Internal Relay) Area

I/O Words

Input Bit Usage

Output Bit Usage

Word Allocation for Racks

The IR area is used both as data to control I/O points, and as work bits to manipu-
late and store data internally. It is accessible both by bit and by word. In the
C200HS PC, the IR area is comprised of words 000 to 235 and 298 to 511.

Words in the IR area that are used to control I/O points are called 1/0 words. Bits
in /0O words are called I/O bits. Bits in the IR area which are not assigned as 1/0
bits can be used as work bits. IR area work bits are reset when power is inter-
rupted or PC operation is stopped.

If a Unit brings inputs into the PC, the bit assigned to it is an input bit; if the Unit
sends an output from the PC, the bit is an output bit. To turn on an output, the
output bit assigned to it must be turned ON. When an input turns on, the input bit
assigned to it also turns ON. These facts can be used in the program to access
input status and control output status through I/O bits.

Input bits can be used to directly input external signals to the PC and can be used
in any order in programming. Each input bit can also be used in as many instruc-
tions as required to achieve effective and proper control. They cannot be used in
instructions that control bit status, e.g., the OUTPUT, DIFFERENTIATION UP,
and KEEP instructions.

Output bits are used to output program execution results and can be used in any
order in programming. Because outputs are refreshed only once during each
cycle (i.e., once each time the program is executed), any output bit can be used
in only one instruction that controls its status, including OUT, KEEP(11),
DIFU(13), DIFD(14) and SFT(10). If an output bit is used in more than one such
instruction, only the status determined by the last instruction will actually be out-
put from the PC.

See 5-15-1 Shift Register — SFT(10) for an example that uses an output bit in two
‘bit-control’ instructions.

I/O words are allocated to the CPU Rack and Expansion /O Racks by slot posi-
tion. One 1/0O word is allocated to each slot, as shown in the following table. Since
each slot is allocated only one I/0O word, a 3-slot rack uses only the first 3 words,
a 5-slot rack uses only the first 5 words, and an 8-slot rack uses only the first 8
words. Words that are allocated to unused or nonexistent slots are available as
work words.

< Left side of rack Right side of a 10-slot rack —

Rack Slot 1 Slot 2 Slot 3 Slot4 | Slot5 | Slot 6 Slot 7 Slot 8 Slot9 | Slot 10
CPU IRO0O0 |IR001 |IR002 |IR003 |[IR004 |IR005 |IR006 |IRO07 |IRO008 |IR 009
15t Expansion IRO10 |IRO11 |IRO012 |IR013 |IR014 |IR015 |IR016 |IRO017 |IRO018 |IRO019
2nd Expansion IR020 |IR021 |IR022 |IR023 |[IR024 |IR025 |IR026 |IR027 |IR028 |IR 029

Unused Words

Any words allocated to a Unit that does not use them can be used in program-
ming as work words and bits. Units that do not used the words assigned to the
slot they are mounted to include Link Units (e.g., Host Link Units, PC Link Units,
SYSMAC NET Link Units, etc.), Remote 1/0O Master Units, Special I1/0O Units,
Group-2 High-density 1/0 Units, Group-2 B7A Interface Units, and Auxiliary
Power Supply Units.

31



IR Area

Section 3-3

Allocation for Special 1/0
Units and Slave Racks

Allocation for Optical I/O
Units and I/O Terminals

Allocation for Remote I/O
Master and Link Units

Bit Allocation for I/O Units

Bit Allocation for Interrupt
Input Units

32

Up to ten Special I/O Units may be mounted in any slot of the CPU Rack or Ex-
pansion I/O Racks. Up to five Slave Racks may be used, whether one or two
Masters are used. IR area words are allocated to Special I/0 Units and Slave
Racks by the unit number on the Unit, as shown in the following tables.

Special I/0O Units Slave Racks

Unit number|IR address | |Unit number | IR address
0 100t0 109 || O 050 to 059
1 110 to 119 1 060 to 069
2 120t0 129 || 2 070 to 079
3 130t0 139 | |3 080 to 089
4 140t0 149 | | 4 090 to 099
5 150 to 159

6 160 to 169

7 170to 179

8 180 to 189

9 190 to 199

The C500-RT001/002-(P)V1 Remote I/O Slave Rack may be used, but it re-
quires 20 I/0 words, not 10, and therefore occupies the I/O words allocated to 2
C200H Slave Racks, both the words allocated to the unit number set on the rack
and the words allocated to the following unit number. When using a C200HS
CPU, do not set the unit number on a C500 Slave Rack to 4, because there is no
unit number 5. /0O words are allocated only to installed Units, from left to right,
and not to slots as in the C200HS system.

I/0O words between IR 200 and IR 231 are allocated to Optical I/O Units and 1/O
Terminals by unit number. The 1/O word allocated to each Unit is IR 200+n,
where n is the unit number set on the Unit.

Remote Master I/O Units and Host Link Units do not use I/O words, and the PC
Link Units use the LR area, so words allocated to the slots in which these Units
are mounted are available as work words.

An I/O Unit may require anywhere from 8 to 16 bits, depending on the model.
With most I/0 Units, any bits not used for input or output are available as work
bits. Transistor Output Units C200H-OD213 and C200H-OD411, as well as Triac
Output Unit C200H-OA221, however, uses bit 08 for the Blown Fuse Flag. Tran-
sistor Output Unit C200H-OD214 uses bits 08 to 11 for the Alarm Flag. Bits 08 to
15 of any word allocated to these Units, therefore, cannot be used as work bits.

The Interrupt Input Unit uses the 8 bits of the first I/O word allocated to its slot in
the CPU Rack. (An Interrupt Input Unit will operate as a normal Input Unit when
installed in an Expansion 1/0O Rack.) The other 24 bits allocated to its slot in the
CPU Rack can be used as work bits.



SR Area

Section 3-4

Allocation for Group-2

High-density 1/0O Units and

B7 Interface Units

Group-2 High-density 1/0 Units and B7A Interface Units are allocated words be-
tween IR 030 and IR 049 according to I/0O number settings made on them and do
not use the words allocated to the slots in which they are mounted. For 32-point
Units, each Unit is allocated two words; for 64-point Units, each Unit is allocated
four words. The words allocated for each I/O number are in the following tables.
Any words or part of words not used for I/0O can be used as work words or bits in
programming.

32-point Units

64-point Units

I/O number Words I/O number Words
0 IR30to IR 31 0 IR30to IR 33
1 IR321t0 IR 33 1 IR321to0 IR 35
2 IR341t0IR 35 2 IR341to0 IR 37
3 IR36t0 IR 37 3 IR361t0 IR 39
4 IR381t0 IR 39 4 IR381t0 IR 41
5 IR40to0 IR 41 5 IR401t0 IR 43
6 IR421t0 IR 43 6 IR42 1o IR 45
7 IR 4410 IR 45 7 IR 44 10 IR 47
8 IR 46 to IR 47 8 IR 4610 IR 49
9 IR481t0 IR 49 9 Cannot be used.

When setting 1/0 numbers on the High-density 1/O Units and B7A Interface
Units, be sure that the settings will not cause the same words to be allocated to
more than one Unit. For example, if I/O number 0 is allocated to a 64-point Unit,
I/0 number 1 cannot be used for any Unit in the system.

Group-2 High-density 1/0 Units and B7A Interface Units are not considered Spe-
cial 1/0 Units and do not affect the limit to the number of Special I/O Units allowed
in the System, regardless of the number used.

The words allocated to Group-2 High-density I/O Units correspond to the con-
nectors on the Units as shown in the following table.

Unit Word Connector/row
32-point Units First Row A
Second Row B
64-point Units First CN1, row A
Second CN1, row B
Third CN2, row A
Fourth CN2, row B

Note Group-2 High-density /0O Units and B7A Interface Units cannot be mounted to

Slave Racks.

3-4 SR (Special Relay) Area

The SR area contains flags and control bits used for monitoring PC operation,
accessing clock pulses, and signalling errors. SR area word addresses range
from 236 through 511, bit addresses, from 23600 through 51115.

The following table lists the functions of SR area flags and control bits. Most of
these bits are described in more detail following the table. Descriptions are in
order by bit number except that Link System bits are grouped together.

Unless otherwise stated, flags are OFF until the specified condition arises, when
they are turned ON. Restart bits are usually OFF, but when the user turns one
ON then OFF, the specified Link Unit will be restarted. Other control bits are OFF
until set by the user.

33



SR Area

Section 3-4

Note all SR words and bits are writeable by the user. Be sure to check the func-
tion of a bit or word before attempting to use it in programming.

Word(s) Bit(s) Function
236 00to 07 Node loop status output area for operating level 0 of SYSMAC NET Link System
08 to 15 Node loop status output area for operating level 1 of SYSMAC NET Link System
237 00 to 07 Completion code output area for operating level 0 following execution of
SEND(90)/RECV(98) SYSMAC LINK/SYSMAC NET Link System
08to 15 Completion code output area for operating level 1 following execution of
SEND(90)/RECV(98) SYSMAC LINK/SYSMAC NET Link System
238and 241 |00to 15 Data link status output area for operating level 0 of SYSMAC LINK or SYSMAC NET Link
System
242 and 245 |00to 15 Data link status output area for operating level 1 of SYSMAC LINK or SYSMAC NET Link
System
246 00to 15 Reserved by system
247 and 248 | 00 to 07 PC Link Unit Run Flags for Units 16 through 31 or data link status for operating level 1
08to 15 PC Link Unit Error Flags for Units 16 through 31 or data link status for operating level 1
249 and 250 |00 to 07 PC Link Unit Run Flags for Units 00 through 15 or data link status for operating level O
08 to 15 PC Link Unit Error Flags for Units 00 through 15 or data link status for operating level O
251 00 Remote I/O Error Read Bit
Writeable 01 and 02 | Not used
03 Remote I/O Error Flag
04 to 06 Unit number of Remote I/O Unit, Optical I/0 Unit, or I/O Terminal with error
07 Not used
08to 15 Word allocated to Remote 1/O Unit, Optical I/O Unit, or I/O Terminal with error (BCD)
252 00 SEND(90)/RECV(98) Error Flag for operating level 0 of SYSMAC LINK or SYSMAC NET
Link System
01 SEND(90)/RECV(98) Enable Flag for operating level 0 of SYSMAC LINK or SYSMAC NET
Link System
02 Operating Level 0 Data Link Operating Flag
03 SEND(90)/RECV(98) Error Flag for operating level 1 of SYSMAC LINK or SYSMAC NET
Link System
04 SEND(90)/RECV(98) Enable Flag for operating level 1 of SYSMAC LINK or SYSMAC NET
Link System
05 Operating Level 1 Data Link Operating Flag
06 Rack-mounting Host Link Unit Level 1 Communications Error Flag
07 Rack-mounting Host Link Unit Level 1 Restart Bit
08 Peripheral Port Restart Bit
09 RS-232C Port Restart Bit
10 PC Setup Clear Bit
11 Forced Status Hold Bit
12 Data Retention Control Bit
13 Rack-mounting Host Link Unit Level 0 Restart Bit
14 Not used.
15 Output OFF Bit
253 00 to 07 FAL number output area (see error information provided elsewhere)
08 Low Battery Flag
09 Cycle Time Error Flag
10 I/O Verification Error Flag
11 Rack-mounting Host Link Unit Level 0 Communications Error Flag
12 Remote I/O Error Flag
13 Always ON Flag
14 Always OFF Flag
15 First Cycle Flag




SR Area Section 3-4
Word(s) Bit(s) Function
254 00 1-minute clock pulse bit
01 0.02-second clock pulse bit
02 and 03 | Reserved for function expansion. Do not use.
04 Overflow Flag (for signed binary calculations)
05 Underflow Flag (for signed binary calculations)
06 Differential Monitor End Flag
07 Step Flag
08 MTR Execution Flag
09 7SEG Execution Flag
10 DSW Execution Flag
11 Interrupt Input Unit Error Flag
12 Reserved by system
13 Interrupt Programming Error Flag
14 Group-2 Error Flag
15 Special Unit Error Flag (includes Special I/0, PC Link, Host Link, Remote I/O Master Units)
255 00 0.1-second clock pulse bit
01 0.2-second clock pulse bit
02 1.0-second clock pulse bit
03 Instruction Execution Error (ER) Flag
04 Carry (CY) Flag
05 Greater Than (GR) Flag
06 Equals (EQ) Flag
07 Less Than (LE) Flag
08 to 15 Reserved by system (used for TR bits)
256 to 261 00to 15 Reserved by system
262 00 to 15 Longest interrupt subroutine (action) execution time (0.1 ms)
263 00 to 15 Number of interrupt subroutine (action) with longest execution time.
(8000 to 8512) 8000 to 8007, 8099
Bit 15: Interrupt Flag
264 00 to 03 RS-232C Port Error Code
0: No error 1: Parity error
2: Framing error 3: Overrun error
04 RS-232C Port Communications Error
05 RS-232C Port Send Ready Flag
06 RS-232C Port Reception Completed Flag
07 RS-232C Port Reception Overflow Flag
08to 11 Peripheral Port Error Code in General /0 Mode
0: No error 1: Parity error
2: Framing error 3: Overrun error
F: When in Peripheral Bus Mode
12 Peripheral Port Communications Error in General /0O Mode
13 Peripheral Port Send Ready Flag in General I/O Mode
14 Peripheral Port Reception Completed Flag in General I/O Mode
15 Peripheral Port Reception Overflow Flag in General /O Mode
265 00to 15 RS-232C Port Reception Counter in General /O Mode
266 00 to 15 Peripheral Reception Counter in General I/O Mode (BCD)

35




SR Area Section 3-4

Word(s) Bit(s) Function

267 00 to 04 Reserved by system (not accessible by user)
05 Host Link Level 0 Send Ready Flag
06 to 12 Reserved by system (not accessible by user)
13 Host Link Level 1 Send Ready Flag
14 and 15 | Reserved by system (not accessible by user)

268 00to 15 Reserved by system (not accessible by user)

269 00 to 07 Memory Cassette Contents  00: Nothing; 01: UM; 02: IOM (03: HIS)

08 to 10 Memory Cassette Capacity
0: 0 KW (no cassette); 3: 16 KW

11to 13 Reserved by system (not accessible by user)

14 EEPROM Memory Cassette Protected or EPROM Memory Cassette Mounted Flag
15 Memory Cassette Flag
270 00 Save UM to Cassette Bit Data transferred to Memory Cassette when Bit is turned
o1 Load UM from Cassette Bit ON in PRQGRAM mode. Blt will autom_atlcally turn OFF.
; An error will be produced if turned ON in any other
02 Compare UM to Cassette Bit mode.
03 Comparison Results

0: Contents identical; 1: Contents differ or comparison not possible

04 to 10 Reserved by system (not accessible by user)

11 Transfer Error Flag: Data will not be transferred from UM to the Memory
Transferring SYSMAC NET Cassette if an error occurs (except for Board Checksum
data link table on UM during Error). Detailed information on checksum errors
active data link. occurring in the Memory Cassette will not be output to

12 Transfer Error Flag: Not SR 272 because the information is not needed. Repeat
PROGRAM mode the transmission if SR 27015 is ON.

13 Transfer Error Flag: Read Only

14 Transfer Error Flag: Insufficient
Capacity or No UM

15 Transfer Error Flag: Board
Checksum Error

271 00 to 07 Ladder program size stored in Memory Cassette

Ladder-only File: 04: 4 KW; 08: 8 KW; 12: 12 KW; ... (64: 64 KW)
00: No ladder program or no file
Data updated at data transfer from CPU at startup. The file must begin in segment 0.

08 to 15 Ladder program size and type in CPU (Specifications are the same as for bits 00 to 07.)
Data updated when indexes generated. Default value (after clearing memory) is 16.

272 00to 10 Reserved by system (not accessible by user)
11 Memory Error Flag: PC Setup Checksum Error
12 Memory Error Flag: Ladder Checksum Error
13 Memory Error Flag: Instruction Change Vector Area Checksum Error
14 Memory Error Flag: Memory Cassette Online Disconnection
15 Memory Error Flag: Autoboot Error

36



SR Area Section 3-4

Word(s) Bit(s) Function
273 00 Save IOM to Cassette Bit Data transferred to Memory Cassette when Bit is turned
ON in PROGRAM mode. Bit will automatically turn OFF,
01 Load IOM from Cassette Bit An error will be produced if turned ON in any other
mode.
02to11 Reserved by system (not accessible by user)
12 Transfer Error Flag: Not Data will not be transferred from IOM to the Memory
PROGRAM mode Cassette if an error occurs (except for Read Only Error).
13 Transfer Error Flag: Read Only
14 Transfer Error Flag: Insufficient
Capacity or No IOM
15 Transfer Error Flag: Checksum
Error
274 00 Special I/0O Unit #0 Restart Flag | These flags will turn ON during restart processing.
01 Special /O Unit #1 Restart Flag | 1hese flags will not turn ON for Units on Slave Racks.
02 Special I/O Unit #2 Restart Flag
03 Special I/O Unit #3 Restart Flag
04 Special I/O Unit #4 Restart Flag
05 Special I/O Unit #5 Restart Flag
06 Special I/O Unit #6 Restart Flag
07 Special I/O Unit #7 Restart Flag
08 Special I/O Unit #8 Restart Flag
09 Special I/O Unit #9 Restart Flag
10to 15 Reserved by system (not accessible by user)
275 00 PC Setup Startup Error (DM 6600 to DM 6614)
01 PC Setup RUN Error (DM 6615 to DM 6644)
02 PC Setup Communications/Error Setting/Misc. Error (DM 6645 to DM 6655)
03to 15 Reserved by system (not accessible by user)
276 00 to 07 Minutes (00 to 59) Used for time increments.

08 to 15 Hours (00 to 23)

277 to 279 00 to 15 Used for keyboard mapping. See page 368.

280 to 289 00 to 15 Reserved by system (not accessible by user)

290 to 293 00 to 15 Macro Area inputs.

294 to 297 00 to 15 Macro Area outputs.

298 to 299 00 to 15 Reserved by system (not accessible by user)

3-4-1 SYSMAC NET/SYSMAC LINK System

Loop Status SR 236 provides the local node loop status for SYSMAC NET Systems, as
shown below.
— Bitin SR 236
Level O 07 | 06 05 04 03 02 01 00
Level 1 15 | 14 13 12 11 10 09 08
Status/ 1 1 Central Power Supply |1 Loop Status Reception Status 1
Meaning 0: Connected 11: Normal loop 0: Reception enabled
1: Not connected 10: Downstream backloop 1: Reception disabled
01: Upstream backloop
00: Loop error
Completion Codes SR 23700 to SR23707 provide the SEND/RECV completion code for operating

level 0 and SR 23708 to SR 23215 provide the SEND/RECV completion code for
operating level 1. The completion codes are as given in the following tables.

37



SR Area

Section 3-4

Data Link Status

38

SYSMAC LINK
Code Item Meaning
00 Normal end Processing ended normally.
01 Parameter error Parameters for network communication instruction is
not within acceptable ranges.
02 Unable to send Unit reset during command processing or local node
in not in network.
03 Destination not in Destination node is not in network.
network
04 Busy error The destination node is processing data and cannot
receive the command.
05 Response timeout | The response monitoring time was exceeded.
06 Response error There was an error in the response received from
the destination node.
07 Communications An error occurred in the communications controller.
controller error
08 Setting error There is an error in the node address settings.
09 PC error An error occurred in the CPU of the destination
node.
SYSMAC NET
Code Item Meaning
00 Normal end Processing ended normally.
01 Parameter error Parameters for network communication instruction is
not within acceptable ranges.
02 Routing error There is a mistake in the routing tables for
connection to a remote network.
03 Busy error The destination node is processing data and cannot
receive the command.
04 Send error (token The token was not received from the Line Server.
lost)
05 Loop error An error occurred in the communications loop.
06 No response The destination node does not exist or the response
monitoring time was exceeded.
07 Response error There is an error in the response format.

SR 238 to SR 245 contain the data link status for SYSMAC LINK/SYSMAC NET
Systems. The data structure depends on the system used to create the data link.

SYSMAC LINK
Operating | Operating Bit
level 0 level 1 121to 15 111008 | 04t007 | 00to 03
SR 238 SR 242 Node 4 Node 3 Node 2 Node 1
SR 239 SR 243 Node 8 Node 7 Node 6 Node 5
SR 240 SR 244 Node 12 Node 11 Node 10 Node 9
SR 241 SR 245 Node 16 Node 15 Node 14 Node 13

Leftmost bit

Rightmost bit

1: PC RUN status

1: PC CPU error

1: Communica-
tions error

1: Data link
operating




SR Area

Section 3-4

SYSMAC NET

Operating | Operating

Bit (Node numbers below)

level O level 1

15 |14 |13 |12 |11 |10 |09 |08 | O7 |06 | O5 |04 | 03 | 02 | 01 | OO
SR 238 SR 242 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
SR 239 SR 243 16 |15 |14 |13 |12 |11 |10 |9 16 |15 |14 |13 |12 |11 |10
SR 240 SR 244 24 123 |22 |21 |20 |19 |18 |17 |24 |23 |22 |21 |20 |19 |18 |17
SR 241 SR 245 32 |31 |30 |29 |28 |27 |26 |25 |32 |31 |30 |29 |28 |27 |26 |25

1: PC CPU error 1. PC RUN status

3-4-2 Remote I/O Systems

Bit 00 — Error Check Bit

Bits 01 and 02

Bit 03

Bits 04 to 15

SR 25312 turns ON to indicate an error has occurred in Remote I/O Systems.
The ALM/ERR indicator will flash, but PC operation will continue. SR 251, as
well as AR 0014 and AR 0015, contain information on the source and type of
error. The function of each bit is described below. Refer to Optical and Wired Re-
mote I/O System Manuals for details.

If there are errors in more than one Remote I/0O Unit, word 251 will contain error
information for only the first one. Data for the remaining Units will be stored in
memory and can be accessed by turning the Error Check bit ON and OFF. Be
sure to record data for the first error, which will be cleared when data for the next
error is displayed.

Not used.

Remote I/O Error Flag: Bit 03 turns ON when an error has occurred in a Remote
I/O Unit.

The content of bits 04 to 06 is a 3-digit binary number (04: 20, 05: 21, 06: 22) and
the content of bits 08 to 15 is a 2-digit BCD number (08 to 11: 100, 12 to 15: 10%).

If the content of bits 12 through 15 is B, an error has occurred in a Remote 1/O
Master or Slave Unit, and the content of bits 08 through 11 will indicate the unit
number, either 0 or 1, of the Master involved. In this case, bits 04 to 06 contain
the unit number of the Slave Rack involved.

If the content of bits 12 through 15 is a number from 0 to 31, an error has oc-
curred in an Optical I/O Unit or I/O Terminal. The number is the unit number of the
Optical 1/0 Unit or /O Terminal involved, and bit 04 will be ON if the Unit is as-
signed leftmost word bits (08 through 15), and OFF if it is assigned rightmost
word bits (00 through 07).

3-4-3 Link System Flags and Control Bits

Use of the following SR bits depends on the configuration of any Link Systems to
which your PC belongs. These flags and control bits are used when Link Units,
such as PC Link Units, Remote I/O Units, or Host Link Units, are mounted to the
PC Racks or to the CPU. For additional information, consult the System Manual
for the particular Units involved.

The following bits can be employed as work bits when the PC does not belong to
the Link System associated with them.

39



SR Area

Section 3-4

Host Link Systems

PC Link Systems

PC Link Unit Error and Run
Flags

Single-level PC Link
Systems

40

Both Error flags and Restart bits are provided for Host Link Systems. Error flags
turn ON to indicate errors in Host Link Units. Restart bits are turned ON and then
OFF to restart a Host Link Unit. SR bits used with Host Link Systems are summa-
rized in the following table. Rack-mounting Host Link Unit Restart bits are
not effective for the Multilevel Rack-mounting Host Link Units. Refer to the
Host Link System Manual for details.

Bit Flag
25206 Rack-mounting Host Link Unit Level 1 Error Flag
25207 Rack-mounting Host Link Unit Level 1 Restart Bit
25213 Rack-mounting Host Link Unit Level O Restart Bit
25311 Rack-mounting Host Link Unit Level O Error Flag

When the PC belongs to a PC Link System, words 247 through 250 are used to
monitor the operating status of all PC Link Units connected to the PC Link Sys-
tem. This includes a maximum of 32 PC Link Units. If the PC is in a Multilevel PC
Link System, half of the PC Link Units will be in a PC Link Subsystem in operating
level 0; the other half, in a Subsystem in operating level 1. The actual bit assign-
ments depend on whether the PC is in a Single-level PC Link System or a Multi-
level PC Link System. Refer to the PC Link System Manual for details. Error and
Run Flag bit assignments are described below.

Bits 00 through 07 of each word are the Run flags, which are ON when the PC
Link Unit is in RUN mode. Bits 08 through 15 are the Error flags, which are ON
when an error has occurred in the PC Link Unit. The following table shows bit
assignments for Single-level and Multi-level PC Link Systems.

Flag type Bit no. SR 247 SR 248 SR 249 SR 250
Run flags 00 Unit #24 Unit #16 Unit #8 Unit #0
01 Unit #25 Unit #17 Unit #9 Unit #1
02 Unit #26 Unit #18 Unit #10 Unit #2
03 Unit #27 Unit #19 Unit #11 Unit #3
04 Unit #28 Unit #20 Unit #12 Unit #4
05 Unit #29 Unit #21 Unit #13 Unit #5
06 Unit #30 Unit #22 Unit #14 Unit #6
07 Unit #31 Unit #23 Unit #15 Unit #7
Error flags | 08 Unit #24 Unit #16 Unit #8 Unit #0
09 Unit #25 Unit #17 Unit #9 Unit #1
10 Unit #26 Unit #18 Unit #10 Unit #2
11 Unit #27 Unit #19 Unit #11 Unit #3
12 Unit #28 Unit #20 Unit #12 Unit #4
13 Unit #29 Unit #21 Unit #13 Unit #5
14 Unit #30 Unit #22 Unit #14 Unit #6
15 Unit #31 Unit #23 Unit #15 Unit #7




SR Area

Section 3-4

Multilevel PC Link Systems

Application Example

Flag type Bit no. SR 247 SR 248 SR 249 SR 250
Run flags 00 Unit #8, Unit #0, Unit #8, Unit #0,
level 1 level 1 level 0 level 0
01 Unit #9, Unit #1, Unit #9, Unit #1,
level 1 level 1 level 0 level 0
02 Unit #10, Unit #2, Unit #10, Unit #2,
level 1 level 1 level 0 level 0
03 Unit #11, Unit #3, Unit #11, Unit #3,
level 1 level 1 level 0 level 0
04 Unit #12, Unit #4, Unit #12, Unit #4,
level 1 level 1 level 0 level 0
05 Unit #13, Unit #5, Unit #13, Unit #5,
level 1 level 1 level 0 level 0
06 Unit #14, Unit #6, Unit #14, Unit #6,
level 1 level 1 level 0 level 0
07 Unit #15, Unit #7, Unit #15, Unit #7,
level 1 level 1 level 0 level 0
Error flags | 08 Unit #8, Unit #0, Unit #8, Unit #0
level 1 level 1 level 0 level 0
09 Unit #9, Unit #1, Unit #9, Unit #1,
level 1 level 1 level 0 level 0
10 Unit #10, Unit #2, Unit #10, Unit #2,
level 1 level 1 level 0 level 0
11 Unit #11, Unit #3, Unit #11, Unit #3,
level 1 level 1 level 0 level 0
12 Unit #12, Unit #4, Unit #12, Unit #4,
level 1 level 1 level 0 level 0
13 Unit #13, Unit #5, Unit #13, Unit #5,
level 1 level 1 level 0 level 0
14 Unit #14, Unit #6, Unit #14, Unit #6,
level 1 level 1 level 0 level 0
15 Unit #15, Unit #7, Unit #15, Unit #7,
level 1 level 1 level 0 level 0

If the PC is in a Multilevel PC Link System and the content of word 248 is 02FF,
then PC Link Units #0 through #7 of in the PC Link Subsystem assigned operat-
ing level 1 would be in RUN mode, and PC Link Unit #1 in the same Subsystem
would have an error. The hexadecimal digits and corresponding binary bits of
word 248 would be as shown below.

Bit no. 1S e 00
Binary 0000 0010 1111 1111
Hex 0 2 F F

3-4-4 Forced Status Hold Bit

SR 25211 determines whether or not the status of bits that have been force-set
or force-reset is maintained when switching between PROGRAM and MONI-
TOR mode to start or stop operation. If SR 25211 is ON, bit status will be main-
tained; if SR 25211 is OFF, all bits will return to default status when operation is
started or stopped. The Forced Status Hold Bit is only effective when enabled in
the PC Setup.

The status of SR 25211 in not affected by a power interruption unless the 1/0
table is registered; in that case, SR 25211 will go OFF.

SR 25211 is not effective when switching to RUN mode.

SR 25211 should be manipulated from a Peripheral Device, e.g., a Program-
ming Console or LSS.

41



SR Area Section 3-4

Maintaining Status during The status of SR 25211 and thus the status of force-set and force-reset bits can

Startup be maintained when power is turned off and on by enabling the Forced Status
Hold Bit in the PC Setup. If the Forced Status Hold Bit is enabled, the status of
SR 25211 will be preserved when power is turned off and on. If this is done and
SR 25211 is ON, then the status of force-set and force-reset bits will also be pre-
served, as shown in the following table.

Status before shutdown Status at next startup
SR 25211 SR 25211 Force-set/reset bits
ON ON Status maintained
OFF OFF Reset

Note Refer to 3-6-4 PC Setup for details on enabling the Forced Status Hold Bit.
3-4-5 1/0 Status Hold Bit

SR 25212 determines whether or not the status of IR and LR area bits is main-
tained when operation is started or stopped, when operation begins by switching
from PROGRAM mode to MONITOR or RUN modes. If SR 25212 is ON, bit sta-
tus will be maintained; if SR 25212 is OFF, all IR and LR area bits will be reset.
The 1/O Status Hold Bit is effective only if enabled in the PC Setup.

The status of SR 25212 in not affected by a power interruption unless the 1/0
table is registered; in that case, SR 25212 will go OFF.

SR 25212 should be manipulated from a Peripheral Device, e.g., a Program-
ming Console or LSS.

Maintaining Status during The status of SR 25212 and thus the status of IR and LR area bits can be main-

Startup tained when power is turned off and on by enabling the 1/0 Status Hold Bit in the
PC Setup. If the I/O Status Hold Bit is enabled, the status of SR 25212 will be
preserved when power is turned off and on. If this is done and SR 25212 is ON,
then the status of IR and LR area bits will also be preserved, as shown in the
following table.

Status before shutdown Status at next startup
SR 25212 SR 25212 IR and LR bits
ON ON Status maintained
OFF OFF Reset

Note Refer to 3-6-4 PC Setup for details on enabling the 1/0O Status Hold Bit.

3-4-6 Output OFF Bit

SR bit 25215 is turned ON to turn OFF all outputs from the PC. The OUT INHIBIT
indicator on the front panel of the CPU will light. When the Output OFF Bit is OFF,
all output bits will be refreshed in the usual way.

The status of the Output OFF Bit is maintained for power interruptions or when
PC operation is stopped, unless the 1/O table has been registered, or the I/O
table has been registered and either the Forced Status Hold Bit or the 1/O Status
Hold Bit has not been enabled in the PC Setup.

3-4-7 FAL (Failure Alarm) Area

A 2-digit BCD FAL code is output to bits 25300 to 25307 when the FAL or FALS
instruction is executed. These codes are user defined for use in error diagnosis,
although the PC also outputs FAL codes to these bits, such as one caused by
battery voltage drop.

This area can be reset by executing the FAL instruction with an operand of 00 or
by performing a Failure Read Operation from the Programming Console.
3-4-8 Low Battery Flag

SR bit 25308 turns ON if the voltage of the CPU’s backup battery drops. The
ALM/ERR indicator on the front of the CPU will also flash.

42



SR Area Section 3-4

This bit can be programmed to activate an external warning for a low battery volt-
age.

The operation of the battery alarm can be disabled in the PC Setup if desired.
Refer to 3-6-4 PC Setup for details.

3-4-9 Cycle Time Error Flag

SR bit 25309 turns ON if the cycle time exceeds 100 ms. The ALM/ERR indicator
on the front of the CPU will also flash. Program execution will not stop, however,
unless the maximum time limit set for the watchdog timer is exceeded. Timing
may become inaccurate after the cycle time exceeds 100 ms.

3-4-101/0 Verification Error Flag

SR hit 25310 turns ON when the Units mounted in the system disagree with the
I/O table registered in the CPU. The ALM/ERR indicator on the front of the CPU
will also flash, but PC operation will continue.

To ensure proper operation, PC operation should be stopped, Units checked,
and the 1/O table corrected whenever this flag goes ON.

3-4-11 First Cycle Flag

SR bit 25315 turns ON when PC operation begins and then turns OFF after one
cycle of the program. The First Cycle Flag is useful in initializing counter values
and other operations. An example of this is provided in 5-14 Timer and Counter
Instructions.

3-4-12 Clock Pulse Bits

Five clock pulses are available to control program timing. Each clock pulse bit is
ON for the first half of the rated pulse time, then OFF for the second half. In other
words, each clock pulse has a duty factor of 50%.

These clock pulse bits are often used with counter instructions to create timers.
Refer to 5-14 Timer and Counter Instructions for an example of this.

Pulse width 1 min 0.02s 0.1ls 0.2s 10s
Bit 25400 25401 25500 25501 25502
Bit 25400 Bit 25401
1-min clock pulse 0.02-s clock pulse
~—30s—~—305—~ ~— Ols—~~— 015—~
] ) ] ] ) ]
) . ) 1 |
— 1min.—/ ; 02s d
Bit 25500 Bit 25501
0.1-s clock pulse 0.2-s clock pulse
~—055—~— 055—~ ~—Ols—~~—015—~
] ) ] ] ) ]
~—— 015 — : 0.2s '
Bit 25502 Caution:
1.0-s clock pulse aution:

Because the 0.1-second and
-_- 0.02-second clock pulse bits have
\ \ ON times of 50 and 10 ms, respec-
! tively, the CPU may not be able to
10s : accurately read the pulses if pro-
gram execution time is too long.

43



SR Area

Section 3-4

3-4-13 Step Flag

SR bit 25407 turns ON for one cycle when step execution is started with the
STEP(08) instruction.

3-4-14 Group-2 Error Flag

SR bit 25414 turns ON for any of the following errors for Group-2 High-density
I/0 Units and B7A Interface Units: the same I/O number set twice, the same
words allocated to more than one Unit, refresh errors. If one of these errors oc-
curs, the Unit will stop operation and the ALARM indicator will flash, but the over-
all PC will continue operation.

When the Group-2 Error Flag is ON, the number of the Unit with the error will be
provided in AR 0205 to AR 0214. If the Unit cannot be started properly even
though the I/O number is set correctly and the Unit is installed properly, a fuse
may be blown or the Unit may contain a hardware failure. If this should occur,
replace the Unit with a spare and try to start the system again.

There is also an error flag for High-density I/0 Units and B7A Interface Units in
the AR area, AR 0215.

3-4-15 Special Unit Error Flag

SR bit 25415 turns ON to indicate errors in the following Units: Special I/O, PC

Link, Host Link, and Remote I/0O Master Units. SR bit 25415 will turn ON for any

of the following errors.

¢ When more than one Special I/0 Unit is set to the same unit number.

e When an error occurs in refreshing data between a Special I/O Unit and the
PC’s CPU.

¢ When an error occurs between a Host Link Unit and the PC’s CPU.

¢ When an error occurs in a Remote 1/0 Master Unit.

Although the PC will continue operation if SR 25415 turns ON, the Units causing

the error will stop operation and the ALM indicator will flash. Check the status of

AR 0000 to AR 0015 to obtain the unit numbers of the Units for which the error

occurred and investigate the cause of the error.

Unit operation can be restarted by using the Restart Bits (AR 0100 to AR 0115,

SR 25207, and SR 25213), but will not be effective if the same unit number is set

for more than one Special I/0 Unit. Turn off the power supply, correct the unit

number settings, and turn of the power supply again to restart.

SR 25415 will not turn OFF even if AR 0100 to AR 0115 (Restart Bits) are turned

ON. It can be turned OFF by reading errors from a Programming Device or by

executing FAL(06) 00 from the ladder program.

3-4-16 Instruction Execution Error Flag, ER

SR bit 25503 turns ON if an attempt is made to execute an instruction with incor-
rect operand data. Common causes of an instruction error are non-BCD oper-
and data when BCD data is required, or an indirectly addressed DM word that is
non-existent. When the ER Flag is ON, the current instruction will not be
executed.

3-4-17 Arithmetic Flags

&Caution

The following flags are used in data shifting, arithmetic calculation, and compari-
son instructions. They are generally referred to only by their two-letter abbrevia-
tions.

These flags are all reset when the END(01) instruction is executed, and therefore cannot be moni-
tored from a programming device.

Refer to 5-15 Data Shifting, 5-17 Data Comparison, 5-19 BCD Calculations, and
5-20 Binary Calculations for details.



SR Area

Section 3-4

Overflow Flag, OF

Underflow Flag, UF

Carry Flag, CY

Greater Than Flag, GR

Equal Flag, EQ

Less Than Flag, LE

SR bit 25404 turns ON when the result of a binary addition or subtraction ex-
ceeds 7FFF or 7FFFFFFF.

SR bit 25405 turns ON when the result of a signed binary addition or subtraction
exceeds 8000 or 80000000.

SR bit 25504 turns ON when there is a carry in the result of an arithmetic opera-
tion or when a rotate or shift instruction moves a “1” into CY. The content of CY is
also used in some arithmetic operations, e.g., it is added or subtracted along
with other operands. This flag can be set and cleared from the program using the
Set Carry and Clear Carry instructions.

SR bit 25505 turns ON when the result of a comparison shows the first of two
operands to be greater than the second.

SR bit 25506 turns ON when the result of a comparison shows two operands to
be equal or when the result of an arithmetic operation is zero.

SR bit 25507 turns ON when the result of a comparison shows the first of two
operands to be less than the second.

Note The four arithmetic flags are turned OFF when END(01) is executed.

3-4-18 Interrupt Subroutine Areas

Interrupt Subroutine
Maximum Processing Time
Area

Maximum Processing Time
Interrupt Subroutine
Number Area

The following areas are used in subroutine interrupt processing.

SR bits 26200 to 26215 are used to set the maximum processing time of the in-
terrupt subroutine. Processing times are determined to within 0.1 ms incre-
ments.

SR bits 26300 to 26315 contain the maximum processing time interrupt subrou-
tine number. Bit 15 will be ON if there is an interruption.

3-4-19 RS-232C Port Communications Areas

RS-232C Port Error Code

RS-232C Port
Communication Error Bit

RS-232C Port Send Ready
Flag

RS-232C Port Reception
Completed Flag

RS-232C Port Reception
Overflow Flag

RS-232C Reception Counter

Host Link Level 0 Send
Ready Flag

Host Link Level 1 Send
Ready Flag

SR bits 26400 to 26403 set when there is a RS-232C port error.

Setting Error type

No error

Parity error

Framing error

WIN|[FP|O

Overrun error

SR bit 26404 turns ON when there is a RS-232C port communication error.

SR bit 26405 turns ON when the C200HS is ready to transmit data.

SR bit 26406 turns ON when the C200HS has completed reading data from a
RS-232C device.

SR bit 26407 turns ON when data overflow occurs following the reception of
data.

SR areas 26500 to 26515 contains the number of RS-232C port receptions in
General /0 Mode.

SR bit 26705 turns ON when the C200HS is ready to transmit to the Host Link
Unit.

SR bit 26713 turns ON when the C200HS is ready to transmit to the Host Link.

45



SR Area

Section 3-4

3-4-20 Peripheral Port Communications Areas

Peripheral Port Error Code

Peripheral Port
Communication Error Bit

Peripheral Port Send Ready
Flag

Peripheral Port Reception
Completed Flag

Peripheral Port Reception
Overflow Flag

Peripheral Reception
Counter

Host Link Level 0 Send
Ready Flag

Host Link Level 1 Receive
Ready Flag

SR bits 26408 to 26411 are set when there is a peripheral port error in the Gener-
al I/0 Mode.

Setting Error type

No error

Parity error

Framing error

Overrun error

Connected in Peripheral Mode

TM|W[IN|F~|O

SR bit 26412 turns ON when there is a peripheral port communication error (ef-
fective in General /O Mode).

SR bit 26413 turns ON when the C200HS is ready to transmit data in General I/O
Mode.

SR bit 26414 turns ON when the C200HS has completed reading data from a
peripheral device. Effective in General I/O Mode.

SR bit 26415 turns ON when data overflow occurs following the reception of
data. Effective in General I/O Mode.

SR areas 26600 to 26615 contains the number of peripheral port receptions in
General 1/0O Mode (BCD).

SR bit 26705 turns ON when the C200HS is ready to transmit to the Host Link
Unit.

SR bit 26713 turns ON when the C200HS is ready to receive data from the Host
Link.

3-4-21 Memory Cassette Areas

Memory Cassette Contents

Memory Cassette Capacity

EEPROM/EPROM Memory
Cassette Mounted Flag

Memory Cassette Flag

Save UM to Cassette Flag

Load UM from Cassette
Flag

46

SR areas 26900 to 26907 indicate memory type contained on the Memory Cas-
sette.

Memory Type Code
Nothing 00
UM 01
IOM 02

SR areas 26908 to 26910 indicate memory capacity of the Memory Cassette.

Capacity Code
0 KW (no board mounted) 0

16 KW 3

SR bit 26914 turns ON when EEPROM Memory Cassette is protected or
EPROM Memory Cassette is mounted.

SR bit 26915 turns ON when a Memory Cassette is mounted.

SR bit 27000 turns ON when UM data is read to a Memory Cassette in Program
Mode. Bit will automatically turn OFF. An error will be produced if turned ON in
any other mode.

SR bit 27001 turns ON when data is loaded into UM from a Memory Cassette in
Program Mode. Bit will automatically turn OFF. An error will be produced if
turned ON in any other mode.



SR Area Section 3-4

Collation (Between DM and SR bit 27002 turns ON when data is verified between DM and a Memory Cas-
Memory Cassette) sette. SR bit 27003 turns OFF when the contents of the verification coincide and
turns ON when the contents of the verification do not coincide.

3-4-22 Data Transfer Error Bits

Data will not be transferred from UM to the Memory Cassette if an error occurs
(except for Board Checksum Error). Detailed information on checksum errors
occurring in the Memory Cassette will not be output to SR 272 because the in-
formation is not needed. Repeat the transmission if SR 27015 is ON

Transfer Error Flag: Not SR bit 27012 turns ON when the C200HS is not in Program Mode and data
PROGRAM Mode transfer is attempted.

Transfer Error Flag: Read SR bit 27013 turns ON when the C200HS is in Read-only Mode and data trans-
Only fer is attempted.

Transfer Error Flag: SR bit 27014 turns ON when data transfer is attempted and available UM is in-
Insufficient Capacity or No sufficient.
UM

Transfer Error Flag: Board SR bit 27015 turns ON when data transfer is attempted and a Board Checksum
Checksum Error error occurs.

3-4-23 Ladder Diagram Memory Areas

Memory Cassette Ladder SR areas 27100 to 27107 indicate the amount of ladder program stored in a
Diagram Size Area Memory Cassette.

Ladder-only File: 04: 4 KW; 08: 8 KW; 12: 12 KW, ... (64: 64 KW)
(Ladder File (Bit 07 will be ON): 84: 4 KW; 88: 8 KW, 92: 12 KW,
... (E4: 64 KW))

00: No ladder program or no file
Data updated at data transfer from CPU at startup. The file must begin in
segment O.

CPU Ladder Diagram Size SR areas 27108 to 27115 indicate the CPU’s ladder program size and type.
and Type Specifications are the same as for bits 00 to 07.

3-4-24 Memory Error Flags

Memory Error Flag: PC SR bit 27211 turns ON when a PC Setup Checksum error occurs.
Setup Error

Memory Error Flag: Ladder SR bit 27212 turns ON when a Ladder Checksum error occurs.
Checksum Error

Memory Error Flag: SR bit 27213 turns ON when an instruction change vector area error occurs.
Instruction Change Error

Memory Error Flag: Memory SR bit 27214 turns ON when a Memory Cassette is connected or disconnected
Cassette Disconnect Error during operations.

Memory Error Flag: SR bit 27215 turns ON when an autoboot error occurs.
Autoboot Error

3-4-25 Data Save Flags

Data transferred to Memory Cassette when Bit is turned ON in PROGRAM
mode. Bit will automatically turn OFF. An error will be produced if turned ON in
any other mode.

a7



AR Area

Section 3-5

Save IOM to Cassette Bit

SR bit 27300 turns ON when IOM is saved to a Memory Cassette.

Load IOM from Cassette Bit SR bit 27301 turns ON when loading to IOM from a Memory Cassette.
3-4-26 Transfer Error Flags

Transfer Error Flag: Not

PROGRAM mode

Transfer Error Flag

Transfer Error Flag

Data will not be transferred from IOM to the Memory Cassette if an error occurs
(except for Read Only Error).

SR bit 27312 turns ON when attempting to transfer data in other than Program
Mode.

SR bit 27313 turns ON when attempting to transfer data in Read-only Mode.

SR hit 27314 turns ON when attempting to transfer data and IOM capacity is in-
sufficient.

3-4-27 PC Setup Error Flags

PC Setup Startup Error

PC Setup RUN Error

PC Setup

Communications/Error

Setting/Misc. Error
Minutes (00 to 59)

Hours (00 to 23)
Keyboard Map

SR bit 27500 turns ON when a PC Setup Startup error occurs (DM6600 to
DM6614).

SR bit 27501 turns ON when a PC Setup Run error occurs (DM6615 to
DM6644).

SR bit 27501 turns ON when a PC Setup Communications, Error setting or Mis-
cellaneous error occurs (DM6645 to DM6655).

SR bits 27600 to 27607 set the PC Clock to minutes (00 to 59).
SR bits 27608 to 27615 set the PC Clock to hours (0 to 23).
Used for keyboard mapping.

3-5 AR (Auxiliary Relay) Area

AR word addresses extend from AR 00 to AR 27; AR bit addresses extend from
AR 0000 to AR 2715. Most AR area words and bits are dedicated to specific
uses, such as transmission counters, flags, and control bits, and words AR 00
through AR 07 and AR 23 through AR 27 cannot be used for any other purpose.
Words and bits from AR 08 to AR 22 are available as work words and work bits if
not used for the following assigned purposes.

Word Use
AR 0713 to AR 0715 Error History Area
AR 07 to 15 SYSMAC LINK Units
AR 16, AR 17 SYSMAC LINK and SYSMAC NET Link Units
AR 18 to AR 21 Calendar/clock Area
AR 0708, AR 0709, TERMINAL Mode Key Bits
and AR 22

The AR area retains status during power interruptions, when switching from
MONITOR or RUN mode to PROGRAM mode, or when PC operation is
stopped. Bit allocations are shown in the following table and described in the fol-
lowing pages in order of bit number.

AR Area Flags and Control Bits

Word(s) Bit(s) Function
00 00to 09 Error Flags for Special 1/0 Units 0 to 9 (also function as Error Flags for PC Link Units)

10 Error Flag for operating level 1 of SYSMAC LINK or SYSMAC NET Link System

11 Error Flag for operating level 0 of SYSMAC LINK or SYSMAC NET Link System

12 Host Computer to Rack-mounting Host Link Unit Level 1 Error Flag

13 Host Computer to Rack-mounting Host Link Unit Level O Error Flag

14 Remote I/O Master Unit 1 Error Flag

15 Remote I/O Master Unit O Error Flag

48




AR Area Section 3-5
Word(s) Bit(s) Function
01 00 to 09 Restart Bits for Special I/0 Units 0 to 9 (also function as Restart Bits for PC Link Units)
10 Restart Bit for operating level 1 of SYSMAC LINK or SYSMAC NET Link System
11 Restart Bit for operating level 0 of SYSMAC LINK or SYSMAC NET Link System
12,13 Not used.
14 Remote I/O Master Unit 1 Restart Flag.
15 Remote I/O Master Unit 0 Restart Flag.
02 00 to 04 Slave Rack Error Flags (#0 to #4)
05to 14 Group-2 Error Flags
15 Group-2 Error Flag
03 00to 15 Error Flags for Optical 1/0 Units and 1/0O Terminals 0 to 7
04 00to 15 Error Flags for Optical /0 Units and 1/0 Terminals 8 to 15
05 00to 15 Error Flags for Optical /0 Units and 1/0 Terminals 16 to 23
06 00to 15 Error Flags for Optical /0 Units and 1/0 Terminals 24 to 31
07 00to 03 Data Link setting for operating level 0 of SYSMAC LINK System
04 to 07 Data Link setting for operating level 1 of SYSMAC LINK System
08 Normal TERMINAL Mode/Expansion TERMINAL Mode Input Cancel Bit
09 Expansion TERMINAL Mode Changeover Flag
10 and 11 | Reserved by system.
12 Terminal Mode Flag
ON: Expansion; OFF: Normal (Same as status of pin 6 on CPU’s DIP switch)
13 Error History Overwrite Bit
14 Error History Reset Bit
15 Error History Enable Bit
08to 11 00 to 15 Active Node Flags for SYSMAC LINK System nodes of operating level 0
12 to 15 00 to 15 Active Node Flags for SYSMAC LINK System nodes of operating level 1
16 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating level 0 service time per cycle
17 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating level 1 service time per cycle
18 00 to 07 Seconds: 00 to 99
Writeable 08to 15 Minutes: 00 to 59
19 00 to 07 Hours: 00 to 23 (24-hour system)
Writeable 08to 15 Day of Month: 01 to 31 (adjusted by month and for leap year)
20 00 to 07 Month: 1 to 12
Writeable 08to 15 Year: 00 to 99 (Rightmost two digits of year)
21 00 to 07 Day of Week: 00 to 06 (00: Sunday; 01: Monday; 02: Tuesday; 03: Wednesday; 04:
Writeable Thursday; 05: Friday; 06: Saturday)
08to 12 Not used.
13 30-second Compensation Bit
14 Clock Stop Bit
15 Clock Set Bit
22 00to 15 Keyboard Mapping
23 00 to 15 Power Off Counter (BCD)

49




AR Area Section 3-5
Word(s) Bit(s) Function

24 00 to 04 Reserved by system.
05 Cycle Time Flag
06 SYSMAC LINK System Network Parameter Flag for operating level 1
07 SYSMAC LINK System Network Parameter Flag for operating level O
08 SYSMAC/SYSMAC NET Link Unit Level 1 Mounted Flag
09 SYSMAC/SYSMAC NET Link Unit Level 0 Mounted Flag
10 Reserved by system.
11 and 12 | PC Link Level
13 Rack-mounting Host Link Unit Level 1 Mounted Flag
14 Rack-mounting Host Link Unit Level 0 Mounted Flag
15 CPU-mounting Device Mounted Flag

25 00to 11 Reserved by system.
12 Trace End Flag
13 Tracing Flag
14 Trace Trigger Bit (writeable)
15 Trace Start Bit (writeable)

26 00 to 15 Maximum Cycle Time (0.1 ms)

27 00to 15 Present Cycle Time (0.1 ms)

3-5-1 Restarting Special I/O Units

To restart Special I/O Units (including PC Link Units) turn the corresponding bit
ON and OFF (or turn power ON and OFF). Do not access data refreshed for Spe-
cial /0 Units during restart processing (see SR 27400 to SR 27409 on page 37).

3-5-2 Slave Rack Error Flags

AR bits 0200 to AR 0204 correspond to the unit numbers of Remote 1/O Slave
Units #0 to #4 and AR bits 0710 to AR 0712 correspond to the unit numbers of
Remote 1/O Slave Units #5 to #7. These flags will turn ON if the same number is
allocated to more then one Slave or if a transmission error occurs when starting
the System. Refer to SR 251 for errors that occur after the System has started
normally.

3-5-3 Group-2 Error Flags

AR bits 0205 to AR 0215 correspond to Group-2 High-density I/O Units and B7A
Interface Units 0 to 9 (I/O numbers) and will turn ON when the same number is
set for more than one Unit, when the same word is allocated to more than one
Unit, when I/O number 9 is set for a 64-point Unit, or when the fuse burns out in a
Transistor High-density 1/0 Unit. AR bit 0215 will turn ON when a Unit is not rec-
ognized as a Group-2 High-density I/O Unit.

3-5-4 Optical I/0O Unit and I/O Terminal Error Flags

50

AR 03 through AR 06 contain the Error Flags for Optical I/O Units and I/O Termi-
nals. An error indicates a duplication of a unit number. Up to 64 Optical I1/O Units
and 1/0 Terminals can be connected to the PC. Units are distinguished by unit



AR Area Section 3-5

number, 0 through 31, and a letter, L or H. Bits are allocated as shown in the fol-

lowing table.
Optical I/0 Unit and I/0 Bits ARO3 ARO4 ARO05 ARO06
Terminal Error Flags allocation | allocation | allocation | allocation

00 oL 8L 16 L 24 L

01 OH 8H 16 H 24 H

02 1L 9L 17 L 25L

03 1H 9H 17 H 25 H

04 2L 10L 18 L 26 L

05 2H 10H 18 H 26 H

06 3L 11L 19L 27 L

07 3H 11 H 19H 27H

08 4L 12 L 20 L 28 L

09 4 H 12 H 20H 28 H

10 5L 13L 21 L 29L

11 5H 13 H 21 H 29 H

12 6L 14 L 22 L 30L

13 6H 14 H 22 H 30H

14 7L 15L 23 L 31L

15 7H 15H 23 H 31H

3-5-5 SYSMAC LINK System Data Link Settings

AR 0700 to AR 0703 and AR 0704 to AR 0707 are used to designate word alloca-
tions for operating levels 0 and 1 of the SYSMAC LINK System. Allocation can
be set to occur either according to settings from an FIT or automatically in the LR
and/or DM areas. If automatic allocation is designated, the number of words to
be allocated to each node is also designated. These settings are shown below.

External/Automatic Operating level 0 Operating level 1 Setting
Allocation
AR 0700 | AR0701 | AR0704 | AR 0705
0 0 0 0 Words set externally (FIT)
1 0 1 0 Automatic LR area only
0 1 0 1 allocation DM area only
1 1 1 1 LR and DM
areas
Words per Node The following setting is necessary if automatic allocation is designated above.
Operating level 0 Operating level 1 Words per node Max. no.
AR 0702 | AR0703 | AR0706 | AR0707 | LRarea | DMarea | of nodes
0 0 0 0 4 8 16
1 0 1 0 8 16 8
0 1 0 1 16 32 4
1 1 1 1 32 64 2
The above settings are read every cycle while the SYSMAC LINK System is in
operation.

3-5-6 Error History Bits

AR 0713 (Error History Overwrite Bit) is turned ON or OFF by the user to control
overwriting of records in the Error History Area in the DM area. Turn AR 0713 ON
to overwrite the oldest error record each time an error occurs after 10 have been
recorded. Turn OFF AR 0713 to store only the first 10 records that occur each
time after the history area is cleared.

51



AR Area

Section 3-5

AR 0714 (Error History Reset Bit) is turned ON and then OFF by the user to reset
the Error Record Pointer (DM 0969) and thus restart recording error records at
the beginning of the history area.

AR 0715 (Error History Enable Bit) is turned ON by the user to enable error histo-
ry storage and turned OFF to disable error history storage.

Refer to 3-6 DM Area for details on the Error History Area.
Error history bits are refreshed each cycle.

3-5-7 Active Node Flags

AR 08 through AR 11 and AR 12 through AR 15 provide flags that indicate which
nodes are active in the SYSMAC LINK System at the current time. These flags
are refreshed every cycle while the SYSMAC LINK System is operating.

The body of the following table show the node number assigned to each bit. If the
bit is ON, the node is currently active.

Level O Level 1 Bit (body of table shows node numbers)
00 |01 (02 |03 |04 |05 |06 |07 |08 |09 |20 |11 | 12 | 13 | 14 | 15
AR 08 AR 12 1 2 3 4 5 6 7 8 9 10 |11 |12 |13 |14 |15 |16
AR 09 AR 13 17 (18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31 |32
AR 10 AR 14 33 |34 |35 |36 (37 |38 (39 |40 (41 |42 |43 |44 |45 |46 |47 |48
AR 11 AR 15 49 |50 |51 |52 |53 |54 |55 |56 |57 |58 |59 |60 |61 |62 |* *

*Communication Controller Error Flag
*EEPROM Error Flag

3-5-8 SYSMAC LINK/SYSMAC NET Link System Service Time

AR 16 provides the time allocated to servicing operating level O of the SYSMAC
LINK System and/or SYSMAC NET Link System during each cycle when a SYS-
MAC LINK Unit and/or SYSMAC NET Link Unit is mounted to a Rack.

AR 17 provides the time allocated to servicing operating level 1 of the SYSMAC
LINK System and/or SYSMAC NET Link System during each cycle when a SYS-
MAC LINK Unit and/or SYSMAC NET Link Unit is mounted to a Rack.

These times are recorded in 4-digit BCD to tenths of a millisecond (000.0 ms to
999.9 ms) and are refreshed every cycle.

Bits
15to 12 | 11to 08 | 07to 04 | 03 to 00
102 101 100 101

3-5-9 Calendar/Clock Area and Bits

Calendar/Clock Area

Calendar/Clock Bits

A clock is built into the C200HS CPUs. If AR 2114 (Clock Stop Bit) is OFF, then
the date, day, and time will be available in BCD in AR 18 to AR 20 and AR 2100 to
AR 2108 as shown below. This area can also be controlled with AR 2113 (30-se-
cond Compensation Bit) and AR 2115 (Clock Set Bit).

Bits Contents Possible values
AR 1800 to AR 1807 | Seconds 00 to 59
AR 1808 to AR 1815 | Minutes 00 to 59
AR 1900 to AR 1907 | Hours 00 to 23 (24-hour system)

AR 1908 to AR 1915

Day of month 01 to 31 (adjusted by month and for leap year)

AR 2000 to AR 2007

Month

1to 12

AR 2008 to AR 2015

Year

00 to 99 (Rightmost two digits of year)

AR 2100 to AR 2107

Day of week 00 to 06 (00: Sunday; 01: Monday; 02: Tuesday; 03: Wednesday; 04:

Thursday; 05: Friday; 06: Saturday)

52



AR Area

Section 3-5

30-second Compensation Bit AR 2113 is turned ON to round the seconds of the Calendar/clock Area to zero,

Clock Stop Bit

Clock Set Bit

1,23.

Clock Accuracy

i.e., if the seconds is 29 or less, it is merely set to 00; if the seconds is 30 or great-
er, the minutes is incremented by 1 and the seconds is set to 00.

AR 2114 is turned OFF to enable the operation of the Calendar/clock Area and
ON to stop the operation.

AR 2115 is used to set the Calendar/clock Area as described below. This data
must be in BCD and must be set within the limits for the Calendar/clock Area
given above.

1. Turn ON AR 2114 (Stop Bit).

2. Set the desired date, day, and time, being careful not to turn OFF AR 2114
(Clock Stop Bit) when setting the day of the week (they're in the same word).
(On the Programming Console, the Bit/Digit Monitor and Force Set/Reset
Operations are the easiest ways to set this data.)

3. Turn ON AR 2115 (Clock Set Bit). The Calendar/clock will automatically start
operating with the designated settings and AR 2114 and AR 2115 will both
be turned OFF.

The Calendar/clock Area and Bits are refreshed each cycle while operational.

Clock accuracy is affected by the ambient temperature as shown in the following
table.

Ambient Accuracy (loss or
temperature gain per month)
55°C -3 to 0 minutes
25°C +1 minute
0°C —2 to 0 minutes

3-5-10 TERMINAL Mode Key Bits

If the Programming Console is mounted to the PC and is in TERMINAL mode,
any inputs on keys 0 through 9 (including characters A through F, i.e, keys 0
through 5 with SHIFT) will turn on a corresponding bit in AR 22. TERMINAL
mode is entered by a Programming Console operation.

The bits in AR 22 correspond to Programming Console inputs as follows:

Bit Programming Console input
AR 2200
AR 2201
AR 2202
AR 2203
AR 2204
AR 2205
AR 2206
AR 2207
AR 2208
AR 2209
AR 2210

AR 2211

AR 2212

AR 2213

AR 2214

MM o|lOo|m|>» o0 o|N|ouvlhlw|[NM|F|O

AR 2215

Refer to Section 7 Program Monitoring and Execution for details on the TERMI-
NAL mode.

53



AR Area Section 3-5

3-5-11 Power OFF Counter

AR 23 provides in 4-digit BCD the number of times that the PC power has been
turned off. This counter can be reset as necessary using the PV Change 1 op-
eration from the Programming Console. (Refer to 7-1-4 Hexadecimal/BCD Data
Modification for details.) The Power OFF Counter is refreshed every time power
is turned on.

3-5-12 Cycle Time Flag

AR 2405 turns ON when the cycle time set with SCAN(18) is shorter than the
actual cycle time.

AR 2405 is refreshed every cycle while the PC is in RUN or MONITOR mode.

3-5-13 Link Unit Mounted Flags

The following flags indicate when the specified Link Units are mounted to the
Racks. (Refer to 3-5-14 CPU-mounting Device Mounted Flag for CPU-mounting
Host Link Units.) These flags are refreshed every cycle.

Name Bit Link Unit
PC Link Unit Level 1 AR 2411 PC Link Unit in operating level 1
PC Link Unit Level O AR 2412 PC Link Unit in operating level O
Rack-mounting Host Link Unit Level 1 AR 2413 Rack-mounting Host Link Unit in operating level 1
Rack-mounting Host Link Unit Level O AR 2414 Rack-mounting Host Link Unit in operating level O

3-5-14 CPU-mounting Device Mounted Flag

AR 2415 turns ON when any device is mounted directly to the CPU. This in-
cludes CPU-mounting Host Link Units, Programming Consoles, and Interface
Units. This flag is refreshed every cycle.

3-5-15 FPD Trigger Bit

AR 2508 is used to adjust the monitoring time of FPD(—) automatically. Refer to
5-25-12 FAILURE POINT DETECT — FPD(—) for details.

3-5-16 Data Tracing Flags and Control Bits

The following control bits and flags are used during data tracing with TRSM(45).
The Tracing Flag will be ON during tracing operations. The Trace Completed
Flag will turn ON when enough data has been traced to fill Trace Memory.

Bit Name
AR 2512 Trace Completed Flag
AR 2513 Tracing Flag
AR 2514 Trace Trigger Bit (writeable)
AR 2515 Sampling Start Bit (writeable)

Note Refer to 5-25-3 TRACE MEMORY SAMPLING — TRSM(45) for details.

3-5-17 Cycle Time Indicators
AR 26 contains the maximum cycle time that has occurred since program execu-
tion was begun. AR 27 contains the present cycle time.

Both times are to tenths of a millisecond in 4-digit BCD (000.0 ms to 999.9 ms),
and are refreshed every cycle.



DM Area

Section 3-6

3-6 DM (Data Memory) Area

Indirect Addressing

Note

Note

The DM area is divided into various parts as described in the following table. A
portion of UM (up to 3,000 words in 1,000-word increments) can be allocated as
Expansion DM.

Addresses User Usage
read/write
DM 0000 to DM 0999 | Read/Write | Normal DM.
DM 1000 to DM 1999 Special I/0 Unit Areal
DM 2000 to DM 5999 Normal DM.
DM 6000 to DM 6030 History Log
DM 6100 to DM 6143 Link test area (reserved)
DM 6144 to DM 6599 | Read only System Settings
DM 6600 to DM 6655 PC Setup
DM 7000 to DM 9999 Expansion DM2

1. The PC Setup can be set to use DM 7000 through DM 7999 as the Special
I/O Area instead of DM 1000 to DM 1999. Refer to 3-6-4 PC Setup for de-
tails.

2. The UM ALLOCATION Programming Console operation can be used to al-
locate up to 3000 words of UM as Expansion DM.

Although composed of 16-bit words like any other data area, data in the DM area
cannot be specified by bit for use in instructions with bit operands. DM 0000 to
DM 6143 can be written to by the program, but DM 6144 to DM 6655 can be over-
written only from a Peripheral Device, such as a Programming Console or host
computer with LSS.

The DM area retains status during power interruptions.

Normally, when the content of a data area word is specified for an instruction, the
instruction is performed directly on the content of that word. For example, sup-
pose MOV(21) is performed with DM 0100 as the first operand and LR 20 as the
second operand. When this instruction is executed, the content of DM 0100 is
moved to LR 20.

Expansion DM cannot be used for indirect addressing.

It is possible, however, to use indirect DM addresses as the operands for many
instructions. To indicate an indirect DM address, >kDM is input with the address
of the operand. With an indirect address, with content of this operand does not
contain the actual data to be used. Instead, it's contents is assumed to hold the
address of another DM word, the content of which will actually be used in the
instruction. If kDM 0100 was used in our example above and the content of DM
0100 is 0324, then >kDM 0100 actually means that the content of DM 0324 is to
be used as the operand in the instruction, and the content of DM 0324 will be
moved to LR 20.

Word Content
DM 0099 [ 4C59
*DMO0100 | ———— . DM 0100 0324

LR 00 Indirect Indicates
address DM 0101 F35A DM 0324

| 1
DM 0324 5555

DM 0325 [ 2506 | . 5555 moved
DM 0326 | D541 to LR 00.

--=--— MoV(21)

55



DM Area Section 3-6

3-6-1 Expansion DM Area

The expansion DM area is designed to provide memory space for storing oper-
ating parameters and other operating data for Link Units and Special I/O Units.
Up to 3,000 words of UM can be allocated as Expansion DM (in 1K-word incre-
ments) using the UM ALLOCATION operation in the Programming Console or
LSS. Expansion DM area addresses run from DM 7000 to DM 9999.

The data in the expansion DM area can be transferred to the Special I/O Unit
Default Area (DM 1000 to DM 1999) when starting the PC or via programming
instruction to easily change operating parameters, enabling rapid switching be-
tween control processes. The expansion DM area can also be used to store pa-
rameters for other devices connected in the PC system, e.g., Programmable
Terminal character string or numeral tables.

The expansion DM area is used to store operating parameters and cannot be
used in programming like the normal DM area. Expansion DM can only be over-
written from a Peripheral Device, retains status during power interruptions, and
cannot be used for indirect addressing.

The UM area can be allocated as expansion DM area in increments of 1K words.
Once expansion DM area has been created, it is saved and transferred as part of
the program, i.e., no special procedures are required when saving or transfer-
ring the program.

UM ALLOCATION Operation The procedure for the Programming Console’s UM ALLOCATION operation is
shown below. Refer to 1-8-10 New Programming Console Operations for details
on the DATA CLEAR and UM ALLOCATION instructions.

1,2,3... 1. Clear memory.

Note UM allocation is not possible unless memory is cleared first.

2. The expansion DM area can be setto 0, 1, 2, or 3 K words. The following key
sequence creates a 2-KW expansion DM area (DM 7000 to DM 8999).

S EEEOEEO00E

Press the 0 Key to eliminate the expansion DM area (0 KW).
or Press the 1 Key to allocate DM 7000 to DM 7999 (1 KW).
or Press the 2 Key to allocate DM 7000 to DM 8999 (2 KW).
or Press the 3 Key to allocate DM 7000 to DM 9999 (3 KW).

3-6-2 Special I/O Unit Data

Special I/0 Units are allocated 1000 words in the DM Area as shown in the fol-
lowing table. The value set in the PC Setup (DM 6602 bits 08 to 15) determines

56



DM Area

Section 3-6

whether DM 1000 to DM 1999 or DM 7000 to 7999 will be used. Refer to 3-6-4
PC Setup for details.

Unit Addresses

DM 1000 to DM 1099 or DM 7000 to DM 7099
DM 1100 to DM 1199 or DM 7100 to DM 7199
DM 1200 to DM 1299 or DM 7200 to DM 7299
DM 1300 to DM 1399 or DM 7300 to DM 7399
DM 1400 to DM 1499 or DM 7400 to DM 7499
DM 1500 to DM 1599 or DM 7500 to DM 7599
DM 1600 to DM 1699 or DM 7600 to DM 7699
DM 1700 to DM 1799 or DM 7700 to DM 7799
DM 1800 to DM 1899 or DM 7800 to DM 7899
DM 1900 to DM 1999 or DM 7900 to DM 7999

OVl [W[IN|IFL|O

Note These DM words can be used for other purposes when not allocated to Special

1/0O Units.

3-6-3 Error History Area

Area Structure

DM 6000 to DM 6030 are used to store up to 10 records that show the nature,
time, and date of errors that have occurred in the PC.
The Error History Area will store system-generated or FAL(06)/FALS(07)-gener-
ated error codes whenever AR 0715 (Error History Enable Bit) is ON. Refer to
Section 10 Troubleshooting for details on error codes.

Error records occupy three words each stored between DM 6001 and DM 6030.
The last record that was stored can be obtained via the content of DM 6000 (Er-
ror Record Pointer). The record number, DM words, and pointer value for each of
the ten records are as follows:

Record Addresses Pointer value
None N.A. 0000
1 DM 6001 to DM 6003 0001
2 DM 6004 to DM 6006 0002
3 DM 6007 to DM 6009 0003
4 DM 6010 to DM 6012 0004
5 DM 6013 to DM 6015 0005
6 DM 6016 to DM 6018 0006
7 DM 6019 to DM 6021 0007
8 DM 6022 to DM 6024 0008
9 DM 6025 to DM 6027 0009
10 DM 6028 to DM 6030 000A

Although each of them contains a different record, the structure of each record is
the same: the first word contains the error code; the second and third words, the
day and time. The error code will be either one generated by the system or by
FAL(06)/FALS(07); the time and date will be the date and time from AR 18 and
AR 19 (Calender/date Area). Also recorded with the error code is an indication of
whether the error is fatal (08) or non-fatal (00). This structure is shown below.

Word Bit Content
First 00 to 07 Error code
08to 15 00 (non-fatal) or 80 (fatal)
Second 00 to 07 Seconds
08to 15 Minutes
Third 00 to 07 Hours
08to 15 Day of month

57



DM Area

Section 3-6

The following table lists the possible error codes and corresponding errors.

Error severity Error code Error

Fatal errors 00 Power Interruption
01 to 99 System error (FALS)
9F Cycle time error
COto C2 I/O bus error
EO Input-output I/O table error
E1l Too many Units
FO No END(01) instruction
F1 Memory error

Non-fatal errors 01 to 99 System error (FAL)
8A Interrupt Input error
8B Interrupt program error
9A Group 2 High-density 1/O error
9B PC Setup error
9D UM Memory Cassette transfer error
BO to B1 Remote I/O error
DO Special I/O error
E7 I/O table verification error
F7 Battery error
F8 Cycle time overrun

Operation When the first error code is generated with AR 0715 (Error History Enable Bit)
turned ON, the relevant data will be placed in the error record after the one indi-
cated by the History Record Pointer (initially this will be record 1) and the Pointer
will be incremented. Any other error codes generated thereafter will be placed in
consecutive records until the last one is used. Processing of further error records

is based on the status of AR 0713 (Error History Overwrite Bit).

If AR 0713 is ON and the Pointer contains 000A, the next error will be written into
record 10, the contents of record 10 will be moved to record 9, and so on until the
contents of record 1 is moved off the end and lost, i.e., the area functions like a
shift register. The Record Pointer will remain set to 000A.

If AR 0713 is OFF and the Pointer reaches 000A, the contents of the Error Histo-
ry Error will remain as it is and any error codes generate thereafter will not be
recorded until AR 0713 is turned OFF or until the Error History Area is reset.

The Error History Area can be reset by turning ON and then OFF

AR 0714 (Error History Reset Bit). When this is done, the Record Pointer will be
reset to 0000, the Error History Area will be reset (i.e., cleared), and any further
error codes will be recorded from the beginning of the Error History Area.
AR 0715 (Error History Enable Bit) must be ON to reset the Error History Area.

3-6-4 PC Setup

The PC Setup contains settings that determine C200HS operation. Data in the
PC Setup can be changed with a Programming Console or LSS if UM is not
write-protected by pin 1 of the CPU’s DIP switch. Refer to page 23 for details on
changing DIP switch pin settings.

The PC can be operated with the default PC Setup, which requires changing
only when customizing the PC’s operating environment to application needs.
The PC Setup parameters are described in the following table. Refer to Appen-
dix E PC Setup for more details on these parameters.

58



DM Area

Section 3-6

The PC Setup is allocated to DM 6600 through DM 6655.

Parameter

Default

Settings

Remarks

STARTUP MODE

STARTUP Programming | Programming Console Determines the operating mode the PC will start in
MODE Console mode selector, previous when power is turned ON.
mode selector | mode (i.e., the mode in | This setting is required for restart continuation.
use last time power was | setting is effective from next time power is turned on
interrupted), PROGRAM, | {q the PC.
MONITOR, or RUN
FORCED Don't hold Hold or don't hold Determines whether or not the status of the Forced
STATUS Status Hold Bit is maintained after power interruptions.
If the status of the Forced Status Hold Bit is not set to
be held, it will be turned OFF the next time the PC is
started and forced status will be cleared.
Setting is effective from next time power is turned on
to the PC.
IOM HOLD BIT | Don't hold Hold or don'’t hold Determines whether or not the status of the IOM Hold
STATUS Bit is maintained after power interruptions. If the status
of the IOM Hold Bit is not set to be held, it will be
turned OFF the next time the PC is started and I/O
status will be cleared.
This setting is required for restart continuation.
Setting is effective from next time power is turned on
to the PC.
CYCLE TIME Variable Variable or minimum Determines whether or not a minimum cycle time is to
Minimum setting: 1 to be used for user program execution. If a minimum time
9,999 ms is set, the PC will wait until the minimum time has
expired before starting program execution again. The
entire program will be executed even if the minimum
time is exceeded.
This setting can be used to reduce variations in I1/O
response times.
An error of approximately 3 to 4 ms, plus the execution
time required for any interrupt programs, can occur.
Setting is effective immediately.
Detect Long 120 ms 0 to 99,000 ms If the set time is exceeded, the Cycle Time Exceeded
Cycles Flag will turn ON and a fatal error will occur.
An error of approximately 3 to 4 ms can occur.
Setting is effective immediately.
RS-232C SETUP
METHOD Host link Host Link, RS-232C with | Determines the settings used when a device, such as
no protocol, 1:1 link a Programmable Terminal or bar code reader is
master, or 1:1 link slave connected to the RS-232C port.
NODE NO 0 00 to 31 Do not set the node number to a number already used
by another Unit connected in the same
DELAY 0 010 9,999 ms communications system (e.g., Host Link System). All
START CODE | None 00 to FF other settings must match those of the device being
END CODE None 00 to FF or CR, LF communicated with. _
DATA LINK None LR 00 to LR 63, LR 00 to Settings are effective immediately.
AREAS LR 31,0or LROOto LR 15
BAUD RATE 9,600 bps 1200, 2400, 4800, 9600,
or 19200
STOP BITS 2 bits 1 or 2 bits
PARITY Even parity Even, odd, or none
DATA LENGTH | 7 bits 7 or 8 bits

PC SETUP, HEX
INPUT

Used to set the above parameters on a binary display.

59



TC Area Section 3-8

3-7 HR (Holding Relay) Area

The HR area is used to store/manipulate various kinds of data and can be ac-
cessed either by word or by bit. Word addresses range from HR 00 through HR
99; bit addresses, from HR 0000 through HR 9915. HR bits can be used in any
order required and can be programmed as often as required.

The HR area retains status when the system operating mode is changed, when
power is interrupted, or when PC operation is stopped.

HR area bits and words can be used to preserve data whenever PC operation is
stopped. HR bits also have various special applications, such as creating latch-
ing relays with the Keep instruction and forming self-holding outputs. These are
discussed in Section 4 Writing and Inputting the Program and Section 5 Instruc-
tion Set.

Note The required number of words is allocated between HR 00 and HR 42 for routing
tables and to monitor timers when using SYSMAC NET Systems.

3-8 TC (Timer/Counter) Area

The TC area is used to create and program timers and counters and holds the
Completion flags, set values (SV), and present values (PV) for all timers and
counters. All of these are accessed through TC numbers ranging from TC 000
through TC 511. Each TC number is defined as either a timer or counter using
one of the following instructions: TIM, TIMH, CNT, CNTR(12), and TTIM(87). No
prefix is required when using a TC number in a timer or counter instruction.

Once a TC number has been defined using one of these instructions, it cannot
be redefined elsewhere in the program either using the same or a different in-
struction. If the same TC number is defined in more than one of these instruc-
tions or in the same instruction twice, an error will be generated during the pro-
gram check. There are no restrictions on the order in which TC numbers can be
used.

Once defined, a TC number can be designated as an operand in one or more of
certain set of instructions other than those listed above. When defined as a timer,
a TC number designated as an operand takes a TIM prefix. The TIM prefix is
used regardless of the timer instruction that was used to define the timer. Once
defined as a counter, the TC number designated as an operand takes a CNT
prefix. The CNT is also used regardless of the counter instruction that was used
to define the counter.

TC numbers can be designated for operands that require bit data or for operands
that require word data. When designated as an operand that requires bit data,
the TC number accesses the completion flag of the timer or counter. When des-
ignated as an operand that requires word data, the TC number accesses a mem-
ory location that holds the PV of the timer or counter.

TC numbers are also used to access the SV of timers and counters from a Pro-
gramming Device. The procedures for doing so using the Programming Console
are provided in 7-1 Monitoring Operation and Modifying Data.

The TC area retains the SVs of both timers and counters during power interrup-
tions. The PVs of timers are reset when PC operation is begun and when reset in
interlocked program sections. Refer to 5-10 INTERLOCK and INTERLOCK
CLEAR —1L(02) and ILC(03) for details on timer and counter operation in inter-
locked program sections. The PVs of counters are not reset at these times.

Note that in programming “TIM 000" is used to designate three things: the Timer
instruction defined with TC number 000, the completion flag for this timer, and
the PV of this timer. The meaning in context should be clear, i.e., the first is al-
ways an instruction, the second is always a bit, and the third is always a word.
The same is true of all other TC numbers prefixed with TIM or CNT.

60



TR Area Section 3-11

3-9 LR (Link Relay) Area

The LR area is used as a common data area to transfer information between
PCs. This data transfer is achieved through a PC Link System.

Certain words will be allocated as the write words of each PC. These words are
written by the PC and automatically transferred to the same LR words in the
other PCs in the System. The write words of the other PCs are transferred in as
read words so that each PC can access the data written by the other PCs in the
PC Link System. Only the write words allocated to the particular PC will be avail-
able for writing; all other words may be read only. Refer to the PC Link System
Manual for details.

The LR area is accessible either by bit or by word. LR area word addresses
range from LR 00 to LR 63; LR area bit addresses, from LR 0000 to LR 6315. Any
part of the LR area that is not used by the PC Link System can be used as work
words or work bits.

LR area data is not retained when the power is interrupted, when the PC is
changed to PROGRAM mode, or when it is reset in an interlocked program sec-
tion. Refer to 5-10 INTERLOCK and INTERLOCK CLEAR - IL(02) and ILC(03)
for details on interlocks.

3-10 UM Area
With the C200HS, the UM area is defined as the part of memory that can be con-
verted and transferred to ROM. The UM area is 16 KW of RAM which is backed
up by the CPU'’s battery. Some of the UM area is reserved to system use, so
15,488 words can be used by the operator. The structure of the C200HS DM and
UM areas is shown in the following illustration.
DM 0000 DM 6144 DM 6600 DM 6655 DM 7000 DM 9999
g 1 ! !
| : PC Setup | Reserved Expansion I/O Comment | Ladder program
' | DM Area Area
g 1 } }
'+ Special I/O Unit Default Area - Variable size > !
: DM 1000 to DM 1999 : Fixed DM Area ] Ladder Program Area (15.1 KW) !
! Normal DM Area o UM Area (16.0 KW) o

Note Allocating UM area for an expansion DM and/or I/O Comment Area will reduce
program capacity. Check program capacity requirements before allocating the
UM area.

3-11 TR (Temporary Relay) Area

The TR area provides eight bits that are used only with the LD and OUT instruc-
tions to enable certain types of branching ladder diagram programming. The use
of TR bits is described in Section 4 Writing and Inputting the Program.

TR addresses range from TR 0 though TR 7. Each of these bits can be used as
many times as required and in any order required as long as the same LR bit is
not used twice in the same instruction block.

61



SECTION 4
Writing and I nputting the Program

This section explains the basic steps and concepts involved in writing a basic ladder diagram program, inputting the program
into memory, and executing it. It introduces the instructions that are used to build the basic structure of the ladder diagram and
control its execution. The entire set of instructions used in programming is described in Section 5 Instruction Set.

4-1 BasSiCProCEIUrE . ... ...t 64
4-2  Instruction Terminology . . . .. oot 64
4-3  Program CapaCity . . . ...ttt e 65
4-4 BasicLadder Diagrams . . ... ...t 65
A-4-1  BaSiC TS ittt e 66
4-4-2  MNemMONIC COOE . . . ..o ottt 66
4-4-3  Ladder INSrUCHIONS . ... oottt e e 67
4-4-4  OUTPUT and OUTPUT NOT .. ...ttt e i 70
4-4-5 TheEND INSIrUCtiON . ... ..ottt 70
4-4-6  LogicBIOCK INSLIUCHIONS ... oottt e et e e e 71
4-4-7  Coding Multiple Right-hand Instructions . ............. ... ... ... ... ... .. 78
4-5 TheProgramming Console . ......... .. i e 78
4-5-1 TheKeyboard ... ... . 78
4-52  PCMOOES . . . oo ettt et e e e e 80
4-5-3 TheDisplay Message SWitCh . . ... ..ot 80
4-6  Preparation for Operation . .. ....out it e 80
4-6-1 EnteringthePassword . ....... ...t 81
4-B-2  BUZZEr .. 81
4-6-3  Clearing MemoOry . ...t e 82
4-6-4 Registeringthel/OTable . ... .. 84
4-6-5 Clearing Error MEeSSa0ES . . . o oottt it e et 85
4-6-6 Verifyingthel/OTable . ... ... .. 86
4-6-7 Readingthel/OTable . ... ... . 87
4-6-8 Clearingthel/OTable ... ..o e 89
4-6-9 SYSMAC NET Link Table Transfer (CPU3L/33-EOnly) .................. 90
4-7 Inputting, Modifying, and CheckingtheProgram .......... ... .. ... ... . ... oot 92
4-7-1  Setting and Reading from Program Memory Address ..................... 92
4-7-2  Enteringand Editing Programs . ........... . 93
4-7-3  CheckingtheProgram . . ....... ... .. e 96
4-7-4 DisplayingtheCycleTime . ... ... e 98
4-7-5  Program SearChes . ... ..ot 99
4-7-6  Inserting and Deleting Instructions . ........... . i 100
4-7-7 Branching Instruction Lines . ....... ...t 103
A-T-8  JUMPDS . oottt et e e e e 107
4-8 Controlling Bit StatUS . . .. .o vttt e 108
4-8-1 DIFFERENTIATE UPand DIFFERENTIATEDOWN .................... 109
4-8-2  KEEP .. 109
4-8-3 Sdf-maintaining Bits(Seal) ....... .. 109
4-9 Work Bits(Internal Relays) . . ... e 110
4-10 Programming PreCaltionS .. . ... ...ttt 112
4-11 Program EXECULION . . . ..ttt et e e e e e e e e e e e 114

63



I nstruction Terminology

Section 4-2

4-1 Basic Procedure

1,2 3.

There are several basic steps involved in writing a program. Sheets that can be
copied to aid in programming are provided in Appendix F Word Assignment Re-
cording Sheets and Appendix G Program Coding Sheet.

1. Obtain a list of all I/O devices and the I/O points that have been assigned to
them and prepare a table that shows the 1/O bit allocated to each I/O device.

2. If the PC has any Units that are allocated words in data areas other than the
IR area or are allocated IR words in which the function of each bit is specified
by the Unit, prepare similar tables to show what words are used for which
Units and what function is served by each bit within the words. These Units
include Special 1/0 Units and Link Units.

3. Determine what words are available for work bits and prepare a table in
which you can allocate these as you use them.

4. Also prepare tables of TC numbers and jump numbers so that you can allo-
cate these as you use them. Remember, the function of a TC number can be
defined only once within the program; jump numbers 01 through 99 can be
used only once each. (TC number are described in 5-14 Timer and Counter
Instructions; jump numbers are described later in this section.)

5. Draw the ladder diagram.

6. Input the program into the CPU. When using the Programming Console, this
will involve converting the program to mnemonic form.

7. Check the program for syntax errors and correct these.

. Execute the program to check for execution errors and correct these.

9. After the entire Control System has been installed and is ready for use, exe-
cute the program and fine tune it if required.

10. Make a backup copy of the program.

The basics of ladder-diagram programming and conversion to mnemonic code
are described in 4-4 Basic Ladder Diagrams. Preparing for and inputting the pro-
gram via the Programming Console are described in 4-5 The Programming
Console through 4-7 Inputting, Modifying, and Checking the Program. The rest
of Section 4 covers more advanced programming, programming precautions,
and program execution. All special application instructions are covered in Sec-
tion 5 Instruction Set. Debugging is described in Section 7 Program Monitoring
and Execution. Section 10 Troubleshooting also provides information required
for debugging.

(o]

4-2 Instruction Terminology

There are basically two types of instructions used in ladder-diagram program-
ming: instructions that correspond to the conditions on the ladder diagram and
are used in instruction form only when converting a program to mnemonic code
and instructions that are used on the right side of the ladder diagram and are
executed according to the conditions on the instruction lines leading to them.

Most instructions have at least one or more operands associated with them. Op-
erands indicate or provide the data on which an instruction is to be performed.
These are sometimes input as the actual numeric values, but are usually the ad-
dresses of data area words or bits that contain the data to be used. For instance,
a MOVE instruction that has IR 000 designated as the source operand will move
the contents of IR 000 to some other location. The other location is also desig-
nated as an operand. A bit whose address is designated as an operand is called
an operand bit; a word whose address is designated as an operand is called an
operand word. If the actual value is entered as a constant, it is preceded by # to
indicate that it is not an address.

Other terms used in describing instructions are introduced in Section 5 Instruc-
tion Set.



Basic Ladder Diag_;rams

Section 4-4

4-3 Program Capacity

The maximum user program size varies with the amount of UM allocated to ex-
pansion DM and the I/O Comment Area. Approximately 10.1 KW are available
for the ladder program when 3 KW are allocated to expansion DM and 2 KW are
allocated to I/O comments as shown below. Refer to the 3-10 UM Area for further
information on UM allocation.

DM DM DM DM DM
6144 6600 6655 7000 9999
! !
PC Reserved|  Expansion I/O Comment | Ladder program
Setup DM Area Area
! !
! Variable size !
‘ Fixed DM Area j Ladder Program Area (15.1 KW) ‘

4-4 Basic Ladder Diagrams

Note

A ladder diagram consists of one line running down the left side with lines
branching off to the right. The line on the left is called the bus bar; the branching
lines, instruction lines or rungs. Along the instruction lines are placed conditions
that lead to other instructions on the right side. The logical combinations of these
conditions determine when and how the instructions at the right are executed. A
ladder diagram is shown below.

00000 06315 25208 HR 0109 LR 2503 24400 24401
L 1L )4 LK 1L i
I 11 1 v 4 11 : Instruction I
00001 00501 00502 00503 00504
1L )4 )4 )4 )4
LAl Al Al Al Al
00100 00002 00003 HR 0050 00007 TIM 001 LR 0515 00403 00405
—| | I Instruction
| LAl
00010 21001 21002
1L )4 )4
LAl Al Al
00011 21005 21007
1L )4 )4
LAl Al Al

As shown in the diagram above, instruction lines can branch apart and they can
join back together. The vertical pairs of lines are called conditions. Conditions
without diagonal lines through them are called normally open conditions and
correspond to a LOAD, AND, or OR instruction. The conditions with diagonal
lines through them are called normally closed conditions and correspond to a
LOAD NOT, AND NOT, or OR NOT instruction. The number above each condi-
tion indicates the operand bit for the instruction. It is the status of the bit asso-
ciated with each condition that determines the execution condition for following
instructions. The way the operation of each of the instructions corresponds to a
condition is described below. Before we consider these, however, there are
some basic terms that must be explained.

When displaying ladder diagrams with LSS, a second bus bar will be shown on
the right side of the ladder diagram and will be connected to all instructions on
the right side. This does not change the ladder-diagram program in any func-
tional sense. No conditions can be placed between the instructions on the right
side and the right bus bar, i.e., all instructions on the right must be connected
directly to the right bus bar. Refer to the LSS Operation Manual for details.

65



Basic Ladder Diag_;rams

Section 4-4

4-4-1 Basic Terms

Normally Open and
Normally Closed
Conditions

Execution Conditions

Operand Bits

Logic Blocks

Each condition in a ladder diagram is either ON or OFF depending on the status
of the operand bit that has been assigned to it. A normally open condition is ON if
the operand bit is ON; OFF if the operand bit is OFF. A normally closed condition
is ON if the operand bit is OFF; OFF if the operand bit is ON. Generally speaking,
you use a normally open condition when you want something to happen when a
bit is ON, and a normally closed condition when you want something to happen
when a bit is OFF.
00000
]l
1

Normally open
condition

00000
)4 i
v di Instruction

Instruction is executed
when IR bit 00000 is ON.

Instruction

Instruction is executed
when IR bit 00000 is OFF.

0

Normally closed
condition

In ladder diagram programming, the logical combination of ON and OFF condi-
tions before an instruction determines the compound condition under which the
instruction is executed. This condition, which is either ON or OFF, is called the
execution condition for the instruction. All instructions other than LOAD instruc-
tions have execution conditions.

The operands designated for any of the ladder instructions can be any bit in the
IR, SR, HR, AR, LR, or TC areas. This means that the conditions in a ladder dia-
gram can be determined by /O bits, flags, work bits, timers/counters, etc. LOAD
and OUTPUT instructions can also use TR area bits, but they do so only in spe-
cial applications. Refer to 4-7-7 Branching Instruction Lines for details.

The way that conditions correspond to what instructions is determined by the
relationship between the conditions within the instruction lines that connect
them. Any group of conditions that go together to create a logic result is called a
logic block. Although ladder diagrams can be written without actually analyzing
individual logic blocks, understanding logic blocks is hecessary for efficient pro-
gramming and is essential when programs are to be input in mnemonic code.

4-4-2 Mnemonic Code

Program Memory Structure

66

The ladder diagram cannot be directly input into the PC via a Programming Con-
sole; LSS is required. To input from a Programming Console, it is necessary to
convert the ladder diagram to mnemonic code. The mnemonic code provides
exactly the same information as the ladder diagram, but in a form that can be
typed directly into the PC. Actually you can program directly in mnemonic code,
although it in not recommended for beginners or for complex programs. Also,
regardless of the Programming Device used, the program is stored in memory in
mnemonic form, making it important to understand mnemonic code.

Because of the importance of the Programming Console as a peripheral device
and because of the importance of mnemonic code in complete understanding of
a program, we will introduce and describe the mnemonic code along with the
ladder diagram. Remember, you will not need to use the mnemonic code if you
are inputting via LSS (although you can use it with LSS too, if you prefer).

The program is input into addresses in Program Memory. Addresses in Program
Memory are slightly different to those in other memory areas because each ad-
dress does not necessarily hold the same amount of data. Rather, each address
holds one instruction and all of the definers and operands (described in more
detail later) required for that instruction. Because some instructions require no
operands, while others require up to three operands, Program Memory address-
es can be from one to four words long.



Basic Ladder Diag_;rams Section 4-4

Program Memory addresses start at 00000 and run until the capacity of Program
Memory has been exhausted. The first word at each address defines the instruc-
tion. Any definers used by the instruction are also contained in the first word.
Also, if an instruction requires only a single bit operand (with no definer), the bit
operand is also programmed on the same line as the instruction. The rest of the
words required by an instruction contain the operands that specify what data is
to be used. When converting to mnemonic code, all but ladder diagram instruc-
tions are written in the same form, one word to a line, just as they appear in the
ladder diagram symbols. An example of mnemonic code is shown below. The
instructions used in it are described later in the manual.

Address | Instruction Operands
00000 LD HR 0001
00001 AND 00001
00002 OR 00002
00003 LD NOT 00100
00004 AND 00101
00005 AND LD 00102
00006 MOV(21)

000
DM 0000
00007 CMP(20)
DM 0000
HR 00
00008 LD 25505
00009 ouT 00501
00010 MOV(21)
DM 0000
DM 0500
00011 DIFU(13) 00502
00012 AND 00005
00013 ouT 00503

The address and instruction columns of the mnemonic code table are filled in for
the instruction word only. For all other lines, the left two columns are left blank. If
the instruction requires no definer or bit operand, the operand column is left
blank for first line. It is a good idea to cross through any blank data column
spaces (for all instruction words that do not require data) so that the data column
can be quickly scanned to see if any addresses have been left out.

When programming, addresses are automatically displayed and do not have to
be input unless for some reason a different location is desired for the instruction.
When converting to mnemonic code, it is best to start at Program Memory ad-
dress 00000 unless there is a specific reason for starting elsewhere.

4-4-3 Ladder Instructions

The ladder instructions are those instructions that correspond to the conditions
on the ladder diagram. Ladder instructions, either independently or in combina-
tion with the logic block instructions described next, form the execution condi-
tions upon which the execution of all other instructions are based.

67



Basic Ladder Diag_;rams

Section 4-4

LOAD and LOAD NOT

AND and AND NOT

68

The first condition that starts any logic block within a ladder diagram corre-
sponds to a LOAD or LOAD NOT instruction. Each of these instruction requires
one line of mnemonic code. “Instruction” is used as a dummy instruction in the
following examples and could be any of the right-hand instructions described lat-
er in this manual.

00000
11 -
1 . Address | Instruction Operands
A LOAD instruction.
00000 LD 00000
00000 00001 Instruction
I --- [Too0002 | LDNOT 00000
A LOAD NOT instruction. 00003 Instruction

When this is the only condition on the instruction line, the execution condition for
the instruction at the right is ON when the condition is ON. For the LOAD instruc-
tion (i.e., a normally open condition), the execution condition will be ON when IR
00000 is ON; for the LOAD NOT instruction (i.e., a normally closed condition), it
will be ON when 00000 is OFF.

When two or more conditions lie in series on the same instruction line, the first
one corresponds to a LOAD or LOAD NOT instruction; and the rest of the condi-
tions correspond to AND or AND NOT instructions. The following example
shows three conditions which correspond in order from the left to a LOAD, an
AND NOT, and an AND instruction. Again, each of these instructions requires
one line of mnemonic code.

00000 00100 LR 0000

1L )4 ]l :
1T M 11 : Instrucuonl

Address | Instruction Operands
00000 LD 00000
00001 AND NOT 00100
00002 AND LR 0000
00003 Instruction

The instruction will have an ON execution condition only when all three condi-
tions are ON, i.e., when IR 00000 is ON, IR 00100 is OFF, and LR 0000 is ON.

AND instructions in series can be considered individually, with each taking the
logical AND of the execution condition (i.e., the total of all conditions up to that
point) and the status of the AND instruction’s operand bit. If both of these are ON,
an ON execution condition will be produced for the next instruction. If either is
OFF, the result will also be OFF. The execution condition for the first AND in-
struction in a series is the first condition on the instruction line.

Each AND NOT instruction in series takes the logical AND of its execution condi-
tion and the inverse of its operand bit.



Basic Ladder Diag_;rams

Section 4-4

OR and OR NOT

Combining AND and OR
Instructions

When two or more conditions lie on separate instruction lines which run in paral-
lel and then join together, the first condition corresponds to a LOAD or LOAD
NOT instruction; the other conditions correspond to OR or OR NOT instructions.
The following example shows three conditions which correspond (in order from
the top) to a LOAD NOT, an OR NOT, and an OR instruction. Again, each of
these instructions requires one line of mnemonic code.

00000
}II/ : Instructionl
00100
)4
Al
LR 0000
1L
LAl
Address | Instruction Operands
00000 LD 00000
00001 OR NOT 00100
00002 OR LR 0000
00003 Instruction

The instruction will have an ON execution condition when any one of the three
conditions is ON, i.e., when IR 00000 is OFF, when IR 00100 is OFF, or when LR
0000 is ON.

OR and OR NOT instructions can be considered individually, each taking the
logical OR between its execution condition and the status of the OR instruction’s
operand hit. If either one of these were ON, an ON execution condition will be
produced for the next instruction.

When AND and OR instructions are combined in more complicated diagrams,
they can sometimes be considered individually, with each instruction performing
a logic operation on the execution condition and the status of the operand bit.
The following is one example. Study this example until you are convinced that
the mnemonic code follows the same logic flow as the ladder diagram.

00000 00001 00002 00003

|__| : }II/ : Instruction I

00200

Address [ Instruction Operands
00000 LD 00000
00001 AND 00001
00002 OR 00200
00003 AND 00002
00004 AND NOT 00003
00005 Instruction

Here, an AND is taken between the status of IR 00000 and that of IR 00001 to
determine the execution condition for an OR with the status of IR 00200. The
result of this operation determines the execution condition for an AND with the
status of IR 00002, which in turn determines the execution condition for an AND
with the inverse (i.e., and AND NOT) of the status of IR 00003.

In more complicated diagrams, however, it is necessary to consider logic blocks
before an execution condition can be determined for the final instruction, and
that’'s where AND LOAD and OR LOAD instructions are used. Before we consid-
er more complicated diagrams, however, we’ll look at the instructions required to
complete a simple “input-output” program.

69



Basic Ladder Diag_;rams

Section 4-4

4-4-4 OUTPUT and OUTPUT NOT

00000
]l

The simplest way to output the results of combining execution conditions is to
output it directly with the OUTPUT and OUTPUT NOT. These instructions are
used to control the status of the designated operand bit according to the execu-
tion condition. With the OUTPUT instruction, the operand bit will be turned ON
as long as the execution condition is ON and will be turned OFF as long as the
execution condition is OFF. With the OUTPUT NOT instruction, the operand bit
will be turned ON as long as the execution condition is OFF and turned OFF as
long as the execution condition is ON. These appear as shown below. In mne-
monic code, each of these instructions requires one line.

00001

Address | Instruction Operands
00200
00000 LD 00000
00001 ouT 00200
00201 Address | Instruction Operands
00000 LD 00001
00001 OUT NOT 00201

In the above examples, IR 00200 will be ON as long as IR 00000 is ON and IR
00201 will be OFF as long as IR 00001 is ON. Here, IR 00000 and IR 00001 will
be input bits and IR 00200 and IR 00201 output bits assigned to the Units con-
trolled by the PC, i.e., the signals coming in through the input points assigned IR
00000 and IR 00001 are controlling the output points assigned IR 00200 and IR
00201, respectively.

The length of time that a bit is ON or OFF can be controlled by combining the
OUTPUT or OUTPUT NOT instruction with TIMER instructions. Refer to Exam-
ples under 5-14-1 TIMER — TIM for details.

4-4-5 The END Instruction

70

The last instruction required to complete a simple program is the END instruc-
tion. When the CPU cycles the program, it executes all instruction up to the first
END instruction before returning to the beginning of the program and beginning
execution again. Although an END instruction can be placed at any point in a
program, which is sometimes done when debugging, no instructions past the
first END instruction will be executed until it is removed. The number following
the END instruction in the mnemonic code is its function code, which is used
when inputted most instruction into the PC. These are described later. The END
instruction requires no operands and no conditions can be placed on the same
instruction line with it.

' 00000 00001
: : }f : Instruction I
@l Program execution
ends here.
Address | Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 Instruction

00003 END(01)

If there is no END instruction anywhere in the program, the program will not be
executed at all.



Basic Ladder Diag_;rams

Section 4-4

Now you have all of the instructions required to write simple input-output pro-
grams. Before we finish with ladder diagram basic and go onto inputting the pro-
gram into the PC, let’s look at logic block instruction (AND LOAD and OR LOAD),
which are sometimes necessary even with simple diagrams.

4-4-6 Logic Block Instructions

AND LOAD

Logic block instructions do not correspond to specific conditions on the ladder
diagram; rather, they describe relationships between logic blocks. The AND
LOAD instruction logically ANDs the execution conditions produced by two logic
blocks. The OR LOAD instruction logically ORs the execution conditions pro-
duced by two logic blocks.

Although simple in appearance, the diagram below requires an AND LOAD in-
struction.

..... . e m s
' 00000 ' 00002
: : : : : : + : Instruction I
' [
' 00001 ! ' 00003 !
M A 'y
! LAl ' voA '
[, Lomomom = -
Address | Instruction Operands
00000 LD 00000
00001 OR 00001
00002 LD 00002
00003 OR NOT 00003
00004 AND LD -

The two logic blocks are indicated by dotted lines. Studying this example shows
that an ON execution condition will be produced when: either of the conditions in
the left logic block is ON (i.e., when either IR 00000 or IR 00001 is ON), and
when either of the conditions in the right logic block is ON (i.e., when either IR
00002 is ON or IR 00003 is OFF).

The above ladder diagram cannot, however, be converted to mnemonic code
using AND and OR instructions alone. If an AND between IR 00002 and the re-
sults of an OR between IR 00000 and IR 00001 is attempted, the OR NOT be-
tween IR 00002 and IR 00003 is lost and the OR NOT ends up being an OR NOT
between just IR 00003 and the result of an AND between IR 00002 and the first
OR. What we need is a way to do the OR (NOT)’s independently and then com-
bine the results.

To do this, we can use the LOAD or LOAD NOT instruction in the middle of an
instruction line. When LOAD or LOAD NOT is executed in this way, the current
execution condition is saved in a special buffer and the logic process is re-
started. To combine the results of the current execution condition with that of a
previous “unused” execution condition, an AND LOAD or an OR LOAD instruc-
tion is used. Here “LOAD” refers to loading the last unused execution condition.
An unused execution condition is produced by using the LOAD or LOAD NOT
instruction for any but the first condition on an instruction line.

71



Basic Ladder Diag_;rams

Section 4-4

OR LOAD

Logic Block Instructions in
Series

72

Analyzing the above ladder diagram in terms of mnemonic instructions, the con-
dition for IR 00000 is a LOAD instruction and the condition below it is an OR in-
struction between the status of IR 00000 and that of IR 00001. The condition at
IR 00002 is another LOAD instruction and the condition below is an OR NOT
instruction, i.e., an OR between the status of IR 00002 and the inverse of the
status of IR 00003. To arrive at the execution condition for the instruction at the
right, the logical AND of the execution conditions resulting from these two blocks
will have to be taken. AND LOAD does this. The mnemonic code for the ladder
diagram is shown below. The AND LOAD instruction requires no operands of its
own, because it operates on previously determined execution conditions. Here
too, dashes are used to indicate that no operands needs designated or input.

The following diagram requires an OR LOAD instruction between the top logic
block and the bottom logic block. An ON execution condition will be produced for
the instruction at the right either when IR 00000 is ON and IR 00001 is OFF, or
when IR 00002 and IR 00003 are both ON. The operation of the OR LOAD in-
struction and its mnemonic code is exactly the same as that for an AND LOAD
instruction, except that the current execution condition is ORed with the last un-
used execution condition.

o]
¢ o000z ooz
11 11
LY IR .
Address | Instruction Operands

00000 LD 00000
00001 | AND NOT 00001
00002 LD 00002
00003 | AND 00003
00004 | ORLD

Naturally, some diagrams will require both AND LOAD and OR LOAD instruc-
tions.

To code diagrams with logic block instructions in series, the diagram must be
divided into logic blocks. Each block is coded using a LOAD instruction to code
the first condition, and then AND LOAD or OR LOAD is used to logically combine
the blocks. With both AND LOAD and OR LOAD there are two ways to achieve
this. One is to code the logic block instruction after the first two blocks and then
after each additional block. The other is to code all of the blocks to be combined,
starting each block with LOAD or LOAD NOT, and then to code the logic block
instructions which combine them. In this case, the instructions for the last pair of
blocks should be combined first, and then each preceding block should be com-
bined, working progressively back to the first block. Although either of these
methods will produce exactly the same result, the second method, that of coding
all logic block instructions together, can be used only if eight or fewer blocks are
being combined, i.e., if seven or fewer logic block instructions are required.



Basic Ladder Diag_;rams

Section 4-4

The following diagram requires AND LOAD to be converted to mnemonic code
because three pairs of parallel conditions lie in series. The two options for coding
the programs are also shown.

00000 00002 00004
| (=)
00001 00003 00005
—iF 1 1
Address | Instruction Operands Address [ Instruction Operands
00000 LD 00000 00000 LD 00000
00001 OR NOT 00001 00001 OR NOT 00001
00002 LD NOT 00002 00002 LD NOT 00002
00003 OR 00003 00003 OR 00003
00004 AND LD — 00004 LD 00004
00005 LD 00004 00005 OR 00005
00006 OR 00005 00006 AND LD —
00007 AND LD — 00007 AND LD —
00008 OuUT 00500 00008 ouT 00500
Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with the
first method.
The following diagram requires OR LOAD instructions to be converted to mne-
monic code because three pairs of series conditions lie in parallel to each other.
00000 00001
Reriahey (=)
00002 00003
The first of each pair of conditions is converted to LOAD with the assigned bit
operand and then ANDed with the other condition. The first two blocks can be
coded first, followed by OR LOAD, the last block, and another OR LOAD; or the
three blocks can be coded first followed by two OR LOADs. The mnemonic
codes for both methods are shown below.
Address | Instruction Operands Address | Instruction Operands
00000 | LD 00000 00000 | LD 00000
00001 | AND NOT 00001 00001 | AND NOT 00001
00002 | LD NOT 00002 00002 | LD NOT 00002
00003 | AND NOT 00003 00003 | AND NOT 00003
00004 | ORLD — 00004 | LD 00004
00005 | LD 00004 00005 | AND 00005
00006 | AND 00005 00006 | ORLD —
00007 | ORLD — 00007 | ORLD —
00008 | ouT 00501 00008 | OUT 00501

Combining AND LOAD and

OR LOAD

Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with the
first method.

Both of the coding methods described above can also be used when using AND
LOAD and OR LOAD, as long as the number of blocks being combined does not
exceed eight.

73



Basic Ladder Diag_;rams

Section 4-4

|‘_Block_.|
bl Address | Instruction Operands
00000 00001 00002 00003 00000 LD NOT 00000
i {3 @ 00001 | AND 00001
00004 00202 00002 LD 00002
| : 00003 AND NOT 00003
Block 00004 LD NOT 00004
|<— b2 00005 | AND 00202
00006 OR LD —
| Block | Block 00007 AND LD —
@ b 00008 ouT 00502

The following diagram contains only two logic blocks as shown. It is not neces-
sary to further separate block b components, because it can be coded directly
using only AND and OR.

00000 00001 00002 00003
HV '|_|| 00501
| | |

00201
11
A

00004

1l
I

Block Block
a b

Address | Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 LD 00002
00003 AND 00003
00004 OR 00201
00005 OR 00004
00006 AND LD —
00007 ouT 00501

Although the following diagram is similar to the one above, block b in the diagram
below cannot be coded without separating it into two blocks combined with OR
LOAD. In this example, the three blocks have been coded first and then OR
LOAD has been used to combine the last two blocks, followed by AND LOAD to
combine the execution condition produced by the OR LOAD with the execution
condition of block a.

When coding the logic block instructions together at the end of the logic blocks
they are combining, they must, as shown below, be coded in reverse order, i.e.,
the logic block instruction for the last two blocks is coded first, followed by the
one to combine the execution condition resulting from the first logic block in-
struction and the execution condition of the logic block third from the end, and on
back to the first logic block that is being combined.

Complicated Diagrams

74

When determining what logic block instructions will be required to code a dia-
gram, it is sometimes necessary to break the diagram into large blocks and then
continue breaking the large blocks down until logic blocks that can be coded
without logic block instructions have been formed. These blocks are then coded,
combining the small blocks first, and then combining the larger blocks. Either
AND LOAD or OR LOAD is used to combine the blocks, i.e., AND LOAD or OR
LOAD always combines the last two execution conditions that existed, regard-
less of whether the execution conditions resulted from a single condition, from
logic blocks, or from previous logic block instructions.



Basic Ladder Diag_;rams

Section 4-4

00000 00001

When working with complicated diagrams, blocks will ultimately be coded start-
ing at the top left and moving down before moving across. This will generally
mean that, when there might be a choice, OR LOAD will be coded before AND
LOAD.

The following diagram must be broken down into two blocks and each of these
then broken into two blocks before it can be coded. As shown below, blocks a
and b require an AND LOAD. Before AND LOAD can be used, however, OR
LOAD must be used to combine the top and bottom blocks on both sides, i.e., to
combine al and a2; b1 and b2.

—y

00002 00003
I

|<—B':1°k—>| |<—B'§fk Address | Instruction Operands
00004 00005 00000 LD 00000
| L
| |—| I 00503 00001 AND NOT 00001
00002 LD NOT 00002
00006 00007 00003 | AND 00003
! ! ! Blocks al and a2 00004 ORLD —
Blozck BL?ZCK 00005 LD 00004
| 2 | | | 00006 | AND 00005
00007 LD 00006
Block Block
|‘— a —’|‘— b —’l 00008 AND 00007
Blocks b1 and b2 00009 OR LD —
Blocks a and b 00010 AND LD —
00011 ouT 00503

The following type of diagram can be coded easily if each block is coded in order:
first top to bottom and then left to right. In the following diagram, blocks a and b
would be combined using AND LOAD as shown above, and then block ¢ would be
coded and a second AND LOAD would be used to combined it with the execution
condition from the first AND LOAD. Then block d would be coded, a third AND
LOAD would be used to combine the execution condition from block d with the
execution condition from the second AND LOAD, and so on through to block n.

|—|I|—||——||—| ----- E|—|
A i H —

Block Block Block Block
a b c— """ " n

75



Basic Ladder Diagrams Section 4-4

The following diagram requires an OR LOAD followed by an AND LOAD to code
the top of the three blocks, and then two more OR LOADSs to complete the mne-

monic code.

00000 00001 O Address | Instruction Operands
: : : : LR 0000
00000 | LD 00000
opgo2 00093 00001 | LD 00001
00004 00005 00002 | LD 00002
iy I} 00003 | AND NOT 00003
00006 00007 00004 ORLD —
¥ I} 00005 | AND LD —
00006 | LD NOT 00004
00007 | AND 00005
00008 | ORLD —
00009 | LD NOT 00006
00010 | AND 00007
00011 | ORLD —
00012 | oUT LR 0000
Although the program will execute as written, this diagram could be drawn as
shown below to eliminate the need for the first OR LOAD and the AND LOAD,
simplifying the program and saving memory space.
00002 00003 00000 Address | Instruction Operands
— | HF i} @ 00000 | LD 00002
00001 00001 AND NOT 00003
— 00002 | OR 00001
oc|)c])94 0??05 00003 AND 00000
Pl 10 00004 | LD NOT 00004
00006 00007 00005 | AND 00005
gl 1 00006 | ORLD —
00007 | LD NOT 00006
00008 | AND 00007
00009 | ORLD —
00010 | OUT LR 0000

The following diagram requires five blocks, which here are coded in order before
using OR LOAD and AND LOAD to combine them starting from the last two
blocks and working backward. The OR LOAD at program address 00008 com-
bines blocks blocks d and e, the following AND LOAD combines the resulting

execution condition with that of block c, etc.

76

00000 00001 00002 Address [ Instruction Operands
1} {—I @ 00000 | LD 00000
Block b 00001 LD 00001
Block a 00002 AND 00002
00003 LD 00003
|‘_ Blocke _.l |‘_ Blockd _.l 00004 AND 00004
00003 00004 00005 00005 | LD 00005
" " " 00006 | LD 00006
00006 00007 00007 AND 00007
Blocks d and e 00008 OR LD —
Block ¢ with result of above 00009 AND LD —
|‘— Block e——l Block b with result of above 00010 OR LD —
Block a with result of above 00011 AND LD —
00012 ouT LR 0000




Basic Ladder Diagrams

Section 4-4

Again, this diagram can be redrawn as follows to simplify program structure and
coding and to save memory space.

Block a

00000 00001
———

LD 00000
AND 00001

| I Address | Instruction Operands
OR LD 00000 LD 00000

00006 00007 00003 00004 00000 Address [ Instruction Operands
— | {| {| {| {| @ 00000 | LD 00006
00005 00001 AND 00007
— 00002 | OR 00005
0??01 0(|)c|)02 00003 AND 00003
11 11 00004 | AND 00004
00005 | LD 00001
00006 | AND 00002
00007 | ORLD —
00008 | AND 00000
00009 | ouT LR 0000

The next and final example may at first appear very complicated but can be
coded using only two logic block instructions. The diagram appears as follows:

Block a

r-=-=-=-- = ' '
4, 00000 00001 , 00002 00003 , 00004 00005,

L 1L ]l )4 1L ]l
) i | e A y (o pem B 1 00500
1 01000 01001 ! 00006

i A

)
Cemmee ool

Block b \ Block ¢

The first logic block instruction is used to combine the execution conditions re-
sulting from blocks a and b, and the second one is to combine the execution con-
dition of block ¢ with the execution condition resulting from the normally closed
condition assigned IR 00003. The rest of the diagram can be coded with OR,
AND, and AND NOT instructions. The logical flow for this and the resulting code
are shown below.

Block b

01000 01001
———

LD 01000
AND 01001

l 00001 AND 00001
Block ¢

00002 LD 01000
00500 00004 00005 00003 AND 01001
| | I I I I 00004 OR LD —
OR 00500 ';\',3“3 8888;,‘ 00005 OR 00500
00006 AND 00002
00002 00003 00006 00007 | AND NOT 00003
I I 00008 LD 00004

AND 00002
AND NOT 99003 LD 00006 00009 AND 00005

| I 00010 OR 00006
AND LD 00011 AND LD —

| 00012 ouT 00500

00500

77



The Programming Console

Section 4-5

4-4-7 Coding Multiple Right-hand Instructions

00000

00003

If there is more than one right-hand instruction executed with the same execu-
tion condition, they are coded consecutively following the last condition on the
instruction line. In the following example, the last instruction line contains one
more condition that corresponds to an AND with IR 00004.

00001

———

00002

———

HR 0000

@ Address | Instruction Operands
- 00000 LD 00000
00001 OR 00001
@ 00002 OR 00002
00004 00003 OR HR 0000
: : @ 00004 AND 00003
00005 ouT HR 0001
00006 ouT 00500
00007 AND 00004
00008 ouT 00506

4-5 The Programming Console

1,2, 3.

Note

4-5-1 The Keyboard

White: Numeric Keys

Red: CLR Key

Yellow: Operation Keys

78

This and the next section describe the Programming Console and the opera-
tions necessary to prepare for program input. 4-7 Inputting, Modifying, and
Checking the Program describes actual procedures for inputting the program
into memory.

Although the Programming Console can be used to write ladder programs, it is
primarily used to support LSS operations and is very useful for on-site editing
and maintenance. The main Programming Console functions are listed below.

1. Displaying operating messages and the results of diagnostic checks.

2. Writing and reading ladder programs, inserting and deleting instructions,
searching for data or instructions, and monitoring 1/O bit status.

3. Monitoring I/O status, force-setting/resetting bits.

4. The Programming Console can be connected to or disconnected from the
PC with the power on.

5. The Programming Console can be used with C-series PCs.

6. Supports TERMINAL mode, which allows the display of a 32-character
message, as well as operation of the keyboard mapping function. Refer to
5-25-6 TERMINAL MODE — TERM(—) for details.

The Programming Console does not support all of the LSS operations, only
those required for on-site editing and maintenance.

The keyboard of the Programming Console is functionally divided by key color
into the following four areas:

The ten white keys are used to input numeric program data such as program
addresses, data area addresses, and operand values. The numeric keys are
also used in combination with the function key (FUN) to enter instructions with
function codes.

The CLR key clears the display and cancels current Programming Console op-
erations. It is also used when you key in the password at the beginning of pro-
gramming operations. Any Programming Console operation can be cancelled
by pressing the CLR key, although the CLR key may have to be pressed two or
three times to cancel the operation and clear the display.

The yellow keys are used for writing and correcting programs. Detailed explana-
tions of their functions are given later in this section.



The Programming Console

Section 4-5

Gray: Instruction and Data
Area Keys

Except for the SHIFT key on the upper right, the gray keys are used to input in-
structions and designate data area prefixes when inputting or changing a pro-
gram. The SHIFT key is similar to the shift key of a typewriter, and is used to alter
the function of the next key pressed. (It is not necessary to hold the SHIFT key
down; just press it once and then press the key to be used with it.)

The gray keys other than the SHIFT key have either the mnemonic name of the
instruction or the abbreviation of the data area written on them. The functions of
these keys are described below.

CH

CONT
#

Pressed before the function code when inputting an instruction
via its function code.

Pressed to enter SFT (the Shift Register instruction).
Input either after a function code to designate the differentiated
form of an instruction or after a ladder instruction to designate

an inverse condition.

Pressed to enter AND (the AND instruction) or used with NOT
to enter AND NOT.

Pressed to enter OR (the OR instruction) or used with NOT to
enter OR NOT.

Pressed to enter CNT (the Counter instruction) or to designate
a TC number that has already been defined as a counter.

Pressed to enter LD (the Load instruction) or used with NOT to
enter LD NOT. Also pressed to indicate an input bit.

Pressed to enter OUT (the Output instruction) or used with
NOT to enter OUT NOT. Also pressed to indicate an output bit.

Pressed to enter TIM (the Timer instruction) or to designate a
TC number that has already been defined as a timer.
Pressed before designating an address in the TR area.
Pressed before designating an address in the LR area.
Pressed before designating an address in the HR area.
Pressed before designating an address in the AR area.
Pressed before designating an address in the DM area.
Pressed before designating an indirect DM address.

Pressed before designating a word address.

Pressed before designating an operand as a constant.

Pressed before designating a bit address.

Pressed before function codes for block programming instruc-
tions, i.e., those placed between pointed parentheses <>.

79



Preparation for Operation Section 4-6

4-5-2 PC Modes

The Programming Console is equipped with a switch to control the PC mode. To
select one of the three operating modes—RUN, MONITOR, or PROGRAM—
use the mode switch. The mode that you select will determine PC operation as
well as the procedures that are possible from the Programming Console.

RUN mode is the mode used for normal program execution. When the switch is
set to RUN and the START input on the CPU Power Supply Unit is ON, the CPU
will begin executing the program according to the program written in its Program
Memory. Although monitoring PC operation from the Programming Console is
possible in RUN mode, no data in any of the memory areas can be input or
changed.

MONITOR mode allows you to visually monitor in-progress program execution
while controlling 1/O status, changing PV (present values) or SV (set values),
etc. In MONITOR mode, I/O processing is handled in the same way as in RUN
mode. MONITOR mode is generally used for trial system operation and final pro-
gram adjustments.

In PROGRAM mode, the PC does not execute the program. PROGRAM mode
is for creating and changing programs, clearing memory areas, and registering
and changing the 1/O table. A special Debug operation is also available within
PROGRAM mode that enables checking a program for correct execution before
trial operation of the system.

&DANGER Do not leave the Programming Console connected to the PC by an extension cable when in
RUN mode. Noise picked up by the extension cable can enter the PC, affecting the program
and thus the controlled system.

4-5-3 The Display Message Switch

Pin 3 of the CPU’s DIP switch determines whether Japanese or English lan-
guage messages will be displayed on the Programming Console. It is factory set
to ON, which causes English language messages to be displayed.

4-6 Preparation for Operation

This section describes the procedures required to begin Programming Console
operation. These include password entry, clearing memory, error message
clearing, and I/O table operations. I/O table operations are also necessary at
other times, e.g., when changes are to be made in Units used in the PC configu-
ration.

&DANGER Always confirm that the Programming Console is in PROGRAM mode when turning on the
PC with a Programming Console connected unless another mode is desired for a specific
purpose. If the Programming Console is in RUN mode when PC power is turned on, any
program in Program Memory will be executed, possibly causing a PC-controlled system to
begin operation.

The following sequence of operations must be performed before beginning in-
itial program input.
1,2, 3. 1. Insert the mode key into the Programming Console.

2. Set the mode switch to PROGRAM mode. (The mode key cannot be re-
moved while set to PROGRAM mode.)

3. Turn on PC power.

Note When I/O Units are installed, turn on those Units also. The Program-
ming Console will not operate if these Units are not turned on.

80



Preparation for Operation

Section 4-6

4. Confirm that the CPU’'s POWER LED is lit and the following display appears
on the Programming Console screen. (If the ALM/ERR LED is lit or flashing
or an error message is displayed, clear the error that has occurred.)

5. Enter the password. See 4-6-1 Entering the Password for details.

6. Clear memory. Skip this step if the program does not need to be cleared.
See 4-6-3 Clearing Memory for details.

4-6-1 Entering the Password

4-6-2 Buzzer

To gain access to the PC’s programming functions, you must first enter the pass-
word. The password prevents unauthorized access to the program.

The PC prompts you for a password when PC power is turned on or, if PC power
is already on, after the Programming Console has been connected to the PC. To
gain access to the system when the “Password!” message appears, press CLR
and then MONTR. Then press CLR to clear the display.

If the Programming Console is connected to the PC when PC power is already
on, the first display below will indicate the mode the PC was in before the Pro-
gramming Console was connected. Ensure that the PC is in PROGRAM mode
before you enter the password. When the password is entered, the PC will
shift to the mode set on the mode switch, causing PC operation to begin if the
mode is set to RUN or MONITOR. The mode can be changed to RUN or MONI-
TOR with the mode switch after entering the password.

CLR

Indicates the mode set by the mode selector switch.

Immediately after the password is input or anytime immediately after the mode
has been changed, SHIFT and then the 1 key can be pressed to turn on and off
the buzzer that sounds when Programming Console keys are pressed. If BZ is
displayed in the upper right corner, the buzzer is operative. If BZ is not displayed,
the buzzer is not operative.

This buzzer also will also sound whenever an error occurs during PC operation.
Buzzer operation for errors is not affected by the above setting.

81



Preparation for Operation

Section 4-6

4-6-3 Clearing Memory

All Clear

82

Using the Memory Clear operation it is possible to clear all or part of the UM area
(RAM or EEPROM), and the IR, HR, AR, DM and TC areas. Unless otherwise
specified, the clear operation will clear all of the above memory areas. The UM
area will not be cleared if the write-protect switch (pin 1 of the CPU’s DIP switch)
is set to ON.

Before beginning to programming for the first time or when installing a new pro-
gram, all areas should normally be cleared. Before clearing memory, check to
see if a program is already loaded that you need. If you need the program, clear
only the memory areas that you do not need, and be sure to check the existing
program with the program check key sequence before using it. The check se-
qguence is provided later in this section. Further debugging methods are pro-
vided in Section 7 Program Monitoring and Execution. To clear all memory areas
press CLR until all zeros are displayed, and then input the keystrokes given in
the top line of the following key sequence. The branch lines shown in the se-
quence are used only when performing a partial memory clear, which is de-
scribed below.

Memory can be cleared in PROGRAM mode only. The following table shows
which memory areas will be cleared for the 3 memory clearing operations (all
clear, partial clear, memory clear).

Memory Area All clear Partial clear Memory clear

I/0 words Cleared Cleared Cleared
Work words Cleared Cleared
HR, AR, TC, DM, fixed DM Cleared Cleared Cleared
Expansion DM Cleared Cleared
I/O comments Cleared

Ladder program Cleared Cleared Cleared
UM Allocation information Cleared

1. The error history area (DM 6000 to DM 6030) will not be cleared when the
DM area is cleared.

2. When the PC Setup area (DM 6600 to DM 6655 in fixed DM) is cleared, the
settings will be returned to their factory-set defaults.

3. When the All Clear operation is executed, the ladder program area will be
allocated entirely to the ladder program. (The expansion DM and I/O com-
ment areas will be set to 0 KW.)

The key sequence for all clear is shown below.

RE
CLR PLAY NOT _C EXT MONTR
SET RESET




Preparation for Operation

Section 4-6

Partial Clear

The following procedure is used to clear memory completely.

CLR

Continue pressing
the CLR key once for

—— each error message
until “00000” appears
on the display

CLR

PLAY
SET

+—— All clear

It is possible to retain the data in specified areas or part of the ladder program. To
retain the data in the HR and AR, TC, and/or DM areas, press the appropriate
key after entering REC/RESET. HR is pressed to designate both the HR and AR
areas. In other words, specifying that HR is to be retained will ensure that AR is
retained also. If not specified for retention, both areas will be cleared. CNT is
used for the entire TC area. The display will show those areas that will be
cleared.

It is also possible to retain a portion of the ladder program from the beginning to a
specified address. After designating the data areas to be retained, specify the
first program address to be cleared. For example, to leave addresses 00000 to
00122 untouched, but to clear addresses from 00123 to the end of Program
Memory, input 00123.

The key sequence for a partial memory clear is shown below.

CLR PLAY NOT ] J REC ] #{MONTR
SET J " \Reset/
—» [Address] —= Program Memory cleared
from designated address.

Both AR and HR areas -

I
]
|
|
|
)

TC area = CNT - - - Retained if pressed

DM area -

T

83



Preparation for Operation Section 4-6

To leave the TC area uncleared and retain Program Memory addresses 00000
through 00122, input as follows:

Memory Clear The memory clear operation clears all memory areas except the I/O comments
and UM Allocation information.

The key sequence for a partial memory clear is shown below.

RE
CLR ﬂ NOT c MONTR
SET RESET

The Programming Console will display the following screens:

Note When the write-protect switch (pin 1 of the CPU’s DIP switch) is set to ON the UM
area (from DM 6144 through the ladder program) will not be cleared. Other data
areas, such as HR, AR, CNT, and DM from DM 0000 to DM 6143 will be cleared.

4-6-4 Registering the I/O Table

The I/O Table Registration operation records the types of I/O Units controlled by
the PC and the Rack locations of the I/O Units. It also clears all I/O bits.

It is not absolutely necessary to register the 1/0 table with the C200HS. When the
I/O table has not been registered, the PC will operate according to the I/O Units
mounted when power is applied. The 1/O verification/setting error will not occur.



Preparation for Operation

Section 4-6

Key Sequence

Initial I/O Table Registration

It is necessary to register the I/O table if I/O Units are changed, otherwise an I/O
verification error message, “I/O VER ERR” or “I/O SET ERROR”, will appear
when starting programming operations.

I/0 Table Registration can be performed only in PROGRAM mode with the write-
protection switch (pin 1 of the CPU’s DIP switch) set to OFF (OFF="WRITE”").

Group-2 High-density 1/0 Units will not be displayed in the I/O table when it is
displayed using a host computer. Four asterisks (**x:x), indicating no Unit, will be
displayed instead.

e ) o e 0 B0 0 B

— Register I/O table

4-6-5 Clearing Error Messages

Key Sequence

After the I/O table has been registered, any error messages recorded in memory
should be cleared. It is assumed here that the causes of any of the errors for
which error messages appear have already been taken care of. If the beeper
sounds when an attempt is made to clear an error message, eliminate the cause
of the error, and then clear the error message (refer to Section 10 Troubleshoot-
ing).

To display any recorded error messages, press CLR, FUN, and then MONTR.
The first message will appear. Pressing MONTR again will clear the present
message and display the next error message. Continue pressing MONTR until
all messages have been cleared.

Although error messages can be accessed in any mode, they can be cleared
only in PROGRAM mode.

CHEE)

85



Preparation for Operation Section 4-6

4-6-6 Verifying the 1/O Table
The 1/O Table Verification operation is used to check the I/O table registered in
memory to see if it matches the actual sequence of 1/0O Units mounted. The first
inconsistency discovered will be displayed as shown below. Every subsequent
pressing of VER displays the next inconsistency.

Note This operation can be executed only when the I/O table has been registered.

Key Sequence

GEEEE

Example
s
CLR
FUN
ISHIFTI cH
*
(No errors)
(An error occurred)
Actual I/0 words
Registered 1/0 table words
1/0 slot number
Rack number
Meaning of Displays The following display indicates a C500, C1000H, or C2000H and C200H or

C200HS have the same unit number on a Remote |/O Slave Rack.

The following display indicates a duplication in Optical I/O Unit unit numbers.

L—— Indicates duplication

86



Preparation for Operation Section 4-6

4-6-7 Reading the I/O Table

The I/O Table Read operation is used to access the 1/O table that is currently
registered in the CPU memory. This operation can be performed in any PC
mode.

Key Sequence

CH
[ CLR ]——[ FUN HSHIFT][ ~ ] & [0to2] — [0to 9] ——[MONTR]—‘
Rack Unit
— number number

Press the EXT key to select Remote
I/O Slave Racks or Optical I/O Units.

Example

(Main Rack)
(Slave Rack Units)
— _
EXT
N’
v (Optical I/0 Unit)
EXT
~—
|
L
XT (Main Rack)
—

87



Preparation for Operation Section 4-6

Meaning of Displays

I/O Unit Designations for Displays
(see I/O Units Mounted in Remote Slave Racks, page 89)

C500, 1000H/C2000H I/O Units
No. of points Input Unit
16 o4 % 4
32
64

Output Unit

C200H 1/O Units
No. of points Input Unit Output Unit
16

Note: (*) is i for non-fatal errors or F_

I/0 Units

-

1/0 word number

1/0 type: i: (input), o: (output)

Unit number (0 to 9)
Rack number (0 to 2)

Interrupt Input Units

|: INTO: Mounted to CPU Rack.
IN**: Mounted to Expansion 1/0O Rack.
(Treated as an 8-point Input Unit.)

Special I/O Units

Blank: Unit 1 exclusively
W: Unit 2 exclusively

. C: High-speed Counter
Sp_eC|aI ”_O { N: Position Control Unit
Unit type:

A: Other
Unit number (0 to 9)

Indicates Special I/0 Unit

Remote I/O Master Units

L RemotellO

Master no. (O or 1)

88



Preparation for Operation

Section 4-6

Remote I/O Slave Racks

[

Group-2 High-density 1/0
Units

1/0 word number

/0 type: 1,0
i, 0 (see tables on previous page)

Unit number (0 to 9)
Remote I/O Slave Unit number (0 to 4)
Remote I/O Master Unit number (0 or 1)

Indicates a Remote 1/0 Rack

2: 2 words (32 pts)
4: 4 words (64 pts)
I: Input Unit

O: QOutput Unit

Unit number (0 to 9)
Indicates Group-2 Hlgh-density /0 Unit

Note Group-2 High-density I/0O Units will not be displayed in the I/O table when it is
displayed using LSS (host computer). Four asterisks (+:#*x), indicating no Unit,

will be displayed instead.

Optical 1/0O Units and
Remote Terminals

4-6-8 Clearing the I/0O Table

1/0 type: | (input), O (output), or
W (input/output)

Remote I/O Master Unit number (0 to 1)
Word (H: leftmost 8 bits; L: rightmost 8 bits)

1/0 word number (200 to 231)

The I/O Table Clear operation is used to delete the contents of the I/O table that
is currently registered in the CPU memory. The PC will be set for operation
based on the 1/0O Units mounted when the I/O Table Clear operation is per-

formed.

The 1/0O Table Clear operation will reset all Special I/O Units and Link Units
mounted at the time. Do not perform the 1/0 Table Clear operation when a Host
or PC Link Unit, Remote I/O Master Unit, High-speed Counter Unit, Position
Control Unit, or other Special I/0 Unit is in operation.

Note This operation can be performed only in PROGRAM mode with the write-protec-
tion switch (pin 1 of the CPU’s DIP switch) set to OFF (OFF="WRITE").

89



Preparation for Operation

Section 4-6

Key Sequence

Example

CHE

- OE

)

CLR

H

FUN

2

]._[*

(2]
I
o]

-

WRITE

|

4-6-9 SYSMAC NET Link Table Transfer (CPU31/33-E Only)

90

Note

The SYSMAC NET Link Table Transfer operation transfers a copy of the SYS-
MAC NET Link Data Link table to RAM or EEPROM program memory.This al-
lows the user program and SYSMAC NET Link table to be written into EPROM
together. This operation is applicable to the CPU31-E and CPU33-E only.

When power is applied to a PC which has a copy of a SYSMAC NET Link table
stored in its program memory, the SYSMAC NET Link table of the CPU will be
overwritten. Changes made in the SYSMAC NET Link table do not affect the
copy of the SYSMAC NET Link table in program memory; SYSMAC NET Link
Table Transfer must be repeated to change the copy in program memory.

The SYSMAC NET Link Table Transfer operation will not work if:

e The Memory Unit is not RAM or EEPROM, or the write protect switch is not set
to write.

e There isn't an END(01) instruction.

e The contents of program memory exceeds 14.7K words. (To find the size of the
contents of program memory, do an instruction search for END(01).)

SYSMAC NET Link table transfer can only be done in PROGRAM mode.



Preparation for Operation Section 4-6

Key Sequence

EHAEE R

Example SEE

Y
-

Ok

)

WRITE

AF

The following indicates that the
1/0 table cannot be transferred.

WRITE

U:

91



I nputting, Modifying, and Checking the Program Section 4-7

4-7 Inputting, Modifying, and Checking the Program

Once a program is written in mnemonic code, it can be input directly into the PC
from a Programming Console. Mnemonic code is keyed into Program Memory
addresses from the Programming Console. Checking the program involves a
syntax check to see that the program has been written according to syntax rules.
Once syntax errors are corrected, a trial execution can begin and, finally, correc-
tion under actual operating conditions can be made.

The operations required to input a program are explained below. Operations to
modify programs that already exist in memory are also provided in this section,
as well as the procedure to obtain the current cycle time.

Before starting to input a program, check to see whether there is a program al-
ready loaded. If there is a program loaded that you do not need, clear it first using
the program memory clear key sequence, then input the new program. If you
need the previous program, be sure to check it with the program check key se-
guence and correct it as required. Further debugging methods are provided in
Section 7 Program Monitoring and Execution.

4-7-1 Setting and Reading from Program Memory Address

Key Sequence

92

When inputting a program for the first time, it is generally written to Program
Memory starting from address 00000. Because this address appears when the
display is cleared, it is not necessary to specify it.

When inputting a program starting from other than 00000 or to read or modify a
program that already exists in memory, the desired address must be designated.
To designate an address, press CLR and then input the desired address. Lead-
ing zeros of the address need not be input, i.e., when specifying an address such
as 00053 you need to enter only 53. The contents of the designated address will
not be displayed until the down key is pressed.

Once the down key has been pressed to display the contents of the designated
address, the up and down keys can be used to scroll through Program Memory.
Each time one of these keys is pressed, the next or previous word in Program
Memory will be displayed.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status of
any displayed bit will also be shown.

CLR [Address] - ¥




I nputting, Modifying, and Checking the Program Section 4-7

Example If the following mnemonic code has already been input into Program Memory,
the key inputs below would produce the displays shown.

CLR : Address [ Instruction Operands
00200 | LD 00000
- 00201 | AND 00001
[C ][A ]'A ] 00202 | TIM 000
2 0 0
\ J # 0123
00203 | LD 00100

4-7-2 Entering and Editing Programs

Programs can be entered and edited only in PROGRAM mode with the write-
protect switch (pin 1 of the CPU’s DIP switch) set to OFF (OFF="WRITE").

The same procedure is used to either input a program for the first time or to edit a
program that already exists. In either case, the current contents of Program
Memory is overwritten, i.e., if there is no previous program, the NOP(00) instruc-
tion, which will be written at every address, will be overwritten.

To enter a program, input the mnemonic code that was produced from the ladder
diagram step-by-step, ensuring that the correct address is set before starting.
Once the correct address is displayed, enter the first instruction word and press
WRITE. Next, enter the required operands, pressing WRITE after each, i.e.,
WRITE is pressed at the end of each line of the mnemonic code. When WRITE is
pressed at the end of each line, the designated instruction or operand is entered
and the next display will appear. If the instruction requires two or more words, the
next display will indicate the next operand required and provide a default value
for it. If the instruction requires only one word, the next address will be displayed.
Continue inputting each line of the mnemonic code until the entire program has
been entered.

When inputting numeric values for operands, it is not necessary to input leading
zeros. Leading zeros are required only when inputting function codes (see be-
low). When designating operands, be sure to designate the data area for all but
IR and SR addresses by pressing the corresponding data area key, and to desig-
nate each constant by pressing CONT/#. CONT/# is not required for counter or
timer SVs (see below). The AR area is designated by pressing SHIFT and then
HR. TC numbers as bit operands (i.e., completion flags) are designated by
pressing either TIM or CNT before the address, depending on whether the TC
number has been used to define a timer or a counter. To designate an indirect
DM address, press CH/+ before the address (pressing DM is not necessary for
an indirect DM address).

93



I nputting, Modifying, and Checking the Program Section 4-7

Inputting SV for Counters
and Timers

Designating Instructions

The SV (set value) for a timer or counter is generally entered as a constant, al-
though inputting the address of a word that holds the SV is also possible. When
inputting an SV as a constant, CONT/# is not required; just input the numeric
value and press WRITE. To designate a word, press CLR and then input the
word address as described above.

The most basic instructions are input using the Programming Console keys pro-
vided for them. All other instructions are entered using function codes. These
function codes are always written after the instruction’s mnemonic. If no function
code is given, there should be a Programming Console key for that instruction.

To designate the differentiated form of an instruction, press NOT after the func-
tion code.

To input an instruction using a function code, set the address, press FUN, input
the function code including any leading zeros, press NOT if the differentiated
form of the instruction is desired, input any bit operands or definers required for
the instruction, and then press WRITE.

&Caution Enter function codes with care and be sure to press SHIFT when required.

Key Sequence

[Address displayed]—— [Instruction word] WRITE |, [Operand]

94

NoT WRITE



I nputting, Modifying, and Checking the Program Section 4-7

Example The following program can be entered using the key inputs shown below. Dis-
plays will appear as indicated.

Address | Instruction Operands
00200 LD 00002
00201 TIM 000

[02 ][Ao]r"o‘ # 0123
- 00202 _| TIMH(15) 001

R # 0500
LD c 2
H-
| S—

95



I nputting, Modifying, and Checking the Program Section 4-7

Error Messages

The following error messages may appear when inputting a program. Correct
the error as indicated and continue with the input operation. The asterisks in the
displays shown below will be replaced with numeric data, normally an address,
in the actual display.

Message

Cause and correction

An attempt was made to write to write-protected RAM or EEPROM. Ensure that the
write-protect switch is set to OFF.

The instruction at the last address in memory is not NOP(00). Erase all unnecessary
instructions at the end of the program.

An address was set that is larger than the highest memory address in the UM area.
Input a smaller address

Data has been input in the wrong format or beyond defined limits, e.g., a hexadecimal
value has been input for BCD. Re-enter the data. This error will generate a FALS 00
error.

A data area address has been designated that exceeds the limit of the data area, e.g.,
an address is too large. Confirm the requirements for the instruction and re-enter the
address.

4-7-3 Checking the Program

Key Sequence

Check Levels and Error
Messages

96

Once a program has been entered, the syntax should be checked to verify that
no programming rules have been violated. This check should also be performed
if the program has been changed in any way that might create a syntax error.

To check the program, input the key sequence shown below. The numbers indi-
cate the desired check level (see below). When the check level is entered, the
program check will start. If an error is discovered, the check will stop and a dis-
play indicating the error will appear. Press SRCH to continue the check. If an er-
ror is not found, the program will be checked through to the first END(01), with a
display indicating when each 64 instructions have been checked (e.g., display
#1 of the example after the following table).

CLR can be pressed to cancel the check after it has been started, and a display
like display #2, in the example, will appear. When the check has reached the first
END, a display like display #3 will appear.

A syntax check can be performed on a program only in PROGRAM mode.

CLR SRCH

_( To check
'lsnc“ - = - qSRCH| upto END(01)

cLr | To abort

el

(0, 1, 2, Check levels)

Three levels of program checking are available. The desired level must be des-
ignated to indicate the type of errors that are to be detected. The following table
provides the error types, displays, and explanations of all syntax errors. Check
level 0 checks for type A, B, and C errors; check level 1, for type A and B errors;
and check level 2, for type A errors only.

The address where the error was generated will also be displayed.



I nputting, Modifying, and Checking the Program Section 4-7

Many of the following errors are for instructions that have not yet been described
yet. Refer to 4-8 Controlling Bit Status or to Section 5 Instruction Set for details
on these.

Type Message Meaning and appropriate response
Type A |7 ' The program has been lost. Re-enter the program.

There is no END(01) in the program. Write END(01) at the final address in the
program.

The number of logic blocks and logic block instructions does not agree, i.e., either
LD or LD NOT has been used to start a logic block whose execution condition has
not been used by another instruction, or a logic block instruction has been used
that does not have the required number of logic blocks. Check your program.

An instruction is in the wrong place in the program. Check instruction requirements
and correct the program.

The same jump number or subroutine number has been used twice. Correct the
program so that the same number is only used once for each. (Jump number 00
may be used as often as required.)

SBS(91) has been programmed for a subroutine number that does not exist.
Correct the subroutine number or program the required subroutine.

A JME(04) is missing for a JIMP(05). Correct the jump number or insert the proper
JME(04).

A constant entered for the instruction is not within defined values. Change the
constant so that it lies within the proper range.

STEP(08) with a section number and STEP(08) without a section number have
been used correctly. Check STEP(08) programming requirements and correct the
program.

Type B IL(02) and ILC(03) are not used in pairs. Correct the program so that each IL(02)
has a unique ILC(03). Although this error message will appear if more than one
IL(02) is used with the same ILC(03), the program will executed as written. Make

sure your program is written as desired before proceeding.

JMP(04) 00 and JME(05) 00 are not used in pairs. Although this error message will
appear if more than one JMP(04) 00 is used with the same JME(05) 00, the
program will be executed as written. Make sure your program is written as desired
before proceeding.

If the displayed address is that of SBN(92), two different subroutines have been
defined with the same subroutine number. Change one of the subroutine numbers
or delete one of the subroutines. If the displayed address is that of RET(93),
RET(93) has not been used properly. Check requirements for RET(93) and correct
the program.

Type C JME(05) has been used with no JMP(04) with the same jump number. Add a

JMP(04) with the same number or delete the JME(05) that is not being used.

A subroutine exists that is not called by SBS(91). Program a subroutine call in the
proper place, or delete the subroutine if it is not required.

The same bit is being controlled (i.e., turned ON and/or OFF) by more than one
instruction (e.g., OUT, OUT NOT, DIFU(13), DIFD(14), KEEP(11), SFT(10)).
Although this is allowed for certain instructions, check instruction requirements to
confirm that the program is correct or rewrite the program so that each bit is
controlled by only one instruction.

97



I nputting, Modifying, and Checking the Program Section 4-7

Example The following example shows some of the displays that can appear as a result of
a program check.

Display #1

Halts program check

CLR Display #2

Check continues until END(01)

Display #3

When errors are found

E
I SRCH

I SRCH

4-7-4 Displaying the Cycle Time

Once the program has been cleared of syntax errors, the cycle time should be
checked. This is possible only in RUN or MONITOR mode while the program is
being executed. See Section 6 Program Execution Timing for details on the
cycle time.

To display the current average cycle time, press CLR then MONTR. The time
displayed by this operation is a typical cycle time. The differences in displayed
values depend on the execution conditions that exist when MONTR is pressed.

Example

MONTR

MONTR

HHIE

98



I nputting, Modifying, and Checking the Program Section 4-7

4-7-5 Program Searches

Key Sequence

The program can be searched for occurrences of any designated instruction or
data area address used in an instruction. Searches can be performed from any
currently displayed address or from a cleared display.

To designate a bit address, press SHIFT, press CONT/#, then input the address,
including any data area designation required, and press SRCH. To designate an
instruction, input the instruction just as when inputting the program and press
SRCH. Once an occurrence of an instruction or bit address has been found, any
additional occurrences of the same instruction or bit can be found by pressing
SRCH again. SRCH'G will be displayed while a search is in progress.

When the first word of a multiword instruction is displayed for a search operation,
the other words of the instruction can be displayed by pressing the down key be-
fore continuing the search.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status of
any bit displayed will also be shown.

» [Instruction]
[ CLR ]J—[SHIFT]{C(;NT} » [Address] —‘ - -

LR

HR

TIM

e

0

CNT

99



I nputting, Modifying, and Checking the Program Section 4-7

Example:
Instruction Search

Example:
Bit Search

conT | |F
[SHIFT][ = ]‘ 5 ,

4-7-6 Inserting and Deleting Instructions

100

In PROGRAM mode, any instruction that is currently displayed can be deleted or
another instruction can be inserted before it. These operations are possible only
in PROGRAM mode with the write-protect switch (pin 1 of the CPU’s DIP switch)
set to OFF (OFF="WRITE").

To insert an instruction, display the instruction before which you want the new
instruction to be placed, input the instruction word in the same way as when in-
putting a program initially, and then press INS and the down key. If other words
are required for the instruction, input these in the same way as when inputting
the program initially.



I nputting, Modifying, and Checking the Program

&Caution

Key Sequences

Example

Section 4-7

To delete an instruction, display the instruction word of the instruction to be de-
leted and then press DEL and the up key. All the words for the designated in-
struction will be deleted.

Locate position

in program
then enter:

[Instruction]

Instruction
currently
displayed

-——————.J INS lliill
.

When an instruction is inserted or deleted, all addresses in Program Memory
following the operation are adjusted automatically so that there are no blank ad-
dresses or no unaddressed instructions.

Be careful not to inadvertently delete instructions; there is no way to recover them without reinput-
ting them completely.

The following mnemonic code shows the changes that are achieved in a pro-

gram through the key sequences and displays shown below.

Original Program

Address | Instruction Operands
00000 LD 00100
00001 AND 00101
00002 LD 00201
00003 AND NOT 00102
00004 OR LD —
00005 AND 00103
00006 AND NOT 00104
00007 ouT 00201
00008 END(01) —

00100 00101
Il Il

Before Insertion:

00103 00104
Il Il

00201 00102

Il | K
L] Al

LAl *II

00105

00100 00101

Before Deletion:

00103 00105

00104

00201

00201 00102
)4

]|
LAl Al

)4
Al

Delete

00201

I END(01) I

I END(01) I

The following key inputs and displays show the procedure for achieving the pro-
gram changes shown above.

101




I nputting, Modifying, and Checking the Program Section 4-7

Inserting an Instruction

] Find the address
—— prior to the inser-
tion point

ouTt

Program After Insertion

Address [ Instruction Operands
00000 LD 00100
00001 AND 00101
00002 LD 00201
00003 | AND NOT 00102
| 00004 OR LD —
] 00005 AND 00103
00006 | AND 00105
00007 AND NOT 00104
00008 ouT 00201
00009 | END(01) —

Insert the
instruction

Find the instruction
that requires deletion.

Program After Deletion

[cz ][Ao ] B 1 Address | Instruction Operands

g 00000 LD 00100

00001 AND NOT 00101

00002 LD 00201

00003 | AND NOT 00102

00004 OR LD —

00005 AND 00103

_ 00006 | AND 00105

] 00007 | AND NOT 00104

00008 ouT 00201

Confirm that this is the
instruction to be deleted.

102



I nputting, Modifying, and Checking the Program Section 4-7

4-7-7 Branching Instruction Lines

00000
Il

When an instruction line branches into two or more lines, it is sometimes neces-
sary to use either interlocks or TR bits to maintain the execution condition that
existed at a branching point. This is because instruction lines are executed
across to a right-hand instruction before returning to the branching point to ex-
ecute instructions on a branch line. If a condition exists on any of the instruction
lines after the branching point, the execution condition could change during this
time making proper execution impossible. The following diagrams illustrate this.
In both diagrams, instruction 1 is executed before returning to the branching
point and moving on to the branch line leading to instruction 2.

Branching
point Address | Instruction Operands
: Instruction 1| 00000 LD 00000
00002 00001 | Instruction 1
11 i
1l @l 00002 [ AND 00002

Diagram A: Correct Operation

00003 Instruction 2

TR Bits

Branching
00000 point 00001
“ “ :'”S”UC“O" 1| Address | Instruction Operands

00002 00000 LD 00000

]l .
L @l 00001 AND 00001

Diagram B: Incorrect Operation 00002 | Instruction 1

00003 AND 00002

00004 Instruction 2

If, as shown in diagram A, the execution condition that existed at the branching
point cannot be changed before returning to the branch line (instructions at the
far right do not change the execution condition), then the branch line will be ex-
ecuted correctly and no special programming measure is required.

If, as shown in diagram B, a condition exists between the branching point and the
last instruction on the top instruction line, the execution condition at the branch-
ing point and the execution condition after completing the top instruction line will
sometimes be different, making it impossible to ensure correct execution of the
branch line.

There are two means of programming branching programs to preserve the ex-
ecution condition. One is to use TR bits; the other, to use interlocks
(IL(02)/1L(03)).

The TR area provides eight bits, TR 0 through TR 7, that can be used to tempo-
rarily preserve execution conditions. If a TR bit is placed at a branching point, the
current execution condition will be stored at the designated TR bit. When return-
ing to the branching point, the TR bit restores the execution status that was
saved when the branching point was first reached in program execution.

103



I nputting, Modifying, and Checking the Program Section 4-7

| 00000 00001
11

The previous diagram B can be written as shown below to ensure correct execu-
tion. In mnemonic code, the execution condition is stored at the branching point
using the TR bit as the operand of the OUTPUT instruction. This execution con-
dition is then restored after executing the right-hand instruction by using the
same TR bit as the operand of a LOAD instruction

Address | Instruction Operands
11 : Instruction ll 00000 LD 00000
00002 00001 ouT TR 0
I I : Instruction 2| 00002 AND 00001
Diagram B: Corrected Using a TR bit 00003 | Instruction 1
00004 LD TR 0
00005 AND 00002
00006 Instruction 2

In terms of actual instructions the above diagram would be as follows: The status
of IR 00000 is loaded (a LOAD instruction) to establish the initial execution con-
dition. This execution condition is then output using an OUTPUT instruction to
TR 0 to store the execution condition at the branching point. The execution con-
dition is then ANDed with the status of IR 00001 and instruction 1 is executed
accordingly. The execution condition that was stored at the branching point is
then re-loaded (a LOAD instruction with TR 0 as the operand), this is ANDed with
the status of IR 00002, and instruction 2 is executed accordingly.

The following example shows an application using two TR bits.

104

Address | Instruction Operands
00000 O‘ﬁm "E’?OZ @l 00000 | LD 00000
00003 00001 | oUT TR 0
I @l 00002 | AND 00001
00004 00003 | OUT TR 1
I I nstruction 3| 00004 | AND 00002
00005 00005 | OUT 00500
Y2 finstruction 4| 00006 [ LD TR 1
00007 | AND 00003
00008 | OUT 00501
00009 | LD TR 0
00010 | AND 00004
00011 | OoUT 00502
00012 | LD TR 0
00013 | AND NOT 00005
00014 | oUT 00503

In this example, TR 0 and TR 1 are used to store the execution conditions at the
branching points. After executing instruction 1, the execution condition stored in
TR 1 is loaded for an AND with the status IR 00003. The execution condition
stored in TR 0 is loaded twice, the first time for an AND with the status of IR
00004 and the second time for an AND with the inverse of the status of IR 00005.

TR bits can be used as many times as required as long as the same TR bit is not
used more than once in the same instruction block. Here, a new instruction block
is begun each time execution returns to the bus bar. If, in a single instruction
block, it is necessary to have more than eight branching points that require the
execution condition be saved, interlocks (which are described next) must be
used.



I nputting, Modifying, and Checking the Program Section 4-7

Interlocks

When drawing a ladder diagram, be careful not to use TR bits unless necessary.
Often the number of instructions required for a program can be reduced and
ease of understanding a program increased by redrawing a diagram that would
otherwise required TR bits. In both of the following pairs of diagrams, the bottom
versions require fewer instructions and do not require TR bits. In the first exam-
ple, this is achieved by reorganizing the parts of the instruction block: the bottom
one, by separating the second OUTPUT instruction and using another LOAD in-
struction to create the proper execution condition for it.

Note Although simplifying programs is always a concern, the order of execution of in-

structions is sometimes important. For example, a MOVE instruction may be re-
quired before the execution of a BINARY ADD instruction to place the proper
data in the required operand word. Be sure that you have considered execution
order before reorganizing a program to simplify it.

00000 00001
11 11

11 11 Instruction 1

i

Instruction 2

00000
11 Instruction 2.

00001
11 Instruction 1.

Il

00000 00003
]l 1L .
17 1T Instruction 1.
00001 00002
|1 )4
I Al
00004
: : : Instruction 2|
00001 00002 00003

|

I P4l 11 Instruction 1
00000
I

00001 00004
I 11 Instruction 2

I

Note TR bits are only used when programming using mnemonic code. They are not

necessary when inputting ladder diagrams directly. The above limitations on the
number of branching points requiring TR bits, and considerations on methods to
reduce the number of programming instructions, still hold.

The problem of storing execution conditions at branching points can also be
handled by using the INTERLOCK (IL(02)) and INTERLOCK CLEAR (ILC(03))
instructions to eliminate the branching point completely while allowing a specific
execution condition to control a group of instructions. The INTERLOCK and IN-
TERLOCK CLEAR instructions are always used together.

105



I nputting, Modifying, and Checking the Program

00000
Il

Section 4-7

When an INTERLOCK instruction is placed before a section of a ladder pro-
gram, the execution condition for the INTERLOCK instruction will control the ex-
ecution of all instruction up to the next INTERLOCK CLEAR instruction. If the
execution condition for the INTERLOCK instruction is OFF, all right-hand in-
structions through the next INTERLOCK CLEAR instruction will be executed
with OFF execution conditions to reset the entire section of the ladder diagram.
The effect that this has on particular instructions is described in 5-10 INTER-
LOCK and INTERLOCK CLEAR — IL(02) and ILC(03).

Diagram B can also be corrected with an interlock. Here, the conditions leading
up to the branching point are placed on an instruction line for the INTERLOCK
instruction, all of lines leading from the branching point are written as separate
instruction lines, and another instruction line is added for the INTERLOCK
CLEAR instruction. No conditions are allowed on the instruction line for INTER-
LOCK CLEAR. Note that neither INTERLOCK nor INTERLOCK CLEAR re-
quires an operand.

00001

Al
00002

00000
]l

‘&I Address | Instruction Operands
00000 LD 00000
Ilnstruction 1| 00001 1L(02) -
00002 LD 00001
||'”S"U°“0n 2| 00003 | Instruction 1
00004 LD 00002
@ 00005 Instruction 2
00006 | ILC(03)

If IR 00000 is ON in the revised version of diagram B, above, the status of IR
00001 and that of IR 00002 would determine the execution conditions for in-
structions 1 and 2, respectively. Because IR 00000 is ON, this would produce the
same results as ANDing the status of each of these bits. If IR 00000 is OFF, the
INTERLOCK instruction would produce an OFF execution condition for instruc-
tions 1 and 2 and then execution would continue with the instruction line follow-
ing the INTERLOCK CLEAR instruction.

As shown in the following diagram, more than one INTERLOCK instruction can
be used within one instruction block; each is effective through the next INTER-
LOCK CLEAR instruction.

00001
]l

00002
|1

00003

00004

Il
L]
00005

Al

Il
L]
00006

106

@ Address [ Instruction Operands
00000 LD 00000
Illnstruction 1| 00001 1L(02) —
00002 | LD 00001
: IL(02) I 00003 Instruction 1]
00004 LD 00002
@l 00005 I1L(02)
00006 | LD 00003
=Instruction 3| 00007 AND NOT 00004
00008 Instruction 2|
@l 00009 | LD 00005
00010 Instruction 3|
{ ILC(03) ] 00011 [ LD ' 00006
00012 Instruction 4
00013 ILC(03)




I nputting, Modifying, and Checking the Program Section 4-7

4-7-8 Jumps

00000
]l

If IR 00000 in the above diagram is OFF (i.e., if the execution condition for the
first INTERLOCK instruction is OFF), instructions 1 through 4 would be ex-
ecuted with OFF execution conditions and execution would move to the instruc-
tion following the INTERLOCK CLEAR instruction. If IR 00000 is ON, the status
of IR 00001 would be loaded as the execution condition for instruction 1 and then
the status of IR 00002 would be loaded to form the execution condition for the
second INTERLOCK instruction. If IR 00002 is OFF, instructions 2 through 4 will
be executed with OFF execution conditions. If IR 00002 is ON, IR 00003, IR
00005, and IR 00006 will determine the first execution condition in new instruc-
tion lines.

A specific section of a program can be skipped according to a designated execu-
tion condition. Although this is similar to what happens when the execution con-
dition for an INTERLOCK instruction is OFF, with jumps, the operands for all in-
structions maintain status. Jumps can therefore be used to control devices that
require a sustained output, e.g., pneumatics and hydraulics, whereas interlocks
can be used to control devices that do not required a sustained output, e.g., elec-
tronic instruments.

Jumps are created using the JUMP (JMP(04)) and JUMP END (JME(05)) in-
structions. If the execution condition for a JUMP instruction is ON, the program is
executed normally as if the jump did not exist. If the execution condition for the
JUMP instruction is OFF, program execution moves immediately to a JUMP
END instruction without changing the status of anything between the JUMP and
JUMP END instruction.

All JUMP and JUMP END instructions are assigned jump numbers ranging be-
tween 00 and 99. There are two types of jumps. The jump number used deter-
mines the type of jump.

A jump can be defined using jump numbers 01 through 99 only once, i.e., each of
these numbers can be used once in a JUMP instruction and once in a JUMP
END instruction. When a JUMP instruction assigned one of these numbers is
executed, execution moves immediately to the JUMP END instruction that has
the same number as if all of the instruction between them did not exist. Diagram
B from the TR bit and interlock example could be redrawn as shown below using
a jump. Although 01 has been used as the jump number, any number between
01 and 99 could be used as long as it has not already been used in a different part
of the program. JUMP and JUMP END require no other operand and JUMP END
never has conditions on the instruction line leading to it.

L]
00001

L]
00002

Diagram B: Corrected with a Jump

@l Address | Instruction Operands
00000 LD 00000
@l 00001 JMP(04) 01
- 00002 LD 00001
@l 00003 Instruction 1
@l 00004 LD . 00002
00005 Instruction 2
00006 JME(05) 015

This version of diagram B would have a shorter execution time when 00000 was
OFF than any of the other versions.

107



Controlling Bit Status Section 4-8

The other type of jump is created with a jump number of 00. As many jumps as
desired can be created using jump number 00 and JUMP instructions using 00
can be used consecutively without a JUMP END using 00 between them. It is
even possible for all JUMP 00 instructions to move program execution to the
same JUMP END 00, i.e., only one JUMP END 00 instruction is required for all
JUMP 00 instruction in the program. When 00 is used as the jump number for a
JUMP instruction, program execution moves to the instruction following the next
JUMP END instruction with a jump number of 00. Although, as in all jumps, no
status is changed and no instructions are executed between the JUMP 00 and
JUMP END 00 instructions, the program must search for the next JUMP END 00
instruction, producing a slightly longer execution time.

Execution of programs containing multiple JUMP 00 instructions for one JUMP
END 00 instruction is similar to that of interlocked sections. The following dia-
gram is the same as that used for the interlock example above, except redrawn
with jumps. The execution of this diagram would differ from that of the diagram
described above (e.g., in the previous diagram interlocks would reset certain
parts of the interlocked section, however, jumps do not affect the status of any bit
between the JUMP and JUMP END instructions).

00000
i} :JMP(04) 00 I Address | Instruction Operands
00001 00000 LD 00000
: : :Instruction 1| 00001 JMP(04) 00
00002 LD 00001
00002 -
00003 Instruction 1
11 JIMP(04) 00
I :| 00004 | LD 00002
00003 00004 00005 JMP(04) 00
1} y4 Instruction 2
1T A : I 00006 LD 00003
00005 00007 AND NOT 00004
11 .
H @l 00008 Instruction 2
00006
00009 LD 00005
11 Instruction 4
I @l 00010 | Instruction 3
00011 LD 00006
:JME(OS) o0 I 00012 Instruction 4
00013 JME(05) 00

4-8 Controlling Bit Status

There are five instructions that can be used generally to control individual bit sta-
tus. These are the OUTPUT, OUTPUT NOT, DIFFERENTIATE UP,
DIFFERENTIATE DOWN, and KEEP instructions. All of these instructions ap-
pear as the last instruction in an instruction line and take a bit address for an op-
erand. Although details are provided in 5-9 Bit Control Instructions, these in-
structions (except for OUTPUT and OUTPUT NOT, which have already been in-
troduced) are described here because of their importance in most programs. Al-
though these instructions are used to turn ON and OFF output bits in the IR area
(i.e., to send or stop output signals to external devices), they are also used to
control the status of other bits in the IR area or in other data areas.

108



Controlling Bit Status Section 4-8

4-8-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN

DIFFERENTIATE UP and DIFFERENTIATE DOWN instructions are used to
turn the operand bit ON for one cycle at a time. The DIFFERENTIATE UP in-
struction turns ON the operand bit for one cycle after the execution condition for
it goes from OFF to ON; the DIFFERENTIATE DOWN instruction turns ON the
operand bit for one cycle after the execution condition for it goes from ON to OFF.
Both of these instructions require only one line of mnemonic code.

4-8-2 KEEP

o?(:oo Address | Instruction Operands
M @l 00000 LD 00000
00001 DIFU(13) 00200
00001
{| :D'FD(M) 00201 I Address | Instruction Operands
00000 LD 00001
00001 DIFD(14) 00201

Here, IR 00200 will be turned ON for one cycle after IR 00000 goes ON. The next
time DIFU(13) 00200 is executed, IR 00200 will be turned OFF, regardless of the
status of IR 00000. With the DIFFERENTIATE DOWN instruction, IR 00201 will
be turned ON for one cycle after IR 00001 goes OFF (IR 00201 will be kept OFF
until then), and will be turned OFF the next time DIFD(14) 00201 is executed.

The KEEP instruction is used to maintain the status of the operand bit based on
two execution conditions. To do this, the KEEP instruction is connected to two
instruction lines. When the execution condition at the end of the first instruction
line is ON, the operand bit of the KEEP instruction is turned ON. When the exe-
cution condition at the end of the second instruction line is ON, the operand bit of
the KEEP instruction is turned OFF. The operand bit for the KEEP instruction will
maintain its ON or OFF status even if it is located in an interlocked section of the
diagram.

In the following example, HR 0000 will be turned ON when IR 00002 is ON and IR
00003 is OFF. HR 0000 will then remain ON until either IR 00004 or IR 00005
turns ON. With KEEP, as with all instructions requiring more than one instruction
line, the instruction lines are coded first before the instruction that they control.

4-8-3 Self-maintaining Bits (Seal)

Although the KEEP instruction can be used to create self-maintaining bits, it is
sometimes necessary to create self-maintaining bits in another way so that they
can be turned OFF when in an interlocked section of a program.

o:xl)oz o?(:fs Address | Instruction Operands
11 Pl . :
S_ set |nput KEEP(11) 00000 LD 00002
00001 | AND NOT 00003
00004 HR 0000 00002 LD 00004
1 T — 00003 | OR 00005
00005 ' P 00004 | KEEP(11) HR 0000
1L
11

109



Work Bits

Section 4-9

00002 00003

To create a self-maintaining bit, the operand bit of an OUTPUT instruction is
used as a condition for the same OUTPUT instruction in an OR setup so that the
operand bit of the OUTPUT instruction will remain ON or OFF until changes oc-
cur in other bits. At least one other condition is used just before the OUTPUT
instruction to function as a reset. Without this reset, there would be no way to
control the operand bit of the OUTPUT instruction.

The above diagram for the KEEP instruction can be rewritten as shown below.
The only difference in these diagrams would be their operation in an interlocked
program section when the execution condition for the INTERLOCK instruction
was ON. Here, just as in the same diagram using the KEEP instruction, two reset
bits are used, i.e., HR 0000 can be turned OFF by turning ON either IR 00004 or
IR 00005.

—

HR 0000
Il
LAl

00004 00005 Address | Instruction Operands
)% Y% 0000

M AR 00000 | LD 00002
00001 | AND NOT 00003
00002 OR HR 0000
00003 | AND NOT 00004
00004 | AND NOT 00005
00005 | OUT HR 0000

4-9 Work Bits (Internal Relays)

Work Bit Applications

110

In programming, combining conditions to directly produce execution conditions
is often extremely difficult. These difficulties are easily overcome, however, by
using certain bits to trigger other instructions indirectly. Such programming is
achieved by using work bits. Sometimes entire words are required for these pur-
poses. These words are referred to as work words.

Work bits are not transferred to or from the PC. They are bits selected by the
programmer to facilitate programming as described above. 1/O bits and other
dedicated bits cannot be used as works bits. All bits in the IR area that are not
allocated as I/O bits, and certain unused bits in the AR area, are available for use
as work bits. Be careful to keep an accurate record of how and where you use
work bits. This helps in program planning and writing, and also aids in debugging
operations.

Examples given later in this subsection show two of the most common ways to
employ work bits. These should act as a guide to the almost limitless number of
ways in which the work bits can be used. Whenever difficulties arise in program-
ming a control action, consideration should be given to work bits and how they
might be used to simplify programming.

Work bits are often used with the OUTPUT, OUTPUT NOT, DIFFERENTIATE
UP, DIFFERENTIATE DOWN, and KEEP instructions. The work bit is used first
as the operand for one of these instructions so that later it can be used as a con-
dition that will determine how other instructions will be executed. Work bits can
also be used with other instructions, e.g., with the SHIFT REGISTER instruction
(SFT(10)). An example of the use of work words and bits with the SHIFT REGIS-
TER instruction is provided in 5-15-1 SHIFT REGISTER — SFT(10).

Although they are not always specifically referred to as work bits, many of the
bits used in the examples in Section 5 Instruction Set use work bits. Understand-
ing the use of these bits is essential to effective programming.



Work Bits

Section 4-9

Reducing Complex

Work bits can be used to simplify programming when a certain combination of

Conditions conditions is repeatedly used in combination with other conditions. In the follow-
ing example, IR 00000, IR 00001, IR 00002, and IR 00003 are combined in a
logic block that stores the resulting execution condition as the status of IR
24600. IR 24600 is then combined with various other conditions to determine
output conditions for IR 00100, IR 00101, and IR 00102, i.e., to turn the outputs
allocated to these bits ON or OFF.

00000 00001 Address | Instruction Operands
1 W @ 00000 | LD 00000
00001 | AND NOT 00001
00002 00002 OR 00002
1} 00003 | OR NOT 00003
00004 | ouT 24600
00003 00005 | LD 24600
A 00006 | AND 00004
00007 | AND NOT 00005
24600 00004 00905 @ 00008 | OUT 00100
' ' 1 00009 | LD 24600
00010 | ORNOT 00004
24600 00005 Q 00011 | AND 00005
11 11 00101
00012 | OUT 00101
00013 | LD NOT 24600
Ny 00014 | OR 00006
. 00015 | OR 00007
24600 00016 | OUT 00102
00006
11
LAl
00007
11
LAl

Differentiated Conditions

Work bits can also be used if differential treatment is necessary for some, but not
all, of the conditions required for execution of an instruction. In this example, IR
00100 must be left ON continuously as long as IR 00001 is ON and both IR
00002 and IR 00003 are OFF, or as long as IR 00004 is ON and IR 00005 is OFF.
It must be turned ON for only one cycle each time IR 00000 turns ON (unless one
of the preceding conditions is keeping it ON continuously).

m



Programming Precautions

Section 4-10

This action is easily programmed by using IR 22500 as a work bit as the operand
of the DIFFERENTIATE UP instruction (DIFU(13)). When IR 00000 turns ON, IR
22500 will be turned ON for one cycle and then be turned OFF the next cycle by
DIFU(13). Assuming the other conditions controlling IR 00100 are not keeping it
ON, the work bit IR 22500 will turn IR 00100 ON for one cycle only.

o?c:oo Address | Instruction Operands
11 : DIFU(13) 22500|

00000 LD 00000
22500 00001 DIFU(13) 22500

N 00100
1T 00002 LD 22500
00001 00002 00003 00003 LD 00001
00004 | AND NOT 00002
00004 00005 00005 [ AND NOT 00003
! Al 00006 | ORLD
00007 LD 00004
00008 AND NOT 00005
00009 OR LD
00010 ouT 00100

4-10 Programming Precautions

The number of conditions that can be used in series or parallel is unlimited as
long as the memory capacity of the PC is not exceeded. Therefore, use as many
conditions as required to draw a clear diagram. Although very complicated dia-
grams can be drawn with instruction lines, there must not be any conditions on
lines running vertically between two other instruction lines. Diagram A shown
below, for example, is not possible, and should be drawn as diagram B. Mne-
monic code is provided for diagram B only; coding diagram A would be impossi-
ble.

00000

00002

LAl
00004

Instruction 1

I

00001 00003
: : J,f Instruction 2
Diagram A
00001 00004 00002 Address | Instruction Operands
: : : : : : =|nstruction 1| P
00000 | LD 00001
00000 00001 | AND 00004
" 00002 | OR 00000
oo Oono 9% [ 00003 | AND 00002
11 1T y4i Instruction 2 -
00004 Instruction 1
00001 00005 | LD 00000
I 00006 | AND 00004
Diagram B 00007 | OR 00001
00008 | AND NOT 00003
00009 Instruction 2

112

The number of times any particular bit can be assigned to conditions is not lim-
ited, so use them as many times as required to simplify your program. Often,
complicated programs are the result of attempts to reduce the number of times a
bit is used.



Programming Precautions

Section 4-10

Except for instructions for which conditions are not allowed (e.g., INTERLOCK
CLEAR and JUMP END, see below), every instruction line must also have at
least one condition on it to determine the execution condition for the instruction
at the right. Again, diagram A , below, must be drawn as diagram B. If an instruc-
tion must be continuously executed (e.g., if an output must always be kept ON
while the program is being executed), the Always ON Flag (SR 25313) in the SR
area can be used.

: Instruction I

Diagram A: Incorrect

25313

00000
I

Diagram B 00001 | Instruction

|| |nsuuction| Address [ Instruction Operands
00000 | LD 25313

There are a few exceptions to this rule, including the INTERLOCK CLEAR,
JUMP END, and step instructions. Each of these instructions is used as the sec-
ond of a pair of instructions and is controlled by the execution condition of the
first of the pair. Conditions should not be placed on the instruction lines leading to
these instructions. Refer to Section 5 Instruction Set for details.

When drawing ladder diagrams, it is important to keep in mind the number of
instructions that will be required to input it. In diagram A, below, an OR LOAD
instruction will be required to combine the top and bottom instruction lines. This
can be avoided by redrawing as shown in diagram B so that no AND LOAD or OR
LOAD instructions are required. Refer to 5-8-2 AND LOAD and OR LOAD for
more details and Section 7 Program Monitoring and Execution for further exam-
ples.

00001 00207

s

00001 00207
I

00000

Diagram A

Address | Instruction Operands
@ 00000 LD 00000
00001 LD 00001
00002 | AND 00207
00003 | ORLD
00004 | OuT 00207
Address | Instruction Operands
@ 00000 LD 00001
00001 | AND 00207
00002 | OR 00000
00003 | OUT 002

Diagram B

113



Program Execution Section 4-11

4-11 Program Execution

When program execution is started, the CPU cycles the program from top to bot-
tom, checking all conditions and executing all instructions accordingly as it
moves down the bus bar. It is important that instructions be placed in the proper
order so that, for example, the desired data is moved to a word before that word
is used as the operand for an instruction. Remember that an instruction line is
completed to the terminal instruction at the right before executing an instruction
lines branching from the first instruction line to other terminal instructions at the
right.

Program execution is only one of the tasks carried out by the CPU as part of the
cycle time. Refer to Section 6 Program Execution Timing for details.

114



SECTION 5
| nstruction Set

The C200HS PC has alarge programming instruction set that allows for easy programming of complicated control processes.
This section explains instructions individually and provides the ladder diagram symbol, data areas, and flags used with each.
The C200HS can process more than 100 instructions that require function codes, but only 100 function codes (00 to 99) are
available. Someinstructions, called expansion instructions, do not have fixed function codes and must be assigned function
codes from the 18 function codes set aside for expansion instructions before they can be used.

The many instructions provided by the C200HS are organized in the following subsections by instruction group. These groups
include Ladder Diagram Instructions, Bit Control Instructions, Timer and Counter Instructions, Data Shifting Instructions,
Data Movement Instructions, Data Comparison Instructions, Data Conversion Instructions, BCD Calculation Instructions,
Binary Calculation Instructions, Logic Instructions, Subroutines, Special Instructions, and Network Instructions.

Some instructions, such as Timer and Counter instructions, are used to control execution of other instructions, e.g., aTIM
Completion Flag might be used to turn ON a bit when the time period set for the timer has expired. Although these other
instructions are often used to control output bits through the Output instruction, they can be used to control execution of other
instructions as well. The Output instructions used in examples in this manual can therefore generally be replaced by other
instructions to modify the program for specific applications other than controlling output bits directly.

DL NO A ON .. e e 118
B5-2  INStrUCtion FOrmat .. ... i e 118
5-3 DataAreas, Definer Values, and Flags . . ... ..o 118
5-4  Differentiated INSLIUCLIONS . ... ...t e e e 119
5-5  EXpansion INSIIUCLIONS . . . .. oottt et e et e e e e e e e e 120
5-6 Coding Right-hand INStructions . .. ... ... .. i i i e 122
B-7  INSUCHION St LiStS . .ottt et e e e 125
57-1 FUNCHION COBS . . ot 125
5-7-2  Alphabetic Listhy MNemonic . ... e 125
5-8 Ladder Diagram INSIIUCLIONS . . .. ..ottt e e e e e e e 129
5-8-1 LOAD, LOAD NOT, AND, AND NOT,OR,andORNOT ...............ccvn... 129
582 ANDLOAD andORLOAD ...ttt e e e 130
5-9  BitControl INSIrUCtIONS .. ... oo e 130
5-9-1 OUTPUT and OUTPUT NOT —OUT and OUT NOT ....... ..ot 130
5-9-2 DIFFERENTIATE UP and DOWN —DIFU(13) and DIFD(14) ...t 131
5-9-3 SETand RESET —SET and RSET ....... ... i e 133
5-9-4 KEEP —KEEP(11) ...ttt e e e e e e 133
5-10 INTERLOCK and INTERLOCK CLEAR—1L(02) and ILC(03) .........ccovirirananenn... 135
5-11 JUMPand JUMPEND —JIMP(04) and IME(05) . . . . . oottt 137
5-12 END —END(OL) ...ttt ettt e ettt e e et e e e 138
5-13 NO OPERATION —NOP(00) ...\ttt ettt ettt e et ettt e e et 138
5-14 Timer and Counter INSITUCLIONS . ... ..ottt e et et et et et e 138
5-14-1 TIMER =TIM . e e 139
5-14-2  HIGH-SPEED TIMER —TIMH(15) ...ttt e e 143
5-14-3 TOTALIZING TIMER —=TTIM(87) . ..ottt e i 144
5-14-4 COUNTER — CNT ..ot e e e e e e e 145
5-14-5 REVERSIBLECOUNTER—CNTR(12) .. ... .ottt 148
5-15 DataShifting . ...ttt 150
5-15-1 SHIFTREGISTER —SFT(10) ..o vi ittt ettt e e e et 150
5-15-2 REVERSIBLE SHIFT REGISTER—-SFTR(84) . ... ..ot 152
5-15-3 ARITHMETIC SHIFT LEFT —ASL(25) . .« oo oot et et e s 154
5-15-4 ARITHMETICSHIFT RIGHT —ASR(26) .. ..ottt i as 154
5-15-5 ROTATE LEFT —ROL(27) .\ttt ettt e 155
5-15-6 ROTATERIGHT —ROR(28) . . ...ttt e 155
5-157 ONEDIGIT SHIFT LEFT —SLD(74) .. ... e 156
5-15-8 ONEDIGIT SHIFT RIGHT —SRD(75) ...ttt et ei e 156
5-15-9  WORD SHIFT —WSFT(16) .. .ttitti ittt ittt et 157
5-15-10 ASYNCHRONOUSSHIFT REGISTER—ASFT(17) . ..o oo 157
516 DalaMoOVEMENt . ...t e 158
5-16-1 MOVE = MOV (2L) ...ttt et ettt e e 159

115



116

5-17

5-18

5-19

5-20

5-16-2
5-16-3
5-16-4
5-16-5
5-16-6
5-16-7
5-16-8
5-16-9
5-16-10

MOVENOT =MVN(22) ...,
BLOCK SET —BSET(71) ..'vvnnn...
BLOCK TRANSFER — XFER(70) . .......
DATA EXCHANGE — XCHG(73) .. . ......
SINGLE WORD DISTRIBUTE — DIST(80) .
DATA COLLECT —COLL(81) ...........
MOVEBIT—=MOVB(82) ......vvnn....
MOVE DIGIT—MOVD(83) .............
TRANSFER BITS—XFRB(62) . ..........

Data Comparison . .......oveiinneiiineeennn.

5-17-1
5-17-2
5-17-3
5-17-4
5-17-5
5-17-6
5-17-7
5-17-8
5-17-9

MULTI-WORD COMPARE — MCMP(19) ..
COMPARE —CMP(20) .......eeeenn.
DOUBLE COMPARE — CMPL(60) . ......
BLOCK COMPARE —BCMP(68) . . .......
TABLE COMPARE —TCMP(85) .........
AREA RANGE COMPARE — ZCP(88) .. ..

DOUBLE AREA RANGE COMPARE —ZCPL(—) ..o v e

SIGNED BINARY COMPARE — CPS(—) ..
DOUBLE SIGNED BINARY COMPARE -C

DataConVErSION . . ...ooi e

5-18-1
5-18-2
5-18-3
5-18-4
5-18-5
5-18-6
5-18-7
5-18-8
5-18-9
5-18-10
5-18-11
5-18-12
5-18-13
5-18-14
5-18-15
5-18-16

BCD-TO-BINARY —BIN(23) ............

PSL() vt

DOUBLE BCD-TO-DOUBLE BINARY —BINL(58) ... ..o

BINARY-TO-BCD —BCD(24) ...........
DOUBLE BINARY-TO-DOUBLE BCD —BC
HOURS-TO-SECONDS — SEC(65) ... ....
SECONDS-TO-HOURS —~HMS(66) . ... ...
4-TO-16 DECODER — MLPX(76) ........
16-TO-4 ENCODER — DMPX(77) ........
7-SEGMENT DECODER — SDEC(78) . .. ..
ASCII CONVERT —ASC(86) ............
ASCII-TO-HEXADECIMAL — HEX(—) ...
SCALING =SCL(—) + oo
COLUMN TOLINE—LINE(63) ..........
LINE TO COLUMN —COLM(64) ........
2’SCOMPLEMENT =NEG(—) ..........
DOUBLE 2'S COMPLEMENT — NEGL(—)

BCD Calculations. .. .....ovvi i

5-19-1
5-19-2
5-19-3
5-19-4
5-19-5
5-19-6
5-19-7
5-19-8
5-19-9
5-19-10
5-19-11
5-19-12
5-19-13
5-19-14

INCREMENT —INC(38) . .......con.. ..
DECREMENT =DEC(39) ... ...
SET CARRY —=STC(40) ...
CLEAR CARRY —CLC(41) .............
BCD ADD —ADD(30) . ...
DOUBLE BCD ADD —ADDL(54) ........
BCD SUBTRACT —SUB(31) ............
DOUBLE BCD SUBTRACT — SUBL(55) ..
BCD MULTIPLY —MUL(32) ............
DOUBLE BCD MULTIPLY —MULL(56) ..
BCD DIVIDE=DIV(33) ...
DOUBLE BCD DIVIDE -DIVL(57) ......
FLOATING POINT DIVIDE — FDIV(79) . . .
SQUARE ROOT —ROOT(72) ............

Binary Calculations ............ ... ... ... . ....

5-20-1
5-20-2
5-20-3
5-20-4
5-20-5
5-20-6

BINARY ADD—-ADB(50) ..............
BINARY SUBTRACT —SBB(51) .........
BINARY MULTIPLY —MLB(52) .........
BINARY DIVIDE—-DVB(53) ............
DOUBLE BINARY ADD —ADBL(—) .....
DOUBLE BINARY SUBTRACT — SBBL(—)

DL(S) v

159
160
161
162
162
164
166
167
168
169
169
170
173
174
176
177
178
179
180
181
181
182
182
183
184
185
186
189
192
195
196
199
201
202
203
204
205
205
205
206
206
206
207
208
210
212
213
213
214
215
218
220
220
222
225
225
226
228



5-21

5-22

5-23

5-24

5-25

5-26

5-27

5-28

5-20-7
5-20-8
5-20-9
5-20-10

SIGNED BINARY MULTIPLY —MBS(—) ... e

DOUBLE SIGNED BINARY

SIGNED BINARY DIVIDE —

DOUBLE SIGNED BINARY

Specia Math Instructions .. .........
FIND MAXIMUM —MAX(—) ot e

5-21-1
5-21-2
5-21-3
5-21-4
5-21-5
5-21-6

FIND MINIMUM —MIN(—)

MULTIPLY =MBSL(—) @@

DBS() e
DIVIDE =DBSL(—) « .+ voeeeeee e

AVERAGE VALUE —AVG(—) . .+ e e v v e e

SUM —SUM(—) .........

ARITHMETIC PROCESS —APR(69) . . . .ot

PID CONTROL —PID(—) ..

Logic Instructions. . ...............

5-22-1
5-22-2
5-22-3
5-22-4
5-22-5

5-23-1
5-23-2
5-23-3
5-23-4
5-23-5
5-23-6

5-24-1

5-25-1

5-25-2
5-25-3
5-25-4
5-25-5
5-25-6
5-25-7
5-25-8
5-25-9
5-25-10
5-25-11
5-25-12
5-25-13
5-25-14

COMPLEMENT — COM(29)

LOGICAL AND — ANDW(34) .. ittt e

LOGICAL OR — ORW(35) .

EXCLUSIVE OR = XORW(BB) . . . ..t evee et e
EXCLUSIVENOR = XNRW(37) ..ottt
Subroutines and Interrupt Contral . . ..

Subroutines . .............
Interrupts ...............

SUBROUTINE ENTER —SBS(91) .. ..ottt
SUBROUTINE DEFINE and RETURN —SBN(92)/RET(93) .....................

MACRO — MCRO(99) . . ...

INTERRUPT CONTROL —INT(89) . ..ottt
Step Instructions . . ...
STEP DEFINE and STEP START-STEP(08)/SNXT(09) ..........covviiiiiniann.
Specid Instructions ...............
FAILURE ALARM — FAL(06) and

SEVERE FAILURE ALARM
CYCLE TIME — SCAN(18) .

SFALS(07)

TRACE MEMORY SAMPLING = TRSM(45) .. ... oot e e
MESSAGE DISPLAY —MSG(46) . . .+« et oo et et e e
LONG MESSAGE —LMSG(47) . .« oo eeve e e e e

TERMINAL MODE - TERM

(8) .o

WATCHDOG TIMER REFRESH —WDT(94) ....... oo

1/0 REFRESH — IORF(97) .

GROUP-2 HIGH-DENSITY /OREFRESH -MPRF(61) ........................

BIT COUNTER — BCNT(67)

FRAME CHECKSUM —FCS(—) ..\ttt
FAILURE POINT DETECTION —FPD(—) .\ttt i it

DATA SEARCH — SRCH(—)
EXPANSION DM READ — X

Network Instructions ..............
NETWORK SEND —SEND(90) . ..t vtit ettt et e e e et e s
NETWORK RECEIVE —RECV(98) . ...ttt ittt i i iiineaes
5-26-3  About Network CommuniCationS . . .. ...ttt e
Serial Communications Instructions . .

5-26-1
5-26-2

5-27-1
5-27-2

RECEIVE —RXD(—) .....
TRANSMIT = TXD(—) ... ..

Advanced |/O Instructions ..........
7-SEGMENT DISPLAY OUTPUT —7SEG(—) « vt i i et

5-28-1
5-28-2
5-28-3
5-28-4
5-28-5

DIGITAL SWITCH INPUT —

DMR(S) v

DSW(—) vttt

HEXADECIMAL KEY INPUT —HKY(—) ... .o

TEN KEY INPUT — TKY (—)
MATRIX INPUT - MTR(—)

230
231
232
233
234
234
235
236
238
240
243
250
250
251
252
253
254
254
254
255
258
260
261
263
267
267
276

276
277
278
279
280
281
282
282
283
284
284
286
290
291
292
292
294
296
298
298
300
302
302
305
309
312
314

117



Data Areas, Definer Values, and Flags Section 5-3

5-1

5-2

Notation

In the remainder of this manual, all instructions will be referred to by their mne-
monics. For example, the Output instruction will be called OUT, the AND Load
instruction, AND LD. If you're not sure of the instruction a mnemonic is used for,
refer to Appendix B Programming Instructions.

If an instruction is assigned a function code, it will be given in parentheses after
the mnemonic. These function codes, which are 2-digit decimal numbers, are
used to input most instructions into the CPU and are described briefly below and
in more detail in 4-7 Inputting, Modifying, and Checking the Program. A table of
instructions listed in order of function codes, is also provided in Appendix B.

An @ before a mnemonic indicates the differentiated version of that instruction.
Differentiated instructions are explained in Section 5-4.

Instruction Format

Most instructions have at least one or more operands associated with them. Op-
erands indicate or provide the data on which an instruction is to be performed.
These are sometimes input as the actual numeric values (i.e., as constants), but
are usually the addresses of data area words or bits that contain the data to be
used. A bit whose address is designated as an operand is called an operand bit;
a word whose address is designated as an operand is called an operand word. In
some instructions, the word address designated in an instruction indicates the
first of multiple words containing the desired data.

Each instruction requires one or more words in Program Memory. The first word
is the instruction word, which specifies the instruction and contains any definers
(described below) or operand bits required by the instruction. Other operands
required by the instruction are contained in following words, one operand per
word. Some instructions require up to four words.

A definer is an operand associated with an instruction and contained in the same
word as the instruction itself. These operands define the instruction rather than
telling what data it is to use. Examples of definers are TC numbers, which are
used in timer and counter instructions to create timers and counters, as well as
jump numbers (which define which Jump instruction is paired with which Jump
End instruction). Bit operands are also contained in the same word as the in-
struction itself, although these are not considered definers.

5-3 Data Areas, Definer Values, and Flags

118

In this section, each instruction description includes its ladder diagram symbol,
the data areas that can be used by its operands, and the values that can be used
as definers. Details for the data areas are also specified by the operand names
and the type of data required for each operand (i.e., word or bit and, for words,
hexadecimal or BCD).

Not all addresses in the specified data areas are necessarily allowed for an oper-
and, e.g., if an operand requires two words, the last word in a data area cannot
be designated as the first word of the operand because all words for a single op-
erand must be within the same data area. Also, not all words in the SR and DM
areas are writeable as operands (see Section 3 Memory Areas for details.) Oth-
er specific limitations are given in a Limitations subsection. Refer to Section 3
Memory Areas for addressing conventions and the addresses of flags and con-
trol bits.



Differentiated | nstructions Section 5-4

&Caution The IR and SR areas are considered as separate data areas. If an operand has access to one
area, it doesn’t necessarily mean that the same operand will have access to the other area. The
border between the IR and SR areas can, however, be crossed for a single operand, i.e., the last
bit in the IR area may be specified for an operand that requires more than one word as long as the
SR area is also allowed for that operand.

The Flags subsection lists flags that are affected by execution of an instruction.
These flags include the following SR area flags.

Abbreviation Name Bit
ER Instruction Execution Error Flag 25503
CY Carry Flag 25504
GR Greater Than Flag 25505
EQ Equals Flag 25506
LE Less Than Flag 25507
OF Overflow Flag 25404
UF Underflow Flag 25405

ER is the flag most commonly used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to exe-
cute the current instruction. The Flags subsection of each instruction lists possi-
ble reasons for ER being ON. ER will turn ON if operands are not entered cor-
rectly. Instructions are not executed when ER is ON. A table of instructions and
the flags they affect is provided in Appendix C Error and Arithmetic Flag Opera-
tion.

Indirect Addressing When the DM area is specified for an operand, an indirect address can be used.
Indirect DM addressing is specified by placing an asterisk before the DM: *DM.
When an indirect DM address is specified, the designated DM word will contain
the address of the DM word that contains the data that will be used as the operand
of the instruction. If, for example, *DM 0001 was designated as the first operand
and LR 00 as the second operand of MOV(21), the contents of DM 0001 was
1111, and DM 1111 contained 5555, the value 5555 would be moved to LR 00.

Word Content
DM 0000 4C59

- === — MOV(1)

=DM 0001 T’ DM 0001 1111 Indicat
LR 00 ndirec ndicates
address DM 0002 F35A DM 1111.

|
DM 1111 5555

DM 1113 | 2506 | ™\ 5555 moved
DM 1114 | D541 to LR 00.

When using indirect addressing, the address of the desired word must be in BCD
and it must specify a word within the DM area. In the above example, the content
of *DM 0000 would have to be in BCD between 0000 and 1999.

Designating Constants Although data area addresses are most often given as operands, many oper-
ands and all definers are input as constants. The available value range for a
given definer or operand depends on the particular instruction that uses it. Con-
stants must also be entered in the form required by the instruction, i.e., in BCD or
in hexadecimal.

5-4 Differentiated Instructions

Most instructions are provided in both differentiated and non-differentiated
forms. Differentiated instructions are distinguished by an @ in front of the in-
struction mnemonic.

119



Expansion I nstructions

Section 5-5

00000
Il

A non-differentiated instruction is executed each time it is cycled as long as its
execution condition is ON. A differentiated instruction is executed only once af-
ter its execution condition goes from OFF to ON. If the execution condition has
not changed or has changed from ON to OFF since the last time the instruction
was cycled, the instruction will not be executed. The following two examples
show how this works with MOV(21) and @MOV/(21), which are used to move the
data in the address designated by the first operand to the address designated by
the second operand.

00000

&Caution

MOv(2L) Address | Instruction Operands
R 10 00000 | LD 00000
Diagram A DM 0000 00001 | MOV(21)
HR 10
DM 0000
@MOV(21) Address | Instruction Operands
HR 10 00000 | LD 00000
Diagram B DM 0000 00001 | @MOV(21)
HR 10
DM 0000

In diagram A, the non-differentiated MOV(21) will move the content of HR 10 to
DM 0000 whenever it is cycled with 00000. If the cycle time is 80 ms and 00000
remains ON for 2.0 seconds, this move operation will be performed 25 times and
only the last value moved to DM 0000 will be preserved there.

In diagram B, the differentiated @MOV/(21) will move the content of HR 10 to DM
0000 only once after 00000 goes ON. Even if 00000 remains ON for 2.0 seconds
with the same 80 ms cycle time, the move operation will be executed only once
during the first cycle in which 00000 has changed from OFF to ON. Because the
content of HR 10 could very well change during the 2 seconds while 00000 is
ON, the final content of DM 0000 after the 2 seconds could be different depend-
ing on whether MOV(21) or @MOV(21) was used.

All operands, ladder diagram symbols, and other specifications for instructions
are the same regardless of whether the differentiated or non-differentiated form
of an instruction is used. When inputting, the same function codes are also used,
but NOT is input after the function code to designate the differentiated form of an
instruction. Most, but not all, instructions have differentiated forms.

Refer to 5-10 INTERLOCK and INTERLOCK CLEAR — IL(02) and IL(03) for the
effects of interlocks on differentiated instructions.

The C200HS also provides differentiation instructions: DIFU(13) and DIFD(14).
DIFU(13) operates the same as a differentiated instruction, but is used to turn
ON a bit for one cycle. DIFD(14) also turns ON a bit for one cycle, but does it
when the execution condition has changed from ON to OFF. Refer to 5-9-2 DIF-
FERENTIATE UP and DOWN - DIFU(13) and DIFD(14) for details.

Do not use SR 25313 and SR25315 for differentiated instructions. These bits
never change status and will not trigger differentiated instructions

5-5 Expansion Instructions

120

The C200HS has more instructions that require function codes (121) than func-
tion codes (100), so some instructions do not have fixed function codes. These
instructions, called expansion instructions, are listed in the following table. De-
fault function codes are given for the instructions that have them.

An expansion instruction can be assigned one of 18 function codes using the
Programming Console’s Expansion Instruction Function Code Assignments op-
eration. The 18 function codes are: 17, 18, 19, 47, 48, 60 to 69, 87, 88, and 89.
Refer to 7-1-14 Expansion Instruction Function Code Assignments for details on
assigning function codes.



Expansion I nstructions

Section 5-5

Code Mnemonic Name Page
17 (@)ASFT | ASYNCHRONOUS SHIFT REGISTER 157
18 (@)SCAN | CYCLE TIME 276
19 (@)MCMP | MULTI-WORD COMPARE 169
47 (@)LMSG | 32-CHARACTER MESSAGE 279
48 (@)TERM | TERMINAL MODE 280
60 CMPL DOUBLE COMPARE 172
61 (@)MPRF | GROUP-2 HIGH-DENSITY I/O REFRESH 282
62 (@)XFRB | TRANSFER BITS 168
63 (@)LINE COLUMN TO LINE 200
64 (@)COLM | LINE TO COLUMN 201
65 (@)SEC HOURS TO SECONDS 183
66 (@)HMS SECONDS TO HOURS 184
67 (@)BCNT | BIT COUNTER 283
68 (@)BCMP | BLOCK COMPARE 174
69 (@)APR ARITHMETIC PROCESS 239
87 TTIM TOTALIZING TIMER 144
88 ZCP AREA RANGE COMPARE 176
89 (@)INT INTERRUPT CONTROL 262
7SEG 7-SEGMENT DISPLAY OUTPUT 301
(@)ADBL | DOUBLE BINARY ADD 225
AVG AVERAGE VALUE 235
CPS SIGNED BINARY COMPARE 178
CPSL DOUBLE SIGNED BINARY COMPARE 179
(@)DBS SIGNED BINARY DIVIDE 231
(@)DBSL | DOUBLE SIGNED BINARY DIVIDE 232
DSW DIGITAL SWITCH INPUT 304
(@)FCs FCS CALCULATE 283
FPD FAILURE POINT DETECT 285
(@)HEX ASCII-TO-HEXADECIMAL 195
HKY HEXADECIMAL KEY INPUT 308
(@)MAX FIND MAXIMUM 233
(@)MBS SIGNED BINARY MULTIPLY 229
(@)MBSL | DOUBLE SIGNED BINARY MULTIPLY 230
(@)MIN FIND MINIMUM 234
MTR MATRIX INPUT 313
(@)NEG 2'S COMPLEMENT 202
(@)NEGL | DOUBLE 2'S COMPLEMENT 203
PID PID CONTROL 242
(@)RXD RECEIVE 297
(@)sBBL | DOUBLE BINARY SUBTRACT 227
(@)scL SCALING 198
(@)SRCH | DATA SEARCH 289
(@)sum SUM CALCULATE 237
(@)TKY TEN KEY INPUT 311
(@)TXD TRANSMIT 299
(@)XDMR | EXPANSION DM READ 290
ZCPL DOUBLE AREA RANGE COMPARE 177

121




Coding Right-hand I nstructions Section 5-6

5-6 Coding Right-hand Instructions

122

Writing mnemonic code for ladder instructions is described in Section 4 Writing
and Inputting the Program. Converting the information in the ladder diagram
symbol for all other instructions follows the same pattern, as described below,
and is not specified for each instruction individually.

The first word of any instruction defines the instruction and provides any defin-
ers. If the instruction requires only a signal bit operand with no definer, the bit
operand is also placed on the same line as the mnemonic. All other operands are
placed on lines after the instruction line, one operand per line and in the same
order as they appear in the ladder symbol for the instruction.

The address and instruction columns of the mnemonic code table are filled in for
the instruction word only. For all other lines, the left two columns are left blank. If
the instruction requires no definer or bit operand, the data column is left blank for
first line. It is a good idea to cross through any blank data column spaces (for all
instruction words that do not require data) so that the data column can be quickly
scanned to see if any addresses have been left out.

If an IR or SR address is used in the data column, the left side of the column is left
blank. If any other data area is used, the data area abbreviation is placed on the
left side and the address is place on the right side. If a constant to be input, the
number symbol (#) is placed on the left side of the data column and the number
to be input is placed on the right side. Any numbers input as definers in the in-
struction word do not require the number symbol on the right side. TC bits, once
defined as a timer or counter, take a TIM (timer) or CNT (counter) prefix.

When coding an instruction that has a function code, be sure to write in the func-
tion code, which will be necessary when inputting the instruction via the Pro-
gramming Console. Also be sure to designate the differentiated instruction with
the @ symbol.



Coding Right-hand I nstructions

Section 5-6

00000

00001

The following diagram and corresponding mnemonic code illustrates the points

described above.

Al
00002

00100

00200

22500

Il
LAl
01001 01002

00005
]l

L
Al
LR 6300

TIM 000

HR 0015

Address|Instruction Data
Il DIFU(13) 22500| 00000 LD ' 00000
00001 |AND ' 00001
00002 |OR ' 00002
00003 |DIFU(13) 1 22500
BCNT(67) 00004 (LD » 00100
#0001 T
- 00005 |AND NOT + 00200
00006 |LD ' 01001
HR 00
00007 |AND NOT ' 01002
00008 |ANDNOT |LR ! 6300
00009 |ORLD —
TiM 000 00010 |AND | 22500
#0150 T
00011 |BCNT(67) V-
# 1 0001
MOV(21) .
v 004
HR 00 ]
HR ' 00
LR 00 ]
00012 |LD ' 00005
00013 [TIM © 000
00500 # : 0150
00014 |LD TIM + 000
00015 |MOV(21) v —
]
HR ' 00
LR ! 00
00016 |LD HR , 0015
00017 |[OUT NOT , 00500

123



Coding Right-hand I nstructions

Multiple Instruction Lines

Section 5-6

If a right-hand instruction requires multiple instruction lines (such as KEEP(11)),
all of the lines for the instruction are entered before the right-hand instruction.
Each of the lines for the instruction is coded, starting with LD or LD NOT, to form
‘logic blocks’ that are combined by the right-hand instruction. An example of this

for SFT(10) is shown below.

SFT(10)

HR 00

HR 00

00000 00001
] ]
00002
11 P
LA}
00100 00200 22500
11 [y 11 R
I Al I

01001 01002 LR 6300

HR 0015

END(01)

124

00500

Address| Instruction Data
00000 | LD ' 00000
00001 | AND ' 00001
00002 |LD ' 00002
00003 | LD ' 00100
00004 | AND NOT » 00200
00005 LD + 01001
00006 | AND NOT ' 01002
00007 [ANDNOT [LR ' 6300
00008 |ORLD -
00009 [ AND 1 22500
00010 | SFT(10) .=
HR « 00
HR + 00
00011 | LD HR ' 0015
00012 |OUT NOT ' 00500

When you have finished coding the program, make sure you have placed

END(01) at the last address.



Instruction Set Lists

Section 5-7

5-7 Instruction Set Lists

This section provides tables of the instructions available in the C200HS. The first
table can be used to find instructions by function code. The second table can be
used to find instruction by mnemonic. In both tables, the @ symbol indicates in-
structions with differentiated variations.

Note Refer to 5-5 Expansion Instructions for a list of the expansion instructions.

5-7-1 Function Codes

The following table lists the instructions that have fixed function codes. Each in-
struction is listed by mnemonic and by instruction name. Use the numbers in the
leftmost column as the left digit and the number in the column heading as the
right digit of the function code.

Left Right digit
digit 0 1 2 3 4 5 6 7 8 9
0 NOP END IL ILC JMP JME (@) FAL FALS STEP SNXT
NO END INTERLOCK INTERLOCK JUMP JUMP END FAILURE SEVERE STEP STEP START
OPERATION CLEAR ALARM AND FAILURE DEFINE
RESET ALARM
1 SFT KEEP CNTR DIFU DIFD TIMH (@) WSFT (@) ASFT (@) SCAN (@) MCMP
SHIFT KEEP REVERS- DIFFEREN- DIFFEREN- HIGH- WORD ASYNCHRO- | CYCLE TIME MULTI-
REGISTER IBLE TIATE UP TIATE DOWN | SPEED SHIFT NOUS SHIFT WORD
COUNTER TIMER REGISTER COMPARE
2 CMP (@) MOV (@) MVN (@) BIN (@) BCD (@) ASL (@) ASR (@) ROL (@) ROR (@) COM
COMPARE MOVE MOVE NOT BCD TO BINARY TO SHIFT LEFT SHIFT ROTATE ROTATE COMPLE-
BINARY BCD RIGHT LEFT RIGHT MENT
3 (@) ADD (@) suB (@) MUL (@) bIv (@) ANDW (@) ORW (@) XORW (@) XNRW (@) INC (@) DEC
BCD ADD BCD BCD BCD LOGICAL LOGICAL OR | EXCLUSIVE EXCLUSIVE INCREMENT DECRE-
SUBTRACT MULTIPLY DIVIDE AND OR NOR MENT
4 (@) STC (@) cLc TRSM (@) MSG (@) LMSG (@) TERM
SET CARRY CLEAR TRACE MESSAGE LONG MES- TERMINAL
CARRY MEMORY DISPLAY SAGE MODE
SAMPLE
5 (@) ADB (@) SBB (@) MLB (@) DVB (@) ADDL (@) SUBL (@) MULL (@) DIVL (@) BINL (@) BCDL
BINARY ADD | BINARY BINARY BINARY DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE
SUBTRACT MULTIPLY DIVIDE BCD ADD BCD BCD BCD BCD-TO- BINARY-TO-
SUBTRACT MULTIPLY DIVIDE DOUBLE DOUBLE
BINARY BCD
6 CMPL (@) MPRF (@) XFRB (@) LINE (@) CoLM (@) SEC (@) HMS (@) BCNT (@) BCMP (@) APR
DOUBLE TRANSFER TRANSFER COLUMN TO LINE TO HOURS-TO- SECONDS- BIT BLOCK ARITHMETIC
COMPARE BITS BITS LINE COLUMN SECONDS TO-HOURS COUNTER COMPARE PROCESS
7 (@) XFER (@) BSET (@) ROOT (@) XCHG (@) SLD (@) SRD (@) MLPX (@) DMPX (@) SDEC (@) FDIV
BLOCK BLOCK SET SQUARE DATA ONE DIGIT ONE DIGIT 4-TO-16 16-TO-4 7-SEGMENT FLOATING
TRANSFER ROOT EXCHANGE SHIFT LEFT SHIFT DECODER ENCODER DECODER POINT
RIGHT DIVIDE
8 (@) DIST (@) coLL (@) MOVB (@) MOVD (@) SFTR (@) TCMP (@) ASC TTIM ZCP (@) INT
SINGLE DATA MOVE BIT MOVE DIGIT REVERS- TABLE ASCII TOTALIZING AREA INTERRUPT
WORD COLLECT IBLE SHIFT COMPARE CONVERT COUNTER RANGE CONTROL
DISTRIBUTE REGISTER COMPARE
9 (@) SEND (@) SBS SBN RET (@) WDT (@) IORF (@) RECV (@) MCRO
NETWORK SUBROU- SUBROU- SUBROU- WATCHDOG 110 NETWORK MACRO
SEND TINE TINE TINE TIMER REFRESH RECEIVE
ENTRY DEFINE RETURN REFRESH
5-7-2 Alphabetic List by Mnemonic
Mnemonic Code | Words Name Page
7SEG — 4 7-SEGMENT DISPLAY OUTPUT 301
ADB (@) 50 4 BINARY ADD 219
ADBL (@) — 4 DOUBLE BINARY ADD 225
ADD (@) 30 4 BCD ADD 205
ADDL (@) 54 4 DOUBLE BCD ADD 206
AND None 1 AND 129
AND LD None 1 AND LOAD 130
AND NOT None 1 AND NOT 129
ANDW (@) 34 4 LOGICAL AND 250
APR (@) 69 4 ARITHMETIC PROCESS 239
ASC (@) 86 4 ASCIlI CONVERT 194
ASFT(@) 17 4 ASYNCHRONOUS SHIFT REGISTER 157

125



Instruction Set Lists Section 5-7
Mnemonic Code | Words Name Page
ASL (@) 25 2 ARITHMETIC SHIFT LEFT 154
ASR (@) 26 2 ARITHMETIC SHIFT RIGHT 154
AVG (@) — 4 AVERAGE VALUE 235
BCD (@) 24 3 BINARY TO BCD 181
BCDL (@) 59 3 DOUBLE BINARY-TO-DOUBLE BCD 182
BCMP (@) 68 4 BLOCK COMPARE 174
BCNT (@) 67 4 BIT COUNTER 283
BIN (@) 23 3 BCD-TO-BINARY 180
BINL (@) 58 3 DOUBLE BCD-TO-DOUBLE BINARY 181
BSET (@) 71 4 BLOCK SET 160
CLC (@) 41 1 CLEAR CARRY 205
CMP 20 3 COMPARE 170
CMPL 60 4 DOUBLE COMPARE 172
CNT None 2 COUNTER 145
CNTR 12 3 REVERSIBLE COUNTER 148
COLL (@) 81 4 DATA COLLECT 164
COLM(@) 64 4 LINE TO COLUMN 201
COM (@) 29 2 COMPLEMENT 249
CPS — 4 SIGNED BINARY COMPARE 178
CPSL — 4 DOUBLE SIGNED BINARY COMPARE 179
DBS (@) — 4 SIGNED BINARY DIVIDE 231
DBSL (@) — 4 DOUBLE SIGNED BINARY DIVIDE 232
DEC (@) 39 2 BCD DECREMENT 204
DIFD 14 2 DIFFERENTIATE DOWN 131
DIFU 13 2 DIFFERENTIATE UP 131
DIST (@) 80 4 SINGLE WORD DISTRIBUTE 162
DIV (@) 33 4 BCD DIVIDE 212
DIVL (@) 57 4 DOUBLE BCD DIVIDE 213
DMPX (@) 77 4 16-TO-4 ENCODER 188
DSW — 4 DIGITAL SWITCH 304
DVB (@) 53 4 BINARY DIVIDE 224
END 01 1 END 138
FAL (@) 06 2 FAILURE ALARM AND RESET 275
FALS 07 2 SEVERE FAILURE ALARM 275
FCS (@) — 4 FCS CALCULATE 283
FDIV (@) 79 4 FLOATING POINT DIVIDE 214
FPD — 4 FAILURE POINT DETECT 285
HEX (@) — 4 ASCII-TO-HEXADECIMAL 195
HKY — 4 HEXADECIMAL KEY INPUT 308
HMS (@) 66 4 SECONDS TO HOURS 184
IL 02 1 INTERLOCK 135
ILC 03 1 INTERLOCK CLEAR 135
INC (@) 38 2 INCREMENT 204
INT (@) 89 4 INTERRUPT CONTROL 262
IORF (@) 97 3 I/O REFRESH 281
JME 05 2 JUMP END 137
JMP 04 2 JUMP 137
KEEP 11 2 KEEP 133
LD None 1 LOAD 129

126




Instruction Set Lists Section 5-7
Mnemonic Code | Words Name Page
LD NOT None 1 LOAD NOT 129
LINE (@) 63 4 COLUMN TO LINE 200
LMSG (@) 47 4 32-CHARACTER MESSAGE 279
MAX (@) — 4 FIND MAXIMUM 233
MBS (@) — 4 SIGNED BINARY MULTIPLY 229
MBSL (@) — 4 DOUBLE SIGNED BINARY MULTIPLY 230
MCMP (@) 19 4 MULTI-WORD COMPARE 169
MCRO (@) 99 4 MACRO 260
MIN (@) — 4 FIND MINIMUM 234
MLB (@) 52 4 BINARY MULTIPLY 224
MLPX (@) 76 4 4-TO-16 DECODER 185
MOV (@) 21 3 MOVE 159
MOVB (@) 82 4 MOVE BIT 166
MOVD (@) 83 4 MOVE DIGIT 167
MPRF (@) 61 4 GROUP-2 HIGH-DENSITY I/O REFRESH 282
MSG (@) 46 2 MESSAGE 278
MTR — 4 MATRIX INPUT 313
MUL (@) 32 4 BCD MULTIPLY 211
MULL (@) 56 4 DOUBLE BCD MULTIPLY 212
MVN (@) 22 3 MOVE NOT 159
NEG (@) — 4 2'S COMPLEMENT 202
NEGL (@) — 4 DOUBLE 2'S COMPLEMENT 203
NOP 00 1 NO OPERATION 138
OR None 1 OR 129
OR LD None 1 OR LOAD 130
OR NOT None 1 OR NOT 129
ORW (@) 35 4 LOGICAL OR 251
ouT None 2 OUTPUT 130
OUT NOT None 2 OUTPUT NOT 130
PID (@) — 4 PID CONTROL 242
RECV (@) 98 4 NETWORK RECEIVE (CPU31-E/33-E only) 293
RET 93 1 SUBROUTINE RETURN 259
ROL (@) 27 2 ROTATE LEFT 155
ROOT (@) 72 3 SQUARE ROOT 217
ROR (@) 28 2 ROTATE RIGHT 155
RSET None 2 RESET 133
RXD(@) — 4 RECEIVE 297
SBB (@) 51 4 BINARY SUBTRACT 221
SBBL (@) — 4 DOUBLE BINARY SUBTRACT 227
SBN 92 2 SUBROUTINE DEFINE 259
SBS (@) 91 2 SUBROUTINE ENTRY 257
SCAN (@) 18 4 CYCLE TIME 276
SCL (@) — 4 SCALING 198
SDEC (@) 78 4 7-SEGMENT DECODER 191
SEC (@) 65 4 HOURS TO SECONDS 183
SEND (@) 90 4 NETWORK SEND (CPU31-E/33-E only) 291
SET None 2 SET 133
SFT 10 3 SHIFT REGISTER 150
SFTR (@) 84 4 REVERSIBLE SHIFT REGISTER 152

127




Instruction Set Lists Section 5-7
Mnemonic Code | Words Name Page
SLD (@) 74 3 ONE DIGIT SHIFT LEFT 156
SNXT 09 2 STEP START 266
SRCH (@) — 4 DATA SEARCH 289
SRD (@) 75 3 ONE DIGIT SHIFT RIGHT 156
STC (@) 40 1 SET CARRY 205
STEP 08 2 STEP DEFINE 266
SUB (@) 31 4 BCD SUBTRACT 207
SUBL (@) 55 4 DOUBLE BCD SUBTRACT 209
SUM (@) — 4 SUM CALCULATION 237
TCMP (@) 85 4 TABLE COMPARE 175
TERM (@) 48 4 TERMINAL MODE 280
TIM None 2 TIMER 139
TIMH 15 3 HIGH-SPEED TIMER 143
TKY (@) — 4 TEN KEY INPUT 311
TRSM 45 1 TRACE MEMORY SAMPLE 277
TTIM 87 4 TOTALIZING TIMER 144
TXD (@) — 4 TRANSMIT 299
WDT (@) 94 2 WATCHDOG TIMER REFRESH 281
WSFT (@) 16 3 WORD SHIFT 157
XCHG (@) 73 3 DATA EXCHANGE 162
XDMR (@) — 4 EXPANSION DM READ 290
XFER (@) 70 4 BLOCK TRANSFER 161
XFRB (@) 62 4 TRANSFER BITS 168
XNRW (@) 37 4 EXCLUSIVE NOR 253
XORW (@) 36 4 EXCLUSIVE OR 252
ZCP 88 4 AREA RANGE COMPARE 176
ZCPL — 4 DOUBLE AREA RANGE COMPARE 177

128




Ladder Diagram Instructions Section 5-8

5-8 Ladder Diagram Instructions

Ladder Diagram instructions include Ladder instructions and Logic Block
instructions and correspond to the conditions on the ladder diagram. Logic block
instructions are used to relate more complex parts.

5-8-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT

LOAD - LD

LOAD NOT — LD NOT

AND — AND

AND NOT — AND NOT

OR-0OR

OR NOT - OR NOT

Limitations

Description

Flags

Ladder Symbols Operand Data Areas

| B B: Bit
L
I

IR, SR, AR, HR, TC, LR, TR

| B B: Bit

IR, SR, AR, HR, TC, LR

B B: Bit
L
I

IR, SR, AR, HR, TC, LR

B: Bit

IR, SR, AR, HR, TC, LR

B: Bit
B
Y IR, SR, AR, HR, TC, LR
1
B: Bit
B
J,r‘l’ IR, SR, AR, HR, TC, LR

There is no limit to the number of any of these instructions, or restrictions in the
order in which they must be used, as long as the memory capacity of the PC is
not exceeded.

These six basic instructions correspond to the conditions on a ladder diagram.
As described in Section 4 Writing and Inputting the Program, the status of the
bits assigned to each instruction determines the execution conditions for all
other instructions. Each of these instructions and each bit address can be used
as many times as required. Each can be used in as many of these instructions as
required.

The status of the bit operand (B) assigned to LD or LD NOT determines the first
execution condition. AND takes the logical AND between the execution condi-
tion and the status of its bit operand; AND NOT, the logical AND between the
execution condition and the inverse of the status of its bit operand. OR takes the
logical OR between the execution condition and the status of its bit operand; OR
NOT, the logical OR between the execution condition and the inverse of the
status of its bit operand. The ladder symbol for loading TR bits is different from
that shown above. Refer to 4-4-3 Ladder Instructions for details.

There are no flags affected by these instructions.

129



Bit Control I nstructions Section 5-9
5-8-2 AND LOAD and OR LOAD
AND LOAD-ANDLD e emmm
' 00000 '+ 00002
— T
Ladder Symbol ' 00001 ' 00003
A
OR LOAD -OR LD e e e e e mmm e .
] 00000 00001 ]
N 1L | X
1] Pyl ;
Ladder Symbol LTToTTTIIIIILY
1 00002 0(|)OO3 1
) I

Description

Flags

When instructions are combined into blocks that cannot be logically combined
using only OR and AND operations, AND LD and OR LD are used. Whereas
AND and OR operations logically combine a bit status and an execution condi-
tion, AND LD and OR LD logically combine two execution conditions, the current
one and the last unused one.

In order to draw ladder diagrams, it is not necessary to use AND LD and OR LD
instructions, nor are they necessary when inputting ladder diagrams directly, as
is possible from LSS. They are required, however, to convert the program to and
input it in mnemonic form. The procedures for these, limitations for different pro-
cedures, and examples are provided in 4-7 Inputting, Modifying, and Checking
the Program.

In order to reduce the number of programming instructions required, a basic un-
derstanding of logic block instructions is required. For an introduction to logic
blocks, refer to 4-4-6 Logic Block Instructions.

There are no flags affected by these instructions.

5-9 Bit Control Instructions

There are five instructions that can be used generally to control individual bit
status. These are OUT, OUT NOT, DIFU(13), DIFD(14), and KEEP(11). These
instructions are used to turn bits ON and OFF in different ways.

5-9-1 OUTPUT and OUTPUT NOT — OUT and OUT NOT

OUTPUT - OUT

OUTPUT NOT — OUT NOT

Limitations

Description

130

Ladder Symbol Operand Data Areas
B: Bit
B
O IR, SR, AR, HR, TC, LR, TR
Ladder Symbol Operand Data Areas

B: Bit
B
IR, SR, AR, HR, TC, LR

Any output bit can generally be used in only one instruction that controls its sta-
tus. Refer to 3-3 IR Area for details.

OUT and OUT NOT are used to control the status of the designated bit according

to the execution condition.



Bit Control I nstructions

Section 5-9

Flags

OUT turns ON the designated bit for an ON execution condition, and turns OFF
the designated bit for an OFF execution condition. With a TR bit, OUT appears at
a branching point rather than at the end of an instruction line. Refer to 4-7-7
Branching Instruction Lines for details.

OUT NOT turns ON the designated bit for a OFF execution condition, and turns
OFF the designated bit for an ON execution condition.

OUT and OUT NOT can be used to control execution by turning ON and OFF bits
that are assigned to conditions on the ladder diagram, thus determining execu-
tion conditions for other instructions. This is particularly helpful and allows a
complex set of conditions to be used to control the status of a single work bit, and
then that work bit can be used to control other instructions.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT with TIM. Refer to Examples under 5-14-1 TIMER — TIM for
details.

There are no flags affected by these instructions.

5-9-2 DIFFERENTIATE UP and DOWN - DIFU(13) and DIFD(14)

Limitations

Description

Flags

Ladder Symbols Operand Data Areas
——  DIFU(13)B B: Bi
IR, AR, HR, LR
——  DIFD(14)B B: Bt
IR, AR, HR, LR

Any output bit can generally be used in only one instruction that controls its sta-
tus. Refer to 3-3 IR Area for details.

DIFU(13) and DIFD(14) are used to turn the designated bit ON for one cycle
only.

Whenever executed, DIFU(13) compares its current execution with the previous
execution condition. If the previous execution condition was OFF and the cur-
rent one is ON, DIFU(13) will turn ON the designated bit. If the previous execu-
tion condition was ON and the current execution condition is either ON or OFF,
DIFU(13) will either turn the designated bit OFF or leave it OFF (i.e., if the desig-
nated bit is already OFF). The designated bit will thus never be ON for longer
than one cycle, assuming it is executed each cycle (see Precautions, below).

Whenever executed, DIFD(14) compares its current execution with the previous
execution condition. If the previous execution condition was ON and the current
one is OFF, DIFD(14) will turn ON the designated bit. If the previous execution
condition was OFF and the current execution condition is either ON or OFF,
DIFD(14) will either turn the designated bit OFF or leave it OFF. The designated
bit will thus never be ON for longer than one cycle, assuming it is executed each
cycle (see Precautions, below).

These instructions are used when differentiated instructions (i.e., those prefixed
with an @) are not available and single-cycle execution of a particular instruction
is desired. They can also be used with non-differentiated forms of instructions
that have differentiated forms when their use will simplify programming. Exam-
ples of these are shown below.

There are no flags affected by these instructions.

131



Bit Control I nstructions

Section 5-9

Precautions

Example 1:
When There is No
Differentiated Instruction

00000

DIFU(13) and DIFD(14) operation can be uncertain when the instructions are
programmed between IL and ILC, between JMP and JME, or in subroutines. Re-
fer to 5-10 INTERLOCK and INTERLOCK CLEAR - IL(02) and ILC(03), 5-11
JUMP and JUMP END - JMP(04) and JME(05), and 5-23 Subroutines and Inter-
rupt Control for details.

In diagram A, below, whenever CMP(20) is executed with an ON execution con-
dition it will compare the contents of the two operand words (HR 10 and DM
0000) and set the arithmetic flags (GR, EQ, and LE) accordingly. If the execution
condition remains ON, flag status may be changed each cycle if the content of
one or both operands change. Diagram B, however, is an example of how
DIFU(13) can be used to ensure that CMP(20) is executed only once each time
the desired execution condition goes ON.

00000

22500

Address | Instruction Operands
CMP(20)
oo | [T
Diagram A DM 0000 oR T
DM 0000
@l Address | Instruction Operands
00000 | LD 00000
CMP(20) 00001 | DIFU(13) 22500
HR 10 00002 | LD 22500
Diagram B DM 0000 00003 | CMP(20)
HR 10
DM 0000

Example 2:
Simplifying Programming

Although a differentiated form of MOV(21) is available, the following diagram
would be very complicated to draw using it because only one of the conditions
determining the execution condition for MOV(21) requires differentiated treat-

00000

ment.

22500
]l

Al
00001 00002 00003

00004 00005

132

Address [ Instruction Operands
: DIFU(13) 22500|
00000 | LD 00000
00001 | DIFU(13) 22500
MOV/(21) 00002 | LD 22500
HR 10 00003 | LD 00001
DM 0000 00004 | AND NOT 00002
00005 | AND NOT 00003
00006 | ORLD
00007 | LD 00004
00008 | AND NOT 00005
00009 | ORLD

00010 | MOV(21)
HR 10
DM 0000




Bit Control I nstructions

Section 5-9

5-9-3 SET and RESET — SET and RSET

Description

Precautions

Ladder Symbols Operand Data Areas

SETB B: Bit
IR, SR, AR, HR, LR

— RSET B B: Bit
IR, SR, AR, HR, LR

SET turns the operand bit ON when the execution condition is ON, and does not
affect the status of the operand bit when the execution condition is OFF. RSET
turns the operand bit OFF when the execution condition is ON, and does not af-
fect the status of the operand bit when the execution condition is OFF.

The operation of SET differs from that of OUT because the OUT instruction turns
the operand bit OFF when its execution condition is OFF. Likewise, RSET differs
from OUT NOT because OUT NOT turns the operand bit ON when its execution
condition is OFF.

The status of operand bits for SET and RSET programmed between IL(02) and
ILC(03) or IMP(04) and JME(05) will not change when the interlock or jump con-
dition is met (i.e., when IL(02) or JIMP(04) is executed with an OFF execution
condition).

Flags There are no flags affected by these instructions.

Examples The following examples demonstrate the difference between OUT and SET/
RSET. In the first example (Diagram A), IR 10000 will be turned ON or OFF
whenever IR 00000 goes ON or OFF.

In the second example (Diagram B), IR 10000 will be turned ON when IR 00001
goes ON and will remain ON (even if IR 00001 goes OFF) until IR 00002 goes
ON.
O??Oo 10000 Address [ Instruction Operands
00000 | LD 00000
Diagram A 00001 | OUT 10000
00001
11
I @l Address | Instruction Operands
00002 00000 LD 00001
I @l 00001 | SET 10000
, 00002 | LD 00002
Diagram B 00003 | RSET 10000
5-9-4 KEEP — KEEP(11)
Ladder Symbol Operand Data Areas
S
KEEP(11) B: Bit
R B IR, AR, HR, LR
Limitations Any output bit can generally be used in only one instruction that controls its sta-

tus. Refer to 3-3 IR Area for details.

133



Bit Control I nstructions

Section 5-9

Description

KEEP(11) is used to maintain the status of the designated bit based on two exe-
cution conditions. These execution conditions are labeled S and R. S is the set
input; R, the reset input. KEEP(11) operates like a latching relay that is set by S
and reset by R.

When S turns ON, the designated bit will go ON and stay ON until reset, regard-
less of whether S stays ON or goes OFF. When R turns ON, the designated bit
will go OFF and stay OFF until reset, regardless of whether R stays ON or goes
OFF. The relationship between execution conditions and KEEP(11) bit status is
shown below.

S execution condition ﬂ [

R execution condition

é 10
| i

Status of B

KEEP(11) operates like the self-maintaining bit described in 4-8-3 Self-maintain-
ing Bits. The following two diagrams would function identically, though the one
using KEEP(11) requires one less instruction to program and would maintain
status even in an interlocked program section.

00002 00003 Address | Instruction Operands
—| ¥ 00500
! L4 00000 | LD 00002
00500 00001 OR 00500
— 00002 | AND NOT 00003
‘ 00003 | OUT 00500
_Oi)(.m s Address | Instruction Operands
: KEEP(L) 00000 | LD 00002
00001 |LD 00003
00908 R B 00002 | KEEP(11) 00500
ml
Flags There are no flags affected by this instruction.

Precautions

134

Exercise caution when using a KEEP reset line that is controlled by an external
normally closed device. Never use an input bit in an inverse condition on the re-
set (R) for KEEP(11) when the input device uses an AC power supply. The delay
in shutting down the PC’s DC power supply (relative to the AC power supply to
the input device) can cause the designated bit of KEEP(11) to be reset. This situ-
ation is shown below.

Input Unit
A | S
—_ I |
KEEP(11)
NEVER .
v R
il

Bits used in KEEP are not reset in interlocks. Refer to the 5-10 INTERLOCK —
and INTERLOCK CLEAR IL(02) and ILC(03) for details.



INTERLOCK and INTERLOCK CLEAR —IL(02) and I LC(03)

Section 5-10

Example

If a HR bit or an AR bit is used, bit status will be retained even during a power
interruption. KEEP(11) can thus be used to program bits that will maintain status
after restarting the PC following a power interruption. An example of this that can
be used to produce a warning display following a system shutdown for an emer-
gency situation is shown below. Bits 00002, 00003, and 00004 would be turned
ON to indicate some type of error. Bit 00005 would be turned ON to reset the
warning display. HR 0000, which is turned ON when any one of the three bits
indicates an emergency situation, is used to turn ON the warning indicator
through 00500.

Indicates
I emergency
situation

Reset input
00005

S Address [ Instruction Operands
KEEP(11) 00000 LD 00002
5 00001 | OR 00003
00002 OR 00004
00003 LD 00005
R 00004 | KEEP(11) HR 0000
00005 | LD HR 0000
00006 ouT 00500

Activates
00500 warning
display

KEEP(11) can also be combined with TIM to produce delays in turning bits ON
and OFF. Refer to 5-14-1 TIMER — TIM for details.

5-10 INTERLOCK and INTERLOCK CLEAR — IL(02) and ILC(03)

Description

Ladder Symbol  — IL(02)

Ladder Symbol — ILC(03)

IL(02) is always used in conjunction with ILC(03) to create interlocks. Interlocks
are used to enable branching in the same way as can be achieved with TR bits,
but treatment of instructions between IL(02) and ILC(03) differs from that with
TR bits when the execution condition for IL(02) is OFF. If the execution condition
of IL(02) is ON, the program will be executed as written, with an ON execution
condition used to start each instruction line from the point where IL(02) is located
through the next ILC(03). Refer to 4-7-7 Branching Instruction Lines for basic
descriptions of both methods.

If the execution condition for IL(02) is OFF, the interlocked section between
IL(02) and ILC(03) will be treated as shown in the following table:

Instruction Treatment
OUT and OUT NOT Designated bit turned OFF.
SET and RSET Bit status maintained.
TIM and TIMH(15) Reset.
TTIM(87) PV maintained.
CNT, CNTR(12) PV maintained.
KEEP(11) Bit status maintained.
DIFU(13) and DIFD(14) Not executed (see below).
All others Not executed.

135



INTERLOCK and INTERLOCK CLEAR —IL(02) and I LC(03) Section 5-10

IL(02) and ILC(03) do not necessarily have to be used in pairs. IL(02) can be
used several times in a row, with each IL(02) creating an interlocked section
through the next ILC(03). ILC(03) cannot be used unless there is at least one
IL(02) between it and any previous ILC(03).

DIFU(13) and DIFD(14) in Changes in the execution condition for a DIFU(13) or DIFD(14) are not recorded

Interlocks

if the DIFU(13) or DIFD(14) is in an interlocked section and the execution condi-
tion for the 1L(02) is OFF. When DIFU(13) or DIFD(14) is execution in an inter-
locked section immediately after the execution condition for the IL(02) has gone
ON, the execution condition for the DIFU(13) or DIFD(14) will be compared to
the execution condition that existed before the interlock became effective (i.e.,
before the interlock condition for IL(02) went OFF). The ladder diagram and bit
status changes for this are shown below. The interlock is in effect while 00000 is
OFF. Notice that 01000 is not turned ON at the point labeled A even though
00001 has turned OFF and then back ON.

I Address | Instruction Operands
i1 : IL(02) I

00001 00000 LD 00000

1 || DIFU(13) 01ooo| 00001 | IL(02)

00002 | LD 00001
E 00003 | DIFU(13) 01000
00004 | ILC(03)

A
ON
OFF

00000 oFF
00001
ol : O
01000 oFF !
Precautions There must be an ILC(03) following any one or more IL(02).
Although as many IL(02) instructions as are necessary can be used with one
ILC(03), ILC(03) instructions cannot be used consecutively without at least one
IL(02) in between, i.e., nesting is not possible. Whenever a ILC(03) is executed,
all interlocks between the active ILC(03) and the preceding ILC(03) are cleared.
When more than one IL(02) is used with a single ILC(03), an error message will
appear when the program check is performed, but execution will proceed nor-
mally.
Flags There are no flags affected by these instructions.

136



JUMP and JUMP END — JMP(04) and JME(05) Section 5-11

Example The following diagram shows IL(02) being used twice with one ILC(03).
00000 Address | Instruction Operands
|| : IL(02) I
11 00000 | LD 00000
00001 — 00001 | IL(02)
I soos 00002 | LD 00001
00155 00003 | TIM 511
00002 # 0015
1L
1 @ 00004 | LD 00002
00003 00004
00 000 cp 00005 | IL(02)
11 rgi CNT 00006 | LD 00003
00100 001
1 R IR 010 00007 | AND NOT 00004
" 00008 | CNT 001
00005 010
I} 00502 00009 | LD 00005
00010 | ourt 00502

00011 | ILC(03)

ILC(03)

{®

When the execution condition for the first IL(02) is OFF, TIM 511 will be reset to
1.5 s, CNT 001 will not be changed, and 00502 will be turned OFF. When the
execution condition for the first IL(02) is ON and the execution condition for the
second IL(02) is OFF, TIM 511 will be executed according to the status of 00001,
CNT 001 will not be changed, and 00502 will be turned OFF. When the execution
conditions for both the IL(02) are ON, the program will execute as written.

5-11 JUMP and JUMP END — JMP(04) and JME(05)

Limitations

Description

Ladder Symbols Definer Values
IMP(04) N N: Jump number

# (00 to 99)
IME(05) N N: Jump number

# (00 to 99)

Jump numbers 01 through 99 may be used only once in JMP(04) and once in
JME(05), i.e., each can be used to define one jump only. Jump number 00 can be
used as many times as desired.

JMP(04) is always used in conjunction with JIME(05) to create jumps, i.e., to skip
from one point in a ladder diagram to another point. JMP(04) defines the point
from which the jump will be made; JME(05) defines the destination of the jump.
When the execution condition for IMP(04) in ON, no jump is made and the pro-
gram is executed consecutively as written. When the execution condition for
JMP(04) is OFF, a jump is made to the JME(05) with the same jump number and
the instruction following JME(05) is executed next.

If the jump number for IMP(04) is between 01 and 99, jumps, when made, will go
immediately to JME(05) with the same jump number without executing any in-
structions in between. The status of timers, counters, bits used in OUT, bits used
in OUT NOT, and all other status bits controlled by the instructions between
JMP(04) and JMP(05) will not be changed. Each of these jump numbers can be
used to define only one jump. Because all of instructions between JMP(04) and
JME(05) are skipped, jump numbers 01 through 99 can be used to reduce cycle
time.

137



Timer and Counter Instructions Section 5-14

DIFU(13) and DIFD(14) in

Jumps

Precautions

Flags
Examples

If the jump number for IMP(04) is 00, the CPU will look for the next JIME(05) with
a jump number of 00. To do so, it must search through the program, causing a
longer cycle time (when the execution condition is OFF) than for other jumps.
The status of timers, counters, bits used in OUT, bits used in OUT NOT, and alll
other status controlled by the instructions between JMP(04) 00 and JMP(05) 00
will not be changed. jump number 00 can be used as many times as desired. A
jump from JMP(04) 00 will always go to the next IME(05) 00 in the program. It is
thus possible to use JIMP(04) 00 consecutively and match them all with the same
JME(05) 00. It makes no sense, however, to use JME(05) 00 consecutively, be-
cause all jumps made to them will end at the first IME(05) 0O.

Although DIFU(13) and DIFD(14) are designed to turn ON the designated bit for
one cycle, they will not necessarily do so when written between JMP(04) and
JMP (05). Once either DIFU(13) or DIFD(14) has turned ON a bit, it will remain
ON until the next time DIFU(13) or DIFD(14) is executed again. In normal pro-
gramming, this means the next cycle. In a jump, this means the next time the
jump from JMP(04) to JME(05) is not made, i.e., if a bit is turned ON by DIFU(13)
or DIFD(14) and then a jump is made in the next cycle so that DIFU(13) or
DIFD(14) are skipped, the designated bit will remain ON until the next time the
execution condition for the JMP(04) controlling the jump is ON.

When JMP(04) and JME(05) are not used in pairs, an error message will appear
when the program check is performed. Although this message also appears if
JMP(04) 00 and JME(05) 00 are not used in pairs, the program will execute prop-
erly as written.

There are no flags affected by these instructions.
Examples of jump programs are provided in 4-7-8 Jumps.

5-12 END — END(01)

Description

Flags

Ladder Symbol — END(01)

END(01) is required as the last instruction in any program. If there are subrou-
tines, END(01) is placed after the last subroutine. No instruction written after
END(01) will be executed. END(01) can be placed anywhere in the program to
execute all instructions up to that point, as is sometimes done to debug a pro-
gram, but it must be removed to execute the remainder of the program.

If there is no END(01) in the program, no instructions will be executed and the
error message “NO END INST” will appeatr.

END(01) turns OFF the ER, CY, GR, EQ, and LE Flags.

5-13 NO OPERATION — NOP(00)

Description

Flags

NOP(00) is not generally required in programming and there is no ladder symbol
for it. When NOP(00) is found in a program, nothing is executed and the program
execution moves to the next instruction. When memory is cleared prior to pro-
gramming, NOP(00) is written at all addresses. NOP(00) can be input through
the 00 function code.

There are no flags affected by NOP(00).

5-14 Timer and Counter Instructions

138

TIM and TIMH are decrementing ON-delay timer instructions which require a TC
number and a set value (SV).

CNT is a decrementing counter instruction and CNTR is a reversible counter in-
struction. Both require a TC number and a SV. Both are also connected to multi-
ple instruction lines which serve as an input signal(s) and a reset.



Timer and Counter Instructions Section 5-14

5-14-1 TIMER - TIM

Any one TC number cannot be defined twice, i.e., once it has been used as the
definer in any of the timer or counter instructions, it cannot be used again. Once
defined, TC numbers can be used as many times as required as operands in
instructions other than timer and counter instructions.

TC numbers run from 000 through 511. No prefix is required when using a TC
number as a definer in a timer or counter instruction. Once defined as a timer, a
TC number can be prefixed with TIM for use as an operand in certain instruc-
tions. The TIM prefix is used regardless of the timer instruction that was used to
define the timer. Once defined as a counter, a TC number can be prefixed with
CNT for use as an operand in certain instructions. The CNT is also used regard-
less of the counter instruction that was used to define the counter.

TC numbers can be designated as operands that require either bit or word data.
When designated as an operand that requires bit data, the TC number accesses
a bit that functions as a ‘Completion Flag’ that indicates when the time/count has
expired, i.e., the bit, which is normally OFF, will turn ON when the designated SV
has expired. When designated as an operand that requires word data, the TC
number accesses a memory location that holds the present value (PV) of the
timer or counter. The PV of a timer or counter can thus be used as an operand in
CMP(20), or any other instruction for which the TC area is allowed. This is done
by designating the TC number used to define that timer or counter to access the
memory location that holds the PV.

Note that “TIM 000" is used to designate the TIMER instruction defined with TC
number 000, to designate the Completion Flag for this timer, and to designate
the PV of this timer. The meaning of the term in context should be clear, i.e., the
first is always an instruction, the second is always a bit operand, and the third is
always a word operand. The same is true of all other TC numbers prefixed with
TIM or CNT.

An SV can be input as a constant or as a word address in a data area. If an IR
area word assigned to an Input Unit is designated as the word address, the Input
Unit can be wired so that the SV can be set externally through thumbwheel
switches or similar devices. Timers and counters wired in this way can only be
set externally during RUN or MONITOR mode. All SVs, including those set ex-
ternally, must be in BCD.

Definer Values

Ladder Symbol N: TC number

# (000 through 511)

Limitations

Description

TIMN

sV Operand Data Areas

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

SV is between 000.0 and 999.9. The decimal point is not entered.
Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

TC 000 through TC 015 should not be used in TIM if they are required for
TIMH(15). Refer to 5-14-2 HIGH-SPEED TIMER — TIMH(15) for details.

A timer is activated when its execution condition goes ON and is reset (to SV)
when the execution condition goes OFF. Once activated, TIM measures in units
of 0.1 second from the SV.

139



Timer and Counter Instructions

Section 5-14

Precautions

Flags

Examples

Example 1:

Basic Application

If the execution condition remains ON long enough for TIM to time down to zero,
the Completion Flag for the TC number used will turn ON and will remain ON
until TIM is reset (i.e., until its execution condition is goes OFF).

The following figure illustrates the relationship between the execution condition
for TIM and the Completion Flag assigned to it.

ON

Execution condition OFF __._-_
oNn :

Completion Flag oFF __! ! ._

' ' ' '
— sv — ~— sv —
' ' ' '

Timers in interlocked program sections are reset when the execution condition
for IL(02) is OFF. Power interruptions also reset timers. If a timer that is not reset
under these conditions is desired, SR area clock pulse bits can be counted to
produce timers using CNT. Refer to 5-14-4 COUNTER — CNT for details.

Program execution will continue even if a non-BCD SV is used, but timing will not
be accurate.

The SV of the timers can be set in the range #0000 to #9999 (BCD). If the SV for a
timer is set to #0000 or #0001, it will operate in the following way. If the SV is set
to #0000, when the timer input goes from OFF to ON, the Completion Flag will
turn ON. If the SV is set to #0001, because the timer accuracy is 0 to 0.1 s, the
actual time will be a value between 0 and 0.1 s, and the Completion Flag may
turn ON as soon as the timer input goes from OFF to ON. With other values also,
allow for a timer accuracy of 0 to —0.1 s when setting the SV.

ER: SVis not in BCD.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

All of the following examples use OUT in diagrams that would generally be used
to control output bits in the IR area. There is no reason, however, why these dia-
grams cannot be modified to control execution of other instructions.

The following example shows two timers, one set with a constant and one set via
input word 005. Here, 00200 will be turned ON after 00000 goes ON and stays
ON for at least 15 seconds. When 00000 goes OFF, the timer will be reset and
00200 will be turned OFF. When 00001 goes ON, TIM 001 is started from the SV
provided through IR word 005. Bit 00201 is also turned ON when 00001 goes
ON. When the SV in 005 has expired, 00201 is turned OFF. This bit will also be
turned OFF when TIM 001 is reset, regardless of whether or not SV has expired.

140

00000
_“ TIM 000 Address | Instruction Operands
#0150 | 015.0's 00000 | LD 00000
00001 TIM 000
TIM|OOO # 0150
—| 00200
| 00002 LD TIM 000
00001 00003 ouT 00200
— | TIM 001 00004 | LD 00001
IR005 | IR 005 00005 | TIM 001
TIM 001 005
% 00201 00006 | AND NOT TIM 001
P4l
00007 ouT 00200




Timer and Counter Instructions

Section 5-14

Example 2:
Extended Timers

There are two ways to achieve timers that operate for longer than 999.9 sec-
onds. One method is to program consecutive timers, with the Completion Flag of
each timer used to activate the next timer. A simple example with two 900.0-sec-
ond (15-minute) timers combined to functionally form a 30-minute timer.

00000
_“ TIM 0oL Address | Instruction Operands
#9000 | 900.0s 00000 | LD 00000
TIM 001 00001 TIM 001
— | TIM 002 # 9000
49000 | 900.0 00002 | LD TIM 001
00003 | TIM 002
TIM 002 # 9000
ml @ 00004 | LD TIM 002
00005 | OUT 00200
In this example, 00200 will be turned ON 30 minutes after 00000 goes ON.
TIM can also be combined with CNT or CNT can be used to count SR area clock
pulse bits to produce longer timers. An example is provided in 5-14-4 COUNTER
— CNT.
Example 3: TIM can be combined with KEEP(11) to delay turning a bit ON and OFF in refer-

ON/OFF Delays

ence to a desired execution condition. KEEP(11) is described in 5-9-4 KEEP —
KEEP(11).

To create delays, the Completion Flags for two TIM are used to determine the
execution conditions for setting and reset the bit designated for KEEP(11). The
bit whose manipulation is to be delayed is used in KEEP(11). Turning ON and
OFF the bit designated for KEEP(11) is thus delayed by the SV for the two TIM.
The two SV could naturally be the same if desired.

In the following example, 00500 would be turned ON 5.0 seconds after 00000
goes ON and then turned OFF 3.0 seconds after 00000 goes OFF. It is neces-
sary to use both 00500 and 00000 to determine the execution condition for TIM
002; 00000 in an inverse condition is necessary to reset TIM 002 when 00000
goes ON and 00500 is necessary to activate TIM 002 (when 00000 is OFF).

00000
_“ TIM 001 Address | Instruction Operands
#0050 | 005.0s 00000 LD 00000
00500 00000 00001 TIM 001
— —F TIM 002 # 0050
40030 | 0030s | 00002 | LD 00500
TIM 001 00003 AND NOT 00000
— | 2 00004 | TIM 002
KEEP(11) # 0030
00005 LD TIM 001
leiooz R 20e00 00006 | LD TIM 002
00007 KEEP(11) 00500
00000 t T
1 1
1 )
]
00500 t

50s

3.0s

141



Timer and Counter Instructions

Section 5-14

Example 4:
One-Shot Bits

The length of time that a bit is kept ON or OFF can be controlled by combining
TIM with OUT or OUT NO. The following diagram demonstrates how this is pos-
sible. In this example, 00204 would remain ON for 1.5 seconds after 00000 goes
ON regardless of the time 00000 stays ON. This is achieved by using 01000 as a
self-maintaining bit activated by 00000 and turning ON 00204 through it. When
TIM 001 comes ON (i.e., when the SV of TIM 001 has expired), 00204 will be
turned OFF through TIM 001 (i.e., TIM 001 will turn ON which, as an inverse con-
dition, creates an OFF execution condition for OUT 00204).

01000 T'Mg 01000 Address | Instruction Operands
00000 LD 01000
00000 00001 AND NOT TIM 001
— 00002 | OR 00000
01000 00003 ouT 01000
| —— 00004 [LD 01000
40015 |oorse | 00005 | TIM 001
# 0015
01000 TIM 001 00006 LD 01000
_| |_H/ 00204 00007 AND NOT TIM 001
00008 ouT 00204
00000 | l rl
1
]
00204
15s 15s
The following one-shot timer may be used to save memory.
00000 )
: TIM 001 Address | Instruction Operands
#0015 |oorss | 00000 | LD 00000
00001 OR 00100
00100 TIM 001 00002 TIM 001
I K 00100 P 0015
00003 AND NOT TIM 001
00004 ouT 00100

142




Timer and Counter Instructions

Section 5-14

Example 5:

Flicker Bits

00000 TIM 002

—

Bits can be programmed to turn ON and OFF at regular intervals while a desig-
nated execution condition is ON by using TIM twice. One TIM functions to turn
ON and OFF a specified bit, i.e., the Completion Flag of this TIM turns the speci-
fied bit ON and OFF. The other TIM functions to control the operation of the first
TIM, i.e., when the first TIM’'s Completion Flag goes ON, the second TIM is
started and when the second TIM’s Completion Flag goes ON, the first TIM is
started.

Address [ Instruction Operands

TIM 001

TIM 001

00000 | LD
00001 | AND
00002 | TIM

00000
002
001

#0010 10s

TIM

ml

TIM 001

TIM 002

# 0010
00003 | LD TIM 001

#0015 15s

—

00004 | TIM 002
@ # 0015

00005 | LD TIM 001
00006 | OUT

00205

00000

00205

00000 25502

o]

[

10s

15s

10s 15s

A simpler but less flexible method of creating a flicker bit is to AND one of the SR
area clock pulse bits with the execution condition that is to be ON when the
flicker bit is operating. Although this method does not use TIM, it is included here
for comparison. This method is more limited because the ON and OFF times
must be the same and they depend on the clock pulse bits available in the SR
area.

In the following example the 1-second clock pulse is used (25502) so that 00206
would be turned ON and OFF every second, i.e., it would be ON for 0.5 seconds
and OFF for 0.5 seconds. Precise timing and the initial status of 00206 would
depend on the status of the clock pulse when 00000 goes ON.

Address
00000 | LD

Instruction Operands

00000

it

00001 | LD
00002 | OUT

25502
00206

00206

5-14-2 HIGH-SPEED TIMER - TIMH(15)

Limitations

Definer Values

Ladder Symbol N: TC number

# (000 through 015 preferred)

TIMH(15) N
sv

Operand Data Areas

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

SV is between 00.00 and 99.99. (Although 00.00 and 00.01 may be set, 00.00
will disable the timer, i.e., turn ON the Completion Flag immediately, and 00.01 is
not reliably cycled.) The decimal point is not entered.

143



Timer and Counter Instructions Section 5-14

Description

Precautions

Flags

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

If the cycle time is greater than 10 ms, use TC 000 through TC 015.

TIMH(15) operates in the same way as TIM except that TIMH measures in units
of 0.01 second.

The cycle time affects TIMH(15) accuracy if TC 016 through TC 511 are used. If
the cycle time is greater than 10 ms, use TC 000 through TC 015.

Refer to 5-14-1 TIMER — TIM for operational details and examples. Except for
the above, and all aspects of operation are the same.

Timers in interlocked program sections are reset when the execution condition
for IL(02) is OFF. Power interruptions also reset timers. If a timer that is not reset
under these conditions is desired, SR area clock pulse bits can be counted to
produce timers using CNT. Refer to 5-14-4 COUNTER — CNT for details.
Program execution will continue even if a non-BCD SV is used, but timing will not
be accurate.

The SV of the timers can be set in the range #0000 to #9999 (BCD). If the SV for a
timer is set to #0000 or #0001, it will operate in the following way. If the SV is set
to #0000, when the timer input goes from OFF to ON, the Completion Flag will
turn ON. There may be a time delay if TC 000 to TC 003 are used. If the SV is set
to #0001, because the timer accuracy is 0 to 0.1 s, the actual time will be a value
between 0 and 0.1 s, and the Completion Flag may turn ON as soon as the timer
input goes from OFF to ON. With other values also, allow for a timer accuracy of
0 to —0.1 s when setting the SV.

ER: SVis not in BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-14-3 TOTALIZING TIMER — TTIM(87)

Limitations

Description

144

Definer Values

Ladder Symbol N: TC number
# (000 through 511)
—1 TTIM(87)
N Operand Data Areas
SV SV: Set value (word, BCD)
IR, AR, DM, HR, LR
RB
RB: Reset bit

IR, SR, AR, HR, LR

SV is between 0000 and 9999 (000.0 and 999.9 s) and must be in BCD. The dec-
imal point is not entered.

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

TTIM(87) is used to create a timer that increments the PV every 0.1 s to time
between 0.1 and 999.9 s. TTIM(87) increments in units of 0.1 second from zero.
TTIM(87) accuracy is +0.0/-0.1 second. A TTIM(87) timer will time as long as its
execute condition is ON until it reaches the SV or until RB turns ON to reset the
timer. TIMM(87) timers will time only as long as they are executed every cycle,
i.e., they do not time, but maintain the current PV, in interlocked program sec-
tions or when they are jumped in the program.



Timer and Counter Instructions Section 5-14

Precautions

Flags

Example

00000

The PVs of totalizing timers in interlocked program sections are maintained
when the execution condition for IL(02) is OFF. Unlike timers and high-speed
timers, totalizing timers in jumped program sections do not continue timing, but
maintain the PV.

Power interruptions will reset timers.

Totalizing timers will not restart after timing out unless the PV is changed to a
value below the SV or the reset input is turned ON.

A delay of one cycle is sometimes required for a Completion Flag to be turned
ON after the timer times out.

The SV of the timers can be set in the range #0000 to #9999 (BCD). If the SV for a
timer is set to #0000 or #0001, it will operate in the following way. If the SV is set
to #0000, when the timer input goes from OFF to ON, the Completion Flag will
turn ON. If the SV is set to #0001, because the timer accuracy is 0 to 0.1 s, the
actual time will be a value between 0 and 0.1 s, and the Completion Flag may
turn ON as soon as the timer input goes from OFF to ON. With other values also,
allow for a timer accuracy of 0 to —0.1 s when setting the SV.

ER (SR 25503): Content of =DM word is not BCD when set for BCD.
SV is not BCD.

The following figure illustrates the relationship between the execution conditions
for a totalizing timer with a set value of 2 s, its PV, and the Completion Flag.

(TIM 000)

Address | Instruction Operands
TTIM(87)
00000 LD 00000
TIM 000
00001 | TTIM(87)
#0020
TIM 000
LR 2100 % 0020
LR 2100
Timer input |
(I: IR 00000) t
]
]
Reset bit |_| ' |—|
(RB: LR 2100) .
! :
- -
Z
]
]
]

I
Completion Flag '
Present value: 0020 :

0000

5-14-4 COUNTER — CNT

Definer Values

Ladder Symbol N: TC number

# (000 through 511)

CP

CNTN

R sv Operand Data Areas

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

145



Timer and Counter Instructions

Section 5-14

Limitations

Description

Precautions

Flags

Example 1:

Basic Application

00001

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

CNT is used to count down from SV when the execution condition on the count
pulse, CP, goes from OFF to ON, i.e., the present value (PV) will be decre-
mented by one whenever CNT is executed with an ON execution condition for
CP and the execution condition was OFF for the last execution. If the execution
condition has not changed or has changed from ON to OFF, the PV of CNT will
not be changed. The Completion Flag for a counter is turned ON when the PV
reaches zero and will remain ON until the counter is reset.

CNT is reset with a reset input, R. When R goes from OFF to ON, the PV is reset
to SV. The PV will not be decremented while R is ON. Counting down from SV will
begin again when R goes OFF. The PV for CNT will not be reset in interlocked
program sections or by power interruptions.

Changes in execution conditions, the Completion Flag, and the PV are illus-
trated below. PV line height is meant only to indicate changes in the PV.

Execution condition ON
on count pulse (CP) OFF

Execution condition
on reset (R)

=

Completion Flag

F

%]
<

PV

0002
0001

0000

Program execution will continue even if a non-BCD SV is used, but the SV will
not be correct.

ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

In the following example, the PV will be decremented whenever both 00000 and
00001 are ON provided that 00002 is OFF and either 00000 or 00001 was OFF
the last time CNT 004 was executed. When 150 pulses have been counted down
(i.e., when PV reaches zero), 00205 will be turned ON.

CNT 004

146

cP Address | Instruction Operands
CNT 004
00000 | LD 00000
E{ #o1s0 00001 | AND 00001
00002 LD 00002
00003 CNT 0004
00205 7 0150
00004 | LD CNT 004
00005 ouT 00205

Here, 00000 can be used to control when CNT is operative and 00001 can be
used as the bit whose OFF to ON changes are being counted.



Timer and Counter Instructions Section 5-14

The above CNT can be modified to restart from SV each time power is turned ON
to the PC. This is done by using the First Cycle Flag in the SR area (25315) to
reset CNT as shown below.

00000 00001 cP Address | Instruction Operands
11 11 CNT 004
00002 00000 | LD 00000
i} R #0150 00001 | AND 00001
25315 00002 LD 00002
{1 00003 | OR 25315
ONT 004 00004 | CNT 004
I} @ # 0150
00005 | LD CNT 004
00006 | OUT 00205
Example 2: Counters that can count past 9,999 can be programmed by using one CNT to

Extended Counter

00000 00001

count the number of times another CNT has counted to zero from SV.

In the following example, 00000 is used to control when CNT 001 operates. CNT
001, when 00000 is ON, counts down the number of OFF to ON changes in
00001. CNT 001 is reset by its Completion Flag, i.e., it starts counting again as
soon as its PV reaches zero. CNT 002 counts the number of times the Comple-
tion Flag for CNT 001 goes ON. Bit 00002 serves as a reset for the entire ex-
tended counter, resetting both CNT 001 and CNT 002 when it is OFF. The Com-
pletion Flag for CNT 002 is also used to reset CNT 001 to inhibit CNT 001 opera-
tion, once SV for CNT 002 has been reached, until the entire extended counter is
reset via 00002.

Because in this example the SV for CNT 001 is 100 and the SV for CNT 002 is
200, the Completion Flag for CNT 002 turns ON when 100 x 200 or 20,000 OFF
to ON changes have been counted in 00001. This would result in 00203 being
turned ON.

_| | cP Address | Instruction Operands
I I |
CNT 001 00000 | LD 00000
00(]’/02 R #0100 00001 AND 00001
— 00002 | LD NOT 00002
ONT 001 00003 | OR CNT 001
— — 00004 [ OR CNT 002
00005 | CNT 001
CNT 002 # 0100
— 00006 | LD CNT 001
ONT 001 00007 | LD NOT 00002
— } cp 00008 | CNT 002
CNT 002 # 0200
00002 R #0200 00009 | LD CNT 002
# 00010 | ouT 00203
CNT 002
_l : 00203
CNT can be used in sequence as many times as required to produce counters
capable of counting any desired values.
Example 3: CNT can be used to create extended timers in two ways: by combining TIM with

Extended Timers

CNT and by counting SR area clock pulse bits.

In the following example, CNT 002 counts the number of times TIM 001 reaches
zero from its SV. The Completion Flag for TIM 001 is used to reset TIM 001 so
that it runs continuously and CNT 002 counts the number of times the Comple-
tion Flag for TIM 001 goes ON (CNT 002 would be executed once each time be-

147



Timer and Counter Instructions

Section 5-14

tween when the Completion Flag for TIM 001 goes ON and TIM 001 is reset by
its Completion Flag). TIM 001 is also reset by the Completion Flag for CNT 002
so that the extended timer would not start again until CNT 002 was reset by
00001, which serves as the reset for the entire extended timer.

Because in this example the SV for TIM 001 is 5.0 seconds and the SV for CNT
002 is 100, the Completion Flag for CNT 002 turns ON when 5 seconds x 100
times, i.e., 500 seconds (or 8 minutes and 20 seconds) have expired. This would

result in 00201 being turned ON.

00000 TIM 001 CNT 002 -
_| I_JHI/ TIM 001 Address [ Instruction Operands
#0050 | 00s.0s 00000 | LD 00000
TIM 001 o 00001 | AND NOT TIM 001
— | ot 00002 | AND NOT CNT 002
002 00003 | TIM 001
00001 # 0050
— | #0100
R 00004 | LD TIM 001
CNT 002 00005 | LD 00001
— | @ 00006 [ CNT 002
# 0100
00007 | LD CNT 002
00008 | ouT 00201
In the following example, CNT 001 counts the number of times the 1-second
clock pulse bit (25502) goes from OFF to ON. Here again, 00000 is used to con-
trol the times when CNT is operating.
Because in this example the SV for CNT 001 is 700, the Completion Flag for
CNT 002 turns ON when 1 second x 700 times, or 11 minutes and 40 seconds
have expired. This would result in 00202 being turned ON.
_oiJ(l)oo_zi‘,?oz cP Address | Instruction Operands
pol 00000 | LD 00000
00001 R 00001 | AND 25502
—H #0700 00002 | LD NOT 00001
ONT 001 00003 | CNT 001
— | @ # 0700
00004 | LD CNT 001
00005 | OUT 00202

&Caution The shorter clock pulses will not necessarily produce accurate timers because their short ON
times might not be read accurately during longer cycles. In particular, the 0.02-second and
0.1-second clock pulses should not be used to create timers with CNT instructions.

5-14-5 REVERSIBLE COUNTER — CNTR(12)

148

Definer Values

Ladder Symbol N: TC number

# (000 through 511)

CNTR(12)
DI N

Operand Data Areas
SV

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #




Timer and Counter Instructions Section 5-14

Limitations

Description

Precautions

Flags

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

The CNTR(12) is a reversible, up/down circular counter, i.e., it is used to count
between zero and SV according to changes in two execution conditions, those in
the increment input (II) and those in the decrement input (DI).

The present value (PV) will be incremented by one whenever CNTR(12) is exe-
cuted with an ON execution condition for Il and the last execution condition for Il
was OFF. The present value (PV) will be decremented by one whenever
CNTR(12) is executed with an ON execution condition for DI and the last execu-
tion condition for DI was OFF. If OFF to ON changes have occurred in both Il and
DI since the last execution, the PV will not be changed.

If the execution conditions have not changed or have changed from ON to OFF
for both Il and DI, the PV of CNT will not be changed.

When decremented from 0000, the present value is set to SV and the Comple-
tion Flag is turned ON until the PV is decremented again. When incremented
past the SV, the PV is set to 0000 and the Completion Flag is turned ON until the
PV is incremented again.

CNTR(12) is reset with a reset input, R. When R goes from OFF to ON, the PV is
reset to zero. The PV will not be incremented or decremented while R is ON.
Counting will begin again when R goes OFF. The PV for CNTR(12) will not be
reset in interlocked program sections or by the effects of power interruptions.

Changes in Il and DI execution conditions, the Completion Flag, and the PV are
illustrated below starting from part way through CNTR(12) operation (i.e., when
reset, counting begins from zero). PV line height is meant to indicate changes in
the PV only.

Execution condition
on increment (Il)

Execution condition
on decrement (DI)

Completion Flag

PV

0000 0000

Program execution will continue even if a non-BCD SV is used, but the SV will
not be correct.

ER: SVis not in BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

149



Data Shifting

Section 5-15

5-15 Data Shifting

All of the instructions described in this section are used to shift data, but in differ-
ing amounts and directions. The first shift instruction, SFT(10), shifts an execu-
tion condition into a shift register; the rest of the instructions shift data that is al-
ready in memory.

5-15-1 SHIFT REGISTER - SFT(10)

Limitations

Description

Ladder Symbol Operand Data Areas

St: Starting word

SFT(10)
P IR, SR, AR, HR, LR

St

R . E: End word

IR, SR, AR, HR, LR

St must be less than or equal to E, and St and E must be in the same data area.

If a bit address in one of the words used in a shift register is also used in an in-
struction that controls individual bit status (e.g., OUT, KEEP(11)), an error
(“COIL DUPL™) will be generated when program syntax is checked on the Pro-
gramming Console or another Programming Device. The program, however,
will be executed as written. See Example 2: Controlling Bits in Shift Registers for
a programming example that does this.

SFT(10) is controlled by three execution conditions, I, P, and R. If SFT(10) is
executed and 1) execution condition P is ON and was OFF the last execution,
and 2) R is OFF, then execution condition | is shifted into the rightmost bit of a
shift register defined between Stand E, i.e., if I is ON, a 1 is shifted into the regis-
ter; if | is OFF, a 0 is shifted in. When | is shifted into the register, all bits previously
in the register are shifted to the left and the leftmost bit of the register is lost.

St+1, St+2, ... St

Lost
data

Flags

150

/ (W VLV V. V. VIV VIV VIV V D W VIV PV VIV S VLUV VPV ISV UUUUUUUUUUUUUUUU\

Execution
condition |

The execution condition on P functions like a differentiated instruction, i.e., | will
be shifted into the register only when P is ON and was OFF the last time SFT(10)
was executed. If execution condition P has not changed or has gone from ON to
OFF, the shift register will remain unaffected.

St designates the rightmost word of the shift register; E designates the leftmost.
The shift register includes both of these words and all words between them. The
same word may be designated for St and E to create a 16-bit (i.e., 1-word) shift
register.

When execution condition R goes ON, all bits in the shift register will be turned
OFF (i.e., set to 0) and the shift register will not operate until R goes OFF again.

There are no flags affected by SFT(10).



Data Shifting Section 5-15

Example 1. The following example uses the 1-second clock pulse bit (25502) so that the
Basic Application execution condition produced by 00005 is shifted into a 3-word register between
IR 010 and IR 012 every second.

o?c:os | Address | Instruction Operands
ste02 SFT(10) 00000 | LD 00005
I} - 010 00001 | LD 25502
00006 R o 00002 | LD 00006
i 00003 | SFT(10)
010
012
Example 2: The following program is used to control the status of the 17th bit of a shift regis-
Controlling Bits in Shift ter running from AR 00 through AR 01. When the 17th bit is to be set, 00004 is
Registers turned ON. This causes the jump for IMP(04) 00 not to be made for that one
cycle, and AR 0100 (the 17th bit) will be turned ON. When 12800 is OFF (i.e., at
all times except during the first cycle after 00004 has changed from OFF to ON),
the jump is executed and the status of AR 0100 will not be changed.
00200 00201 R
_| |_| : Address | Instruction Operands
SFT(0) 00000 | LD 00200
00202 P 00001 [ AND 00201
ml AR 00 00002 | LD 00202
00203 AR 01 00003 | LD 00203
— } R 00004 | SFT(10)
AR 00
00004 AR 01
— @l 00005 | LD 00004
12800 00006 | DIFU(13) 12800
l IMP(O2) 00 00007 | LD 12800
i E 00008 | IMP(04) 00
12800 O 00009 | LD 12800
— AR 0100 00010 |[out AR 0100
00011 | JME(05) 00
II JME(05) 00 |
When a bit that is part of a shift register is used in OUT (or any other instruction
that controls bit status), a syntax error will be generated during the program
check, but the program will executed properly (i.e., as written).
Example 3: The following program controls the conveyor line shown below so that faulty
Control Action products detected at the sensor are pushed down a shoot. To do this, the execu-

tion condition determined by inputs from the first sensor (00001) are stored in a
shift register: ON for good products; OFF for faulty ones. Conveyor speed has
been adjusted so that HR 0003 of the shift register can be used to activate a
pusher (00500) when a faulty product reaches it, i.e., when HR 0003 turns ON,
00500 is turned ON to activate the pusher.

151



Data Shifting Section 5-15

The program is set up so that a rotary encoder (00000) controls execution of
SFT(10) through a DIFU(13), the rotary encoder is set up to turn ON and OFF
each time a product passes the first sensor. Another sensor (00002) is used to
detect faulty products in the shoot so that the pusher output and HR 0003 of the
shift register can be reset as required.

Sensor
(00001)
Pusher
(00500)
—
Sensor
Rotary Encoder (00002)
00000
( ) Chute
00001 | Address [ Instruction Operands
1L
11 SFT(10) 00000 LD 00001
00000
11 P 00001 | LD 00000
1T HR 00
00003 00002 | LD 00003
I E 1 ol 00003 | SFT(10)
HR 00
HR 01
HR 0003
“ 00500 00004 | LD HR 0003
00005 | OUT 00500
00006 | LD 00002
00002
11 00500 00007 | OUT NOT 00500
" 00008 | OUT NOT HR 0003

HR 0003

5-15-2 REVERSIBLE SHIFT REGISTER - SFTR(84)

Operand Data Areas

Ladder Symbols C: Control word
IR, AR, DM, HR, LR
— SFTR(84) — @SFTR(84)
St: Starting word
C C
IR, SR, AR, DM, HR, LR
St St E: End word
E E IR, SR, AR, DM, HR LR
Limitations St and E must be in the same data area and St must be less than or equal to E.

152



Data Shifting

Section 5-15

Description

Flags

Example

00005

SFTR(84) is used to create a single- or multiple-word shift register that can shift
data to either the right or the left. To create a single-word register, designate the
same word for St and E. The control word provides the shift direction, the status
to be put into the register, the shift pulse, and the reset input. The control word is
allocated as follows:

15|14 113 |12 Not used.

Shift direction
1 (ON): Left (LSB to MSB)
0 (OFF): Right (MSB to LSB)

Status to input into register

Shift pulse bit

Reset

The data in the shift register will be shifted one bit in the direction indicated by bit
12, shifting one bit out to CY and the status of bit 13 into the other end whenever
SFTR(84) is executed with an ON execution condition as long as the reset bit is
OFF and as long as bit 14 is ON. If SFTR(84) is executed with an OFF execution
condition or if SFTR(84) is executed with bit 14 OFF, the shift register will remain
unchanged. If SFTR(84) is executed with an ON execution condition and the re-
set bit (bit 15) is OFF, the entire shift register and CY will be set to zero.

ER: St and E are not in the same data area or ST is greater than E.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: Receives the status of bit 00 of St or bit 15 of E, depending on the shift
direction.

In the following example, IR 00005, IR 00006, IR 00007, and IR 00008 are used
to control the bits of C used in @SHIFT(84). The shift register is between LR 20
and LR 21, and it is controlled through IR 00009.

00006

00007

00008

00009

Address | Instruction Operands
@ Direction 00000 | LD 00005
00001 ouT 05012
00002 LD 00006
05013 Status to input 00003 ouT 05013
00004 LD 00007
00005 ouT 00514
@ Shit pulse 00006 LD 00008
00007 ouT 05015
00008 LD 00009
00009 @SFT(10)
05015 Reset 050
LR 20
LR 21

@SFTR(84)
050

LR 20

LR 21

153



Data Shifting Section 5-15
5-15-3 ARITHMETIC SHIFT LEFT — ASL(25)
Ladder Symbols Operand Data Areas
ASL(25) — @nsLes) wd: Shift word
IR, SR, AR, DM, HR, LR
wd wd

Description

Flags

When the execution condition is OFF, ASL(25) is not executed. When the execu-
tion condition is ON, ASL(25) shifts a O into bit 00 of Wd, shifts the bits of Wd one
bit to the left, and shifts the status of bit 15 into CY.

Bit Bit
cY 15 00
[J [x]oJo[s]s]]ofoJos]o]a]ofofa]s] |

ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: Receives the status of bit 15.
EQ: ON when the content of Wd is zero; otherwise OFF.

5-15-4 ARITHMETIC SHIFT RIGHT — ASR(26)

Description

Flags

154

Ladder Symbols Operand Data Areas

ASR(26) —— @ASR(26)

Wd: Shift word

IR, SR, AR, DM, HR, LR

wd wd

When the execution condition is OFF, ASR(25) is not executed. When the exe-
cution condition is ON, ASR(25) shifts a 0 into bit 15 of Wd, shifts the bits of Wd
one bit to the right, and shifts the status of bit 00 into CY.

Bit Bit

15 00 CY
o [zfo]of1]efz]1]ofo2]2]o]o]1]o] [ ]
~—r ~—r
ER: Indirectly addressed DM word is non-existent. (Content of *DM word is

not BCD, or the DM area boundary has been exceeded.)
CY: Receives the data of bit 00.
EQ: ON when the content of Wd is zero; otherwise OFF.



Data Shifting Section 5-15
5-15-5 ROTATE LEFT — ROL(27)
Ladder Symbols Operand Data Areas
ROL(27) @ROL(27) Wd: Rotate word
IR, SR, AR, DM, HR, LR
wd wd

Description

Precautions

Flags

When the execution condition is OFF, ROL(27) is not executed. When the exe-
cution condition is ON, ROL(27) shifts all Wd bits one bit to the left, shifting CY
into bit 00 of Wd and shifting bit 15 of Wd into CY.
Bit Bit
cy 15 00
@ [1]o]1[1]ofo[s]1]1]ofofo[s]1]0]1]
~__

Use STC(41) to set the status of CY or CLC(41) to clear the status of CY before
doing a rotate operation to ensure that CY contains the proper status before ex-
ecution ROL(27).

The status of CY is cleared at the end of each cycle (when END(01) is executed).

ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 15.
EQ: ON when the content of Wd is zero; otherwise OFF.

5-15-6 ROTATE RIGHT — ROR(28)

Description

Precautions

Flags

Ladder Symbols Operand Data Areas

ROR(28) — @ROR(28)

Wd: Rotate word

IR, SR, AR, DM, HR, LR
wd wd

When the execution condition is OFF, ROR(28) is not executed. When the exe-
cution condition is ON, ROR(28) shifts all Wd bits one bit to the right, shifting CY
into bit 15 of Wd and shifting bit 00 of Wd into CY.
Bit Bit
CY 15 00
@ [o]1]o]1]o[1]ofoo[1]1[1]ofo]o]1]
N

Use STC(41) to set the status of CY or CLC(41) to clear the status of CY before
doing a rotate operation to ensure that CY contains the proper status before ex-
ecution ROR(28).

The status of CY is cleared at the end of each cycle (when END(01) is executed).

ER: Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 15.
EQ: ON when the content of Wd is zero; otherwise OFF.

155



Data Shifting Section 5-15
5-15-7 ONE DIGIT SHIFT LEFT — SLD(74)
Ladder Symbols Operand Data Areas
St: Starting word
SLD(74) @SLD(74) IR, SR, AR, DM, HR, LR
St St
E: End word
E E IR, SR, AR, DM, HR, LR

Limitations

Description

Precautions

Flags

St and E must be in the same data area, and St must be less than or equal to E.

When the execution condition is OFF, SLD(74) is not executed. When the execu-
tion condition is ON, SLD(74) shifts data between St and E (inclusive) by one
digit (four bits) to the left. O is written into the rightmost digit of the St, and the
content of the leftmost digit of E is lost.

E LSt
8|F|c|s D[7]9]1
Lost data 0

If a power failure occurs during a shift operation across more than 50 words, the
shift operation might not be completed.

ER: The St and E words are in different areas, or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-15-8 ONE DIGIT SHIFT RIGHT — SRD(75)

Limitations

Description

156

Ladder Symbols Operand Data Areas
E: End word

SRD(75) —— @SRD(75)

IR, SR, AR, DM, HR, LR

E E

St: Starting word

St St

IR, SR, AR, DM, HR, LR

St and E must be in the same data area, and St must be less than or equal to E.

When the execution condition is OFF, SRD(75) is not executed. When the exe-
cution condition is ON, SRD(75) shifts data between St and E (inclusive) by one
digit (four bits) to the right. 0 is written into the leftmost digit of St and the right-
most digit of E is lost.

St E
3[4[5]2] " [F[8]c]1
0 Lost data



Data Shifting Section 5-15

Precautions If a power failure occurs during a shift operation across more than 50 words, the
shift operation might not be completed. Set the range between E and Stto a
maximum of 50 words.

Flags ER: The St and E words are in different areas, or St is less than E.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-15-9 WORD SHIFT — WSFT(16)

Ladder Symbols Operand Data Areas
St: Starting word
—1 WSFT(16) —1 @WSFT(16) IR, SR, AR, DM, HR. LR
St St
E: End word

E E IR, SR, AR, DM, HR, LR
Limitations St and E must be in the same data area, and St must be less than or equal to E.
Description When the execution condition is OFF, WSFT(16) is not executed. When the exe-

cution condition is ON, WSFT(16) shifts data between St and E in word units.
Zeros are written into St and the content of E is lost.

E St+1 St

Flo|lC|2|3|4|5|2|]1]0)]2]29

l [ 0000

E St+1 St

Flags ER: The St and E words are in different areas, or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-15-10 ASYNCHRONOUS SHIFT REGISTER — ASFT(17)

Operand Data Areas

Ladder Symbols C: Control word
IR, SR, AR, DM, HR, LR
T | ASFTA7) T | ASFT17) St: Starting word
c c IR, SR, AR, DM, HR, LR
St St E: End word
E E IR, SR, AR, DM, HR, LR
Limitations St and E must be in the same data area, and St must be less than or equal to E.

157



Data Movement

Section 5-16

Description

Control Word

Flags

Example

When the execution condition is OFF, ASFT(17) does nothing and the program
moves to the next instruction. When the execution condition is ON, ASFT(17) is
used to create and control a reversible asynchronous word shift register be-
tween St and E. This register only shifts words when the next word in the register
is zero, e.g., if no words in the register contain zero, nothing is shifted. Also, only
one word is shifted for each word in the register that contains zero. When the
contents of a word are shifted to the next word, the original word’s contents are
set to zero. In essence, when the register is shifted, each zero word in the regis-
ter trades places with the next word. (See Example below.)

The shift direction (i.e. whether the “next word” is the next higher or the next low-
er word) is designated in C. C is also used to reset the register. All of any portion
of the register can be reset by designating the desired portion with St and E.
Bits 00 through 12 of C are not used. Bit 13 is the shift direction: turn bit 13 ON to
shift down (toward lower addressed words) and OFF to shift up (toward higher
addressed words). Bit 14 is the Shift Enable Bit: turn bit 14 ON to enable shift
register operation according to bit 13 and OFF to disable the register. Bit 15 is the
Reset bit: the register will be reset (set to zero) between St and E when
ASFT(17) is executed with bit 15 ON. Turn bit 15 OFF for normal operation.

ER: The St and E words are in different areas, or St is greater than E.
Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

The following example shows instruction ASFT(17) used to shift words in an
11-word shift register created between DM 0100 and DM 0110 with a control
word value of #6000 (bits 13 and 14 ON). The data changes that would occur for

the given register and control word contents are also shown.
00000

: ASFT(17) Address | Instruction Operands
46000 00100 | LD 00000
DM 0100 00101 | ASFT(17)
DM 0110 # 6000
DM 0100
DM 0110
Before After 1 After 7
execution execution executions
DM 0100 1234 1234 1234
DM 0101 0000 0000 2345
DM 0102 0000 2345 3456
DM 0103 2345 >< 0000 4567
DM 0104 3456 3456 5678
DM 0105 0000 4567 6789
DM 0106 4567 It 0000 789A
DM 0107 5678 5678 0000
DM 0108 6789 6789 0000
DM 0109 0000 789A 0000
DM 0110 789A . 0000 0000

5-16 Data Movement

158

This section describes the instructions used for moving data between different
addresses in data areas. These movements can be programmed to be within
the same data area or between different data areas. Data movement is essential
for utilizing all of the data areas of the PC. Effective communications in Link Sys-
tems also requires data movement. All of these instructions change only the
content of the words to which data is being moved, i.e., the content of source
words is the same before and after execution of any of the data movement in-
structions.



Data Movement Section 5-16
5-16-1 MOVE — MOV(21)
Ladder Symbols Operand Data Areas
S: Source word
MOV/(21) — @MOV(21)
IR, SR, AR, DM, HR, TC, LR, #
S S
D: Destination word
D D
IR, SR, AR, DM, HR, LR

Description

Precautions

Flags

When the execution condition is OFF, MOV(21) is not executed. When the exe-
cution condition is ON, MOV(21) copies the content of S to D.

__Sourceword | 1 Destination word
| —_———
L Bit status
_____________ not changed.

TC numbers cannot be designated as D to change the PV of the timer or counter.
You can, however, easily change the PV of a timer or a counter by using
BSET(71).

ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when all zeros are transferred to D.

5-16-2 MOVE NOT — MVN(22)

Description

Precautions

Flags

Ladder Symbols Operand Data Areas
S: Source word
MVN(22) — @MVN(22)
IR, SR, AR, DM, HR, TC, LR, #
S S
D: Destination word

D D

IR, SR, AR, DM, HR, LR

When the execution condition is OFF, MVN(22) is not executed. When the exe-
cution condition is ON, MVN(22) transfers the inverted content of S (specified
word or four-digit hexadecimal constant) to D, i.e., for each ON bit in S, the corre-
sponding bit in D is turned OFF, and for each OFF bit in S, the corresponding bit
in D is turned ON.

__Sourceword | 1 Destination word

| —_————

L Bit status
_____________ inverted.

TC numbers cannot be designated as D to change the PV of the timer or counter.
However, these can be easily changed using BSET(71).

ER: Indirectly addressed DM word is non-existent. (Content of *DM word is

not BCD, or the DM area boundary has been exceeded.)
EQ: ON when all zeros are transferred to D.

159



Data Movement

Section 5-16

5-16-3 BLOCK SET — BSET(71)

Operand Data Areas

Ladder Symbols S: Source data
IR, SR, AR, DM, HR, TC, LR, #
— BSET(71) @BSET(71)
St: Starting word
S S
IR, SR, AR, DM, HR, TC, LR
St St E: End Word
E E
IR, SR, AR, DM, HR, TC, LR
Limitations St must be less than or equal to E, and St and E must be in the same data area.
Description When the execution condition is OFF, BSET(71) is not executed. When the exe-

cution condition is ON, BSET(71) copies the content of S to all words from St

through E.

S

3l4]5]2

St
3l4]5]2

St+l
3l4]5]2

St+2
3l4]5]2

E
3l4]5]2

BSET(71) can be used to change timer/counter PV. (This cannot be done with
MOV(21) or MVN(22).) BSET(71) can also be used to clear sections of a data
area, i.e., the DM area, to prepare for executing other instructions.

Flags ER:

160

St and E are not in the same data area or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)



Data Movement Section 5-16

Example The following example shows how to use BSET(71) to change the PV of a timer
depending on the status of IR 00003 and IR 00004. When IR 00003 is ON, TIM
010 will operate as a 50-second timer; when IR 00004 is ON, TIM 010 will oper-
ate as a 30-second timer.

000|03 0?(194 Address | Instruction Operands
— | v g @BSET(T) 00000 | LD 00003
#0500
00001 | AND NOT 00004
TIM 010
00002 | @BSET(71)
TIM 010 # 0500
00004 00003 Tim 010
— @BSET(TY) TIM 010
#0300 00003 | LD 00004
TIM 010 00004 | AND NOT 00003
TIM 010 00005 | @BSET(71)
# 0300
000|03 TIM 010
[ TIM 010 TIM 010
00004 #9999 00006 | LD 00003
— 00007 | OR 00004
00008 | TIM 010
# 9999

5-16-4 BLOCK TRANSFER — XFER(70)

Operand Data Areas

Ladder Symbols N: Number of words (BCD)
IR, SR, AR, DM, HR, TC, LR, #
— XFER(70) — @XFER(70)
S: Starting source word
N N
IR, SR, AR, DM, HR, TC, LR
S S D: Starting destination word
D D IR, SR, AR, DM, HR, TC, LR
Limitations Both S and D may be in the same data area, but their respective block areas

must not overlap. S and S+N must be in the same data area, as must D and D+N.
N must be BCD between 0000 and 6144.

Description When the execution condition is OFF, XFER(70) is not executed. When the exe-
cution condition is ON, XFER(70) copies the contents of S, S+1, ..., S+N to D,
D+1, ..., D+N.
S D

3la|s]2| ———— [3]4]5]2

S+l D+1
3l4[s|1| ——— > [3]4]5]1

S+2 D+2
3l4]2|2| ——— [3]4]2]2

S+N D+N
6l4]5]2] —— > [6]4]5]2

161



Data Movement

Section 5-16

Flags

ER: N is not BCD between 0000 and 2000.
S and S+N or D and D+N are not in the same data area.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-16-5 DATA EXCHANGE - XCHG(73)

Ladder Symbols Operand Data Areas
E1l: Exchange word 1
XCHG(73) — @XCHG(73)
IR, SR, AR, DM, HR, TC, LR
E1l E1l
E2: Exchange word 2
E2 E2
IR, SR, AR, DM, HR, TC, LR

Description

Flags

When the execution condition is OFF, XCHG(73) is not executed. When the exe-
cution condition is ON, XCHG(73) exchanges the content of E1 and E2.

El E2
[ —————=[[1]]

<

If you want to exchange content of blocks whose size is greater than 1 word, use
work words as an intermediate buffer to hold one of the blocks using XFER(70)
three times.

ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-16-6 SINGLE WORD DISTRIBUTE — DIST(80)

Operand Data Areas

Ladder Symbols S: Source data
IR, SR, AR, DM, HR, TC, LR, #
DIST(80) — @DIST(80)
DBs: Destination base word
S S
IR, SR, AR, DM, HR, TC, LR
DB DB
S S C: Control word (BCD)
¢ ¢ IR, SR, AR, DM, HR, TC, LR, #

Limitations

Description

Precautions

Data Distribution Operation
(C=0000 to 6655)

162

C must be a BCD. If C<6655, DBs must be in the same data area as DBs+C. If
C>9000, DBs must be in the same data area as DBs+C—-9000.

Depending on the value of C, DIST(80) will operate as a data distribution instruc-
tion or stack instruction. If C is between 0000 and 6655, DIST(80) will operate as
a data distribution instruction and copy the content of S to DBs+C. If the leftmost
digit of C is 9, DIST(80) will operate as a stack instruction and create a stack with
the number of words specified in the rightmost 3 digits of C.

Stack operation will be unreliable if the specified stack length is different from the
length specified in the last execution of DIST(80) or COLL(81).

When the execution condition is OFF, DIST(80) is not executed. When the exe-
cution condition is ON, DIST(80) copies the content of S to DBs+C, i.e.,C is
added to DBs to determine the destination word.

S DBs +C

3l4]5]2] ——— & [3]4]5]2




Data Movement

Section 5-16

Stack Operation
(C=9000 to 9999)

Example of Stack Operation

00001

When the execution condition is OFF, DIST(80) is not executed. When the exe-
cution condition is ON, DIST(80) operates a stack from DBs to DBs+C—9000.
DBs is the stack pointer, so S is copied to the word indicated by DBs and DBs is
incremented by 1.

Digits of C: 3210

\_I_,—> Specifies the stack length (000 to 999).

— A value of 9 indicates stack operation.

Data can be added to the stack until it is full. DIST(80) is normally used together
with COLL(81), which can be set to read from the stack on a FIFO or LIFO basis.
Refer to 5-16-7 DATA COLLECT — COLL(81) for details.

In the following example, the content of C (LR 10) is 9010, and DIST(80) is used
to write the numerical data #00FF to the 10-word stack from HR 20 to HR 29.
During the first cycle when IR 00001 is ON, the data is written to DBs+1 (HR 21)
and the stack pointer is incremented by 1. In the second cycle the data is written
to DBs+2 (HR 22) and the stack pointer is incremented, and so on.

Flags

DIST(80) Address | Instruction Operands
4 OOFF 00000 | LD 00001
R 20 00001 | DIST(80)
R 10 # 00FF
HR 20
LR 10
After one After two
execution executions
HR 20 HR 20
Stack pointer —» 0|0|0|1 ::> 0|0|0|2
" [HR 21 HR 21

Stack pointer
0|0|F|F incremented 0|0|F|F

HR 22 HR 22
[ ] ofo[r[r
Stack area — ) )
HR 29 HR 29

ER: The content of C is not BCD or 6655<C<9000.
When C<6655, DBs and DBs+C are not in the same data area.
When C>9000, DBs and DBs+C-9000 are not in the same data area.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of S is zero; otherwise OFF.

163



Data Movement

Section 5-16

5-16-7 DATA COLLECT —COLL(81)

Operand Data Areas

Ladder Symbols SBs: Source base word
IR, SR, AR, DM, HR, TC, LR
COLL(81) —] @COLL(81)
C: Offset data (BCD)
SBs SBs
IR, SR, AR, DM, HR, TC, LR, #
C C
D: Destination word
D D
IR, SR, AR, DM, HR, TC, LR

Limitations

Description

Precautions

Data Collection Operation
(C=0000 to 6655)

FIFO Stack Operation
(C=9000 to 9999)

C must be a BCD. If C<6655, SBs must be in the same data area as SBs+C. If the
leftmost digit of C is 8 or 9, DBs must be in the same data area as SBs+N (N=the
3 rightmost digits of C).

Depending on the value of C, COLL(81) will operate as a data collection instruc-
tion, FIFO stack instruction, or LIFO stack instruction. If C is between 0000 and
6655, COLL(81) will operate as a data collection instruction and copy the con-
tent of SBs+C to D.

If the leftmost digit of C is 9, COLL(81) will operate as a FIFO stack instruction. If
the leftmost digit of C is 8, COLL(81) will operate as a LIFO stack instruction.
Both stack operations use a stack beginning at SBs with a length specified in the
rightmost 3 digits of C.

Stack operation will be unreliable if the specified stack length is different from the
length specified in the last execution of DIST(80) or COLL(81).

When the execution condition is OFF, COLL(81) is not executed. When the exe-
cution condition is ON, COLL(81) copies the content of SBs + Cto D, i.e., Cis
added to SBs to determine the source word.

SBs+C D

3lal5[2] — o [3]4]5]2

When the execution condition is OFF, COLL(81) is not executed. When the exe-
cution condition is ON, COLL(81) copies the data from the oldest word recorded
in the stack to D. The stack pointer, SBs, is then decremented by 1.

Digits of C: 3210

\_‘_,—> Specifies the stack length (000 to 999).

— A value of 9 indicates FIFO stack operation.

COLL(81) can be used together with DIST(80). Refer to 5-16-6 SINGLE WORD
DISTRIBUTE — DIST(80) for details.

Note FIFO stands for First-In-First-Out.

164



Data Movement Section 5-16

Example In the following example, the content of C (HR 00) is 9010, and COLL(81) is used
to copy the oldest entries from a10-word stack (IR 001 to IR 010) to LR 20.
00001 -
I DIST(80) Address | Instruction Operands
001 00000 | LD 00001
HR 00 00001 | COLL(81)
LR 20 001
HR 00
LR 20
Before After one After two
execution ) execution ) executions
Stack pointer Stack pointer
IR 001 decremented IR 001 decremented IR 001
Stack pointer — [0]0]0]2 => olofo]1 => ojofojo
" [ 1rR002 IR 002 IR 002
1[2]3[4 Als[c[p | [
IR 003 IR 003 IR 003
NEIEE | [ | [
Stack area — . . .
IR 010 IR 010 IR 010
N ] v
Output Output
LR 20 LR 20
1]2]3]4 AlB|c|D
LIFO Stack Operation When the execution condition is OFF, COLL(81) is not executed. When the exe-
(C=8000 to 8999) cution condition is ON, COLL(81) copies the data most recently recorded in the

stack to D. The stack pointer, SBs, is then decremented by 1.

Digits of C: 3210

\_‘_,—> Specifies the stack length (000 to 999).

—— A value of 8 indicates LIFO stack operation.

Data can be added to the stack until it is full. DIST(80)’s stack operation can be
used together with COLL(81)’s read stack operation. COLL(81) can be set to
read on a FIFO or LIFO basis. Refer to 5-16-6 SINGLE WORD DISTRIBUTE
(80) for details.

Note LIFO stands for Last-In-First-Out.

165



Data Movement

Section 5-16

Example

00001

In the following example, the content of C (HR 00) is 8010, and COLL(81) is used
to copy the most recent entries from a 10-word stack (IR 001 to IR 010) to LR 20.

Stack pointer —

—

Stack area —

Flags

CcoLL@1) Address | Instruction Operands
001 00000 | LD 00001
HR 00 00001 | COLL(81)
LR 20 001
HR 00
LR 20
Before After one After two
execution ) execution ) executions
Stack pointer Stack pointer
IR 001 decremented IR 001 decremented IR 001
olofo]2 => olofo]1 => olofolo
IR 002 IR 002 IR 002
1]2]3]4 1]2[3]4 [ [ ]
IR 003 IR 003 IR 003
NEEE [ [ ] [ [ ]
IR 010 IR 010 IR 010
[ [ ] [ [ ] [ [ ]
v v

Output

LR 20

AlB|c|D

Output

LR 20
1]2]3]4

ER: The content of C is not BCD or 6655<C<8000.
When C<6655, DBs and DBs+C are not in the same data area.

When C>8000, the beginning and end of the stack are not in the same
data area or the value of the stack pointer exceeds the length of the
stack.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the transferred data is zero; otherwise OFF.

5-16-8 MOVE BIT — MOVB(82)

Ladder Symbols

— MOVB(82)

S

Bi

D

Limitations

166

Operand Data Areas

S: Source word

— @MOVB(82)

IR, SR, AR, DM, HR, LR, #

S

Bi: Bit designator (BCD)

Bi

IR, SR, AR, DM, HR, TC, LR, #

D

D: Destination word

IR, SR, AR, DM, HR, LR

The rightmost two digits and the leftmost two digits of Bi must each be between

00 and 15.



Data Movement

Section 5-16

Description When the execution condition is OFF, MOVB(82) is not executed. When the exe-
cution condition is ON, MOVB(82) copies the specified bit of S to the specified bit
in D. The bits in S and D are specified by Bi. The rightmost two digits of Bi desig-
nate the source bit; the leftmost two bits designate the destination bit.

Bit Bit
15 00
- Bi [o]oJo]1][o]o|1]o]o]o]o]o]o]o]0]1]
Bit 1 2 0 1 Bit
wsa 1 [2[0]1] 1ce o o
S [ofafo[1]o[1]o]ofo[1]1[1]o]0[o]1]
Source bit (00 to 15) |
Bit Bit
Destination bit (00 to 15) 15 00
D [oifofofo[z]ofofo]1[1]1]o[o]o]1]
Flags ER: Cis not BCD, or it is specifying a non-existent bit (i.e., bit specification

must be between 00 and 15).

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-16-9 MOVE DIGIT — MOVD(83)

Limitations

Description

Operand Data Areas

Ladder Symbols S: Source word
IR, SR, AR, DM, HR, TC, LR, #
MOVD(83) —1 @MOVD(83)
Di: Digit designator (BCD)

S S

IR, SR, AR, DM, HR, TC, LR, #
Di Di

! ! D: Destination word
D D
IR, SR, AR, DM, HR, TC, LR

The rightmost three digits of Di must each be between 0 and 3.

When the execution condition is OFF, MOVD(83) is not executed. When the exe-
cution condition is ON, MOVD(83) copies the content of the specified digit(s) in S
to the specified digit(s) in D. Up to four digits can be transferred at one time. The
first digit to be copied, the number of digits to be copied, and the first digit to re-
ceive the copy are designated in Di as shown below. Digits from S will be copied
to consecutive digits in D starting from the designated first digit and continued for
the designated number of digits. If the last digit is reached in either S or D, further
digits are used starting back at digit 0.

Digit number: 3210

L First digitin S (0 to 3)

— Number of digits (0 to 3)
0: 1 digit

1: 2 digits
2: 3 digits
3: 4 digits

— First digitin D (0 to 3)

— Not used.

167



Data Movement

Section 5-16

Digit Designator

Flags

The following show examples of the data movements for various values of Di.

Di: 0010 Di: 0030
S D S D
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
Di: 0031 Di: 0023
S D S D
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

ER: At least one of the rightmost three digits of Di is not between 0 and 3.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

5-16-10 TRANSFER BITS — XFRB(62)

Limitations

Description

168

Operand Data Areas

Ladder Symbols C: Control word
IR, SR, AR, DM, TC, HR, LR, #
XFRB(62) —1 @XFRB(62)
S: First source word
C C
IR, SR, AR, DM, HR, TC, LR

S S

D: First destination word
D D IR, SR, AR, DM, HR, LR

The specified source bits must be in the same data area.
The specified destination bits must be in the same data area.

When the execution condition is OFF, XFRB(62) is not executed. When the exe-
cution condition is ON, XFRB(62) copies the specified source bits to the speci-
fied destination bits. The two rightmost digits of C specify the starting bits in S
and D and the leftmost two digits indicate the number of bits that will be copied.

C
| | | s

|—> First bit of S (0 to F)

—— Firstbitof D (O to F)
Number of bits (01 to FF)

MSB | |

Note 255 (FF) bits or more can not be copied at one time.



Data Comparison

Section 5-17

Example

Flags

In the following example, XFRB(62) is used to transfer 5 bits from IR 020 to
LR 21 when IR 00001 is ON. The starting bit in IR 020 is 0, and the starting bit in
LR 21 is 4, so IR 02000 to IR 02004 are copied to LR 2104 to LR 2108.

00001

I XFRB(62) Address | Instruction Operands
#0540 00000 | LD 00001
IR 020 00001 | XFRB(62)

LR 21 # 0540
020
LR 21

Bit Bit

15 00

ER:

5-17 Data Comparison

S (IR020) |o]1]o]1]o[1]o]o]o[ofo/1 021 1]

Bit Bit
15 00
D(LR21) |o|1[o]oo]1][o[2]0 2 2[1]0]0[0]1]

The specified source bits are not all in the same data area.
The specified destination bits are not all in the same data area.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

5-17-1 MULTI-WORD COMPARE — MCMP(19)

Limitations

Description

Flags

Operand Data Areas

Ladder Symbols TB1: First word of table 1
IR, SR, AR, DM, HR, TC, LR
MCMP(19) —1 @MCMP(19)
TB2: First word of table 2
TB1 TB1
IR, SR, AR, DM, HR, TC, LR
82 82 R: Result word
R R IR, AR, DM, HR, TC, LR

TB1 and TB1+15 must be in the same data area, as must TB2 and TB2+15.

When the execution condition is OFF, MCMP(19) is not executed. When the
execution condition is ON, MCMP(19) compares the content of TB1 to TB2,
TB1+1to TB2+1, TB1+2 to TB2+2, ..., and TB1+15 to TB2+15. If the first pair is
equal, the first bit in R is turned OFF, etc., i.e., if the content of TB1 equals the
content of TB2, bit 00 is turned OFF, if the content of TB1+1 equals the content of

TB2+1,

ER:

bit 01 is turned OFF, etc. The rest of the bits in R will be turned ON.

One of the tables (i.e., TB1 through TB1+15, or TB2 through TB2+15)
exceeds the data area.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

169



Data Comparison

Section 5-17

Example

00000
I

The following example shows the comparisons made and the results provided
for MCMP(19). Here, the comparison is made during each cycle when 00000 is
ON.

| MCMP(19) Address | Instruction Operands
100 00000 | LD 00000
DM 0200 00001 [ MCMP(19)

DM 0300 100

DM 0200

DM 0300
TB1: IR 100 TB2: DM 0200 | [ RrR:DM 0300
IR 100 0100 DM 0200 0100 DM 030000 [ ©
IR 101 0200 DM 0201 0200 DM 030001 | ©
IR 102 0210 ™ DM 0202 0210 |— ™ DMO030002| O
IR 103 ABCD DM 0203 0400 DM 030003 [ 1
IR 104 ABCD DM 0204 0500 DM 030004 [ 1
IR 105 ABCD DM 0205 0600 DM 030005 [ 1
IR 106 ABCD = DM 0206 0210 |—= DM 030006 | 1
IR 107 0800 DM 0207 0800 DM 030007 [ ©
IR 108 0900 DM 0208 0900 DM 030008 [ ©
IR 109 1000 DM 0209 1000 DM 030009 [ ©
IR 110 ABCD > DM 0210 0210 |—* DM 030010 | 1
IR 111 ABCD DM 0211 1200 DM 030011 [ 1
IR 112 ABCD DM 0212 1300 DM 030012 [ 1
IR 113 1400 DM 0213 1400 DM 030013 [ ©
IR 114 0210 > DM 0214 0210 |—*™] DM030014| ©
IR 115 1212 DM 0215 1600 DM 030015 [ 1

5-17-2 COMPARE — CMP(20)
Ladder Symbols Operand Data Areas
Cp1: First compare word
— CMP(20)
IR, SR, AR, DM, HR, TC, LR, #
Cpl
Cp2: Second compare word
Cp2
IR, SR, AR, DM, HR, TC, LR, #

Limitations

Description

Precautions

170

When comparing a value to the PV of a timer or counter, the value must be in
BCD.

When the execution condition is OFF, CMP(20) is not executed. When the exe-
cution condition is ON, CMP(20) compares Cpl and Cp2 and outputs the result
to the GR, EQ, and LE flags in the SR area.

Placing other instructions between CMP(20) and the operation which accesses
the EQ, LE, and GR flags may change the status of these flags. Be sure to ac-
cess them before the desired status is changed.

CMP(20) cannot be used to compare signed binary data. Use CPS(—) instead.
Refer to 5-17-8 SIGNED BINARY COMPARE — CPS(—) for details.



Data Comparison

Section 5-17
ER: Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON if Cpl equals Cp2.

LE: ON if Cp1lis less than Cp2.
GR: ON if Cpl is greater than Cp2.

Flag Address Cl<C2 Cl=C2 Cl>C2

GR 25505 OFF OFF ON

EQ 25506 OFF ON OFF

LE 25507 ON OFF OFF

Example 1:
Saving CMP(20) Results

The following example shows how to save the comparison result immediately. If
the content of HR 09 is greater than that of 010, 00200 is turned ON; if the two
contents are equal, 00201 is turned ON; if content of HR 09 is less than that of
010, 00202 is turned ON. In some applications, only one of the three OUTs would
be necessary, making the use of TR 0 unnecessary. With this type of program-
ming, 00200, 00201, and 00202 are changed only when CMP(20) is executed.

ooooo
I CMP(20)
HR 09
010
25505
_l I 00200 ) Greater Than
25506
— | 00201 ) Equal
25507
—| : 00202 ) |ess Than
Address | Instruction Operands Address | Instruction Operands
00000 LD 00000 00005 ouT 00200
00001 ouT TR 0 00006 LD TR 0
00002 CMP(20) 00007 AND 25506
010 00008 ouT 00201
HR 09 00009 LD TR 0
00003 LD TR 0 00010 AND 25507
00004 AND 25505 00011 ouT 00202

Example 2:
Obtaining Indications
during Timer Operation

The following example uses TIM, CMP(20), and the LE flag (25507) to produce
outputs at particular times in the timer’s countdown. The timer is started by turn-
ing ON 00000. When 00000 is OFF, TIM 010 is reset and the second two
CMP(20)s are not executed (i.e., executed with OFF execution conditions). Out-
put 00200 is produced after 100 seconds; output 00201, after 200 seconds; out-
put 00202, after 300 seconds; and output 00204, after 500 seconds.

171



Data Comparison

Section 5-17

00000

The branching structure of this diagram is important in order to ensure that
00200, 00201, and 00202 are controlled properly as the timer counts down. Be-
cause all of the comparisons here use to the timer’s PV as reference, the other

operand for each CMP(20) must be in 4-digit BCD.

TIM 010

#5000 500.0 s

25507

CMP(20)

TIM 010

#4000

00200

@

00200 Output at

100 s.

25507

CMP(20)

TIM 010

#3000

00201

@

ooz01) Output at

200 s.

25507

CMP(20)

TIM 010

#2000

5-17-3 DOUBLE COMPARE - CMPL(60)

172

—— CMPL(60)

Ladder Symbols

Cp1

Cp2

Output at
i @ 300's.
TIM 010
Output at

—! @ 5oops.

Address | Instruction Operands Address | Instruction Operands
00000 LD 00000 00007 AND 25507
00001 TIM 010 00008 ouT 00201

# 5000 00009 LD 00201
00002 CMP(20) 00010 CMP(20)

TIM 010 TIM 010

# 4000 # 2000
00003 AND 25507 00011 AND 25507
00004 ouT 00200 00012 ouT 00202
00005 LD 00200 00013 LD TIM 010
00006 CMP(20) 00014 ouT 00204

TIM 010

# 3000

Operand Data Areas

Cp1: First word of first compare word pair

IR,

SR, AR, DM, HR, TC, TR

Cp2: First word of second compare word pair

IR,

SR, AR, DM, HR, TC, LR




Data Comparison

Section 5-17

Limitations

Description

Precautions

Flags

Example:
Saving CMPL(60) Results

Cpl and Cp1+1 must be in the same data area, as must Cp2 and Cp2+1.

When the execution condition is OFF, CMPL(60) is not executed. When the exe-
cution condition is ON, CMPL(60) joins the 4-digit hexadecimal content of
Cp1+1 with that of Cp1, and that of Cp2+1 with that of Cp2 to create two 8-digit
hexadecimal numbers, Cp+1,Cpl and Cp2+1,Cp2. The two 8-digit numbers are
then compared and the result is output to the GR, EQ, and LE flags in the SR
area.

Placing other instructions between CMPL(60) and the operation which ac-
cesses the EQ, LE, and GR flags may change the status of these flags. Be sure
to access them before the desired status is changed.

CMPL(60) cannot be used to compare signed binary data. Use CPSL(—)
instead. Refer to 5-17-9 DOUBLE SIGNED BINARY COMPARE — CPSL(—) for
details.

ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

GR: ON if Cp1+1,Cpl is greater than Cp2+1,Cp2.
EQ: ON if Cp1+1,Cpl equals Cp2+1,Cp2.
LE: ON if Cp1+1,Cplis less than Cp2+1,Cp2.

The following example shows how to save the comparison result immediately. If
the content of HR 10, HR 09 is greater than that of 011, 010, then 00200 is turned
ON; if the two contents are equal, 00201 is turned ON; if content of HR 10, HR 09
is less than that of 011, 010, then 00202 is turned ON. In some applications, only
one of the three OUTs would be necessary, making the use of TR 0 unnecessary.
With this type of programming, 00200, 00201, and 00202 are changed only
when CMPL(60) is executed.

oooo
_| : CMPL(60)
HR 09
010
25505
_l : 00200 ) Greater Than
25506
— | 00201 ) Equal
25507
_l I 00202 ) Less Than
Address | Instruction Operands Address | Instruction Operands
00000 LD 00000 00004 ouT 00200
00001 ouT TR 0 00005 LD TR 0
00002 CMPL(60) 00006 AND 25506
HR 09 00007 ouT 00201
010 00008 LD TR 0
00009 AND 25507
00003 AND 25505 00010 ouT 00202

173



Data Comparison Section 5-17

5-17-4 BLOCK COMPARE — BCMP(68)

Operand Data Areas

Ladder Symbols CD: Compare data
IR, SR, AR, DM, HR, TC, LR, #
— BCMP(68) —1 @BCMP(68)
CB: First comparison block word
CD CD
IR, DM, HR, TC, LR
cB cB R: Result word
R R
IR, SR, AR, DM, HR, TC, LR
Limitations Each lower limit word in the comparison block must be less than or equal to the
upper limit.
Description When the execution condition is OFF, BCMP(68) is not executed. When the exe-

cution condition is ON, BCMP(68) compares CD to the ranges defined by a block
consisting of of CB, CB+1, CB+2, ..., CB+31. Each range is defined by two
words, the first one providing the lower limit and the second word providing the
upper limit. If CD is found to be within any of these ranges (inclusive of the upper
and lower limits), the corresponding bit in R is set. The comparisons that are
made and the corresponding bit in R that is set for each true comparison are
shown below. The rest of the bits in R will be turned OFF.

CB<CD <CB+1 Bit 00
CB+2<CD <CB+3 Bit 01
CB+4 <CD <CB+5 Bit 02
CB+6 <CD < CB+7 Bit 03
CB+8 <CD <CB+9 Bit 04
CB+10<CD <£CB+11 Bit 05
CB+12 < CD <£CB+13 Bit 06
CB+14 <CD <CB+15 Bit 07
CB+16 <CD <CB+17 Bit 08
CB+18 <CD <CB+19 Bit 09
CB+20<CD <CB+21 Bit 10
CB+22 <CD <CB+23 Bit 11
CB+24 <CD < CB+25 Bit 12
CB+26 < CD < CB+27 Bit 13
CB+28 < CD < CB+29 Bit 14
CB+30<CD<CB+31 Bit 15
Flags ER: The comparison block (i.e., CB through CB+31) exceeds the data area.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

174



Data Comparison

Section 5-17

Example The following example shows the comparisons made and the results provided
for BCMP(68). Here, the comparison is made during each cycle when 00000 is
ON.
00000 -
: BCMP(68) Address [ Instruction Operands
001 00000 | LD 00000
'R 10 00001 | BCMP(68)
HR 05 001
HR 10
HR 05
| CD 001 Lower limits | | Upper limits | | R: HR 05
[_oo1 | o210 ] HR 10 0000 HR 11 0100 HR 0500 0
Compare data in IR 001 HR 12 0101 HR 13 0200 HR 0501 0
_ _ HR 14 0201 HR 15 0300 |~ ™_HR 0502 1
%mn:gw:%nfa?ég HR 16 0301 HR 17 0400 HR 0503 0
HR 18 0401 HR 19 0500 HR 0504 0
HR 20 0501 HR 21 0600 HR 0505 0
HR 22 0601 HR 23 0700 HR 0506 0
HR 24 0701 HR 25 0800 HR 0507 0
HR 26 0801 HR 27 0900 HR 0508 0
HR 28 0901 HR 29 1000 HR 0509 0
HR 30 1001 HR 31 1100 HR 0510 0
HR 32 1101 HR 33 1200 HR 0511 0
HR 34 1201 HR 35 1300 HR 0512 0
HR 36 1301 HR 37 1400 HR 0513 0
HR 38 1401 HR 39 1500 HR 0514 0
HR 40 1501 HR 41 1600 HR 0515 0

5-17-5 TABLE COMPARE — TCMP(85)

Limitations

Description

Flags

Operand Data Areas

Ladder Symbols CD: Compare data
IR, SR, AR, DM, HR, TC, LR, #
TCMP(85) —1 @TCMP(85)

TB: First comparison table word

CD CD
IR, AR, DM, HR, TC, LR
TB TB
R: Result word
R R
IR, SR, AR, DM, HR, TC, LR

TB and TB+15 must be in the same data area.

When the execution condition is OFF, TCMP(85) is not executed. When the exe-
cution condition is ON, TCMP(85) compares CD to the content of TB, TB+1,
TB+2, ..., and TB+15. If CD is equal to the content of any of these words, the
corresponding bit in R is set, e.g., if the CD equals the content of TB, bit 00 is
turned ON, if it equals that of TB+1, bit 01 is turned ON, etc. The rest of the bits in
R will be turned OFF.

ER: The comparison table (i.e., TB through TB+15) exceeds the data area.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

175



Data Comparison

Section 5-17

Example The following example shows the comparisons made and the results provided
for TCMP(85). Here, the comparison is made during each cycle when 00000 is
ON.
00000 Address | Instruction Operands
i TCMP(85) 00000 | LD 00000
oot 00001 | TCMP(85)
HR 10 001
HR 05 HR 10
HR 05
| CD: 001 | [ Upper limits | [ RHRO5
| oo1| 0210 | HR 10 0109 HR 0500 0
Compare the data in IR 001 HR 11 0200 HR 0501 0
with the given ranges. HR 12 0210 ™ HR 0502 1
HR 13 0400 HR 0503 0
HR 14 0500 HR 0504 0
HR 15 0600 HR 0505 0
HR 16 0210—*{ HR 0506 1
HR 17 0800 HR 0507 0
HR 18 0900 HR 0508 0
HR 19 1000 HR 0509 0
HR 20 0210—™__ HR 0510 1
HR 21 1200 HR 0511 0
HR 22 1300 HR 0512 0
HR 23 1400 HR 0513 0
HR 24 0210—™ HR 0514 1
HR 25 1600 HR 0515 0

5-17-6 AREA RANGE COMPARE — ZCP(88)

Limitations

Description

176

Ladder Symbols

ZCP(88)

CD

LL

UL

LL must be less than or equal to UL.

Operand Data Areas

CD: Compare data

IR, SR, AR, DM, HR, TC, LR, #

LL: Lower limit of range

IR, SR, AR, DM, HR, TC, LR, #

UL: Upper limit of range

IR, SR, AR, DM, HR, TC, LR, #

When the execution condition is OFF, ZCP(88) is not executed. When the exe-

cution condition is ON, ZCP(88) compares CD to the range defined by lower limit
LL and upper limit UL and outputs the result to the GR, EQ, and LE flags in the
SR area. The resulting flag status is shown in the following table.

Comparison result

Flag status

GR (SR 25505)

EQ (SR 25506)

LE (SR 25507)

CD<LL 0 0 1
LL<CD<UL 0 1 0
UL<CD 1 0 0




Data Comparison

Section 5-17

Precautions

Flags

Example:
Saving ZCP(88) Results

Placing other instructions between ZCP(88) and the operation which accesses
the EQ, LE, and GR flags may change the status of these flags. Be sure to ac-
cess them before the desired status is changed.

ER: Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)
LL is greater than UL.

EQ: ONifLL<CD <UL

LE: ONif CD < LL.

GR: ON if CD > UL.

The following example shows how to save the comparison result immediately. If
IR 100 > AB1F, IR 00200 is turned ON; if #0010 < IR 100 <AB1F, IR 00201 is
turned ON; if IR 100 < 0010, IR 00202 is turned ON.

ooooo
: ZCP(88)
IR 100
#0010
#ABLF
25505 Greater Than
_l I 00200 (above range)
25506
i Equal
ml 00201 (withir?LrI:nge)
25507 Less Th
1 ess an
_l | 00202 (below range)
Address | Instruction Operands Address | Instruction Operands
00000 LD 00000 00005 ouT 00200
00001 ouT TR 0 00006 LD TR 0
00002 ZCP(88) 00007 AND 25506
IR 100 00008 ouT 00201
# 0010 00009 LD TR 0
00003 LD # AB1F 00010 AND 25507
00004 AND 25505 00011 ouT 00202

5-17-7 DOUBLE AREA RANGE COMPARE — ZCPL(—)

Operand Data Areas

Ladder Symbols CD: Compare data
IR, SR, AR, DM, HR, LR
—1 ZCPL(—)

LL: Lower limit of range
CD

IR, SR, AR, DM, HR, LR
LL —

UL: Upper limit of range
uL IR, SR, AR, DM, HR, LR

Limitations

The 8-digit value in LL+1,LL must be less than or equal to UL+1,UL.

CD and CD+1 must be in the same data area, as must LL and LL+1, and UL and
UL+1.

177



Data Comparison

Section 5-17

Description

Precautions

Flags

Example

When the execution condition is OFF, ZCPL(—) is not executed. When the exe-
cution condition is ON, ZCPL(—) compares the 8-digit value in CD, CD+1 to the
range defined by lower limit LL+1,LL and upper limit UL+1,UL and outputs the
result to the GR, EQ, and LE flags in the SR area. The resulting flag status is
shown in the following table.

Comparison result Flag status
GR EQ LE
(SR 25505) (SR 25506) (SR 25507)
CD, CD+1< LL+1,LL 0 0 1
LL+1,LL<CD,CD+1<UL+1,UL |O 1
UL+1,UL < CD, CD+1 1 0 0

Placing other instructions between ZCPL(—) and the operation which accesses
the EQ, LE, and GR flags may change the status of these flags. Be sure to ac-
cess them before the desired status is changed.

ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

LL+1,LL is greater than UL+1,UL.
EQ: ONif LL+1,LL <CD, CD+1 <UL+1,UL
LE: ONif CD, CD+1 < LL+1,LL.
GR: ON if CD, CD+1 > UL+1,UL.
Refer to 5-17-6 AREA RANGE COMPARE - ZCP(88) for an example. The only

difference between ZCP(88) and ZCPL(—) is the number of digits in the com-
parison data.

5-17-8 SIGNED BINARY COMPARE — CPS(—)

Description

Precautions

178

Note

Ladder Symbols Operand Data Areas

Cp1l: First compare word
—1 CPS(—)
IR, SR, AR, DM, HR, TC, LR, #
Cp1
Cp2: Second compare word
Cp2
P IR, SR, AR, DM, HR, TC, LR, #

When the execution condition is OFF, CPS(—) is not executed. When the exe-
cution condition is ON, CPS(—) compares the 16-bit (4-digit) signed binary con-
tents in Cpl and Cp2 and outputs the result to the GR, EQ, and LE flags in the SR
area.

1. Refer to page 29 for details on 16-bit signed binary data.
2. Refer to 5-17-2 Compare — CMP(20) for details on saving comparison re-
sults.

Placing other instructions between CPS(—) and the operation which accesses
the EQ, LE, and GR flags may change the status of these flags. Be sure to ac-
cess them before the desired status is changed.



Data Comparison

Section 5-17

Flags

ER: Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON if Cpl equals Cp2.
LE: ON if Cp1lis less than Cp2.

GR: ON if Cpl is greater than Cp2.

Comparison result

Flag status

GR (SR 25505)

EQ (SR 25506)

LE (SR 25505)

Cpl<Cp2 0 0 1
Cpl=Cp2 0 1 0
Cpl>Cp2 1 0 0

5-17-9 DOUBLE SIGNED BINARY COMPARE — CPSL(—)

Limitations

Description

Precautions

Flags

Ladder Symbols

Operand Data Areas

Cp1l: First compare word
—1 CPSL(—)
IR, SR, AR, DM, HR, TC, LR
Cpl
Cp2: Second compare word
Cp2
P IR, SR, AR, DM, HR, TC, LR

Cpl and Cpl+1 must be in the same data area, as must Cp2 and Cp2+1.

When the execution condition is OFF, CPSL(—) is not executed. When the exe-
cution condition is ON, CPSL(—) compares the 32-bit (8-digit) signed binary
contents in Cpl+1, Cpl and Cp2+1, Cp2 and outputs the result to the GR, EQ,
and LE flags in the SR area.

1. Refer to page 29 for details on 32-bit signed binary data.

2. Refer to 5-17-2 Compare — CMP(20) for details on saving comparison re-
sults.

Placing other instructions between CPSL(—) and the operation which accesses
the EQ, LE, and GR flags may change the status of these flags. Be sure to ac-
cess them before the desired status is changed.

ER: Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON if Cpl+1, Cpl equals Cp2+1, Cp2.
LE: ON if Cpl+1, Cplis less than Cp2+1, Cp2.
GR: ON if Cpl+1, Cpl is greater than Cp2+1, Cp2.

Comparison result Flag status

GR (SR 25505)

EQ (SR 25506)

LE (SR 25507)

Cpl+1, Cpl < Cp2+1, Cp2

0

0

1

Cpl+l, Cpl = Cp2+1, Cp2

0

1

0

Cpl+1, Cpl > Cp2+1, Cp2

1

0

0

179




Data Conversion

Section 5-18

5-18 Data Conversion

The conversion instructions convert word data that is in one format into another
format and output the converted data to specified result word(s). Conversions
are available to convert between binary (hexadecimal) and BCD, to 7-segment
display data, to ASCII, and between multiplexed and non-multiplexed data. All of
these instructions change only the content of the words to which converted data
is being moved, i.e., the content of source words is the same before and after
execution of any of the conversion instructions.

5-18-1 BCD-TO-BINARY - BIN(23)

Description

Flags

180

Ladder Symbols Operand Data Areas
S: Source word (BCD)
BIN(23) — @BIN(23)
IR, SR, AR, DM, HR, TC, LR
S S
R: Result word
R R
IR, SR, AR, DM, HR, LR

When the execution condition is OFF, BIN(23) is not executed. When the execu-
tion condition is ON, BIN(23) converts the BCD content of S into the numerically
equivalent binary bits, and outputs the binary value to R. Only the content of R is
changed; the content of S is left unchanged.

BCD S
Binary R

BIN(23) can be used to convert BCD to binary so that displays on the Program-
ming Console or any other programming device will appear in hexadecimal
rather than decimal. It can also be used to convert to binary to perform binary
arithmetic operations rather than BCD arithmetic operations, e.g., when BCD
and binary values must be added.

ER: The content of S is not BCD.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is zero.



Data Conversion Section 5-18

5-18-2

Description

Flags

5-18-3

Description

DOUBLE BCD-TO-DOUBLE BINARY — BINL(58)

Ladder Symbols Operand Data Areas
S: First source word (BCD)
—1 BINL(58) —1 @BINL(58)
IR, SR, AR, DM, HR, TC, LR
S S
R: First result word
R R
IR, SR, AR, DM, HR, LR

When the execution condition is OFF, BINL(58) is not executed. When the exe-
cution condition is ON, BINL(58) converts an eight-digit number in S and S+1
into 32-bit binary data, and outputs the converted data to R and R+1.

BCD S+1 S

Binary R+1 R

ER: The contents of S and/or S+1 words are not BCD.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is zero.

BINARY-TO-BCD — BCD(24)

Ladder Symbols Operand Data Areas
S: Source word (binary)
—] BCD(24) —] @BCD(24)
IR, SR, AR, DM, HR, TC, LR
S S
R: Result word
R R
IR, SR, AR, DM, HR, LR

BCD(24) converts the binary (hexadecimal) content of S into the numerically
equivalent BCD bits, and outputs the BCD bits to R. Only the content of R is
changed; the content of S is left unchanged.

Binary S
BCD R

BCD(24) can be used to convert binary to BCD so that displays on the Program-
ming Console or any other programming device will appear in decimal rather
than hexadecimal. It can also be used to convert to BCD to perform BCD arith-
metic operations rather than binary arithmetic operations, e.g., when BCD and
binary values must be added.

Note If the content of S exceeds 270F, the converted result would exceed 9999 and
BCD(24) will not be executed. When the instruction is not executed, the content
of R remains unchanged.

181



Data Conversion

Section 5-18

Signed Binary Data

Flags

BCD(24) cannot be used to convert signed binary data directly to BCD. To con-
vert signed binary data, first determine whether the data is positive or negative. If
it is positive, BCD(24) can be used to convert the data to BCD. If it is negative,
use the 2's COMPLEMENT — NEG(—) instruction to convert the data to un-
signed binary before executing BCD(24). Refer to page 29 for details on signed
binary data.

ER: S is greater than 270F.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is zero.

5-18-4 DOUBLE BINARY-TO-DOUBLE BCD — BCDL(59)

Limitations

Description

Signed Binary Data

Flags

182

Ladder Symbols Operand Data Areas
S: First source word (binary)
BCDL(59) —1 @BCDL(59)
IR, SR, AR, DM, HR, TC, LR
S S
R: First result word
R R
IR, SR, AR, DM, HR, LR

If the content of S exceeds 05F5EOFF, the converted result would exceed
99999999 and BCDL(59) will not be executed. When the instruction is not exe-
cuted, the content of R and R+1 remain unchanged.

S and S+1 must be in the same data area as must R and R+1.

BCDL(59) converts the 32-bit binary content of S and S+1 into eight digits of
BCD data, and outputs the converted data to R and R+1.

Binary S+1 S

BCD R+1 R

BCD(24) cannot be used to convert signed binary data directly to BCD. To con-
vert signed binary data, first determine whether the data is positive or negative. If
it is positive, BCD(24) can be used to convert the data to BCD. If it is negative,
use the DOUBLE 2's COMPLEMENT — NEGL(—) instruction to convert the data
to unsigned binary before executing BCD(24). Refer to page 29 for details on
signed binary data.

ER: Content of R and R+1 exceeds 99999999.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is zero.



Data Conversion

Section 5-18

5-18-5 HOURS-TO-SECONDS — SEC(65)

Operand Data Areas

Ladder Symbols S: Beginning source word (BCD)

IR, SR, AR, DM, HR, TC, LR

SEC(65) —] @SEC(65)
R: Beginning result word (BCD)
S S
IR, SR, AR, DM, HR, TC, LR
R R

---: Not used.

Limitations S and S+1 must be within the same data area. R and R+1 must be within the
same data area. S and S+1 must be BCD and must be in the proper hours/minu-
tes/seconds format.

Description SEC(65) is used to convert time notation in hours/minutes/seconds to an equiv-
alent in just seconds.

For the source data, the seconds is designated in bits 00 through 07 and the min-
utes is designated in bits 08 through 15 of S. The hours is designated in S+1. The
maximum is thus 9,999 hours, 59 minutes, and 59 seconds.

The result is output to R and R+1. The maximum obtainable value is 35,999,999
seconds.

Flags ER: S and S+1 or R and R+1 are not in the same data area.

S and/or S+1 do not contain BCD.
Number of seconds and/or minutes exceeds 59.
Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)
EQ: Turns ON when the result is zero.

Example When 00000 is OFF (i.e., when the execution condition is ON), the following in-
struction would convert the hours, minutes, and seconds given in HR 12 and HR
13 to seconds and store the results in DM 0100 and DM 0101 as shown.

00000 .
}r SEC(65) Address | Instruction Operands
iR 12 00000 | LD NOT 00000
DM 0100 00001 | SEC(65)
500 HR 12
DM 0100
HR 12 7 2,815 hrs, 32 min, 07 s 000

HR 13

DM 0100
DM 0101

10,135,927 s

183




Data Conversion

Section 5-18

5-18-6 SECONDS-TO-HOURS — HMS(66)

Limitations

Description

Flags

Example

00000

Operand Data Areas

Ladder Symbols S: Beginning source word (BCD)
IR, SR, AR, DM, HR, TC, LR
HMS(66) —1 @HMS(66)
R: Beginning result word (BCD)
S S
IR, SR, AR, DM, HR, TC, LR
R R

---: Not used.

S and S+1 must be within the same data area. R and R+1 must be within the
same data area. S and S+1 must be BCD and must be between 0 and
35,999,999 seconds.

HMS(66) is used to convert time notation in seconds to an equivalent in hours/
minutes/seconds.

The number of seconds designated in S and S+1 is converted to hours/minutes/
seconds and placed in R and R+1.

For the results, the seconds is placed in bits 00 through 07 and the minutes is
placed in bits 08 through 15 of R. The hours is placed in R+1. The maximum will
be 9,999 hours, 59 minutes, and 59 seconds.

ER: S and S+1 or R and R+1 are not in the same data area.
S and/or S+1 do not contain BCD or exceed 36,000,000 seconds.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: Turns ON when the result is zero.

When 00000 is OFF (i.e., when the execution condition is ON), the following in-
struction would convert the seconds given in HR 12 and HR 13 to hours, min-
utes, and seconds and store the results in DM 0100 and DM 0101 as shown.

Address | Instruction Operands

184

Al

HR 12
HR 13

DM 0100
DM 0101

HMS(66)

TR 12 00000 | LD NOT 00000
o 0100 00001 | HMS(66)

— HR 12
DM 0100

000

10,135,927 s

2,815 hrs, 32 min, 07 s




Data Conversion

Section 5-18

5-18-7 4-TO-16 DECODER — MLPX(76)

Limitations

Description

4-bit to 16-bit Decoder

Control Word

Operand Data Areas

Ladder Symbols S: Source word
IR, SR, AR, DM, HR, TC, LR
MLPX(76) —1 @MLPX(76)
C: Control word
S S
IR, SR, AR, DM, HR, TC, LR, #

c C R: First result word
R R IR, SR, AR, DM, HR, LR

When the leftmost digit of C is 0, the rightmost two digits of C must each be be-
tween 0 and 3.

When the leftmost digit of C is 1, the rightmost two digits of C must each be be-
tween 0 and 1.

All result words must be in the same data area.

Depending on the value of C, MLPX(76) operates as a 4-bit to 16-bit decoder or
an 8-bit to 256-bit decoder.

MLPX(76) operates as a 4-bit to 16-bit decoder when the leftmost digit of C is 0.
The hexadecimal value of the digits in S are used to specify bits in up to 4 result
words. The specified bit in each result word is turned on, and the other 15 bits in
each word are turned off.

When the execution condition is OFF, MLPX(76) is not executed. When the exe-
cution condition is ON, MLPX(76) converts up to four, four-bit hexadecimal digits
from S into decimal values from 0 to 15, each of which is used to indicate a bit
position. The bit whose number corresponds to each converted value is then
turned ON in a result word. If more than one digit is specified, then one bit will be
turned ON in each of consecutive words beginning with R. (See examples, be-
low.)

The digits of C are set as shown below. Set the leftmost digit of C to 0 to specify
4-bit to 16-bit decoding.

Digit number: 3210

L__» Specifies the first digit to be converted (0 to 3)

— Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

L Not used. Set to 0.

—— A value of 0 specifies 4-bit to 16-bit decoding.

185



Data Conversion

Section 5-18

8-bit to 256-bit Decoder

Control Word

186

Some example C values and the digit-to-word conversions that they produce
are shown below.

C: 0010 C: 0030
S S
0 R 0 R
1 R+1 1 R+1
2 2 R+2
3 3 R+3
C. 0031 C: 0023
S S
0 R 0 R
1 R+1 1 R+1
2 R+2 2 R+2
3 R+3 3

The following is an example of a one-digit decode operation from digit number 1
of S, i.e., here C would be 0001.

Source word

e — e —

/ Bit C (i.e., bit number 12) turned ON.

¥ First result word
olfojoji1fojofjojojojojofojof|ojo]o

The first digit and the number of digits to be converted are designated in C. If
more digits are designated than remain in S (counting from the designated first
digit), the remaining digits will be taken starting back at the beginning of S. The
final word required to store the converted result (R plus the number of digits to be
converted) must be in the same data area as R, e.g., if two digits are converted,
the last word address in a data area cannot be designated; if three digits are con-
verted, the last two words in a data area cannot be designated.

MLPX(76) operates as an 8-bit to 256-bit decoder when the leftmost digit of C is
set to 1. The hexadecimal value of the two bytes in S are used to specify a bit in
one or two groups of 16 consecutive result words (256 bits). The specified bit in
each group is turned on, and the other 255 bits in the group are turned off.

The digits of C are set as shown below. Set the leftmost digit of C to 1 to specify
8-bit to 256-bit decoding.

Digit number: 3210

L » Specifies the first byte to be converted (0 or 1).
0: Rightmost byte
1: Leftmost byte

— Number of bytes to be converted (0 or 1).
0: 1 byte
1: 2 bytes

L Not used. Setto 0.

—— A value of 1 specifies 8-bit to 256-bit decoding.



Data Conversion Section 5-18
The 4 possible C values and the conversions that they produce are shown be-
low. (In' S, 0 indicates the rightmost byte and 1 indicates the leftmost byte.)

C: 1000 C: 1001
S S
0 R to R+15 0 R to R+15
1 R+16 to R+31 1 "] R+16 to R+31
C: 1010 C: 1011
S S
0 R to R+15 0 R to R+15
1 R+16 to R+31 1 ><: R+16 to R+31
The following is an example of a one-byte decode operation from the rightmost
byte of S (C would be 1000 in this case).
Sour(':_eﬂoﬂ_ R
i 2 C | Bit 2C (i.e., bit number 12 in
T the third word) turned ON.
o
s
e
e
Bit Bit Bit s Bit Bit Bit Bit Bit
15 00 15 pd 00 15 00 15 00
ofofo[- - -Jofofo} - - - [o]oo[1]oo[o]o[o[o[o[o[o]o[o]o]o[o[o] - - -[o]o[o]oJofo]- - -[o]o]o]
R+15 R+2 R+1 R
Flags ER: Undefined control word.

The result words are not all in the same data area.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

187



Data Conversion Section 5-18
Example: _ The following program converts three digits of data from LR 20 to bit positions
4-bit to 16-bit Decoding and turns ON the corresponding bits in three consecutive words starting with
HR 10.
Oo?oo MLPX(76) Address | Instruction Operands
DM 0020 00000 | LD 00000
40021 00001 | MLPX(76)
HR 10 LR 20
# 0021
HR 10
S: LR 20 R: HR 10 | | R+1: HR 11 | | R+2: HR 12
DM 00 20 1 HR 1000 0 HR 1100 0 r-% HR 1200 1
DM 01 21 Not HR 1001 0 HR 1101 0 ) HR 1201 0
DM 02 22 Converted| HR 1002 0 HR 1102 0 . HR 1202 0
DM 03 23 ] HR 1003 0 HR 1103 0 ' HR 1203 0
DM 04 1 | 20 15 HR 1004 0 HR 1104 0 ' HR 1204 0
DM 05 1 (2t 2 b o . HR 1005 0 HR 1105 0 : HR 1205 0
DM 06 1 | 22 ' HR 1006 0 r -» HR 1106 1 X HR 1206 0
DM 07 1 | 28 i ' HR 1007 0 X HR 1107 0 ; HR 1207 0
DM 08 0 | 20 6 ) HR 1008 0 ' HR 1108 0 ' HR 1208 0
DM 09 S - 2 ) HR 1009 0 ' HR 1109 0 X HR 1209 0
DM 10 1 | 22 v HR 1010 0 : HR 1110 0 ' HR 1210 0
DM 11 0 | 23 i "o HR 1011 0 X HR 1111 0 ; HR 1211 0
pM12 | o | 20 0 v+ | HR1012 0 : HR 1112 0 . HR 1212 0
DM 13 o |22 3L ! HR 1013 0 ) HR 1113 0 X HR 1213 0
DM 14 0 | 22 v HR 1014 0 X HR 1114 0 ' HR 1214 0
DM 15 0 | 23 ] ' ' vel HR1015 1 X HR 1115 0 ' HR 1215 0
: L e e e e e e e e e e e e e e e a = ' '
Lo oe oo e e e e e e e - .- - - - - === == - - .- ------e- - - )
5-18-8 16-TO-4 ENCODER — DMPX(77)
Operand Data Areas
Ladder Symbols S: First source word
IR, SR, AR, DM, HR, TC, LR
—1 DMPX(77) —1 @DMPX(77)
R: Result word
S S
IR, SR, AR, DM, HR, LR
R R
C: Control Word
C C
IR, SR, AR, DM, HR, TC, LR, #
Limitations When the leftmost digit of C is 0, the rightmost two digits of C must each be be-

tween 0 and 3.

When the leftmost digit of C is 1, the rightmost two digits of C must each be be-

tween 0 and 1.

All source words must be in the same data area.

Description Depending on the value of C, MLPX(76) operates as a 16-bit to 4-bit encoder or

an 256-bit to 8-bit encoder.

188



Data Conversion

Section 5-18

16-bit to 4-bit encoder

Control Word

DMPX(77) operates as a 16-bit to 4-bit encoder when the leftmost digit of C is 0.
When the execution condition is OFF, DMPX(77) is not executed. When the exe-
cution condition is ON, DMPX(77) determines the position of the highest ON bit
in S, encodes it into single-digit hexadecimal value corresponding to the bit num-
ber, then transfers the hexadecimal value to the specified digit in R. The digits to
receive the results are specified in C, which also specifies the number of digits to
be encoded.

The digits of C are set as shown below. Set the leftmost digit of C to 0 to specify
16-bit to 4-bit encoding.

Digit number: 3210

L_» Specifies the first digit in R to receive converted data (0 to 3).

— Number of words to be converted (0 to 3).
0: 1 word
1: 2 words
2: 3 words
3: 4 words

L Not used. Set to 0.

——— A value of 0 specifies 16-bit to 4-bit encoding.

Some example C values and the word-to-digit conversions that they produce
are shown below.

C: 0011 C: 0030
R R
S 0 S > 0
5+1\ 1 S+1 o 1
\ 2 S+2 > 2
3 S+3 > 3

C: 0013 C: 0032
R R
S 0 S 0
S+1 1 S+1 1
2 S+2 2
3 S+3 3

The following is an example of a one-digit encode operation to digit number 1 of
R, i.e., here C would be 0001.

First source word

i |

000|1i000100010110
L.‘.u

\  C transferred to indicate bit number 12 as
\\the highest ON bit.

N
Result word ™

C

Up to four digits from four consecutive source words starting with S may be en-
coded and the digits written to R in order from the designated first digit. If more
digits are designated than remain in R (counting from the designated first digit),
the remaining digits will be placed at digits starting back at the beginning of R.
The final word to be converted (S plus the number of digits to be converted) must
be in the same data area as SB.

189



Data Conversion Section 5-18

256-bit to 8-bit Encoder DMPX(77) operates as a 256-bit to 8-bit encoder when the leftmost digit of C is
set to 1.

When the execution condition is OFF, DMPX(77) is not executed. When the exe-
cution condition is ON, DMPX(77) determines the position of the highest (left-
most) ON bit in the group of 16 source words from S to S+15 or S+16 to S+31,
encodes it into a two-digit hexadecimal value corresponding to the location of
the bit among the 256 bits in the group, then transfers the hexadecimal value to
the specified byte in R. The byte to receive the result is specified in C, which also
specifies the number of bytes to be encoded.

Control Word The digits of C are set as shown below. Set the leftmost digit of C to 1 to specify
256-bit to 8-bit decoding.

Digit number: 3210

L » Specifies the first byte in R to receive converted data (0 or 1).
0: Rightmost byte
1: Leftmost byte

— Number of bytes to be encoded (0 or 1).
0: 1 byte
1: 2 bytes

L Not used. Setto 0.

—— A value of 1 specifies 256-bit to 8-bit encoding.

Three possible C values and the conversions that they produce are shown be-
low. (In R, 0 indicates the rightmost byte and 1 indicates the leftmost byte.)

C: 1000 C: 1010 C: 1011
R R
Sto S+15 0 Sto S+15 0 Sto S+15 0
S+16 to S+31 1 S+16 to S+31 1 S+16 to S+31 ] 1

The following is an example of a one-byte encode operation to the rightmost byte
of R (C would be 1000 in this case).

Bit Bit Bit Bit Bit Bit
15 00 15 00 15 00
ofofofofs]afs]s]afs]s]of1]s]ofolofafs]- - -[ofs]o] - - - [a]1[s]- - -[o]o]o]
AN /' \ /
N S+15 S+14 S
\\
AN
Resultword >, |
i F B -i Bit FB (bit 251 of O to 255) is the highest ON bit of the
C 3 16-word group, so FB is written to the rightmost bit of R.
Flags ER: Undefined control word.

The source words are not all in the same data area.

Content of a source word is zero. (There isn’'t an ON bit in the source
words.)

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

190



Data Conversion Section 5-18

When 00000 is ON, the following diagram encodes IR words 010 and 011 to the
first two digits of HR 20 and then encodes LR 10 and 11 to the last two digits of
HR 20. Although the status of each source word bit is not shown, it is assumed
that the bit with status 1 (ON) shown is the highest bit that is ON in the word.

Example:
16-bit to 4-bit Encoding

5-18-9 7-SEGMENT DECODER — SDEC(78)

00000 -
| DMPX(77) Address | Instruction Operands
|
010 00000 | LD 00000
HR 20 00001 | DMPX(77)
#0010 010
HR 20
DMPX(77) # 0010
0 00002 | DMPX(77)
LR 10
HR 20
o HR 20
e # 0012
IR 010 IR 011
01000 01100
01011 | 1 | 01109
01012 O 01110
D : D HR 20
01015] O 01115 —
[ Digit 0 B
! Digit 1 9
LR 10 LR 11 |_. Digit 2 1
LR 1000 LR 1100 >  Digit3 8
LR 1001| 1 |— :
LR 1002| O LR 1108| 1
D : LR 1109| O
LR 1015/ 0 LR 1115| 0

Operand Data Areas

Ladder Symbols S: Source word (binary)
IR, SR, AR, DM, HR, TC, LR
—1 SDEC(78) —1 @SDEC(78)
Di: Digit designator
S S
IR, SR, AR, DM, HR, TC, LR, #

DI Di D: First destination word
D D IR, SR, AR, DM, HR, LR

Limitations Di must be within the values given below
All destination words must be in the same data area.
Description When the execution condition is OFF, SDEC(78) is not executed. When the exe-

cution condition is ON, SDEC(78) converts the designated digit(s) of S into the
equivalent 8-bit, 7-segment display code and places it into the destination
word(s) beginning with D.

191



Data Conversion

Section 5-18

Digit Designator

192

Any or all of the digits in S may be converted in sequence from the designated
first digit. The first digit, the number of digits to be converted, and the half of D to
receive the first 7-segment display code (rightmost or leftmost 8 bits) are desig-
nated in Di. If multiple digits are designated, they will be placed in order starting
from the designated half of D, each requiring two digits. If more digits are desig-
nated than remain in S (counting from the designated first digit), further digits will

be used starting back at the beginning of S.

The digits of Di are set as shown below.

Digit number:

Some example Di values and the 4-bit binary to 7-segment display conversions
that they produce are shown below.

3210

Di: 0011
S digits D
0 1st half
! ;: 2nd half
2
3
Di: 0112
S digits D
0 1st half
1
2nd half
2 /
3 D+1
\ 1st half
2nd half

0: 1 digit

1: 2 digits
2: 3 digits
3: 4 digits

— First half of D to be used.

L___» Specifies the first digit to receive converted data (0 to 3).

— Number of digits to be converted (0 to 3)

0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

# Not used; set to 0.

Di: 0030

S digits

0

D

1st half

2nd half

1
2
3

D+1

//

1st half

2nd half

Di: 0130

S digits

0

D

1st half

2nd half

1
2
3

D+1

1st half

7/

2nd half

D+2
1st half

2nd half




Data Conversion

Section 5-18

Exam

ple

o

x100

x101

P |O |, |]O |O |O |O |O |F

[

x102

x103

—

Flags

The following example shows the data to produce an 8. The lower case letters
show which bits correspond to which segments of the 7-segment display. The
table underneath shows the original data and converted code for all hexadeci-

mal digits.

s D -—
Bit 00 £ ' '
or g
2010 pitos [ 1 ™™ -
1 —>
1: Second digit 2|1 ! e | '
0 22 0 1 > -
23| o 1> d
—
201 0 1
211 o 1 p—»
0: One digit 1
22| o 1
23| 1 Bit 07 0
or
20| o bit 15
211 1
Ooril: 2
bits 00 through 07 or 221 1
08 through 15.
23| 1
201 1
3| 2t o0
Not used
22| 1
23| 1
Original data Converted code (segments) Display
Digit Bits g f e d c b a
0 0 0 0 0 0 0 1 1 1 1 1 1 Iy
1 0 0 0 1 0 0 0 0 0 1 1 0 !
2 0 0 1 0 0 1 0 1 1 0 1 1 Z
3 0 0 1 1 0 1 0 0 1 1 1 1 3
4 0 1 0 0 0 1 1 0 0 1 1 0 5
5 0 1 0 1 0 1 1 0 1 1 0 1 g
6 0 1 1 0 0 1 1 1 1 1 0 1 g
7 0 1 1 1 0 0 1 0 0 1 1 1 n
8 1 0 0 0 0 1 1 1 1 1 1 1 a
9 1 0 0 1 0 1 1 0 1 1 1 1 g
A 1 0 1 0 0 1 1 1 0 1 1 1 =]
B 1 0 1 1 0 1 1 1 1 1 0 0 )
C 1 1 0 0 0 0 1 1 1 0 0 1 r
D 1 1 0 1 0 1 0 1 1 1 1 0 o
E 1 1 1 0 0 1 1 1 1 0 0 1 £
F 1 1 1 1 0 1 1 1 0 0 0 1 [
ER: Incorrect digit designator, or data area for destination exceeded

Indirectly addressed DM word is non-existent. (Content of *DM word is

not BCD, or the DM area boundary has been exceeded.)

193




Data Conversion Section 5-18

5-18-10 ASCII CONVERT — ASC(86)

Operand Data Areas

Ladder Symbols S: Source word
IR, SR, AR, DM, HR, TC, LR
— ASC(86) —1 @ASC(86)
Di: Digit designator
S S
IR, SR, AR, DM, HR, TC, LR, #
DI DI D: First destination word
D D IR, SR, AR, DM, HR, LR
Limitations Di must be within the values given below

All destination words must be in the same data area.

Description When the execution condition is OFF, ASC(86) is not executed. When the exe-
cution condition is ON, ASC(86) converts the designated digit(s) of S into the
equivalent 8-bit ASCII code and places it into the destination word(s) beginning
with D.

Any or all of the digits in S may be converted in order from the designated first
digit. The first digit, the number of digits to be converted, and the half of D to re-
ceive the first ASCII code (rightmost or leftmost 8 bits) are designated in Di. If
multiple digits are designated, they will be placed in order starting from the des-
ignated half of D, each requiring two digits. If more digits are designated than
remain in S (counting from the designated first digit), further digits will be used
starting back at the beginning of S.

Refer to Appendix | for a table of extended ASCII characters.
Digit Designator The digits of Di are set as shown below.

Digit number: 321 0

L Specifies the first digit to be converted (0 to 3).

— Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

— First half of D to be used.
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

———— Parity 0: none,
1: even,
2: odd

194



Data Conversion Section 5-18

Some examples of Di values and the 4-bit binary to 8-bit ASCII conversions that
they produce are shown below.

Di: 0011 Di: 0030
S D S D
0 / 1st half 0 1st half
1 2nd half 1 2nd half
2 / 2
3 3 \ D+1
\ 1st half
2nd half
Di: 0112 Di: 0130
S D S D
0 1st half 0 \ 1st half
1
1 2nd half 2nd half
> / 2
3 ~——_ D+1 3 D+1
1st half 1st half
2nd half 2nd half
D+2
1st half
2nd half
Parity The leftmost bit of each ASCII character (2 digits) can be automatically adjusted
for either even or odd parity. If no parity is designated, the leftmost bit will always

be zero.

When even parity is designated, the leftmost bit will be adjusted so that the total
number of ON bits is even, e.g., when adjusted for even parity, ASCII “31”
(00110001) will be “B1” (10110001: parity bit turned ON to create an even num-
ber of ON bits); ASCII “36” (00110110) will be “36” (00110110: parity bit turned
OFF because the number of ON bits is already even). The status of the parity bit
does not affect the meaning of the ASCII code.

When odd parity is designated, the leftmost bit of each ASCII character will be
adjusted so that there is an odd number of ON bits.

Flags ER: Incorrect digit designator, or data area for destination exceeded.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-18-11 ASCII-TO-HEXADECIMAL — HEX(—)

Operand Data Areas

Ladder Symbols S: First source word
IR, SR, AR, DM, HR, TC, LR
—1 HEX(—) 1 @HEX(—)
Di: Digit designator
S S
IR, SR, AR, DM, HR, TC, LR
Di Di —
! I D: Destination word
D D IR, SR, AR, DM, HR, LR

195



Data Conversion

Section 5-18

Limitations

Description

Digit Designator

196

Di must be within the values given below.
All source words must be in the same data area.

Bytes in the source words must contain the ASCII code equivalent of hexadeci-
mal values, i.e., 30to 39 (0 to 9), 41 to 46 (Ato F), or 61 to 66 (a to f).

When the execution condition is OFF, HEX(—) is not executed. When the exe-
cution condition is ON, HEX(—) converts the designated byte(s) of ASCII code
from the source word(s) into the hexadecimal equivalent and places it into D.

Up to 4 ASCII codes may be converted beginning with the designated first byte
of S. The converted hexadecimal values are then placed in D in order from the
designated digit. The first byte (rightmost or leftmost 8 bits), the number of bytes
to be converted, and the digit of D to receive the first hexadecimal value are
designated in Di. If multiple bytes are designated, they will be converted in order
starting from the designated half of S and continuing to S+1 and S+2, if
necessary.

If more digits are designated than remain in D (counting from the designated first
digit), further digits will be used starting back at the beginning of D. Digits in D
that do not receive converted data will not be changed.

The digits of Di are set as shown below.

Digit number: 32 1 0

L » Specifies the first digit of D to be used (0 to 3).

— Number of bytes to be converted (0 to 3)
0: 1 byte (2-digit ASCII code)
1: 2 bytes
2: 3 bytes
3: 4 bytes

—— [irst byte of S to be used.
0: Rightmost 8 bits (15t byte)
1: Leftmost 8 bits (2"d byte)

———— Parity 0: none
1: even
2: odd



Data Conversion

Section 5-18

ASCII Code Table

Parity

Some examples of Di values and the 8-bit ASCII to 4-bit hexadecimal conver-
sions that they produce are shown below.

Di: 0011 Di: 0030
S D S D
15t pyte \ 0 15t byte > 0
2nd pyte 1 2nd pyte > 1
3 s+1 / 3
1St byte /
2nd pyte
Di: 0023 Di: 0133
S D S
15t byte 0 15t byte D
2nd pyte 1 2nd pyte 0
2 1
S+1 3 S+1 >
15t byte 15t byte 3
2nd pyte 2nd pyte
S+2
15t byte
2nd pyte

The following table shows the ASCII codes before conversion and the hexadeci-
mal values after conversion. Refer to Appendix | for a table of ASCII characters.

Original data Converted data

ASCII Code Bit status (See note.) Digit Bits

30 * 0 1 1 0 0 0 0 0 0 0 0 0
31 * 0 1 1 0 0 0 1 1 0 0 0 1
32 * 0 1 1 0 0 1 0 2 0 0 1 0
33 * 0 1 1 0 0 1 1 3 0 0 1 1
34 * 0 1 1 0 1 0 0 4 0 1 0 0
35 * 0 1 1 0 1 0 1 5 0 1 0 1
36 * 0 1 1 0 1 1 0 6 0 1 1 0
37 * 0 1 1 0 1 1 1 7 0 1 1 1
38 * 0 1 1 1 0 0 0 8 1 0 0 0
39 * 0 1 1 1 0 0 1 9 1 0 0 1
41 * 1 0 1 0 0 0 1 A 1 0 1 0
42 * 1 0 1 0 0 1 0 B 1 0 1 1
43 * 1 0 1 0 0 1 1 C 1 1 0 0
44 * 1 0 1 0 1 0 0 D 1 1 0 1
45 * 1 0 1 0 1 0 1 E 1 1 1 0
46 * 1 0 1 0 1 1 0 F 1 1 1 1

Note The leftmost bit of each ASCII code is adjusted for parity.

The leftmost bit of each ASCII character (2 digits) is automatically adjusted for
either even or odd parity.
With no parity, the leftmost bit should always be zero. With odd or even parity, the
leftmost bit of each ASCII character should be adjusted so that there is an odd or
even number of ON bits.

If the parity of the ASCII code in S does not agree with the parity specified in Di,
the ER Flag (SR 25503) will be turned ON and the instruction will not be
executed.

197



Data Conversion

Section 5-18

Flags

Example

00000

ER: Incorrect digit designator, or data area for destination exceeded.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

In the following example, the 2"d byte of LR 10 and the 15t byte of LR 11 are con-
verted to hexadecimal values and those values are written to the first and se-
cond bytes of IR 010.

Address | Instruction Operands
@HEX(—)
LR 10 00000 | LD 00000
HR 10 00001 | @HEX(—)
010 LR 10
HR 10
010

R 10 [0]1]2]0]

(r12 [3s[3]4] LR SJi[3]0]

Conversion to
hexadecimal

a2[3]2) R0

5-18-12 SCALING — SCL(—)

Limitations

Description

198

Ladder Symbols Operand Data Areas
S: Source word
SCL(—) — @SCL(—)
IR, SR, AR, DM, HR, TC, LR, #
S S
P1: First parameter word
P1 P1
IR, SR, AR, DM, HR, TC, LR
R R
R: Result word
IR, SR, AR, DM, HR, LR

P1 and P1+2 must be BCD.
P1 through P1+3 must be in the same data area.
P1+1 and P1+3 must not be set to the same value.

SCL(—) is used to linearly convert a 4-digit hexadecimal value to a 4-digit BCD
value. Unlike BCD(24), which converts a 4-digit hexadecimal value to its 4-digit
BCD equivalent (Spex — Sgcp), SCL(—) can convert the hexadecimal value ac-
cording to a specified linear relationship. The conversion line is defined by two
points specified in the parameter words P1 to P1+3.

When the execution condition is OFF, SCL(—) is not executed. When the execu-
tion condition is ON, SCL(—) converts the 4-digit hexadecimal value in S to the
4-digit BCD value on the line defined by points (P1, P1+1) and (P1+2, P1+3) and
places the result in R. The result is rounded off to the nearest integer. If the result
is less than 0000, then 0000 is written to R, and if the result is greater than 9999,
then 9999 is written to R.



Data Conversion Section 5-18

The following table shows the functions and ranges of the parameter words:

Parameter Function Range Comments

P1 BCD point #1 (Ay) | 0000 to 9999

P1+1 Hex. point #1 (Ax) | 0000 to FFFF Do not set P1+1=P1+3.
P1+2 BCD point #2 (By) | 0000 to 9999 ---

P1+3 Hex. point #2 (Bx) | 0000 to FFFF Do not set P1+3=P1+1.

The following diagram shows the source word, S, converted to D according to
the line defined by points (Ay, Ax) and (By, By).

Value after conversion
(BCD)

BY """"""""""

AY """" :

Value before conversion
Ax s By (Hexadecimal)

The results can be calculated by first converting all values to BCD and then using
the following formula.

Results = BY - [(BY - Ay)/(Bx - Ax) X (Bx - S)]

Flags ER: The value in P1+1 equals that in P1+3.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

P1 and P1+3 are not in the same data area, or other setting error.

EQ: ON when the result, R, is 0000.

Example When 00000 is turned ON in the following example, the BCD source data in DM
0100 (#0100) is converted to hexadecimal according to the parameters in DM
0150 to DM 0153. The result (#0512) is then written to DM 0200.

00000 Address | Instruction Operands
: : @SCL(—)
DM 0100 00000 LD 00000
DM 0150 00001 | @SCL(—)
o DM 0100
DM 0150
DM 0200
DM 0150 | 0010 [ om o100 | 0100 |
DM 0151 | 0005 ‘
DM 0152 | 0050
DM 0153 | 0019 [ oM 0200 | 0512 |

199



Data Conversion Section 5-18

5-18-13 COLUMN TO LINE — LINE(63)

Operand Data Areas

Ladder Symbols S: First word of 16 word source set
IR, SR, AR, DM, HR, TC, LR
— LINE(63) — @LINE(63)

C: Column bit designator (BCD)
S S

IR, SR, AR, DM, HR, TC, LR, #
¢ ¢ D: Destination word
D D IR, SR, AR, DM, HR, TC, LR

Limitations S and S+15 must be in the same data area.

C must be between #0000 and #0015.

Description When the execution condition is OFF, LINE(63) is not executed. When the exe-
cution condition is ON, LINE(63) copies bit column C from the 16-word set (S to
S+15) to the 16 bits of word D (00 to 15).

Bit ¢ Bit
15 l 00
S ololofo[1]1]|1]o|o]o[2]o]o|of0]1
S+1 [1|1|of1|o|o|1|ofo|1/2({1|0|0|0O]1
S+2 |o0|ojof1|1|o|1|1|o|o1|of0|1|1]1
S+3 [1]o|ofofo|of1|1|ololo(of0|1]|1]|1
s+15|o]1|1][1]o]o]o[1][1]o]0]o[1]0]1]0] Bit Bit
15 00
- D] -
Flags ER: The column bit designator C is not BCD, or it is specifying a non-existent

bit (i.e., bit specification must be between 00 and 15).

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of D is zero; otherwise OFF.

Example The following example shows how to use LINE(63) to move bit column 07 from
the set (IR 100 to IR 115) to DM 0100.

00000
I

| LINE(E3) Address | Instruction Operands
100 00000 | LD 00000
40007 00001 | LINE(63)
DM 0100 100
# 0007
DM 0100

200



Data Conversion Section 5-18

5-18-14 LINE TO COLUMN — COLM(64)

Operand Data Areas

Ladder Symbols S: Source word
IR, SR, AR, DM, HR, TC, LR
—1 COLM(64) —1 @COLM(64)
D: First word of the destination set
S S
IR, AR, DM, HR, TC, LR

D D

C: Column bit designator (BCD)
¢ ¢ IR, SR, AR, DM, HR, TC, LR, #

Limitations D and D+15 must be in the same data area.

C must be between #0000 and #0015.

Description When the execution condition is OFF, COLM(64) is not executed. When the exe-
cution condition is ON, COLM(64) copies the 16 bits of word S (00 to 15) to the
column of bits, C, of the 16-word set (D to D+15).

Bit Bit
15 00

v
Bit C Bit
15 ‘ 00
D olofo|o|1|1|1|0|0|O|21]|0|O|O|O]|1
D+1 |[1|1]|o|1|o|o|1|0f0|1]21|2|0O|O|O|1
D+2 |o|o|o|1|1|o|1|1|0|O]2|O|O|21|1]|1
i1|o|ojo|o|o|1|1|0|0lO|O|O|1|1|1

D+3

D+15|0]1]1]1]ofo]o|1[1]o0]0]1]0]1]0]

Flags ER: The bit designator C is not BCD, or it is specifying a non-existent bit (i.e.,
bit specification must be between 00 and 15).

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of S is zero; otherwise OFF.

Example The following example shows how to use COLM(64) to move the contents of
word DM 0100 (00 to 15) to bit column 15 of the set (DM 0200 to DM 0215).

00000 :
: CcoLM(64) Address [ Instruction Operands
DM 0100 00000 | LD 00000
DM 0200 00001 COLM(64)
#0015 DM 0100
DM 0200
# 0015

201



Data Conversion

Section 5-18

5-18-15 2’S COMPLEMENT — NEG(—)

Ladder Symbols

Operand Data Areas

—1 NEG(—) —1 @NEG(—) S: Source word
S S IR, SR, AR, DM, HR, TC, LR, #
R R R: Result word
— - IR, SR, AR, DM, HR, LR
Description Converts the four-digit hexadecimal content of the source word (S) to its 2's

complement and outputs the result to the result word (R). This operation is effec-
tively the same as subtracting S from 0000 and outputting the result to R.

If the content of S is 0000, the content of R will also be 0000 after execution, and

EQ (SR 25506) will be turned on.

If the content of S is 8000, the content of R will also be 8000 after execution, and

UF (SR 25405) will be turned on.

Note Refer to page 29 for details on 16-bit signed binary data.

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)
EQ: ON when the content of S is 0000; otherwise OFF.
UF: ON when the content of S is 8000; otherwise OFF.
Example The following example shows how to use NEG(—) to find the 2's complement of

the hexadecimal value 001F and output the result to DM 0020.

00000
L

202

NEG(—)

#001F

DM 0020

#0000

— #001F

Address [ Instruction Operands
00000 | LD 00000
00001 | NEG(—)

# 001F
DM 0020

#FFE1

<+— Qutput to DM 0020.



Data Conversion

Section 5-18

5-18-16 DOUBLE 2'S COMPLEMENT — NEGL(—)

Limitations

Description

Flags

Example

Ladder Symbols
Operand Data Areas

NEGL(—) —1 @NEGL(—) S: First source word
S S IR, SR, AR, DM, HR, TC, LR
R R R: First result word
— o IR, SR, AR, DM, HR, LR

Note

S and S+1 must be in the same data area, as must R and R+1.

Converts the eight-digit hexadecimal content of the source words (S and S+1) to
its 2's complement and outputs the result to the result words (R and R+1). This
operation is effectively the same as subtracting the eight-digit content S and S+1
from $0000 0000 and outputting the result to R and R+1.

If the content of S is 0000 0000, the content of R will also be 0000 0000 after
execution and EQ (SR 25506) will be turned on.

If the content of S is 8000 0000, the content of R will also be 8000 0000 after
execution and UF (SR 25405) will be turned on.

Refer to page 29 for details on 32-bit signed binary data.

ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of S+1, S is 0000 0000; otherwise OFF.
UF: ON when the content of S+1, S is 8000 0000; otherwise OFF.
The following example shows how to use NEGL(—) to find the 2's complement

of the hexadecimal value in LR 21, LR 20 (001F FFFF) and output the result to
DM 0021, DM 0020.

00000 -
: NEG(—) Address | Instruction Operands
LR20 00000 | LD 00000
DM 0020 00001 | NEGL(—)
LR 20
DM 0020
0000 0000

S+1:LR 21 S:LR 20

—_ 001F FFFF

R+1: DM 0021 R: DM 0020

FFEO 0001

203



BCD Calculations Section 5-19

5-19 BCD Calculations

The BCD calculation instructions — INC(38), DEC(39), ADD(30), ADDL(54),
SUB(31), SUBL(55), MUL(32), MULL(56), DIV(33), DIVL(57), FDIV(79), and
ROOT(72) — all perform arithmetic operations on BCD data.

For INC(38) and DEC(39) the source and result words are the same. That is, the
content of the source word is overwritten with the instruction result. All other in-
structions change only the content of the words in which results are placed, i.e.,
the contents of source words are the same before and after execution of any of
the other BCD calculation instructions.

STC(40) and CLC(41), which set and clear the carry flag, are included in this
group because most of the BCD operations make use of the Carry Flag (CY) in
their results. Binary calculations and shift operations also use CY.

The addition and subtraction instructions include CY in the calculation as well as
in the result. Be sure to clear CY if its previous status is not required in the calcu-
lation, and to use the result placed in CY, if required, before it is changed by exe-
cution of any other instruction.

5-19-1 INCREMENT - INC(38)

Ladder Symbols Operand Data Areas
INC(38) @INC(38) Wd: Increment word (BCD)
IR, SR, AR, DM, HR, LR
wd wd
Description When the execution condition is OFF, INC(38) is not executed. When the execu-

tion condition is ON, INC(38) increments Wd, without affecting Carry (CY).

Flags ER: Wd is not BCD

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the incremented result is O.

5-19-2 DECREMENT — DEC(39)

Ladder Symbols Operand Data Areas
DEC(39) @DEC(39) Wd: Decrement word (BCD)
IR, SR, AR, DM, HR, LR
wd wd
Description When the execution condition is OFF, DEC(39) is not executed. When the exe-

cution condition is ON, DEC(39) decrements Wd, without affecting CY. DEC(39)
works the same way as INC(38) except that it decrements the value instead of
incrementing it.

Flags ER: Wd is not BCD

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the decremented result is 0.

204



BCD Calculations Section 5-19

5-19-3 SET CARRY — STC(40)

Ladder Symbols

— STC(40) — @STC(40)

When the execution condition is OFF, STC(40) is not executed.When the execu-
tion condition is ON, STC(40) turns ON CY (SR 25504).

Note Refer to Appendix C Error and Arithmetic Flag Operation for a table listing the
instructions that affect CY.

5-19-4 CLEAR CARRY —CLC(41)

Ladder Symbols

— cCLC@41) — @CLC(41)

When the execution condition is OFF, CLC(41) is not executed.When the execu-
tion condition is ON, CLC(41) turns OFF CY (SR 25504).

CLEAR CARRY is used to reset (turn OFF) CY (SR 25504) to “0”.

CY is automatically reset to “0” when END(01) is executed at the end of each
cycle.

Note Refer to Appendix C Error and Arithmetic Flag Operation for a table listing the
instructions that affect CY.

5-19-5 BCD ADD — ADD(30)

Operand Data Areas

Ladder Symbols Au: Augend word (BCD)
IR, SR, AR, DM, HR, TC, LR, #
— ADD(30) — @ADD(30)
Ad: Addend word (BCD)
Au Au
IR, SR, AR, DM, HR, TC, LR, #
Ad Ad R: Result word
R R IR, SR, AR, DM, HR, LR
Description When the execution condition is OFF, ADD(30) is not executed. When the exe-

cution condition is ON, ADD(30) adds the contents of Au, Ad, and CY, and places
the result in R. CY will be set if the result is greater than 9999.

Aul+|Ad| +|[CY|—|CY| |R

Flags ER: Au and/or Ad is not BCD.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.
EQ: ON when the result is 0.

205



BCD Calculations

Section 5-19

Example

OOOC!IIIIIII"

If 00002 is ON, the program represented by the following diagram clears CY with
CLC(41), adds the content of LR 25 to a constant (6103), places the result in DM
0100, and then moves either all zeros or 0001 into DM 0101 depending on the
status of CY (25504). This ensures that any carry from the last digit is preserved
in R+1 so that the entire result can be later handled as eight-digit data.

Bl

25504

25504

Address | Instruction Operands
00000 | LR 00002
[ cican | 00001 | OUT TR 0
00002 | CLC(41)
~oD00) 00003 | AND(30)
LR 25
LR 25
# 6103
#6103
DM 0100
DM 0100 00004 | AND 25504
00005 | MOV(21)
MOV(21)
— # 0001
DM 0101
DM 0101 00006 | LD TR 0
— 00007 | AND NOT 25504
@y 00008 | MOV(21)
#0000 # 0000
DM 0101 DM 0101

Although two ADD(30) can be used together to perform eight-digit BCD addition,
ADDL(54) is designed specifically for this purpose.

5-19-6 DOUBLE BCD ADD — ADDL(54)

Limitations

Description

206

Operand Data Areas

Ladder Symbols Au: First augend word (BCD)
IR, SR, AR, DM, HR, TC, LR
ADDL(54) — @ADDL(54)
Ad: First addend word (BCD)
Au Au
IR, SR, AR, DM, HR, TC, LR
Ad Ad R: First result word
R R IR, SR, AR, DM, HR, LR

Each of the following pairs must be in the same data area: Au and Au+1, Ad and
Ad+1, and R and R+1.

When the execution condition is OFF, ADDL(54) is not executed. When the exe-
cution condition is ON, ADDL(54) adds the contents of CY to the 8-digit value in
Au and Au+1 to the 8-digit value in Ad and Ad+1, and places the result in R and
R+1. CY will be set if the result is greater than 99999999.

Au+1 Au

Ad+1 Ad

+ cy
CY R+1 R




BCD Calculations

Section 5-19

Flags

Example

00000

ER: Au and/or Ad is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.
EQ: ON when the result is 0.

When 00000 is ON, the following program adds two 12-digit numbers, the first
contained in LR 20 through LR 22 and the second in DM 0012. The result is
placed in LR 10 through HR 13. In the second addition (using ADD(30)), any
carry from the first addition is included. The carry from the second addition is
placed in HR 13 by using @ADB(50) (see 5-20-1 BINARY ADD — ADB(50)) with
two all-zero constants to indirectly place the content of CY into HR 13.

Address [ Instruction Operands
: CLC(41) I
00000 LD 00000
@ADDL(54) 00001 | CLC(41)
LR 20 00002 | @ADDL(54)
DM 0010 LR 20
HR 10 DM 0010
HR 10
@ADD(E0) 00003 | @ADD(30)
LR 22 R >
bM o012 DM 0012
AR 12 HR 12
@ADB(0) 00004 | @ADB(50)
40000 # 0000
40000 # 0000
R 13 HR 13

5-19-7 BCD SUBTRACT — SUB(31)

Description

Operand Data Areas

Ladder Symbols Mi: Minuend word (BCD)
IR, SR, AR, DM, HR, TC, LR, #
SUB(31) —] @SUB(31)
Su: Subtrahend word (BCD)

Mi Mi

IR, SR, AR, DM, HR, TC, LR, #
Su Su R: Result word
R R IR, SR, AR, DM, HR, LR

Note

When the execution condition is OFF, SUB(31) is not executed. When the exe-
cution condition is ON, SUB(31) subtracts the contents of Su and CY from Mi,
and places the result in R. If the result is negative, CY is set and the 10's comple-
ment of the actual result is placed in R. To convert the 10’s complement to the
true result, subtract the content of R from zero (see example below).

Mi|—|Su|—-|CY|—|CY| |R

The 2’s COMPLEMENT — NEG(—) instruction can be used to convert binary
data only, it cannot be used with BCD data.

207



BCD Calculations

Section 5-19

Flags

ER: Mi and/or Su is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.

EQ: ON when the result is 0.

&Caution Be sure to clear the carry flag with CLC(41) before executing SUB(31) if its previous status is not
required, and check the status of CY after doing a subtraction with SUB(31). If CY is ON as a result
of executing SUB(31) (i.e., if the result is negative), the result is output as the 10's complement of
the true answer. To convert the output result to the true value, subtract the value in R from 0.

Example

00002

When 00002 is ON, the following ladder program clears CY, subtracts the con-
tents of DM 0100 and CY from the content of 010 and places the result in HR 20.

If CY is set by executing SUB(31), the result in HR 20 is subtracted from zero
(note that CLC(41) is again required to obtain an accurate result), the result is
placed back in HR 20, and HR 2100 is turned ON to indicate a negative result.

If CY is not set by executing SUB(31), the result is positive, the second subtrac-
tion is not performed, and HR 2100 is not turned ON. HR 2100 is programmed as
a self-maintaining bit so that a change in the status of CY will not turn it OFF
when the program is recycled.

In this example, differentiated forms of SUB(31) are used so that the subtraction
operation is performed only once each time 00002 is turned ON. When another
subtraction operation is to be performed, 00002 will need to be turned OFF for at
least one cycle (resetting HR 2100) and then turned back ON.

25504

Address | Instruction Operands
: cLC(41) I N
00000 | LD 00002
00001 | OUT TR 0
@SUB(31) First 00002 | CLC(41)
010 subtraction 00003 | @SUB(31)
DM 0100 010
HR 20 e DM 0100
HR 20

{ CLC(41) |\ 00004 | AND 25504

00005 | CLC(41)

25504

@SUB(31) Second 00006 | @SUB(31)
40000 subtraction # 0000
HR 20
HR 20
HR 20
HR 21
7 00007 | LD TR 0

—|

208

HR 2100 00008 | AND 25504
00009 | OR HR 2100

Turned ON to indicate 00010 | OUT HR 2100

negative result.

The first and second subtractions for this diagram are shown below using exam-
ple data for 010 and DM 0100.



BCD Calculations

Section 5-19

Note The actual SUB(31) operation involves subtracting Su and CY from 10,000 plus
Mi. For positive results the leftmost digit is truncated. For negative results the
10s complement is obtained. The procedure for establishing the correct answer
is given below.

First Subtraction

IR 010 1029
DM 0100 — 3452
CY -0
HR 20 7577 (1029 + (10000 — 3452))
CY 1 (negative result)
Second Subtraction
0000
HR 20 -7577
CY -0
HR 20 2423 (0000 + (10000 — 7577))
CY 1 (negative result)

In the above case, the program would turn ON HR 2100 to indicate that the value
held in HR 20 is negative.

5-19-8 DOUBLE BCD SUBTRACT — SUBL(55)

Ladder Symbols Mi: First minuend word (BCD)
IR, SR, AR, DM, HR, TC, LR
— SUBL(55) —1 @SUBL(55)
Su: First subtrahend word (BCD)

Mi Mi

IR, SR, AR, DM, HR, TC, LR
Su Su R: First result word
R R IR, SR, AR, DM, HR, LR

Limitations

Description

Operand Data Areas

Each of the following pairs must be in the same data area: Mi and Mi+1, Su and
Su+1, and R and R+1.

When the execution condition is OFF, SUBL(55) is not executed. When the exe-
cution condition is ON, SUBL(55) subtracts CY and the 8-digit contents of Su
and Su+1 from the 8-digit value in Mi and Mi+1, and places the result in R and
R+1. If the result is negative, CY is set and the 10’s complement of the actual
result is placed in R. To convert the 10's complement to the true result, subtract
the content of R from zero. Since an 8-digit constant cannot be directly entered,
use the BSET(71) instruction (see 5-16-3 BLOCK SET — BSET(71)) to create an
8-digit constant.

Mi+1 Mi
Su+1 Su
—_— CY
CcY R+1 R

Note The DOUBLE 2's COMPLEMENT — NEGL(—) instruction can be used to con-
vert binary data only, it cannot be used with BCD data.

209



BCD Calculations

Section 5-19

Flags

Example

210

00003
I

ER: Mi, M+1,Su, or Su+1 are not BCD.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su.

EQ: ON when the result is 0.

The following example works much like that for single-word subtraction. In this
example, however, BSET(71) is required to clear the content of DM 0000 and
DM 0001 so that a negative result can be subtracted from 0 (inputting an 8-digit
constant is not possible).

: cLC(41) I

@SUBL(55) First
HR 20 subtraction
120
DM 0100
25504
L @BSET(71)

|
#0000

DM 0000

DM 0001

: CLC(41) I

@SUBL(55) Second
DM 0000 subtraction
DM 0100
DM 0100
25504
HR 2100 Turned ON to indicate
— negative result.
Address | Instruction Operands Address | Instruction Operands
00000 LD 00003 00006 CLC(41)
00001 ouT TR 0 00007 @SUBL(55
00002 CLC(41) DM 0000
00003 @SUBL(55 DM 0100
HR 20 DM 0100
120 00008 LD TR 0
DM 0100 00009 AND 25504
00004 AND 25504 00010 OR HR 2100
00005 @BSET(71 00011 ouT HR 2100
# 0000
DM 0000
DM 0001




BCD Calculations

Section 5-19

5-19-9 BCD MULTIPLY — MUL(32)

Operand Data Areas

Ladder Symbols Md: Multiplicand (BCD)
IR, SR, AR, DM, HR, TC, LR, #
MUL(32) —1 @MUL(32)
Mr: Multiplier (BCD)
Md Md
IR, SR, AR, DM, HR, TC, LR, #
Mr Mr R: First result word
R R IR, SR, AR, DM, HR LR

Limitations R and R+1 must be in the same data area.

Description When the execution condition is OFF, MUL(32) is not executed. When the exe-
cution condition is ON, MUL(32) multiplies Md by the content of Mr, and places
the result In R and R+1.

X
| R+ | R |

Example When IR 00000 is ON with the following program, the contents of IR 013 and DM
0005 are multiplied and the result is placed in HR 07 and HR 08. Example data
and calculations are shown below the program.

00000
I Address | Instruction Operands
11 MUL(32)
s 00000 | LD 00000
00001 | MUL(32)
DM 0005
013
ARo7 DM 00005
HR 07
Md: IR 013
3] 3| 5] 6
Mr: DM 0005
X oo 2]s
R+1: HR 08 R: HR 07
o] o] o] 8] 3] 9] o] 0
Flags ER: Md and/or Mr is not BCD.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.
EQ: ON when the result is 0.

211



BCD Calculations Section 5-19

5-19-10 DOUBLE BCD MULTIPLY — MULL(56)

Operand Data Areas

Ladder Symbols Md: First multiplicand word (BCD)
IR, SR, AR, DM, HR, TC, LR
—1 MULL(56) —1 @MULL(56)
Mr: First multiplier word (BCD)
Md Md
IR, SR, AR, DM, HR, TC, LR
Mr Mr R: First result word
R R IR, SR, AR, DM, HR LR
Limitations Md and Md+1 must be in the same data area, as must Mr and Mr+1.

R and R+3 must be in the same data area.

When the execution condition is OFF, MULL(56) is not executed. When the exe-

Description
cution condition is ON, MULL(56) multiplies the eight-digit content of Md and
Md+1 by the content of Mr and Mr+1, and places the result in R to R+3.
Md + 1 Md
X Mr+ 1 Mr
R+3 R+2 R+1 R
Flags ER: Md, Md+1,Mr, or Mr+1 is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.
EQ: ON when the result is 0.

5-19-11 BCD DIVIDE - DIV(33)

Operand Data Areas

Ladder Symbol Dd: Dividend word (BCD)
IR, SR, AR, DM, HR, TC, LR, #
— DIV(33)
Dr: Divisor word (BCD)
Dd
IR, SR, AR, DM, HR, TC, LR, #
D -
' R: First result word (BCD)
R IR, SR, AR, DM, HR, LR
Limitations R and R+1 must be in the same data area.

212



BCD Calculations

Section 5-19

Description When the execution condition is OFF, DIV(33) is not executed and the program
moves to the next instruction. When the execution condition is ON, Dd is divided
by Dr and the result is placed in R and R + 1: the quotient in R and the remainder
inR + 1.

Remainder Quotient
| Re1 | | R |

Flags ER: Dd or Dris not in BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)
EQ: ON when the result is 0.

Example When IR 00000 is ON with the following program, the content of IR 020 is divided
by the content of HR 09 and the result is placed in DM 0017 and DM 0018. Exam-
ple data and calculations are shown below the program.

°|°|°°0 Address | Instruction Operands
1 Ve 00000 | LD 00000
020 00001 | DIV(33)

HR 09 020
DM 0017 HR 09
Quotient Remainder DM 0017

R: DM 0017 R +1: DM 0018

1| 1] 5] of of of o] 2

Dd: HR 09 Dd: IR0
o[ of[o] s REE
5-19-12 DOUBLE BCD DIVIDE - DIVL(57)
Operand Data Areas
Ladder Symbols Dd: First dividend word (BCD)
IR, SR, AR, DM, HR, TC, LR
— DIVL(57) —1 @DIVL(57)
Dr: First divisor word (BCD)
Dd Dd
IR, SR, AR, DM, HR, TC, LR
Dr Dr R: First result word
R R
IR, SR, AR, DM, HR, LR

Limitations

Dd and Dd+1 must be in the same data area, as must Dr and Dr+1.
R and R+3 must be in the same data area.

213



BCD Calculations Section 5-19

Description When the execution condition is OFF, DIVL(57) is not executed. When the exe-
cution condition is ON, DIVL(57) the eight-digit content of Dd and D+1 is divided
by the content of Dr and Dr+1 and the result is placed in R to R+3: the quotient in
R and R+1, the remainder in R+2 and R+3.

Remainder Quotient
| Re3 | Re2 || Rra | R |
| bre | o | > | b1 | Dd |
Flags ER: Dr and Dr+1 contain 0.

Dd, Dd+1, Dr, or Dr+1 is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-19-13 FLOATING POINT DIVIDE — FDIV(79)

Operand Data Areas

Ladder Symbols Dd: First dividend word (BCD)
IR, SR, AR, DM, HR, TC, LR
— FDIV(79) — @FDIV(79)

Dr: First divisor word (BCD)

Dd Dd
IR, SR, AR, DM, HR, TC, LR

Dr Dr R: First result word

R R IR, SR, AR, DM, HR, LR

Limitations Dr and Dr+1 cannot contain zero. Dr and Dr+1 must be in the same data area, as

must Dd and Dd+1; R and R+1.
The dividend and divisor must be between 0.0000001 x 10~/ and
0.9999999 x 107. The results must be between 0.1 x 10~/ and 0.9999999 x 107.

Description When the execution condition is OFF, FDIV(79) is not executed. When the exe-
cution condition is ON, FDIV(79) divides the floating-point value in Dd and Dd+1
by that in Dr and Dr+1 and places the result in R and R+1.

Quotient

Dr+1 Dr | > | Dd+1 | Dd |

214



BCD Calculations Section 5-19

Flags

Example

To represent the floating point values, the rightmost seven digits are used for the
mantissa and the leftmost digit is used for the exponent, as shown below. The
mantissa is expressed as a value less than one, i.e., to seven decimal places.

First word
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

ilolslololololslolololslololols

exponent (0 to 7) |— mantissa (leftmost 3 digits)
sign of exponent ~ 0: +
1 -

Second word
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

?|o|o|1|o|o|o|1|o|o|o|1|o|o|o|1|

mantissa (leftmost 4 digits)

=0.1111111 x 102

ER: Dr and Dr+1 contain O.
Dd, Dd+1, Dr, or Dr+1 is not BCD.
The result is not between 0.1 x 10~7 and 0.999999 x 107.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

The following example shows how to divide two whole four-digit numbers (i.e.,
numbers without fractions) so that a floating-point value can be obtained.

First the original numbers must be placed in floating-point form. Because the
numbers are originally without decimal points, the exponent will be 4 (e.g., 3452
would equal 0.3452 x 104). All of the moves are to place the proper data into con-
secutive words for the final division, including the exponent and zeros. Data
movements for Dd and Dd+1 are shown at the right below. Movements for Dr
and Dr+1 are basically the same.The original values to be divided are in DM
0000 and DM 0001. The final division is also shown.

215



BCD Calculations

Section 5-19

216

00000
—l eumoveD HR 01 HR 00
| [ Tolololo
HR 00 T
@MOoV(21) 0000
#0000
HR 02
CALENICD HR 01 HR 00
#4000 4[oJoJolo]o]o]o
HR 01 t
@MOoV(21) 4000
#4000
HR 03
pep— DM 0000
3lals]2
DM 0000
#0021
ot HR 01 HR 00
4]3]4a]s]o]olofo
GNOVD(E3) DM 0000
DM 0000 3| 4 | 5 | 2
#0300
HR 00 HR 01 HR 00
4l3lals]2]o0]lofo
@MOVD(83)
DM 0001
#0021
HR 03
@::\;Ef) HR 01 HR 00
4l3lals]2]o]lo]o
#0300
HR 02 HR 03 HR 02
= 4lolol7]9]o]lo]o
@FDIV(79)
HR 00 DM 0003 DM 0002
HR 02 2|4|3|6 9|6|2|0
DM 0002 0.4369620 x 102
Address | Instruction Operands Address | Instruction Operands
00000 |LD 00000 00006 | @MOVD(83)
00001 | @MOV(21) DM 0000
# 0000 # 0300
HR 00 HR 00
00002 | @MOV(21) 00007 | @MOVD(83)
# 0000 DM 0001
HR 02 # 0021
00003 | @MOV(21) HR 03
# 4000 00008 | @MOVD(83)
HR o1 DM 0001
00004 | @MOV(21) # 0300
# 4000 HR 02
HR 03 00009 | @FDIV(79)
00005 | @MOVD(83 HR 00
DM 0000 HR 02
# 0021 DM 0002
HR 01




BCD Calculations

Section 5-19

5-19-14 SQUARE ROOT — ROOT(72)

Limitations

Description

Flags

Example

Ladder Symbols

Operand Data Areas

Sq: First source word (BCD)

IR, SR, AR, DM, HR, TC, LR

ROOT(72) —1 @ROOT(72)
Sq Sq
R R

Sqg and Sg+1 must be in the same data area.

R: Result word

IR, SR, AR, DM, HR, LR,

When the execution condition is OFF, ROOT(72) is not executed. When the exe-
cution condition is ON, ROOT(72) computes the square root of the eight-digit
content of Sq and Sg+1 and places the result in R. The fractional portion is trun-

cated.

ER:

EQ:

L= ]

J e s ]

Sq is not BCD.

Indirectly addressed DM word is non-existent. (Content of «DM word is
not BCD, or the DM area boundary has been exceeded.)

ON when the result is 0.

The following example shows how to take the square root of a four-digit number
and then round the result.

First the words to be used are cleared to all zeros and then the value whose
square root is to be taken is moved to Sg+1. The result, which has twice the num-
ber of digits required for the answer (because the number of digits in the original
value was doubled), is placed in DM 0102, and the digits are split into two differ-
ent words, the leftmost two digits to IR 011 for the answer and the rightmost two
digits to DM 0103 so that the answer in IR 011 can be rounded up if required. The
last step is to compare the value in DM 0103 so that IR 011 can be incremented
using the Greater Than flag.

217



BCD Calculations

Section 5-19

218

00000
|

I @BSET(71) DM 0101 DM 0100
#0000 ololofo]o]o]lo]o
DM 0100
DM 0101 ogoo ogoo
@MOV(21) 010
— 6lol1]7
DM 0101
DM 0101 DM 0100
@ROOT(72) 6lo[1][7]o0]0]o]o0
DM 0100
DM 0102 l 60170000= 7756.932
@MOoV(21)
#0000 DM 0103 IR 011
o1t ololofo]o]o]lo]o
@Mov(21) 4 )
PV 0000 0000
DM 0103
@MOVD(83)
— DM 0102
717]5]6
#0012
011
pe—— IR 011 DM 0103
v olol7]7[s5]6lo]o0
#0210
DM 0103
@CMP(20)
DM 0103 5600 > 4900
#4900
25505
T @NCEs) IR 011
- olo[7]s
Address [ Instruction Operands Address | Instruction Operands
00000 | LD 00000 00006 | @MOVD(83
00001 | @BSET(71) DM 0102
# 0000 # 0012
DM 0100 011
DM 0101 00007 | @MOVD(83
00002 | @MOV(21) DM 0102
010 # 0210
DM 0101 DM 0103
00003 | @ROOT(72 00008 | @CMP(20)
DM 0100 DM 0103
DM 0102 # 4900
00004 | @MOV(21) 00009 | LD 25505
# 0000 00010 | @INC(38)
011 011
00005 | @MOV(21)
# 0000
DM 0103

In this example, V6017 = 77.56, and 77.56 is rounded off to 78.



Binary Calculations Section 5-20

5-20 Binary Calculations

Binary calculation instructions — ADB(50), SBB(51), MLB(52), DVB(53),
ADBL(—), SBBL(—), MBS(—), MBSL(—), DBS(—), and DBSL(—) — perform
arithmetic operations on hexadecimal data.

Four of these instructions (ADB(50), SBB(51), ADBL(—), and SBBL(—)) can
act on both normal and signed data, two (MLB(52) and DVB(53)) act only on nor-
mal data, and four (MBS(—), MBSL(—), DBS(—), and DBSL(—)) act only on
signed binary data.

The addition and subtraction instructions include CY in the calculation as well as
in the result. Be sure to clear CY if its previous status is not required in the calcu-
lation, and to use the result placed in CY, if required, before it is changed by the
execution of any other instruction. STC(40) and CLC(41) can be used to control
CY. Refer to 5-19 BCD Calculations.

Signed binary addition and subtraction instructions use the underflow and over-
flow flags (UF and OF) to indicate whether the result exceeds the acceptable
range for 16-bit or 32-bit signed binary data. Refer to page 29 for details on
signed binary data.

5-20-1 BINARY ADD — ADB(50)

Operand Data Areas

Ladder Symbols Au: Augend word (binary)
IR, SR, AR, DM, HR, TC, LR, #
— ADB(50) — @ADB(50)
Ad: Addend word (binary)
Au Au
IR, SR, AR, DM, HR, TC, LR, #
Ad Ad R: Result word
R R IR, SR, AR, DM, HR, LR
Description When the execution condition is OFF, ADB(50) is not executed. When the ex-

ecution condition is ON, ADB(50) adds the contents of Au, Ad, and CY, and
places the result in R. CY will be set if the result is greater than FFFF.

Aul+|Ad| +[CY|— |CY| | R

ADB(50) can also be used to add signed binary data. The underflow and over-
flow flags (SR 25404 and SR 25405) indicate whether the result has exceeded
the lower or upper limits of the 16-bit signed binary data range. Refer to page 29
for details on signed binary data.

Flags ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is greater than FFFF.

EQ: ON when the result is 0.

OF: ON when the result exceeds +32,767 (7FFF).
UF: ON when the result is below —32,768 (8000).

219



Binary Calculations Section 5-20

Example 1: The following example shows a four-digit addition with CY used to place either
Adding Normal Data #0000 or #0001 into R+1 to ensure that any carry is preserved.
Address | Instruction Operands
00000 00000 | LD 00000
- [ ccan | 20001 | oUT R 5
00002 | CLC(41)
ADB(50)
— 00003 | ADB(50)
010
DM 0100 DM 0100
25504 i -f HR 10
¥ — 00004 | AND NOT 25504
0000 00005 | MOV(21)
e ot # 0000
25504 HR 11
{| MOV(21) 00006 | LD TR 0
#0001 00007 | AND 25504
HR 11 R+l 00008 | MOV(21)
# 00001
HR 1

In the case below, AGE2 + 80C5 = 127A7. The result is a 5-digit number, so CY
(SR 25504) = 1, and the content of R + 1 becomes #0001.

Au: IR 010
Al 6] E] 2

+ Ad: DM 0100
8| o] cl|s
R+1: HR 11 R: HR 10

o|o|o|1 2|7|A|7

Note The UF and OF flags would also be turned ON during this addition, but they can
be ignored since they are relevant only in the addition of signed binary data.

Example 2: _ In the following example, ADB(50) is used to add two 16-bit signed binary val-
Adding Signed Binary Data  yes. (The 2’s complement is used to express negative values.)

The effective range for 16-bit signed binary values is —32,767 (8000) to +32,768
(7FFF). The overflow flag (OF: SR 25404) is turned ON if the result exceeds
+32,768 (7FFF) and the underflow flag (UF: SR 25405) is turned ON if the result
falls below —32,767 (8000).

00000 Address | Instruction Operands
L

I : CLC(41) I 00000 | LD 00000

00001 | CLC(41)

ADB(50) 00002 | ADB(50)

LR 20 LR 20
DM 0010 DM 0010
DM 0020 DM 0020

220



Binary Calculations Section 5-20

In the case below, 25,321 +(-13,253) = 12,068 (62E9 + CC3B = 2F24). Neither
OF nor UF are turned ON.

Au: LR 20
6| 2| E| 9

+ Ad: DM 0010
c| c| 3| B

Ad: DM 0010
2| F| 2| 4

Note The status of the CY flag can be ignored when adding signed binary data since it
is relevant only in the addition of normal hexadecimal values.

5-20-2 BINARY SUBTRACT — SBB(51)

Operand Data Areas

Ladder Symbols Mi: Minuend word (binary)
IR, SR, AR, DM, HR, TC, LR, #
— SBB(51) — @SBB(51)

Su: Subtrahend word (binary)

Mi Mi
IR, SR, AR, DM, HR, TC, LR, #

Su Su R: Result word

R R IR, SR, AR, DM, HR, LR

Description When the execution condition is OFF, SBB(51) is not executed. When the ex-

ecution condition is ON, SBB(51) subtracts the contents of Su and CY from Mi
and places the result in R. If the result is negative, CY is set and the 2's comple-
ment of the actual result is placed in R.

Mi|—|[Sul —|CY|— |CY| [R

SBB(51) can also be used to subtract signed binary data. The overflow and un-
derflow flags (SR 25404 and SR 25405) indicate whether the result has exceed-
ed the lower or upper limits of the 16-bit signed binary data range. Refer to page
29 for details on signed binary data.

Flags ER: Indirectly addressed DM word is non-existent. (Content of >xDM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.
EQ: ON when the result is 0.

OF: ON when the result exceeds +32,767 (7FFF).

UF: ON when the result is below —32,768 (8000).

221



Binary Calculations

Section 5-20

Example 1: Normal Data

00001
|

The following example shows a four-digit subtraction with CY used to place ei-
ther #0000 or #0001 into R+1 to ensure that any carry is preserved.

25504

Al

25504

222

Address | Instruction Operands
00000 | LD 00001
[ ccan | o001 | oUT I T
pu— 00002 | CLC(41)
00003 | SBB(51)

001 501
LR20 R >0
HR 21 =R oR 51

MOV(21) 00004 | AND NOT 25504
0000 00005 | MOV(21)

'R 22 Rl # 0000

HR 22

MOV(21) 00006 LD TR 1

#0001 00007 | AND 25504
HR 22 —R+1 00008 | MOV(21)

# 0001

NEG(—) HR 22
HR21 00009 | NEG(—)

HR 21 HR 21

HR 21

In the case below, the content of LR 20 (#7A03) and CY are subtracted from
IR 001 (#F8C5). The result is stored in HR 21 and the content of HR 22 (#0000)
indicates that the result is positive.

If the result had been negative, CY would have been set, #0001 would have
been placed in HR 22, and the result would have been converted to its 2's com-
pliment.

Mi: IR 001
Fl 8] c|s

Su: LR 20
7] Al o] 3 CYy=0
(from CLC(41))
— [ofo[ofo]

R+1: HR 22 R: HR 21
ofoflofo]|] 7] E[] c] 2

Note The status of the UF and OF flags can be ignored since they are relevant only in
the subtraction of signed binary data.



Binary Calculations

Section 5-20

Example 2:
Signed Binary Data

00000
I

In the following example, SBB(51) is used to subtract one 16-bit signed binary
value from another. (The 2's complement is used to express negative values).

The effective range for 16-bit signed binary values is —32,768 (8000) to +32,767
(7FFF). The overflow flag (OF: SR 25404) is turned ON if the result exceeds
+32,767 (7FFF) and the underflow flag (UF: SR 25405) is turned ON if the result
falls below —32,768 (8000).

Address | Instruction Operands

: CLC(41) I 00000 | LD 00000

00001 | CLC(41)

SBB(51) 00002 | SBB(51)

LR 20 LR 20
DM 0010 DM 0010
DM 0020 DM 0020

In the case shown below, 30,020 — (-15,238) = 45,258 (7544 — C47A =
60CA).The OF flag would be turned ON to indicate that this result exceeds the
upper limit of the 16-bit signed binary data range. (In other words, the result is a
positive value that exceeds 32,767 (7FFF), not a negative number expressed as
signed binary data.)

Mi: LR 20
7| 5| 4| 4

Su: DM 0010
— C| 4| 7|A

C| A

R: DM 0020
Blofc]

In the case shown below, —30,000 — 3,000 = —33,000 (8AD0 — 0BB8 = 7F18).The
UF flag would be turned ON to indicate that this result is below the lower limit of
16-bit signed binary data range. (In other words, the result is a negative number
below —32,768 (8000), not a positive number expressed as signed binary data.)

Mi: LR 20
8| A| D| 0

Su: DM 0010
— 0| B| B|8

R: DM 0020
[Fle]

7 8

The absolute value of the true result (80E8=33,000) can be obtained by taking
the 2's complement of 7F18 using NEG(—).

Note The status of the CY flag can be ignored when adding signed binary data since it

is relevant only in the addition of normal hexadecimal values.

223



Binary Calculations

Section 5-20

5-20-3 BINARY MULTIPLY — MLB(52)

Limitations

Description

Precautions

Flags

Operand Data Areas

Ladder Symbols Md: Multiplicand word (binary)
IR, SR, AR, DM, HR, TC, LR, #
MLB(52) — @MLB(52)
Mr: Multiplier word (binary)
md Md
IR, SR, AR, DM, HR, TC, LR, #
M M
' ' R: First result word
R R IR, SR, AR, DM, HR LR

R and R+1 must be in the same data area.

When the execution condition is OFF, MLB(52) is not executed. When the ex-
ecution condition is ON, MLB(52) multiplies the content of Md by the contents of
Mr, places the rightmost four digits of the result in R, and places the leftmost four
digits in R+1.

MLB(52) cannot be used to multiply signed binary data. Use MBS(—) instead.
Refer to 5-20-7 SIGNED BINARY MULTIPLY — MBS(—) for details.

ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-20-4 BINARY DIVIDE - DVB(53)

Description

224

Operand Data Areas

Ladder Symbols Dd: Dividend word (binary)
IR, SR, AR, DM, HR, TC, LR, #
DVB(53) —1 @DVB(53)
Dr: Divisor word (binary)
Dd Dd
IR, SR, AR, DM, HR, TC, LR, #
br br R: First result word
R R IR, SR, AR, DM, HR LR

When the execution condition is OFF, DVB(53) is not executed. When the ex-
ecution condition is ON, DVB(53) divides the content of Dd by the content of Dr
and the result is placed in R and R+1: the quotient in R, the remainder in R+1.

Quotient Remainder

| R |R+l

Dr Dd
) ]




Binary Calculations

Section 5-20

Precautions

DVB(53) cannot be used to divide signed binary data. Use DBS(—) instead. Re-

fer to 5-20-9 SIGNED BINARY DIVIDE — DBS(—) for details.

Indirectly addressed DM word is non-existent. (Content of kDM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

DVB(53)

001

LR 20

HR 05

Address | Instruction Operands
00000 | LD 00000
00001 | DVB(53)
001
LR 0020
HR 05

Dr: LR 20

o|o|o|3

R: HR 05

' H
0|0|0|2

0|5|A|7

Remainder (2)

@ADBL(—)

Au

Ad

R

Quotient (1447)

Operand Data Areas

Au: First augend word (binary)

IR, SR, AR, DM, HR, LR

Ad: First addend word (binary)

IR, SR, AR, DM, HR, LR

R: First result word

IR, SR, AR, DM, HR, LR

Au and Au+1 must be in the same data area, as must Ad and Ad+1, and R and

Flags ER: Dr contains 0.
Example
s
5-20-5 DOUBLE BINARY ADD - ADBL(—)
Ladder Symbols
— ADBL(—) —
Au
Ad
R
Limitations
R+1.
Description

When the execution condition is OFF, ADBL(—) is not executed. When the ex-
ecution condition is ON, ADBL(—)) adds the eight-digit contents of Au+1 and
Au, the eight-digit contents of Ad+1 and Ad, and CY, and places the result in R.
CY will be set if the result is greater than FFFF FFFF.

Au+1 Au

Ad+1 Ad

+ ey
Cy R+1 R

225



Binary Calculations

Section 5-20

Flags

Example 1: Normal Data

ADBL(—) can also be used to add signed binary data. The underflow and over-
flow flags (SR 25404 and SR 25405) indicate whether the result has exceeded
the lower or upper limits of the 32-bit signed binary data range. Refer to page 29
for details on signed binary data.

ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is greater than FFFF FFFF.

EQ: ON when the result is 0.

OF: ON when the result exceeds +2,147,483,647 (7TFFF FFFF).

UF: ON when the result is below —2,147,483,648 (8000 0000).

The following example shows an eight-digit addition with CY (SR 25504) used to
represent the status of the 9t digit.

00000 Address | Instruction Operands
— | { CLC(41) | 00000 | LD 00000
00001 | CLC(41)
ADBL(—) 00002 | ADBL(—)
000 000
DM 0020 DM 0020
LR 21 LR 21
14020187 + 00A3F8C5 = 14A5FA4C
Au+1:001 Au : 000
[1]4]0]2] [0]1[8] 7]
Ad +1: DM 0021 Ad : DM 0020
[0]ofA[3] EHEEE
. [0] ---- cY(Cleared with CLC(41))
R+1:LR22 R:LR21
El - === CY (No carry)
Note The status of the UF and OF flags can be ignored since they are relevant only in
the addition of signed binary data.
Example 2: In the following example, ADBL(—) is used to add two 32-bit signed binary val-

Signed Binary Data

00000
L

ues and output the 32-bit signed binary result to R and R+1. (The 2's comple-
ment is used to express negative values).

The effective range for 32-bit signed binary values is -2,147,483,648
(8000 0000) to +2,147,483,647 (7FFF FFFF). The overflow flag (OF: SR 25404)
is turned ON if the result exceeds +2,147,483,647 (7FFF FFFF) and the under-
flow flag (UF: SR 25405) is turned ON if the result falls below —2,147,483,648
(8000 0000).

226

Address | Instruction Operands
: CLC(41) I 00000 | LD 00000
00001 | CLC(41)
ADBL(—) 00002 | ADBL(—)
LR 20 LR 20
DM 0010 DM 0010
DM 0020 DM 0020




Binary Calculations Section 5-20

In the case below, 1,799,100,099 + (-282,751,929) = 1,516,348,100
(6B3C167D + EF258C47 = 5A61A2C4). Neither OF nor UF are turned ON.

[8]cl4]7]

+ - --- CY (Cleared with CLC(41))
R +1:DM 0021 R : DM 0020
(5]Af[6]1]
[0] - - - - UF (sR 25405)
[0] - - - - OF (SR 25404)

Note The status of the CY flag can be ignored when adding signed binary data since it
is relevant only in the addition of normal hexadecimal values.

5-20-6 DOUBLE BINARY SUBTRACT — SBBL(—)

Operand Data Areas

Ladder Symbols Mi: First minuend word (binary)
IR, SR, AR, DM, HR, TC, LR
— SBBL(—) — @SBBL(—)
Su: First subtrahend word (binary)
Mi Mi
IR, SR, AR, DM, HR, TC, LR
Su Su R: First result word
R R IR, SR, AR, DM, HR, LR
Limitations Mi and Mi+1 must be in the same data area, as must Su and Su+1, and R and
R+1.
Description When the execution condition is OFF, SBBL(—) is not executed. When the ex-

ecution condition is ON, SBBL(—) subtracts CY and the eight-digit value in Su
and Su+1 from the eight-digit value in Mi and Mi+1, and places the result in R and
R+1. If the result is negative, CY is set and the 2's complement of the actual re-
sultis placed in R+1 and R. Use the DOUBLE 2's COMPLEMENT instructions to
convert the 2's complement to the true result.

Mi+ 1 Mi
Su+1 Su
—_— CY
CcY R+1 R

SBBL(—) can also be used to subtract signed binary data. The underflow and
overflow flags (SR 25404 and SR 25405) indicate whether the result has ex-
ceeded the lower or upper limits of the 32-bit signed binary data range. Refer to
page 29 for details on signed binary data.

227



Binary Calculations

Section 5-20

Flags

Example 1: Normal Data

00000
L

ER:

CY:
EQ:
OF:
UF:

Indirectly addressed DM word is non-existent. (Content of >xDM word is
not BCD, or the DM area boundary has been exceeded.)

ON when the result is negative, i.e., when Mi is less than Su plus CY.
ON when the result is O.

ON when the result exceeds +2,147,483,647 (7FFF FFFF).

ON when the result is below —2,147,483,648 (8000 0000).

In this example, the eight-digit number in IR 002 and IR 001 is subtracted from

the eight-digit number in DM 0021 and DM 0020, and the result is output to LR 22
and LR 21. If the result is negative, CY (SR 25504) is turned ON.

Address | Instruction Operands

= CLC(41) I 00000 | LD 00000

00001 | CLC(41)

SBBL(—) 00002 | SBBL(—)
001 001
DM 0020 DM 0020
LR 21 LR 21

Au +1:002 Au: 001
[1]4]o0]2] jofa1f8]7]
Ad +1: DM 0021 Ad : DM 0020
[0fo]A]3] [ Fl[8fc|5]
— [0] ---- cY(Cleared with CLC(41))
R+1:LR22 R:LR 21
jofsfc] 2]

Example 2:
Signed Binary Data

00000

El - - - - CY (Nocarry)

Note The status of the UF and OF flags can be ignored since they are relevant only in
the subtraction of signed binary data.

In the following example, SBBL(—) is used to subtract one 32-bit signed binary
value from another and output the 32-bit signed binary result to R and R+1.

The effective range for 32-bit signed binary values is -2,147,483,648
(8000 0000) to +2,147,483,647 (7FFF FFFF). The overflow flag (OF: SR 25404)
is turned ON if the result exceeds +2,147,483,647 (7FFF FFFF) and the under-
flow flag (UF: SR 25405) is turned ON is the result falls below —2,147,483,648
(8000 0000).

Address [ Instruction Operands

= CLC(41) I 00000 | LD 00000

00001 | CLC(41)

228

SBBL(—) 00002 | SBBL(—)
001 001
DM 0020 DM 0020
LR 21 LR 21




Binary Calculations Section 5-20

In the case below, 1,799,100,099 - (-282,751,929) = 2,081,851,958
(6B3C 167D — {EF25 8C47 — 1 0000 0000} = 7C16 8A36). Neither OF nor UF
are turned ON.

Au +1:001 Au : 000
[ 6]B[3[C] [1]6[7]D]
Ad +1: DM 0021 Ad : DM 0020

— [8fcl4]7]

- === CY (Cleared with CLC(41))

R+1:LR22 R:LR21

HEHBE [8[A[3]6]
[0] - - - - UF (sR 25405)
[0] - - - - OF (R 25404)

Note The status of the CY flag can be ignored when adding signed binary data since it
is relevant only in the addition of normal hexadecimal values.

5-20-7 SIGNED BINARY MULTIPLY — MBS(—)

Operand Data Areas

Ladder Symbols Md: Multiplicand word
IR, SR, AR, DM, HR, TC, LR, #
—— MBS(—) — @MBS(—)
Mr: Multiplier word
Md Md
IR, SR, AR, DM, HR, TC, LR, #
Mr Mr R: First result word
R R IR, SR, AR, DM, HR LR
Limitations R and R+1 must be in the same data area.
Description MBS(—) multiplies the signed binary content of two words and outputs the

8-digit signed binary result to R+1 and R. The rightmost four digits of the result
are placed in R, and the leftmost four digits are placed in R+1. Refer to page 29
for details on signed binary data.

Flags ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0000 0000, otherwise OFF.

229



Binary Calculations Section 5-20

Example In the following example, MBS(—) is used to multiply the signed binary contents
of IR 001 with the signed binary contents of DM 0020 and output the result to

LR 21 and LR 22.

00000 Address | Instruction Operands
: MBS(—) 00000 | LD 00000
001 00001 | MBS(—)
DM 0020 001
LR 21 DM 0020
LR 21
Md: IR 100
1]5][B[1]---- (5563
Mr: DM 0020
X Flcl1]3]---- (1005
R+1: LR 22 R:LR21
FIF|A|A][ D] 8] 2] 3]---- (5580765

5-20-8 DOUBLE SIGNED BINARY MULTIPLY — MBSL(—)

Operand Data Areas

Ladder Symbols Md: First multiplicand word
IR, SR, AR, DM, HR, TC, LR
— MBSL(—) — @MBSL(—)
Mr: First multiplier word
Md Md
IR, SR, AR, DM, HR, TC, LR
Mr Mr R: First result word
R R IR, SR, AR, DM, HR LR
Limitations Md and Md+1 must be in the same data area, as must Mr and Mr+1, and R and
R+3.
Description MBSL(—) multiplies the 32-bit (8-digit) signed binary data in Md+1 and Md with

the 32-bit signed binary data in Mr+1 and Mr, and outputs the 16-digit signed
binary result to R+3 through R. Refer to page 29 for details on signed binary

data.
Md + 1 md
X Mr+1 Mr
R+3 R+2 R+1 R
Flags ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is

not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is zero (content of R+3 through R all zeroes), other-
wise OFF.

230



Binary Calculations

Section 5-20

Example

00000

In the following example, MBSL(—) is used to multiply the signed binary con-
tents of IR 101 and IR 100 with the signed binary contents of DM 0021 and
DM 0020 and output the result to LR 24 through LR 21.

5-20-9 SIGNED BINARY DIVIDE — DBS(—)

Address [ Instruction Operands
MBSL(—) 00000 | LD 00000
100 00001 | MBSL(—)

DM 0020 100

LR 21 DM 0020

LR 21
Md+1: IR 101 Md: IR 100

ol ofols8| 7]9][3]8]---- (555320
Mr+1: DM 0021 Mr: DM 0020
X FI F| F]o| A[ 8] 1] 2] ---- (-1,005550)
R+3: LR 24 R+2: LR 23 R+1: LR 22 R: LR 21
FIF[F[F]F[F[7]|D| Flc|Aa]l5 ]| 4a]s5]|F]|o0 |- (-558402026000)

Operand Data Areas

Dd: Dividend word

IR, SR, AR, DM, HR, TC, LR, #

Dr: Divisor word

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols
DBS(—) — @DBS(—)
Dd Dd
Dr Dr
R R

R: First result word

IR, SR, AR, DM, HR LR

Limitations

Description

Flags

R and R+1 must be in the same data area.

DBS(—) divides the signed binary content of Dd by the signed binary content of
Dr, and outputs the 8-digit signed binary result to R+1 and R. The quotient is
placed in R, and the remainder is placed in R+1. Refer to page 29 for details on

signed binary data.

Quotient

Remainder

| R+1

Dr Dd
) ]

ER: Dr contains 0.

Indirectly addressed DM word is non-existent. (Content of kDM word is

not BCD, or the DM area boundary has been exceeded.)

EQ:

ON when the content of R (the quotient) is 0000, otherwise OFF.

231



Binary Calculations Section 5-20

Example In the following example, DBS(—) is used to divide the signed binary contents of
IR 001 with the signed binary contents of DM 0020 and output the result to LR 21
and LR 22.
00000 Address | Instruction Operands
f DBS(—) 00000 | LD 00000
001 00001 | DBS(—)
DM 0020 001
LR 21 DM 0020
LR 21
Dd: IR 001
D[ D[DJA|---- (8742
Dr: DM 0020
+ ofo[a1]A]----(e
R+1: LR 22 R:LR 21
FIF]|F|lA| F] E]B] O] ----(336and-6)
Remainder (—6) Quotient (—336)

5-20-10 DOUBLE SIGNED BINARY DIVIDE — DBSL(—)

Operand Data Areas

Ladder Symbols Dd: Dividend word (binary)
IR, SR, AR, DM, HR, TC, LR, #
— DBSL(—) —1 @DBSL(—)
Dr: Divisor word (binary)
Dd Dd
IR, SR, AR, DM, HR, TC, LR, #
Dr Dr R: First result word
R R IR, SR, AR, DM, HR LR
Limitations Dd and Dd+1 must be in the same data area, as must Dr and Dr+1, and R and
R+3.
Description DBS(—) divides the 32-bit (8-digit) signed binary data in Dd+1 and Dd by the

32-bit signed binary data in Dr+1 and Dr, and outputs the 16-digit signed binary
result to R+3 through R. The quotient is placed in R+1 and R, and the remainder
is placed in R+3 and R+2. Refer to page 29 for details on signed binary data.

Remainder Quotient
[ Res | Re2 || Rra | R |
| Dr+1 | Dr | > | Dd+1 | Dd |
Flags ER: Dr+1 and Dr contain 0.

Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of R+1 and R (the quotient) is 0, otherwise OFF.

232



Special Math Instructions

Section 5-21

Example In the following example, DBSL(—) is used to divide the signed binary contents
of IR 002 and IR 001 with the signed binary contents of DM 0021 and DM 0020
and output the result to LR 24 through LR 21.

00000 Address | Instruction Operands
} DBSL(—) 00000 | LD 00000
001 00001 | DBSL(—)
DM 0020 001
LR 21 DM 0020
LR 21
Dd+1: IR 002 Dd: IR 001
FIrl7]A]B]1]5]cC|---- (8736420
: Dr+1: DM 0021 Dr: DM 0020
ofo[ofo|ofo[1]A]|----(p
R+3: LR 24 R+2: LR 23 R+1: LR 22 R:LR 21
FIrl|F|IF|F[F]F|]c|F][F][F|]A|D]F|]7]0]---- (336016 and-4/26)
Remainder (—4) Quotient (-336,016)
5-21 Special Math Instructions
5-21-1 FIND MAXIMUM — MAX(—)
Ladder Symbols Operand Data Areas
C: Control data
— MAX(—) — @MAX(—)
IR, SR, AR, DM, HR, LR
C C
R1: First word in range
Ry R1
IR, SR, AR, DM, HR, TC, LR
D D D: Destination word
IR, SR, AR, DM, HR, LR
Limitations N in C must be BCD between 001 to 999.
R; and R1+N-1 must be in the same data area.
Description When the execution condition is OFF, MAX(—) is not executed. When the exe-

cution condition is ON, MAX(—) searches the range of memory from R; to
R1+N-1 for the address that contains the maximum value and outputs the maxi-
mum value to the destination word (D).
If bit 14 of C is ON, MAX(—) identifies the address of the word containing the
maximum value in D+1. The address is identified differently for the DM area:

1,2,3.. 1. For an address in the DM area, the word address is written to D+1. For ex-
ample, if the address containing the maximum value is DM 0114, then #0114

is written in D+1.

2. For an address in another data area, the number of addresses from the be-
ginning of the search is written to D+1. For example, if the address contain-
ing the maximum value is IR 114 and the first word in the search range is
IR 014, then #0100 is written in D+1.

233



Special Math Instructions

Section 5-21

&Caution

Flags

If bit 15 of C is ON and more than one address contains the same maximum val-
ue, the position of the lowest of the addresses will be output to D+1.

The number of words within the range (N) is contained in the 3 rightmost digits of
C, which must be BCD between 001 and 999.

When bit 15 of C is OFF, data within the range is treated as normal binary and
when it is ON the data is treated as signed binary.

C:.|15/14|23(12j12 - - - - - - - -00

Number of words
in range (N)

Not used — set to zero.

Output address to D+1?
Data type 1 (ON): Yes.
0 (OFF): No.
1(ON): Signed binary (OFF): No
0 (OFF): Normal binary

If bit 14 of C is ON, values above #8000 are treated as negative numbers, so the
results will differ depending on the specified data type. Be sure that the correct
data type is specified.

ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

The number of words specified in C is not BCD (000 to 999).
R; and R1+N-1 are not in the same data area.
EQ: ON when the maximum value is #0000.

5-21-2 FIND MINIMUM — MIN(—)
Ladder Symbols Operand Data Areas

— MIN(—)

C

Ry

D

Limitations

Description

1,2, 3.

234

C: Control data

— @MIN(—)
IR, SR, AR, DM, HR, TC, LR

C

R1: First word in range

R
. IR, SR, AR, DM, HR, TC, LR

D

D: Destination word

IR, SR, AR, DM, HR, LR

N in C must be BCD between 001 to 999.
R; and R1+N-1 must be in the same data area.

When the execution condition is OFF, MIN(—) is not executed. When the execu-
tion condition is ON, MIN(—) searches the range of memory from Ry to R;+N-1
for the address that contains the minimum value and outputs the minimum value
to the destination word (D).

If bit 14 of C is ON, MIN(—) identifies the address of the word containing the
minimum value in D+1. The address is identified differently for the DM area:

1. For an address in the DM area, the word address is written to D+1. For ex-
ample, if the address containing the minimum value is DM 0114, then #0114
is written in D+1.

2. For an address in another data area, the number of addresses from the be-
ginning of the search is written to D+1. For example, if the address contain-
ing the minimum value is IR 114 and the first word in the search range is
IR 014, then #0100 is written in D+1.



Special Math Instructions

Section 5-21

&Caution

Flags

If bit 14 of C is ON and more than one address contains the same minimum val-
ue, the position of the lowest of the addresses will be output to D+1.

The number of words within the range (N) is contained in the 3 rightmost digits of
C, which must be BCD between 001 and 999.

When bit 15 of C is OFF, data within the range is treated as unsigned binary and
when it is ON the data is treated as signed binary. Refer to page 29 for details on
signed binary data.

C:|15/14|13 (12|11 - - - - - - -

Number of words
in range (N)

Not used — set to zero.

Output address to D+1?
1 (ON): Yes.
0 (OFF): No.

Data type
1 (ON): Signed binary
0 (OFF): Unsigned binary

If bit 14 of C is ON, values above #8000 are treated as negative numbers, so the
results will differ depending on the specified data type. Be sure that the correct
data type is specified.

ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

The number of words specified in C is not BCD (000 to 999).
R1 and R1+N-1 are not in the same data area.
EQ: ON when the minimum value is #0000.

5-21-3 AVERAGE VALUE - AVG(—)

Ladder Symbols Operand Data Areas

Limitations

Description

S: Source word
AVG(—) — 1 @AVG(—)
IR, SR, AR, DM, HR, TC, LR
S S
N: Number of cycles
N N
IR, SR, AR, DM, HR, TC, LR, #

D D - —

D: First destination word

IR, SR, AR, DM, HR, LR

Data of S must be hexadecimal.
N must be BCD from #0001 to #0064.
D and D+N+1 must be in the same data area.

AVG(—) is used to calculate the average value of S over N cycles.
When the execution condition is OFF, AVG(—) is not executed.

For the first N-1 cycles when the execution condition is ON, AVG(—) writes the
value of S to D. Each time that AVG(—) is executed, the previous value of S is
stored in words D+2 to D+N+1. The first 2 digits of D+1 are incremented with
each execution and act as a pointer to indicate where the previous value is
stored. Bit 15 of D+1 remains OFF for the first N-1 cycles.

235



Special Math Instructions

Section 5-21

Previous Value Pointer

Cycle Indicator

Flags

236

On the Nth cycle, the previous value of S is written to last word in the range D+2 to
D+N+1. The average value of the previous values stored in D+2 to D+N+1 is cal-
culated and written to D, bit 15 of D+1 is turned ON, and the previous value point-
er (the first 2 digits of D+1) is reset to zero. Each time that AVG(—) is executed,
the previous value of S overwrites the content of the word indicated by the point-
er and the new average value is calculated and written to D. The pointer will be
reset again after reaching N-1.

The following diagram shows the function of words D to D+N+1.

D Average value (after N or more cycles)
D+1 Previous value pointer and cycle indicator
D+2 Previous value #1
D+3 Previous value #2

' ' ' '

' ' ' '
D+N+1 Previous value #N

The function of bits in D+1 are shown in the following diagram and explained in
more detail below.

D+1: 1514 - - - - -08[07 - - - - - 00

| L

Not used. Set to zero.

Previous value pointer
(2-digit hexadecimal from 0 to N-1.)

Cycle indicator
0 (OFF): cycles since execution of AVG(—) < N.
1 (ON): cycles since execution of AVG(—) = N.

The previous value pointer indicates the location where the most recent value of
S was stored relative to D+2, i.e., a pointer value of 0 indicates D+2, a value of 1
indicates D+3, etc.

The cycle indicator is turned ON after AVG(—) has been executed N times. At
this point, D will contain the average value of the contents of words D+2 through
D+N+1. The average value is 4-digit hexadecimal and is rounded off to the near-
est integer value.

ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

One or more operands have been set incorrectly.



Special Math Instructions

Section 5-21

Example

00001

In the following example, the content of IR 040 is set to #0000 and then increm-
ented by 1 each cycle. For the first two cycles, AVG(—) moves the content of
IR 040 to DM 1002 and DM 1003. The contents of DM 1001 will also change
(which can be used to confirm that the results of AVG(—) has changed). On the
third and later cycles AVG(—) calculates the average value of the contents of
DM 1002 to DM 1004 and writes that average value to DM 1000.

@moviz) Address | Instruction Operands
#0000
040 00000 LD 00001
00001 | @MOV(21)
# 0000
) 040
040 00002 | AVG(—)
#0003 040
DM 1000 # 0003
DM 1000
I CLC(41) I 00003 | CLC(41)
00004 | ADB(50)
ADB(50) 040
# 0001
040
040

#0001

040

1stcycle  2ndcycle 3Mdcycle 4t cycle
IR 40 0000 0001 0002 0003

1stcycle  2Mcycle  3dcycle 4t cycle

5-21-4 SUM — SUM(—)

Limitations

DM 1000 | 0000 0001 0001 0002 Average
DM 1001 | 0001 0002 8000 8000 Pointer
DM 1002 | 0000 0000 0000 0003 Previous
DM 1003 | --- 0001 0001 0001 values of
DM 1004 | --- 0002 0002 IR 40
Ladder Symbols Operand Data Areas
C: Control data
SUM(—) — @SUM(—)
IR, SR, AR, DM, HR, LR
C C
R1: First word in range
R1 R1
IR, SR, AR, DM, HR, TC, LR
D D - —
D: First destination word
IR, SR, AR, DM, HR, LR

The 3 rightmost digits of C must be BCD between 001 and 999.

If bit 14 of C is OFF (setting for BCD data), all data within the range R to R1+N-1
must be BCD.

237



Special Math Instructions

Section 5-21

Description When the execution condition is OFF, SUM(—) is not executed. When the ex-
ecution condition is ON, SUM(—) adds either the contents of words R; to
R1+N-1 or the bytes in words Ry to R1+N/2—1 and outputs that value to the desti-
nation words (D and D+1). The data can be summed as binary or BCD and will
be output in the same form. Binary data can be either signed or unsigned.
The function of bits in C are shown in the following diagram and explained in
more detail below.
C:|15/14|13 12|11 - - - - - - - - 00
L Numberofitemsin range (N, BCD)
Number of words or number of bytes
001 to 999
Starting byte in R1 (when bit 13 is ON)
1 (ON): Rightmost
0 (OFF): Leftmost
Addition units
Data type 1 (ON): Bytes
1 (ONg':p Binary 0 (OFF): Words
0 (OFF): BCD
——— Data type (when bit 14 is ON)
1 (ON): Signed binary

Number of Items in Range

Addition Units

Data Type

Flags

238

0 (OFF): Unsigned binary

The number of items within the range (N) is contained in the 3 rightmost digits of
C, which must be BCD between 001 and 999. This number will indicate the num-
ber of words or the number of bytes depending the items being summed.

Words will be added if bit 13 is OFF and bytes will be added if bit 13 is ON.

If bytes are specified, the range can begin with the leftmost or rightmost byte of
R;. The leftmost byte of Ry will not be added if bit 12 is ON.

MSB LSB
R4 1 2
Rqy+1 3 4
R1+2 5 6
R1+3 7 8

The bytes will be added in this order when bit 12 is OFF: 1+2+3+4....
The bytes will be added in this order when bit 12 is ON: 2+3+4....
Data within the range is treated as unsigned binary when bit 14 of C is ON and bit

15 is OFF, and it is treated as signed binary when both bits 14 and 15 are ON.
Refer to page 29 for details on signed binary data.

Data within the range is treated as BCD when bit 14 of C is OFF, regardless of the
status of bit 15.

ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is

not BCD, or the DM area boundary has been exceeded.)

R1 and R1+N-1 are not in the same data area.

The number of items in C is not BCD between 001 and 999.
The data being summed is not BCD when BCD was designated.
ON when the result is zero.

EQ:



Special Math Instructions Section 5-21

Example In the following example, the BCD contents of the 8 words from DM 0000 to
DM 0007 are added when IR 00001 is ON and the result is written to DM 0010
and DM 0011.
00001 Address [ Instruction Operands
“ @SUM(—)
#4008 00000 LD 00001
DM 0000 00001 [ @SUM(—)
DM 0010 # 4008
DM 0000
DM 0010
DM 0000 | 0001
DM 0001 | 0002
DM 0002 | 0003
DM 0003 | 0004 _ DM 0010 | 0036
DM 0004 | 0005 - DM 0011 | 0000
DM 0005 | 0006
DM 0006 | 0007
DM 0007 | 0008

5-21-5 ARITHMETIC PROCESS - APR(69)

Ladder Symbols Operand Data Areas

C: Control word
— APR(69) — @APR(69)
IR, SR, AR, DM, HR, TC, LR, #
C C
S: Input data source word
S S
IR, SR, AR, DM, HR, TC, LR
D D D: Result destination word
IR, SR, AR, DM, HR,TC, LR

Limitations For trigonometric functions S must be BCD from 0000 to 0900 (0°< 6 < 90°).

When the execution condition is OFF, APR(69) is not executed. When the exe-
cution condition is ON, the operation of APR(69) depends on the control word C.

If C is #0000 or #0001, APR(69) computes sin(8) or cos(8)*. The BCD value of S
specifies 0 in tenths of degrees.

If Cis an address, APR(69) computes f(x) of the function entered in advance be-
ginning at word C. The function is a series of line segments (which can approxi-
mate a curve) determined by the operator. The BCD or hexadecimal value of S
specifies x.

Description

ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is

not BCD, or the DM area boundary has been exceeded.)

Flags

For trigonometric functions, x > 0900. (x is the content of S.)
A constant other than #0000 or #0001 was designated for C.
The linear approximation data is not readable.

EQ: The result is 0000.

239



Special Math Instructions Section 5-21

Examples
Sine Function The following example demonstrates the use of the APR(69) sine function to cal-
culate the sine of 30°. The sine function is specified when C is #0000.
00000 Address [ Instruction Operands
L
I APR(69) 00000 |LD 00000
#0000 00001 | APR(69)
DM 0000 # 0000
DM 0100 DM 0000
DM 0100
Input data, x Result data
S: DM 0000 D: DM 0100
0 101 | 100 | 107! 101 | 102 | 103 | 104
0 3 0 0 5 0 0 0
Enter input data not Result data has four significant
exceeding #0900 in BCD. digits, fifth and higher digits are
ignored. The result for sin(90)
will be 0.9999, not 1.
Cosine Function The following example demonstrates the use of the APR(69) cosine function to
calculate the cosine of 30°. The cosine function is specified when C is #0001.
00000 Address [ Instruction Operands
L
I APR(ES) 00000 | LD 00000
#0001 00001 | APR(69)
DM 0010 # 0001
DM 0110 DM 0010
DM 0110
Input data, x Result data
S: DM 0010 D: DM 0110
0 101 | 109 | 101 101 | 102 | 108 | 104
0 3 0 0 8 6 6 0
Enter input data not Result data has four significant
exceeding #0900 in BCD. digits, fifth and higher digits are
ignored. The result for cos(0)
will be 0.9999, not 1.
Linear Approximation APR(69) linear approximation is specified when C is a memory address. Word C
is the first word of the continuous block of memory containing the linear approxi-
mation data.

The content of word C specifies the number of line segments in the approxima-
tion, and whether the input and output are in BCD or BIN form. Bits 00 to 07 con-
tain the number of line segments less 1, m-1, as binary data. Bits 14 and 15 de-
termine, respectively, the output and input forms: 0 specifies BCD and 1 speci-
fies BIN.

C: 15 |14 [13|  Notused. |07]06|05]04]03]02]01]00]

Source data form

1 (ON): f(x)=f(Xn—S) .

0 (OFF): f(x)=f(S) — Number of coordinates
minus one (m-1)

Output form

Input form

240



Special Math Instructions

Section 5-21

00000

Enter the coordinates of the m+1 end-points, which define the m line segments,
as shown in the following table. Enter all coordinates in BIN form. Always enter
the coordinates from the lowest X value (X4) to the highest (Xi,). Xq is 0000, and
does not have to be entered.

Xo

Word Coordinate

C+1 Xm (max. X value)
C+2 Yo
C+3 X1
C+4 Y1
C+5 X2
C+6 Yo
l l
C+(2m+1) | Xm
X | C+2m+2) | i

X1 Xp X3 Xg Xm

If bit 13 of C is set to 1, the graph will be reflected from left to right, as shown in the
following diagram.

Y Y

Xo Xm Xm Xo

The following example demonstrates the construction of a linear approximation
with 12 line segments. The block of data is continuous, as it must be, from DM
0000 to DM 0026 (Cto C + (2 x 12 + 2)). The input data is taken from IR 010, and
the result is output to IR 011.

DM 0000
DM 0001
DM 0002
DM 0003
DM 0004
DM 0005
DM 0006
1

DM 0025
DM 0026

Address [ Instruction Operands
APR(E9) 00000 | LD 00000
DM 0000 00001 | APR(69)
o1 DM 0000
011 010
011
[ Content][ Coordinate | Elst g(th

$coB |- - - - - - - -|1][1]oJo|o]o]o]o[ofofofo]1]o]1]1]
$05F0 X12 N— :
$0000 Yo (g;ltﬂtgoatlﬂdm N) grgg r}q en%i)' 12 line
$0005 X1

$0F00 Yy

$001A [ X,

$0402 Y,

\2 \2

$05F0 X12

$1F20 Y12

241



Special Math Instructions Section 5-21

In this case, the input data word, IR 010, contains #0014, and f(0014) = #0726 is
output to R, IR 011.

Y
$1F20

$OF00| -

$0726

$0402

(0,0)

$0005 $0014  $OO1A $osF0 X
5-21-6 PID CONTROL — PID(—)
Ladder Symbol Operand Data Areas
S: Input word
-] PID(—)
IR, SR, AR, DM, HR, LR,
S
C: First parameter word
C
IR, SR, DM, HR, LR
D D: Output word
IR, SR, AR, DM, HR, LR
Limitations C and C+32 must be within the same data area.

&Caution Do not program PID(—) in the following situations. Doing so may produce unex-
pected behavior: In interrupt programs, in subroutines, between IL(02) and
ILC(03), between JMP(04) and JME(05), and in step programming (when using
STEP(08) and SNXT(09)).

Description PID(—) carries out PID control according to the designated parameters. It takes
the specified input range of binary data from the contents of input word S and
carries out the PID operation according to the parameters that are set. The re-
sults are then stored as the operation output amount in output word D.

PID parameter words range from C through C+32. The PID parameters are con-
figured as shown below.

Word 15t012 | 11to8 | 7to4 | 3t00
C Set value (SV)
C+1 Proportional band (P)
C+2 Tik = Integral time T1/sampling period vy (See note 1.)
C+3 Tdk = Derivative time Td/sampling period y (See note 1.)
C+4 Sampling period y
C+5 2-PID parameter () (See note 2.) PID forward/
reverse designation
C+6 0 ‘ Input range ‘ 0 Output range
C+7 to C+32 | Work area (Cannot be accessed directly from program.)

Note 1. Whatis set in words 2 and 3 is not the actual integral and derivative times,
but rather their values divided by the value of the sampling period y.

2. Setting the 2-PID parameter (o) to 000 yields 0.65, the normal value.

242



Special Math Instructions Section 5-21

Parameter Settings

Item Contents Setting range
Set value (SV) This is the target value of the process being Binary data (of the same
controlled. number of bits as specified for

the input range)

Proportional band This is the parameter for P control expressing | 0001 to 9999 (4 digits BCD);

the proportional control range/total control (0.1% to 999.9%, in units of
range. 0.1%)

Tik This is a constant expressing the strength of 0001 to 8191 (4 digits BCD);
the integral operation. As this value increases, | (9999 = Integral operation not
the integral strength decreases. executed)

Tdk This is a constant expressing the strength of 0000 to 8191 (4 digits BCD)

the derivative operation. As this value
increases, the derivative strength increases.

Sampling period This sets the period for executing the PID 0001 to 1023 (4 digits BCD);
operation. (0.1t0 102.3 s, in units of
0.15)
PID This is the parameter that determines the 0: Reverse operation
forward/reverse direction of the proportional operation. 1: Forward operation
designation
2-PID parameter This is the input filter coefficient. Normally use | 000: oo = 0.65
(o) 0.65 (i.e., a setting of 000). The filter efficiency | Setting from 100 to 199 means
decreases as the coefficient approaches 0. that the value of the rightmost
two digits is set from o= 0.00
to o= 0.99.
Input range This is the number of input data bits. 0: 8 bits 5: 13 bits
— - 1: 9 bits 6: 14 bits
Output range This is the number of output data bits. {The 2: 10 bits 7: 15 bits
number of output bits is automatically the same | 3: 11 pits 8: 16 bits
as the number of input bits.) 4: 12 bits

PID CONTROL Operation Execution Condition OFF
All data that has been set is retained. Then the execution condition is OFF, the
operation amount can be written to the output word (D) to achieve manual con-
trol.

Rising Edge of the Execution Condition

The work area is initialized based on the PID parameters that have been set and
the PID control operation is begin. Sudden and radical changes in the operation
output amount are not made when starting operation to avoid adverse affect on
the controlled system (bumpless operation).

When PID parameters are changed, they first become valid when the execution
condition changes from OFF to ON.

Execution Condition ON
The PID operation is executed at the intervals based on the sampling period,
according to the PID parameters that have been set.

Sampling Period and PID Execution Timing

The sampling period is the time interval to retrieve the measurement data for
carrying out a PID operation. PID(—), however, is executed according to
C200HS cycle time, so there may be cases where the sampling period is ex-
ceeded. In such cases, the time interval until the next sampling is reduced.

PID Control Method C200HS PID control operations are executed by means of PID control with feed-
forward control (two degrees of freedom).

243




Special Math Instructions Section 5-21

M

@

When overshooting is prevented with simple PID control, stabilization of distur-
bances is slowed (1). If stabilization of disturbances is speeded up, on the other
hand, overshooting occurs and response toward the target value is slowed (2).
With feed-forward PID control, there is no overshooting, and response toward
the target value and stabilization of disturbances can both be speeded up (3).

Simple PID Control Feed-forward PID control
T ‘ \4
+As the target response is slowed, Targetresponse | Disturbance response
. the disturbance response worsens.
\ 4

Overshoot

' As the disturbance response is
+ slowed, the target response worsens.

Control Operations Proportional Operation (P)

244

Proportional operation is an operation in which a proportional band is estab-
lished with respect to the set value (SV), and within that band the operation
amount (the control output amount) is made proportional to the deviation. If the
present value (PV) is smaller than the proportional band, the operation amount
will be 100%. If within the proportional band the operation amount is made pro-
portional to the deviation and gradually decreased until the SV and PV match
(i.e., until the deviation is 0), the operation amount will return to the previous val-
ue (forward operation).

The proportional band is expressed as a percentage with respect to the total in-
put range. With proportional operation an offset (residual deviation) occurs, and
the offset is reduced by making the proportional band smaller. If it is made too
small, however, hunting will occur.

Proportional Operation Adjusting the Proportional Band
(Forward Operation)

aongi[?r?ton Proportional band Proportional band too narrow (hunting occurring)
100% | /
/\ /\ /—\ Offset

- ~ \/\/7\ «/\ __l

~ \_/ \ T T

SV <~ N— - T

Proportional band just right
Proportional band too wide (large offset)

Integral Operation (1)

Combining integral operation with proportional operation reduces the offset ac-
cording to the time that has passed. The strength of the integral operation is indi-
cated by the integral time, which is the time required for the integral operation
amount to reach the same level as the proportional operation amount with re-
spect to the step deviation, as shown in the following illustration. The shorter the
integral time, the stronger the correction by the integral operation will be. If the



Special Math Instructions Section 5-21

integral time is too short, the correction will be too strong and will cause hunting
to occur.

Integral Operation

o Step response
Deviation g
Operation 0 j
amount
Pl Operation and Integral Time
o Step response
Deviation ¢
‘ Pl operation
__——— | __..-- loperation
Operation 0 _----TT P operation
amount ‘

Ti: Integral time

Derivative Operation (D)

Proportional operation and integral operation both make corrections with re-
spect to the control results, so there is inevitably a response delay. Derivative
operation compensates for that drawback. In response to a sudden disturbance
it delivers a large operation amount and rapidly restores the original status. A
correction is executed with the operation amount made proportional to the in-
cline (derivative coefficient) caused by the deviation.

The strength of the derivative operation is indicated by the derivative time, which
is the time required for the derivative operation amount to reach the same level
as the proportional operation amount with respect to the step deviation, as
shown in the following illustration. The longer the derivative time, the stronger
the correction by the derivative operation will be.

Derivative Operation
‘ Step response

Deviation 0 ‘ |
Operation ‘ ‘\
amount
PD Operation and Derivative Time
‘ Ramp response

Deviation 0 ‘ ‘

: PD operation

! __ _ - - - Poperation
Operation ‘ S llIEEET T D operation
amount :

Td: Derivative time

PID Operation

PID operation combines proportional operation (P), integral operation (I), and
derivative operation (D). It produces superior control results even for control ob-
jects with dead time. It employs proportional operation to provide smooth control

245



Special Math Instructions Section 5-21

without hunting, integral operation to automatically correct any offset, and deriv-
ative operation to speed up the response to disturbances.

PID Operation Output Step Response

Ramp response
Deviation 0
! PID operation
_ - - | operation
T P operation
Operation D operation
amount P
PID Operation Output Lamp Response
Step response
Deviation 0
PID operation
| operation
- P operation
Operation D operation
amount
Direction of Operation When using PID operation, select either of the following two control directions. In

either direction, the operation amount increases as the difference between the
SV and the PV increases.

o Forward operation: Control amount is increased when the PV is larger than the
SV.

* Reverse operation: Control amount is increased when the PV is smaller than
the SV.

Adjusting PID Parameters The general relationship between PID parameters and control status is shown
below.

e When it is not a problem if a certain amount of time is required for stabilization
(settlement time), but it is important not to cause overshooting, then enlarge
the proportional band.

Control by measured PID

SV

When P is enlarged

* When overshooting is not a problem but it is desirable to quickly stabilize con-
trol, then narrow the proportional band. If the proportional band is narrowed too
much, however, then hunting may occur.

When P is narrowed

Control by measured PID

* When there is broad hunting, or when operation is tied up by overshooting and
undershooting, it is probably because integral operation is too strong. The

246



Special Math Instructions Section 5-21

hunting will be reduced if the integral time is increased or the proportional band
is enlarged.

Control by measured PID
(when loose hunting occurs)

o If the period is short and hunting occurs, it may be that the control system re-
sponse is quick and the derivative operation is too strong. In that case, set the
derivative operation lower.

Control by measured PID
(when hunting occurs in a short period)

SV <

Lower D.

Flags ER: Content of >kDM word is not BCD, or the DM area boundary has been
exceeded.

A PID parameter SV is out of range.

The PID operation was executed but the cycle time was two times the
sampling period. PID(—) will be executed for this error only even when
ER (SR25503) is ON.

CY: The PID operation is being executed.

Example This example shows a PID control program using PID(—).
C200HS
ADO001 | DA001 CPU
#0 #1

Amplifier (See note below.)

Fan (Output word IR 111)

JAVAVANNA
Temperature sensing element
) (Output word IR 100)
AV

Amplifier (See note below.)

Heater (Output word IR110)

Note Motors and heaters cannot be directly connected from a Analog Output Unit. An
amplifier (i.e., a current amplification circuit) is required.

247



Special Math Instructions

Section 5-21

Creating the Program

Program

248

1,2, 3.

00000 25315

Follow the procedure outlined below in creating the program.

1. Set the target value (binary 0000 to OFFF) in DM 0000.
2. Input the PV of the temperature sensing element (binary 000 to OFFF) in bits

0 to 11 of word 101.

3. Output the operation amount of the heater to bits 0 to 11 of word 110 by
means of the first PID(—) instruction in the following program.

4. Output the operation amount of the fan to bits 0 to 11 of word 111 by means of
the second PID(—) instruction in the following program.

5. Convert the PV of the temperature sensing element (binary 000 to FFF) to
temperature data (0000°C to 0200°C) by means of SCL(—), and output it to

DM 0200.

@MoV(21)

— I

#0F00

DMO0000

@MoV(21)

DMO0000

HROO

@MoV(21)

DMO0000

HR40

PID(—)

101

HROO

110

PID(—)

101

HR40

111

SCL

101

DMO0100

DM0200

Target value

Parameter leading word for first
PID(—) instruction

Parameter leading word for second
PID(—) instruction

PV of temperature sensing element

Heater operation amount

Fan operation amount

PV of temperature sensing element (binary)
Leading word of converted parameter

Present temperature of temperature sensing
element (°C)



Logic Instructions

Section 5-22

Note When using PID(—) or SCL(—), make the data settings in advance with a Pe-
ripheral Device such as the Programming Console or LSS.

Heater
HROO| (DMO000O)
HR 01 0080
HR 02 0200
HR 03 0100
HR 04 0001
HR 05 0000
HR 06 0404

SCL Parameters

DM 0100 0000
DM 0101 0000
DM 0102 0200
DM 0103 OFFF

5-22 Logic Instructions

Target value HR

Proportional band

Sampling period

HR 40

HR 41

HR 42
HR 43
HR 44
HR 45

HR 46

Integral time/sampling period

Derivative time/sampling period

Forward/reverse designation/
PID parameters
1/0 range

Fan

(DM0000)

0060

0150

0100

0001

0001

0404

The logic instructions — COM(29), ANDW(34), ORW(35), XORW(36), and
XNRW(37) — perform logic operations on word data.

5-22-1 COMPLEMENT — COM(29)

Ladder Symbols

Operand Data Areas

COM(29) @COM(29) Wd: Complement word
IR, SR, AR, DM, HR, LR
wd wd
Description When the execution condition is OFF, COM(29) is not executed. When the ex-
ecution condition is ON, COM(29) clears all ON bits and sets all OFF bits in Wd.
Example 15 00
Originalll |o |o| 1|1 |0|0| 1|1 |0|0| 1|1 |0 |o| 1|
15 l 00
Complementh |1 |1| 0|o |1 | 1| o|o |1 | 1| 0|0 |1 |1|0|
Flags ER: Indirectly addressed DM word is non-existent. (Content of >xDM word is

EQ:

not BCD, or the DM area boundary has been exceeded.)
ON when the result is 0.

249



Logic Instructions

Section 5-22

5-22-2 LOGICAL AND — ANDW(34)

Description

Example

Flags

250

Operand Data Areas

Ladder Symbols 11: Input 1
IR, SR, AR, DM, HR, TC, LR, #
ANDW(34) —1 @ANDW(34)
12: Input 2
11 11
IR, SR, AR, DM, HR, TC, LR, #
12 12 R: Result word
R R IR, SR, AR, DM, HR, LR

When the execution condition is OFF, ANDW(34) is not executed. When the ex-
ecution condition is ON, ANDW(34) logically AND’s the contents of 11 and 12
bit-by-bit and places the result in R.

15 00

0 [l o[l [o o [: oo x[: oo 1]

15 00

2 [oftfofsfofsfofsfofsfofafofsfofu]

15 ‘ 00

R [ofofofsfofofofsfofofofsfofofofu]
ER: Indirectly addressed DM word is non-existent. (Content of kDM word is

not BCD, or the DM area boundary has been exceeded.)
EQ: ON when the result is 0.



Logic Instructions Section 5-22

5-22-3 LOGICAL OR — ORW(35)

Operand Data Areas

Ladder Symbols 11: Input 1
IR, SR, AR, DM, HR, TC, LR, #
— ORW(35) — @ORW(35)
12: Input 2
11 11
IR, SR, AR, DM, HR, TC, LR, #
12 12 R: Result word
R R IR, SR, AR, DM, HR, LR
Description When the execution condition is OFF, ORW(35) is not executed. When the ex-

ecution condition is ON, ORW(35) logically OR’s the contents of I1 and 12
bit-by-bit and places the result in R.

Example 15 00
11 [1{o]ofa]afofofa]s|ofofa]s]ofo]1]
15 00
12 [of{s]ofa]ofe]ofafofafofsfo]a]o]1]
15 A\ .
R [rfefofafsa]e]ofafafafofuafafafo]r]
Flags ER: Indirectly addressed DM word is non-existent. (Content of kDM word is

not BCD, or the DM area boundary has been exceeded.)
EQ: ON when the result is 0.

251



Logic Instructions

Section 5-22

5-22-4 EXCLUSIVE OR — XORW(36)

Description

Example

Flags

252

Ladder Symbols 11: Input 1
IR, SR, AR, DM, HR, TC, LR, #
XORW(36) — @XORW(36)
12: Input 2
11 11
IR, SR, AR, DM, HR, TC, LR, #
12 12 R: Result word
R R IR, SR, AR, DM, HR, LR

Operand Data Areas

When the execution condition is OFF, XORW(36) is not executed. When the ex-
ecution condition is ON, XORW(36) exclusively OR’s the contents of 11 and 12
bit-by-bit and places the result in R.

11
12
R
ER:
EQ:

15 00
[tofofefsfofofafsfofofafsfofofu]

15 00
Loftfofrfofsfofefofufofafofufofs]

4 .

[t ]t fofofufsfofou]afofofe]urfofo]

15

Indirectly addressed DM word is non-existent. (Content of kDM word is
not BCD, or the DM area boundary has been exceeded.)

ON when the result is 0.



Subroutines and I nterrupt Control Section 5-23

5-22-5 EXCLUSIVE NOR — XNRW(37)

Operand Data Areas

Ladder Symbols 11: Input 1
IR, SR, AR, DM, HR, TC, LR, #
XNRW(37) —1 @XNRW(37)
12: Input 2
11 11
IR, SR, AR, DM, HR, TC, LR, #
12 12
R: Result word
R R IR, SR, AR, DM, HR, LR

Description

Flags

When the execution condition is OFF, XNRW(37) is not executed. When the ex-
ecution condition is ON, XNRW(37) exclusively NOR’s the contents of I1 and 12
bit-by-bit and places the result in R.

15 00

11 |1|o|0|1|1|0|0|1|1|0|0|1|1|0|0|1|

15 00

12 |0|1|0|1|0|1|0|1|0|1|0|1|0|1|0|1|

15 ‘ 00

R [ofofsfafofofafafofofafafofofafu]
ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is

not BCD, or the DM area boundary has been exceeded.)
EQ: ON when the result is 0.

5-23 Subroutines and Interrupt Control

5-23-1 Subroutines

Interrupts

Subroutines break large control tasks into smaller ones and enable you to reuse
a given set of instructions. When the main program calls a subroutine, control is
transferred to the subroutine and the subroutine instructions are executed. The
instructions within a subroutine are written in the same way as main program
code. When all the subroutine instructions have been executed, control returns
to the main program to the point just after the point from which the subroutine
was entered (unless otherwise specified in the subroutine).

Subroutines may also be activated by interrupts or the MCRO(99) instruction.

Like subroutine calls, interrupts cause a break in the flow of the main program
execution such that the flow can be resumed from that point after completion of
the subroutine. An interrupt is caused either by an external source, such as an
input signal from an Interrupt Input Unit, or a scheduled interrupt. In the case of
the scheduled interrupt, the interrupt signal is repeated at regular intervals.

Whereas subroutine calls are controlled from within the main program, subrou-
tines activated by interrupts are triggered when the interrupt signal is received.

In the case of the scheduled interrupt, the time interval between interrupts is set
by the user and is unrelated to the cycle timing of the PC. This capability is useful
for periodic supervisory or executive program execution.

253



Subroutines and I nterrupt Control Section 5-23

MCRO(99)

5-23-2 Interrupts

Interrupts —E

Input Interrupts

Scheduled Interrupts

254

INT(89) is used to control the interrupt signals received from the Interrupt Input
Unit, and also to control the scheduling of the scheduled interrupt. INT(89) pro-
vides such functions as masking of interrupts (so that they are recorded but ig-
nored) and clearing of interrupts.

Refer to 5-23-2 Interrupts for more details on interrupts.

The MACRO instruction allows a single subroutine (programming pattern) to re-
place several subroutines that have identical structure but different operands.
Since a number of similar program sections can be managed with just one sub-
routine, the number of program steps can be greatly reduced. Refer to 5-23-5
MACRO — MCRO(99) for more details on this instruction.

The C200HS supports both input interrupts and scheduled interrupts. The oper-
ating modes for these interrupts are shown in the following illustration.

Input interrupts —‘: Normal mode (C200H compatible)
High-speed mode (C200HS only)

Scheduled interrupts ————— Normal mode (C200H compatible) —: Interrupts at n x 10 ms

Interrupts atn x 1 ms

High-speed mode (C200HS only) —‘: Interrupts at n x 10 ms
Interrupts atn x 1 ms

Input interrupts are executed when external inputs are received via a C200HS-
INTO1 Interrupt Input Unit. The Interrupt Input Unit provides at total of 8 inputs
numbered IN 0 through IN7 that can be used to generate interrupts #00 to #07.
Generally speaking, subroutines #00 to #07 are executed when interrupts #00 to
#07 are generated.

Only one Interrupt Input Unit can be mounted to each C200HS PC. When any of
the 8 inputs on the Interrupt Input Unit goes ON, an interrupt is generated and the
corresponding bit in the word allocated to the slot to which the Unit is mounted is
turned ON.

1. Subroutines #00 to #07 can be used as normal subroutines when they are
not used for input interrupts.

2. Inputs on the Interrupt Input Unit not used for interrupts can be used for nor-
mal inputs.

Scheduled interrupts can be executed at intervals set either in increments of
10 ms or in increments or 1 ms. Interrupt #99 is used and subroutine #99 is
executed.

The unit used to set the scheduled interrupt interval is set in the PC Setup at
DM 6622.

Bit 15 00

(I I U

Schedule Interrupt Setting Interval Setting Enable —[
00: Setting disabled (interval fixed at 10 ms)
01: Setting in bits 00 to 07 enabled

Schedule Interrupt Setting Interval Setting
00: 10 ms
01:1ms

Note Subroutine #99 can be used as a normal subroutine when it is not used for a

scheduled interrupt.



Subroutines and I nterrupt Control Section 5-23

Normal Interrupt Mode

(C200H Compatible)

Note

High-speed Interrupt Mode

(C200HS)

Interrupt Priority

Special I/O in Interrupt
Subroutines

Note

The following setting is used for normal interrupt mode.

owsazo 0] 0] o[ o

In normal interrupt mode, the following processing will be completed once
started even if an interrupt occurs The interrupt will be processed as soon as the
current process is completed.

¢ Host Link servicing

e Remote 1/O servicing

e Special I/0 Unit servicing

e Individual instruction execution

e SYSMAC LINK/SYSMAC NET servicing (CPU31-E/33-E only)

Use this mode whenever using C200H interrupt subroutines without modifica-
tion or whenever possible considering the response time required for interrupts.

The C200HS is set to normal interrupt mode by default.

The following setting is used for high-speed interrupt mode.

owsezo [ 1] -[ -[ -

Interrupt mode
(1 = high-speed)

In high-speed interrupt mode, the following processing will be interrupted and
the interrupt subroutine executed as soon as an interrupt is generated.

¢ Host Link servicing

e Remote 1/O servicing

e Special I/0 Unit servicing

e Individual instruction execution

Use this mode whenever interrupt response time must be accurate to 1.0 ms.

1. With the CPU31-E/33-E, SYSMAC LINK/SYSMAC NET servicing will be
completed before processing interrupts, meaning up to 10 ms may be
required to respond to and interrupt even in the High-speed mode.

2. Data will not necessarily be concurrent if the high-speed interrupt mode is
used because Host Link servicing, remote I/O servicing, Special 1/0 Unit
servicing, and individual instruction execution will not necessarily be com-
pleted when started. The program must be designed to allow for this when
required by the application. (See the section on data concurrence for further
details.)

The specified subroutine will be executed when an interrupt is generated. If fur-
ther interrupts are generated during execution of an interrupt subroutine, they
will not be processed until execution of the current interrupt subroutine has been
completed. If more than one interrupt is generated or is awaiting execution at the
same time, the corresponding subroutines will be executed in the following order
of priority.

Input interrupt 1 > input interrupt 2 > ... > input interrupt 7 > scheduled interrupt

I/O for Special I/O Units can be refreshed from within interrupt subroutines by
using the I/O REFRESH (IORF) instruction. If the high-speed interrupt mode is
used, refreshing in the normal cycle (END refreshing and IORF refreshing in the
main program) must be disabled for the Special I/O Unit that is to be refreshed in
the interrupt subroutine. An interrupt programming error (system FAL error 8B)
will occur if the same special I/O is refreshed both within an interrupt program
and within the normal cycle, and the special I/O will not be refreshed within the
interrupt subroutine.

255



Subroutines and I nterrupt Control Section 5-23

The PC Setup for the C200HS contains settings in DM 6620 that disable refresh-
ing in the normal cycle for specific Special I/O Units. This settings are as shown

below.
DM6620
Bit 15 12 00
& olo[ T T[T
|
L Interrupt mode
(1 = high-speed) Unit #0
Unit #1
Unit #9

Note Disabling special I/O refreshing in the normal cycle to refresh special I/O in an
interrupt subroutine is necessary only in the high-speed mode. Disabling normal
cycle refreshing of special /0O during normal interrupt mode will be ignored and
the special I/O will be refreshed both in the normal cycle and in the interrupt sub-
routine.

The execution time of interrupt subroutines must be kept to less than10 ms if the
high-speed interrupt mode is used and Special I/O Units, Host Link Units, or Re-
mote I/O Units are programmed. An interrupt programming error (system FAL
error 8B) will occur if the execution time is 10 ms or greater.

The execution time of interrupt subroutine with the longest execution time is out-
put to SR 262 and the number of the subroutine with the longest execution time
is output to SR 263.

Example: 12.3 ms for subroutine #80

n Maximum interrupt subroutine execution time (in 0.1 ms)
nn No. of interrupt subroutine with maximum execution time

SR 262

SR 263

Note The above 10-ms limit does not apply when the normal interrupt mode is used or
when the above Units are not mounted.

Data Concurrence Although data concurrence is not a problem for execution of normal arithmetic
instructions or comparison instructions, it can be a problem when executing
longer instructions that handle multiple words, such as block transfer instruc-
tions, when the high-speed interrupt mode is used and the same data is handled
both in the main program and in an interrupt subroutine.

Data may not be concurrent in two different situations: 1) if a data write operation
in the main program is interrupted and the same data is read in an interrupt sub-
routine and 2) if a data read operation in the main program is interrupted and the
same data is written in an interrupt subroutine.

256



Subroutines and I nterrupt Control Section 5-23

If you must handle the same data both in the main program and in an interrupt
subroutine, use programming such as that shown below to be sure that data
concurrence is preserved, i.e., mask interrupts while read/writing data that is
also handled in an interrupt subroutine.

_| : (@)INT(89) Masks all interrupts.

000

000

Reading and writing common
data words

_| : (@)INT(89) Unmasks all interrupts.
200

000

000

Data concurrence can also be a problem if interrupts occur during data transfers
occurring in servicing for Special I/0O Units, remote I/O, or Host Link Systems.
For any of these, data can be non-concurrent down to byte units.

Use one of the following methods to preserve data concurrence in the above sit-
uations. The second methods applies to Special I/0O Units only.

e Mask interrupts in the main program while moving data transferred to/from
Units to different words and use these alternate words in the interrupt subrou-
tine.

e Use the I/O REFRESH instruction in interrupt subroutines to refresh required
I/0 from Special 1/0 Units and mask interrupts in the main program while read-
ing/writing Special 1/0 Unit words.

5-23-3 SUBROUTINE ENTER — SBS(91)

Limitations

Ladder Symbol Definer Data Areas

-] SBS(91) N N: Subroutine number

00 to 99

Subroutine numbers 00 through 07 are used with input interrupts and subroutine
number 99 is used for the scheduled interrupt.

257



Subroutines and I nterrupt Control Section 5-23

Description

258

A subroutine can be executed by placing SBS(91) in the main program at the
point where the subroutine is desired. The subroutine number used in SBS(91)
indicates the desired subroutine. When SBS(91) is executed (i.e., when the ex-
ecution condition for it is ON), the instructions between the SBN(92) with the
same subroutine number and the first RET(93) after it are executed before ex-
ecution returns to the instruction following the SBS(91) that made the call.

Main program

SBS(91) 00

Main program

SBN(92) 00

Subroutine

RET(93)
END(01)

SBS(91) may be used as many times as desired in the program, i.e., the same
subroutine may be called from different places in the program).

SBS(91) may also be placed into a subroutine to shift program execution from
one subroutine to another, i.e., subroutines may be nested. When the second
subroutine has been completed (i.e., RET(93) has been reached), program ex-
ecution returns to the original subroutine which is then completed before return-
ing to the main program. Nesting is possible to up to sixteen levels. A subroutine
cannot call itself (e.g., SBS(91) 00 cannot be programmed within the subroutine
defined with SBN(92) 00). The following diagram illustrates two levels of nesting.

SBN(92) 11 | SBN(92) 12 |
{ {
{ {

RET(93) | RET(93) |




Subroutines and I nterrupt Control Section 5-23

The following diagram illustrates program execution flow for various execution
conditions for two SBS(91).

A
SBS(91) 00 OFF execution conditions for
subroutines 00 and 01
5 A-B~C
Main ‘—,
program SBS(91) 01 }—

ON execution condition for
subroutine 00 only

ON execution condition for
SBN(92) 00 subroutine 01 only

A-B-E~C
P ! |

—_RET(%3) ON execution conditions for
SBN(92) 01 [ subroutines 00 and 01

?*D*B*E*(f

Subroutines

RET(93)
END(01)

Note A non-fatal error (error code 8B) will be generated if a subroutine’s execution

Flags

&Caution

time exceeds 10 ms.

ER: A subroutine does not exist for the specified subroutine number.
A subroutine has called itself.
An active subroutine has been called.

SBS(91) will not be executed and the subroutine will not be called when ER is
ON.

5-23-4 SUBROUTINE DEFINE and RETURN — SBN(92)/RET(93)

Limitations

Description

Ladder Symbols Definer Data Areas
P SBN(92) N N: Subroutine number
00 to 99
—1 RET(93)

Each subroutine number can be used in SBN(92) once only.

SBN(92) is used to mark the beginning of a subroutine program; RET(93) is
used to mark the end. Each subroutine is identified with a subroutine number, N,
that is programmed as a definer for SBN(92). This same subroutine number is
used in any SBS(91) that calls the subroutine (see 5-23-3 SUBROUTINE EN-
TER — SBS(91)). No subroutine number is required with RET(93).

259



Subroutines and I nterrupt Control Section 5-23

Precautions

Flags

All subroutines must be programmed at the end of the main program. When one
or more subroutines have been programmed, the main program will be ex-
ecuted up to the first SBN(92) before returning to address 00000 for the next
cycle. Subroutines will not be executed unless called by SBS(91).

END(01) must be placed at the end of the last subroutine program, i.e., after the
last RET(93). It is not required at any other point in the program.

If SBN(92) is mistakenly placed in the main program, it will inhibit program ex-
ecution past that point, i.e., program execution will return to the beginning when
SBN(92) is encountered.

If either DIFU(13) or DIFU(14) is placed within a subroutine, the operand bit will
not be turned OFF until the next time the subroutine is executed, i.e., the oper-
and bit may stay ON longer than one cycle.

There are no flags directly affected by these instructions.

5-23-5 MACRO — MCRO(99)

Limitations

Description

260

Operand Data Areas

Ladder Symbols N: Subroutine number

MCRO(99) —— @MCRO(99)

00 to 99

11: First input word

N N
IR, SR, AR, DM, HR, TC, LR
11 11
O1: First output word
o1 o1

IR, SR, AR, DM, HR, LR

11 and 11+3 must be in the same data area, as must O1 and O1+3.

The MACRO instruction allows a single subroutine to replace several subrou-
tines that have identical structure but different operands. There are 4 input
words, SR 290 to SR 293, and 4 output words, SR 294 to SR 297, allocated to
MCRO(99). These 8 words are used in the subroutine and take their contents
from I1 to 11+3 and O1 to O1+3 when the subroutine is executed.

When the execution condition is OFF, MCRO(99) is not executed. When the
execution condition is ON, MCRO(99) copies the contents of I1 to 11+3 to SR 290
to SR 293, copies the contents of O1 to O1+3 to SR 294 to SR 297, and then calls
and executes the subroutine specified in N. When the subroutine is completed,
the contents of SR 294 through SR 297 are then transferred back to O1 to O1+3
before MCRO(99) is completed.



Subroutines and I nterrupt Control Section 5-23

Precautions

Flags

Note

In the following example, the contents of DM 0010 through DM 0013 are copied
to SR 290 through SR 293, the contents of DM 0020 through DM 0023 are co-
pied to SR 294 through SR 297, and subroutine 10 is called and executed.
When the subroutine is completed, the contents of SR 294 through SR 297 are
copied back to DM 0020 to DM 0023.

Main program

MCRO(99) 10
DM 0010
DM 0020

Main program

SBN(92) 10

Subroutine

RET(93)
END(01)

1. Subroutines for macros are programmed just like other subroutines, except
that SR 290 to SR 297 contents are transferred in from the designated input
and output words.

2. Not only external 1/O words, but internal /0O words can be used for 11 and O1.

3. SR 290 to SR 297 can be used as work bits when not used for macro pro-
grams.

MCRO(99) can be used only for program sections that can be written using four
or fewer consecutive input words and/or four or fewer consecutive output words.
It is thus generally necessary to consider system and program design together
to take full advantage of macro programming.

Be careful that the input and output words properly correspond to the macro in-
put and output words.

ER: A subroutine does not exist for the specified subroutine number.
An operand has exceeded a data area boundary.

Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

A subroutine has called itself.

An active subroutine has been called.

261



Subroutines and I nterrupt Control Section 5-23

Example The following examples shows the use of four MCRO(99) instructions that ac-
cess the same subroutine. The program section on the left shows the same pro-
gram without the use of MCRO(99).

25313
ooo|oo 1cioy01 —| : MCRO(99)
—| } # 10000
Always ON Flag 090
10000 000
100
00001 00002
I : : : 10001 MCRO(99)
090
00200 10501 002
—| : J,f 10500 105
10500
_| |_ MCRO(99)
00201 00202 0%
— | i | 10501 005
120
00500 12001 MCRO(99)
L X
— | g 12000 090
12000 010
I I 150
00501 00502
—| : : : 12001 : I
29000 29401
01000 15001
_| : } ]I/ 15000 —| : /H/ 29400
15000 29400
29001 29002
01001 01002
: RET(93) I

5-23-6 INTERRUPT CONTROL — INT(89)

Operand Data Areas

Ladder Symbols C: Control code
# (000, 001, 002, 100, or 200)
—1 INT(89) —1 @INT(89)
N: Interrupt type
C C
# (000 or 004)
N N D: Control data
D D IR, AR, DM, HR, TC, LR, #

D must be between 0000 and 00FF when N=000 and C=000 or 001.
D must be BCD between 0001 and 9999 when N=004 and C=000 or 001.

Limitations

262



Subroutines and I nterrupt Control

Section 5-23

Description

Mask/unmask Input
Interrupts (N=000, C=000)

Clear Input Interrupts
(N=000, C=001)

Read Current Mask Status
(N=000, C=002)

Set Interrupt Interval
(N=004, C=000)

Set Time to First Interrupt
(N=004, C=001)

Read Interrupt Interval
(N=004, C=002)

Mask/Unmasking All
Interrupts (C=100/200)

INT(89) is used to control interrupts and performs one of 8 functions depending
on the values of C and N. As shown in the following tables, three of the functions
act on input interrupts, three act on the scheduled interrupt, and the other two
mask or unmask all interrupts.

Comments

Bits 00 to 07 of D indi-
cate inputs 00 to 07.

Interrupt | Value of C

Input 000

INT(89) Function
Mask/unmask input interrupts
Clear input interrupts

002 Read current mask status Status written to D.

Scheduled | 000 Set interrupt interval

(N=004) 001 Set time to first interrupt

002 Read interrupt interval

The following 2 functions depend on the value of C only.

Value of C INT(89) Function
100 Mask all interrupts
200 Unmask all interrupts

This function is used to mask and unmask input interrupts 00 to 07. Masked in-
puts are recorded, but ignored. When an input is masked, the interrupt program
for it will be run as soon as the bit is unmasked (unless it is cleared beforehand by
executing INT(89) with C=001 and N=000).

Set the corresponding bit in D to 0 to unmask or to 1 to mask an 1/O interrupt
input. Bits 00 to 07 correspond to 00 to 07.

This function is used to clear I/O interrupt inputs 00 to 07. Since interrupt inputs
are recorded, masked interrupts will be serviced after the mask is removed un-
less they are cleared first.

Set the corresponding bit in D to 1 to clear an interrupt input. Bits 00 to 07 corre-
spond to 00 to 07.

This function is used to write the current mask status for input interrupts 00 to 07
to word D. The corresponding bit will be ON if the input is masked. (Bits 00 to 07
correspond to 00 to 07.)

This function is used to set the interval between scheduled interrupts. The con-
tent of D (BCD: 0001 to 9999) is multiplied by the scheduled interrupt time unit
(1 ms or 10 ms) to obtain the scheduled interrupt interval.

The scheduled interrupt time unit is set in DM 6622 of the PC Setup. Refer to
3-6-4 PC Setup for details on setting this time unit.

This function is used to set the time to the first scheduled interrupt. The content
of D (BCD: 0001 to 9999) is multiplied by the scheduled interrupt time unit (1 ms
or 10 ms) to obtain the time to the first scheduled interrupt. The scheduled inter-
rupt time unit is set in DM 6622 of the PC Setup. Refer to 3-6-4 PC Setup for
details on setting this time unit.

Be sure to set the time to the first interrupt. If this setting is not made, the interval
to the first interrupt (set with N=004, C=000) will be uncertain.

Use the First Cycle Flag (SR 25315) for the execution condition to INT(89) when
setting the time to the first interrupt (C=001). The scheduled interrupt might nev-
er occur if the C=001 setting is made continuously.

This function is used to write the current setting for the scheduled interrupt inter-
val to word D.

This function is used to mask or unmask all interrupt processing. Masked inputs
are recorded, but ignored. The masked inputs will be serviced as soon as they
are unmasked. This function masks or unmask all interrupts at the same time
and is independent of the masks created with other functions.

The control data, D, is not used for this function. Set D to #0000.

263



Subroutines and I nterrupt Control Section 5-23

Flags

Example 1: Input Interrupt

ER: Indirectly addressed DM word is non-existent. (Content of >xDM word is
not BCD, or the DM area boundary has been exceeded.)

C, and/or N are not within specified values.

This example shows how to unmask a particular interrupt input. Input interrupt
subroutines will be executed when the CPU receives the corresponding inter-
rupt input, regardless of the location in the CPU’s cycle. These interrupts are
useful when using program sections of uncertain length, such as event pro-
grams.

All input interrupts are masked at the start of operation, and the desired interrupt
input is unmasked using INT(89) with N=000 and C=000. As shown in the follow-
ing diagram, the subroutine would be executed if there were an input from input
interrupt 00 when that interrupt input was unmasked.

Main program

LD 25315
INT(89) 000

First Cycle Flag / 000
Only interrupt input/ #00FE

00 is unmasked.

Main program

SBN(92) 00
/

Subroutine

Interrupt from pd
interrupt input 00

RET(93)
END(01)

Note Depending on the setting of DM 6621 in the PC Setup, Host Link servicing, Re-

Example 2: Scheduled
Interrupt

264

mote 1/O servicing, Special I/O Unit servicing, and individual instruction execu-
tion will be completed before the subroutine is executed. Refer to page 255 for
details.

This example shows how to set the interval between scheduled interrupts.
Scheduled interrupt subroutines will be executed at fixed intervals, regardless of
the location in the CPU’s cycle. This interrupt is useful for program sections such
as regular monitoring programs.



Subroutines and I nterrupt Control Section 5-23

The scheduled interrupt is disabled at the start of operation (the scheduled inter-
rupt interval is 0), so the time to the first interrupt and scheduled interrupt interval
must be set using INT(89) with N=004 and C=001/000. In the following diagram,
the subroutine would be executed every 20 ms if the scheduled interrupt time
unit is set to 10 ms in DM 6622 of the PC Setup.

Main program

LD 25315
First Cycle Fl / INT(89) 001
irst Cycle Flag 004
Sets the time to first / #0002

interrupt to 20 ms. INT(89) 000
004

/ #0002
Sets the scheduled in-

terrupt interval to 20 ms.

Main program

SBN(92) 00 Scheduled interrupt

every 20 ms.
Subroutine
Return to program ad-
RET(93) dress before interrupt.
END(01)

Note Depending on the setting of DM 6621 in the PC Setup, Host Link servicing, Re-
mote I/O servicing, Special I/O Unit servicing, and individual instruction execu-
tion will be completed before the subroutine is executed. Refer to page 255 for
details.

265



Step I nstructions Section 5-24

5-24 Step Instructions

The step instructions STEP(08) and SNXT(09) are used in conjunction to set up
breakpoints between sections in a large program so that the sections can be ex-
ecuted as units and reset upon completion. A section of program will usually be
defined to correspond to an actual process in the application. (Refer to the appli-
cation examples later in this section.) A step is like a normal programming code,
except that certain instructions (e.g., IL(02)/ILC(03), JIMP(04)/JME(05)) may not
be included.

5-24-1 STEP DEFINE and STEP START-STEP(08)/SNXT(09)

Ladder Symbols Definer Data Areas

—  STEP(08)B —  STEP(08) B: Control bit

IR, SR, AR, HR, LR

—1 SNXT(09) B B: Control bit

IR, SR, AR, HR, LR

Limitations All control bits must be in the same word and must be consecutive.
IR 29800 to IR 29915 cannot be used for B.

Description STEP(08) uses a control bit in the IR or HR areas to define the beginning of a
section of the program called a step. STEP(08) does not require an execution
condition, i.e., its execution is controlled through the control bit. To start execu-
tion of the step, SNXT(09) is used with the same control bit as used for
STEP(08). If SNXT(09) is executed with an ON execution condition, the step
with the same control bit is executed. If the execution condition is OFF, the step is
not executed. The SNXT(09) instruction must be written into the program so that
it is executed before the program reaches the step it starts. It can be used at dif-
ferent locations before the step to control the step according to two different exe-
cution conditions (see example 2, below). Any step in the program that has not
been started with SNXT(09) will not be executed.

Once SNXT(09) is used in the program, step execution will continue until
STEP(08) is executed without a control bit. STEP(08) without a control bit must
be preceded by SNXT(09) with a dummy control bit. The dummy control bit may
be any unused IR or HR bit. It cannot be a control bit used in a STEP(08).

266



Step I nstructions

Section 5-24

00000
I

Execution of a step is completed either by execution of the next SNXT(09) or by
turning OFF the control bit for the step (see example 3 below). When the step is
completed, all of the IR and HR bits in the step are turned OFF. All timers in the
step except TTIM(—) are reset to their SVs. TTIM(—), counters, shift registers,
bits set or reset with SET or RSET, and bits used in KEEP(11) maintain status.
Two simple steps are shown below.

: SNXT(09) LR 2000 I Starts step execution

(
)

: STEP(08) LR 2000 I

(
)

00002

: SNXT(09) 2002 I

' . 1st step
b e e e e e e e e e eeeeeeee=ee ===
00001
} : SNXT(09) LR 2001 I
: STEP(08) LR 2001 I
...................... -
' Step controlled by LR 2001 . 2nd step

: STEP(08) I Ends step execution

Address | Instruction Operands Address | Instruction Operands
00000 | LD 00000 00102 | STEP(08) LR 2001
00001 | SNXT(09) LR 2000
00002 | STEP(08) LR 2000 | =R Step controlled by 20201. =

= Step controlled by 20200. = 00200 | LD 00002
00201 | SNXT(09) LR 2002
00100 | LD 00001 00202 | STEP(08) -
00101 | SNXT(09) LR 2001

Precautions

Steps can be programmed in consecutively. Each step must start with STEP(08)
and generally ends with SNXT(09) (see example 3, below, for an exception).
When steps are programmed in series, three types of execution are possible:
sequential, branching, or parallel. The execution conditions for, and the position-
ing of, SNXT(09) determine how the steps are executed. The three examples
given below demonstrate these three types of step execution.

Interlocks, jumps, SBN(92), and END(01) cannot be used within step programs.

Bits used as control bits must not be used anywhere else in the program unless
they are being used to control the operation of the step (see example 3, below).
All control bits must be in the same word and must be consecutive.

If IR or LR bits are used for control bits, their status will be lost during any power
interruption. If it is necessary to maintain status to resume execution at the same
step, HR bits must be used.

267



Step I nstructions Section 5-24

Flags 25407: Step Start Flag; turns ON for one cycle when STEP(08) is executed and
can be used to reset counters in steps as shown below if necessary.

00000

1 ENXT(OQ) 01000 I Start

01000
:STEP(OS) 01000 I

00100

" CNT 01
25407
25407

L R #0003
] —>| |<— 1 cycle

Address | Instruction Operands Address | Instruction Operands
00000 | LD 00000 00004 | LD 25407
00001 | SNXT(09) 01000 00005 | CNT 01
00002 | STEP(08) 01000 # 0003
00003 | LD 00100

Examples
The following three examples demonstrate the three types of execution control
possible with step programming. Example 1 demonstrates sequential execu-
tion; example 2, branching execution; and example 3, parallel execution.
Example 1: The following process requires that three processes, loading, part installation,
Sequential Execution and inspection/discharge, be executed in sequence with each process being re-

set before continuing on the the next process. Various sensors (SW1, SW2,
SW3, and SW4) are positioned to signal when processes are to start and end.

ol 4/
I

|
l
4 004 OC 004

O

Loading Part installation Inspection/discharge

268



Step I nstructions Section 5-24

The following diagram demonstrates the flow of processing and the switches
that are used for execution control.

—T— Swi

Process A Loading
—— SW2

Process B Part Installation
—— SW3

Process C Inspection/discharge
— SW4

269



Step I nstructions Section 5-24

The program for this process, shown below, utilizes the most basic type of step
programming: each step is completed by a unique SNXT(09) that starts the next
step. Each step starts when the switch that indicates the previous step has been
completed turns ON.

00001 (SW1)
: : =oNXT(09) 12800| Process A started.
=oTEP(08) 12800 |
: N Process A :
00002 (SW2)
11 Process A reset.
I @l Process B started.
=DTEP(08) 12801 |
: N Process B :
00003 (SW3)
“ =3NXT(09) 12802| Process B reset.
Process C started.
:;TEP(OB) 12802 I
[N Process C 1
1 1
00004 (SW4)
“ =oNXT(09) 12303| Process C reset.
Address | Instruction Operands Address | Instruction Operands
00000 | LD 00001 | S Process B =R
00001 | SNXT(09) 12800
00002 | STEP(08) 12800 00100 | LD 00003
00101 | SNXT(09) 12802
= Process A = 00102 | STEP(08) 12802
00100 LD 00002 | =R Process C =R
00101 | SNXT(09) 12801
00102 | STEP(08) 12801 00200 | LD 00004
00201 | SNXT(09) 12803
00202 | STEP(08)

270



Step I nstructions

Section 5-24
Example 2: _ The following process requires that a product is processed in one of two ways,
Branching Execution depending on its weight, before it is printed. The printing process is the same
regardless of which of the first processes is used. Various sensors are posi-
tioned to signal when processes are to start and end.
Printer
SW AL SW A2 SWD
— 5 )
A g g
Process A
- i
o @ ) Process B /
O>/ SW B2
Weight scale

Process C

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, either process A or process B is used
depending on the status of SW Al and SW B1.

—— SWA1 —— SWB1
Process A Process B
— 1 SWA?2 —— SWB2
Process C
—— SWD
End

271



Step I nstructions

Section 5-24

272

The program for this process, shown below, starts with two SNXT(09) instruc-
tions that start processes A and B. Because of the way 00001 (SW Al) and
00002 (SB B1) are programmed, only one of these will be executed to start either
process A or process B. Both of the steps for these processes end with a
SNXT(09) that starts the step for process C.

(

00001 (SW A1) 00002 (SW B2)
: : }f :SNXT(OQ) HR 0000 I
00001 (SW A1) 00002 (SW B2)
}f : : :SNXT(OQ) HR 0001 I
=STEP(08) HR 0000 I Process A started.
N Process A 1
| owessway 5 A
11
l foron nama] PO R
:STEP(OS) HR 0001 I
N Process B 1
00004 (SW B2)
11 I I Process B reset.
" SNXT(0S) HR 0002 Process C started.
:STEP(OB) HR 0002 I
N Process C 1
00005 (SW D)
: : :SNXT(Og) HR 0003 I Process C reset.
: STEP(08) I
Address | Instruction Operands Address | Instruction Operands
00000 | LD 00001
00001 | AND NOT 00002 | =R Process B ==
00002 | SNXT(09) HR 0000
00003 | LD NOT 00001 00100 | LD 00004
00004 | AND 00002 00101 | SNXT(09) HR 0002
00005 | SNXT(09) HR 0001 00102 | STEP(08) HR 0002
00006 | STEP(08) HR 0000
== Process C ==
~ Process A =
00200 | LD 00005
00100 | LD 00003 00201 | SNXT(09) HR 0003
00101 | SNXT(09) HR 0002 00202 | STEP(08)
00102 | STEP(08) HR 0001




Step I nstructions Section 5-24
Example 3: _ The following process requires that two parts of a product pass simultaneously
Parallel Execution through two processes each before they are joined together in a fifth process.

Various sensors are positioned to signal when processes are to start and end.

SW1 Process A SW3
9. ‘
S Process B
Process D
| Process C Sswa
SW2

SW7

l

&

SW5
m]
Process E
O
O O
SW6

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, process A and process C are started
together. When process A finishes, process B starts; when process C finishes,
process D starts. When both processes B and D have finished, process E starts.

SW 1 and SW2 both ON

Process A

Process C

SW3

Process B

Sw4

Process D

SW5 and SW6 both ON

Process E

Sw7

End

The program for this operation, shown below, starts with two SNXT(09) instruc-
tions that start processes A and C. These instructions branch from the same in-
struction line and are always executed together, starting steps for both A and C.
When the steps for both A and C have finished, the steps for process B and D

begin immediately.

When both process B and process D have finished (i.e., when the status for both
of them is “ON”, but SW5 and SW6 have turned ON), processes B and D are
reset together by the SNXT(09) at the end of the programming for process B.
Although there is no SNXT(09) at the end of process D, the control bit for it is
turned OFF by executing SNXT(09) LR 0004. This is because the OUT for LR
0003 is in the step reset by SNXT(09) LR 0004, i.e., LR 003 is turned OFF when
SNXT(09) LR 0004 is executed Process B is thus reset directly and process D is
reset indirectly before executing the step for process E.

273



Step I nstructions Section 5-24

00001 (SW1 and SW2))
11

] : SNXT(09) LR ooool Process A started.

Process C started.

: SNXT(09) LR ooozl
: STEP(08) LR ooool

[ |

il : SNXT(09) LR 0001| Process A reset.
Process B started.
: STEP(08) LR 0001 I

[ |
o
=
o
e}
@
17}
7]
@

01101 Used to
i | LR 0003 turn off

process D.
00004 (SW5 and SW6)
11

11 : SNXT(09) LR ooo4| Process E started.
: STEP(08) LR 0002|

[ |

00003 (SW4)
Il

il : SNXT(09) LR 0003| Process C reset.
Process D started.
: STEP(08) LR ooo3|

[ |
b
o
e}
@
17}
7]
O

00005 (SW7)
11

1T : SNXT(09) LR 0005| Process E reset.
: STEP(08) I

274



Special Instructions Section 5-25

Address | Instruction Operands Address | Instruction Operands
00000 | LD 00001 00102 | STEP(08) LR 0002
00001 | SNXT(09) LR 0000
00002 SNXT(09) LR 0002 | =R Process C ==
00003 STEP(08) LR 0000
00200 | LD 00003
== Process A = 00201 | SNXT(09) LR 0003
00202 STEP(08) LR 0003
00100 LD 00002
00101 SNXT(09) LR 0001 | =R Process D =
00102 | STEP(08) LR 0001
00300 STEP(08) LR 0004
= Process B =
= Process E ==
00100 | LD 01101
00101 ouT LR 00400 LD 00005
0003 00401 SNXT(09) LR 0005
00101 | AND 00004 00402 | STEP(08)
00101 | SNXT(09) LR 0004

5-25 Special Instructions

The instructions in this section are used for various operations, including pro-
gramming user error codes and messages, counting ON bits, setting the watch-
dog timer, and refreshing 1/O during program execution.

5-25-1 FAILURE ALARM - FAL(06) and
SEVERE FAILURE ALARM — FALS(07)

Ladder Symbols Definer Data Areas
——  FALOB)N |—— @FAL(O6)N N: FAL number
# (00 to 99)
FALS(07) N N: FAL number
# (01 to 99)
Limitations FAL(06) and FALS(07) share the same FAL numbers. Be sure to use a number
in either FAL(06) or FALS(07), not both.
Description FAL(06) and FALS(07) are provided so that the programmer can output error

numbers for use in operation, maintenance, and debugging. When executed
with an ON execution condition, either of these instructions will output a FAL
number to bits 00 to 07 of SR 253. The FAL number that is output can be be-
tween 01 and 99 and is input as the definer for FAL(06) or FALS(07). FAL(06)
with a definer of 00 is used to reset this area (see below).

FAL Area
25307 25300

X101 X100

275



Special Instructions

Section 5-25

Resetting Errors

Clearing Messages

FAL(06) produces a non-fatal error and FAL(07) produces a fatal error. When
FAL(06) is executed with an ON execution condition, the ALARM/ERROR indi-
cator on the front of the CPU will flash, but PC operation will continue. When
FALS(07) is executed with an ON execution condition, the ALARM/ERROR indi-
cator will light and PC operation will stop.

The system also generates error codes to the FAL area.

All FAL error codes will be retained in memory, although only one of these is
available in the FAL area. To access the other FAL codes, reset the FAL area by
executing FAL(06) 00. Each time FAL(06) 00 is executed, another FAL error will
be moved to the FAL area, clearing the one that is already there. FAL error codes
are recorded and will be recalled in the following order: First code generated, 9A,
9B, 9D, 8A, 8B, and then 01 to 99.

FAL(06) 00 is also used to clear message programmed with the instruction,
MSG(46).

If the FAL area cannot be cleared, as is generally the case when FALS(07) is
executed, first remove the cause of the error and then clear the FAL area through
the Programming Console (see 4-6-5 Clearing Error Messages).

5-25-2 CYCLE TIME — SCAN(18)

Limitations

Description

Flags

276

Operand Data Areas

Ladder Symbols Mi: Multiplier (BCD)
IR, SR, AR, DM, HR, TC, LR, #
SCAN(18) — @SCAN(18)
000: Not used.
Mi Mi
000 000 000: Not used.
000 000

Mi must be BCD. Only the rightmost three digits of Mi are used.

SCAN(18) is used to set a minimum cycle time. Mi is the minimum cycle time that
will be set in tenths of milliseconds, e.g., if Mi is 1200, the minimum cycle time will
be 120.0 ms. The possible setting range is from 000.0 to 999.9 seconds.

If the actual cycle time is less than the cycle time set with SCAN(18) the CPU will
wait until the designated time has elapsed before starting the next cycle. If the
actual cycle time is greater than the set time, the set time will be ignored and the
program will be executed to completion.

ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

Mi is not BCD.



Special Instructions

Section 5-25

5-25-3 TRACE MEMORY SAMPLING — TRSM(45)

Description

AR Control Bits and Flags

Precautions

Example

Data tracing can be used to facilitate debugging programs. To set up and use
data tracing it is necessary to have a host computer running LSS; no data
tracing is possible from a Programming Console. Data tracing is described in
detail in the LSS Operation Manual. This section shows the ladder symbol for
TRSM(45) and gives an example program.

Ladder Symbol

——1  TRSM@45)

TRSM(45) is used in the program to mark locations where specified data is to be
stored in Trace Memory. Up to 12 bits and up to 3 words may be designated for
tracing (refer to the LSS Operation Manual for details).

TRSM(45) is not controlled by an execution condition, but rather by two bits
in the AR area: AR 2515 and AR 2514. AR 2515 is the Sampling Start bit.
This bit is turned ON to start the sampling processes for tracing. The Sam-
pling Start bit must not be turned ON from the program, i.e., it must be turned
ON only from the peripheral device. AR 2514 is the Trace Start bit. When it is
set, the specified data is recorded in Trace Memory. The Trace Start bit can
be set either from the program or from the Programming Device. A positive
or negative delay can also be set to alter the actual point from which tracing
will begin.

Data can be recorded in any of three ways. TRSM(45) can be placed at one
or more locations in the program to indicate where the specified data is to be
traced. If TRSM(45) is not used, the specified data will be traced when
END(01) is executed. The third method involves setting a timer interval from
the peripheral devices so that the specified data will be tracing at a regular
interval independent of the cycle time (refer to the LSS Operation Manual).

TRSM(45) can be incorporated anywhere in a program, any number of times.
The data in the trace memory can then be monitored via a Programming
Console, host computer, etc.

The following control bits and flags are used during data tracing. The Tracing
Flag will be ON during tracing operations. The Trace Completed Flag will turn
ON when enough data has been traced to fill Trace Memory.

Flag Function
AR 2515 Sampling Start Bit
AR 2514 Trace Start Bit
AR 2513 Tracing Flag
AR 2512 Trace Completed Flag

If TRSM(45) occurs TRSM(45) will not be executed within a IMP(08) — JME(09)
block when the jump condition is OFF.

The following example shows the basic program and operation for data tracing.
Force set the Sampling Start Bit (AR 2515) to begin sampling. The Sampling
Start Bit must not be turned ON from the program. The data is read and stored
into trace memory.

When IR 00000 is ON, the Trace Start Bit (AR 2514) is also turned ON, and the
CPU looks at the delay and marks the trace memory accordingly. This can mean
that some of the samples already made will be recorded as the trace memory
(negative delay), or that more samples will be made before they are recorded
(positive delay).

277



Special Instructions Section 5-25

The sampled data is written to trace memory, jumping to the beginning of the
memory area once the end has been reached and continuing up to the start
marker. This might mean that previously recorded data (i.e., data from this sam-
ple that falls before the start marker) is overwritten (this is especially true if the
delay is positive). The negative delay cannot be such that the required data was
executed before sampling was started.

00000

11 AR .
i1 2514 Starts data tracing.

Designates point for
tracing.

TRSM(45)

oo200 ) Indicates that tracing is in
progress.

AR 2513 ON when tracing
1L
LAl

oo201 ) Indicates that tracing has
been completed.

AR 2512 ON when trace is complete
1L
LAl

olol.Ic

Address | Instruction Operands Address [ Instruction Operands
00000 | LD 0000 00004 | OUT 00200
00001 ouT AR 2514 00005 LD AR 2512
00002 | TRSM(45) 00006 ouT 00201
00003 | LD AR 2513

5-25-4 MESSAGE DISPLAY — MSG(46)

Ladder Symbols Operand Data Areas
MSG(46) @MSG(46) FM: First message word
IR, AR, DM, HR, LR
FM FM
Limitations FM and FM+7 must be in the same data area.
Description When executed with an ON execution condition, MSG(46) reads eight words of

extended ASCII code from FM to FM+7 and displays the message on the Pro-
gramming Console. The displayed message can be up to 16 characters long,
i.e., each ASCII character code requires eight bits (two digits). Refer to Appendix
| for the extended ASCII codes. Japanese katakana characters are included in
this code.

If not all eight words are required for the message, it can be stopped at any point
by inputting “OD”. When OD is encountered in a message, no more words will be
read and the words that normally would be used for the message can be used for
other purposes.

Message Buffering and Up to three messages can be buffered in memory. Once stored in the buffer, they

Priority are displayed on a first in, first out basis. Since it is possible that more than three
MSG(46)s may be executed within a single cycle, there is a priority scheme,
based on the area where the messages are stored, for the selection of those
messages to be buffered.

The priority of the data areas is as follows for message display:
LR> IR (I/O) > IR (not 1/0) > HR > AR > TC > DM

In handling messages from the same area, those with the lowest ad-
dress values have higher priority.

278



Special Instructions

Section 5-25

Clearing Messages

In handling indirectly addressed messages (i.e. >kDM), those with the
lowest DM address values have higher priority.

To clear a message, execute FAL(06) 00 or clear it via a Programming Console
using the procedure in 4-6-5 Clearing Error Messages.

If the message data changes while the message is being displayed, the display
will also change.

Flags ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is

not BCD, or the DM area boundary has been exceeded.)

Example The following example shows the display that would be produced for the instruc-
tion and data given when 00000 was ON. If 00001 goes ON, a message will be
cleared.

00000 Address | Instruction Operands
| MSG(46)
00000 | LD 00000
DM 0010
00001 00001 | MSG(46)
00002 | LD 00001
00003 | FAL(06) 00
DM contents ASCII
equivalent
DM 0010 |4 1 4 2 A B
DM 0011 |4 3 4 4 C D
DM 0012 |4 5 4 6 E F
DM 0013 |4 7 4 8 G H
DM 0014 |4 9 4 A | J

DM 0015 |4 B 4 C K L

DM 0016 |4 D 4 E M N

DM 0017 |4 F 5 0 @) P

5-25-5 LONG MESSAGE — LMSG(47)

Limitations

Operand Data Areas

Ladder Symbols S: First source word (ASCII)

LMSG(47) — @LMSG(47)

IR, SR, AR, DM, HR, TC, LR

---: Not used.

Set to 000

---: Not used.

Set to 000

S through S+15 must be in the same data area and must be in ASCII. The mes-
sage will be truncated if a null character (00) is contained between S and S+15.

IR 298 and IR 299 cannot be used for S.

279



Special Instructions

Section 5-25

Description

Flags

Example

LMSG(47) is used to output a 32-character message to a Programming Con-
sole. The message to be output must be in ASCII beginning in word S and end-
ing in S+15, unless a shorter message is desired. A shorter message can be pro-
duced by placing a null character (00) into the string; no characters from the null
character on will be output.

To output to the Programming Console, it must be set in TERMINAL mode. Al-
though LMSG(47) will be executed as normal, the message will not appear cor-
rectly on the Programming Console unless TERMINAL mode is set. Refer to
5-25-6 TERMINAL MODE — TERM(48) for details on switching to TERMINAL
mode.

When pin 6 of the CPU’s DIP switch is OFF, the Programming Console can be
switched to TERMINAL mode by pressing the CHG Key or by executing
TERM(48) in the program. When pin 6 of the CPU’s DIP switch is ON, the Pro-
gramming Console can be switched to Expansion TERMINAL mode by turning
on bit AR 0709.

ER: S and S+15 are not in the same data area.

Indirectly addressed DM word is non-existent. (Content of >xDM word is
not BCD, or the DM area boundary has been exceeded.)

Although the display is longer and there is a choice of output devices, the coding
for LMSG(47) is the same as that for MSG(46). Refer to Example under the pre-
vious section for an example using MSG(46).

5-25-6 TERMINAL MODE - TERM(48)

Description

280

Ladder Symbols

— TERM(@48) — @TERM(48)
000 000
000 000
000 000

When the execution condition is OFF, TERM(48) is not executed. When the exe-
cution condition is ON, TERM(48) switches the Programming Console to TER-
MINAL mode. (Instructions MSG(46), LMSG(47), and the keyboard mapping
function are executed in TERMINAL mode.)

The Programming Console will return to CONSOLE mode when the CHG key is
pressed again. There is no instruction that returns the Programming Console to
CONSOLE mode from the program.

The Programming Console can also be switched to TERMINAL mode by press-
ing the CHG key on the Programming Console before inputting the password or
when the mode is being displayed provided that pin 6 of the CPU’s DIP switch is
OFF. The Programming Console will return to CONSOLE mode when the CHG
key is pressed again.

When pin 6 of the CPU’s DIP switch is ON, the Programming Console can be
switched to Expansion TERMINAL mode by turning on bit AR 0709.



Special Instructions

Section 5-25

Example

00000
L

In the following example, TERM(48) is used to switch the Programming Console
to TERMINAL mode when 00000 is ON. Be sure that pin 6 of the CPU’s DIP
switch is OFF.

Address | Instruction Operands
TERM(48)
500 00000 | LD 00000
00001 | TERM(48)
000
000
000
000
000

5-25-7 WATCHDOG TIMER REFRESH — WDT(94)

Description

Precautions

Flags

Ladder Symbols Definer Data Areas

WDT(94) T —— @WDT(94) T

T: Watchdog timer value

# (00 to 63)

When the execution condition is OFF, WDT(94) is not executed. When the exe-
cution condition is ON, WDT(94) extends the setting of the watchdog timer (nor-
mally set by the system to 130 ms) by 100 ms times T.

Timer extension = 100 ms x T.

If the cycle time is longer than the time set for the watchdog timer, 9F will be out-
put to the FAL area and the CPU will stop.

If the cycle time exceeds 6,500 ms, a FALS 9F will be generated and the system
will stop.

Timers might not function properly when the cycle time exceeds 100 ms. When
using WDT(94), the same timer should be repeated in the program at intervals
that are less than 100 ms apart. TIMH(15) should be used only in a scheduled
interrupt routine executed at intervals of 10 ms or less.

There are no flags affected by this instruction.

5-25-8 /0 REFRESH — IORF(97)

Limitations

Description

Ladder Symbol Operand Data Areas

St: Starting word
—1 IORF(97)
IR 000 to IR 049
St
E: End word
E
IR 000 to IR 049

IORF(97) can be used to refresh I/O words allocated to only I/O Units (IR 000 to
IR 039) and Special I/O Units (IR 100 to IR 199) mounted to the CPU or Expan-
sion I/0 Racks. It cannot be used for other 1/0 words, such as I/0O Units on Slaves
Racks or Group-2 High-density I/O Units.

St must be less than or equal to E.

To refresh 1/O words allocated to CPU or Expansion I/O Racks (IR 000 to
IR 030), simply indicate the first (St) and last (E) /0O words to be refreshed.
When the execution condition for IORF(97) is ON, all words between St and E
will be refreshed. This will be in addition to the normal 1/O refresh performed dur-
ing the CPU’s cycle.

281



Special Instructions Section 5-25

To refresh I/O words allocated to Special /0 Units (IR 100 to IR 199), indicate the
unit numbers of the Units by designating IR 040 to IR 049 (see note). IR 040 to
IR 049 correspond to Special /0 Units 0 to 9. For example, set St to IR 043 and E
to IR 045 to refresh the 1/0 words allocated to Special I/0 Units 3, 4, and 5. The
I/0O words allocated to those Units (IR 130 to IR 159) will be refreshed when
IORF(97) is executed.This will be in addition to the normal I/O refresh performed
during the CPU's cycle.

Note 1/O will not be refreshed if IORF(97) is executed for any of the following Units:

e Group-2 High-density 1/0 Units

 |/O Units or Special I/0 Units mounted to Slave Racks (in Remote 1/O Sys-
tems)

¢ Optical I/0 Units (in Remote I/O Systems)

Refer to 5-25-9 GROUP-2 HIGH-DENSITY I/O REFRESH — MPRF(61) for de-
tails on refreshing words allocated to Group-2 High-density 1/0O Units.

Execution Time When Basic I/O Units are specified, the execution time for IORF(97) is computed
as follows:
Tiore = instruction execution time + Input Unit I/O refresh time

Flags
5-25-9

Limitations

Description

+ Output Unit 1/O refresh time
0.13 ms + 0.02 ms x (no. of 8-pt Units + no. of 16-pt Units x 2)
+ 0.02 ms x (no. of 5- and 8-pt Units + no. of 12-/16-pt Units x 2)
When Special I/0 Units are specified, the execution time for IORF(97) is com-
puted as follows:
TiorRe = instruction execution time + Y(Special /0 Unit I/O refresh
times)
The instruction execution time is 0.1 ms. Refer to 6-1 Cycle Time for 1/O re-
fresh times for Special I/O Units.

There are no flags affected by this instruction.

GROUP-2 HIGH-DENSITY 1/0 REFRESH — MPRF(61)

Ladder Symbol Operand Data Areas

St: Starting Unit

— MPRF(61)
#0000 to #0009

St

E: End Unit

#0000 to #0009

MPRF(61) can be used to refresh 1/0 words allocated to Group-2 High-density
I/0 Units (IR 030 to IR 049) only. It cannot be used for other I/O words.

St and E must be between #0000 and #0009. St must be less than or equal to E.

When the execution condition is OFF, MPRF(61) is not executed. When the ex-
ecution condition is ON, the I/O words allocated to Group-2 High-density 1/0
Units with I/O numbers St through E will be refreshed.This will be in addition to
the normal I/O refresh performed during the CPU'’s cycle.

It is not possible to specify the 1/0 words by address, only by the 1/0O number of
the Unit to which they are allocated.

Execution Time The execution time for MPRF(61) is computed as follows:

282

TMPRE = Instruction execution time
+ X (Group-2 High-density I/O Unit I/O refresh times)



Special Instructions Section 5-25

Refer to 6-1 Cycle Time for a table showing 1/O refresh times for Group-2
High-density I/O Units.

Flags ER: St or E is not BCD between #0000 and #0009.
St is greater than E.

5-25-10 BIT COUNTER — BCNT(67)

Ladder Symbols Operand Data Areas
N: Number of words (BCD)
— BCNT(67) —1 @BCNT(67)
IR, SR, AR, DM, HR, TC, LR, #
N N
SB: Source beginning word
SB SB
IR, SR, AR, DM, HR, TC, LR
D D D: Destination word
IR, SR, AR, DM, HR, TC, LR
Limitations N must be BCD between 0000 and 6656.
Description When the execution condition is OFF, BCNT(67) is not executed. When the exe-

cution condition is ON, BCNT(67) counts the total number of bits that are ON in
all words between SB and SB+(N-1) and places the result in D.

Flags ER: N is not BCD, or N is 0; SB and SB+(N-1) are not in the same area.
The resulting count value exceeds 9999.

Indirectly addressed DM word is non-existent. (Content of >xDM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-25-11 FRAME CHECKSUM — FCS(—)

Ladder Symbols Operand Data Areas
C: Control data
—1 FCS(—) —1 @FCS(—)
IR, SR, AR, DM, HR, LR
C C
R;: First word in range
Ry Ry
IR, SR, AR, DM, HR, TC, LR
D D - —
D: First destination word
IR, SR, AR, DM, HR, LR
Description FCS(—) can be used to check for errors when transferring data through commu-

nications ports.

When the execution condition is OFF, FCS(—) is not executed. When the ex-
ecution condition is ON, FCS(—) calculates the frame checksum of the speci-
fied range by exclusively ORing either the contents of words Rq to R1+N-1 or the
bytes in words R; to R{+N-1. The frame checksum value (hexadecimal) is then
converted to ASCII and output to the destination words (D and D+1).

283



Special Instructions

Section 5-25

The function of bits in C are shown in the following diagram and explained in
more detail below.

12|11 - - - - - - - - 00

L Numberof items in range (N, BCD)
001 to 999 words or bytes

First byte (when bit 13 is ON)
1 (ON): Rightmost
0 (OFF): Leftmost

Calculation units

Number of Items in Range

Calculation Units

Conversion to ASCII

Flags

284

— Not used. Set to zero. 1 (ON): Bytes

0 (OFF): Words

The number of items within the range (N) is contained in the 3 rightmost digits of
C, which must be BCD between 001 and 999.

The frame checksum of words will be calculated if bit 13 is OFF and the frame
checksum of bytes will be calculated if bit 13 is ON.

If bytes are specified, the range can begin with the leftmost or rightmost byte of
R;. The leftmost byte of R, will not be included if bit 12 is ON.

MSB LSB
R4 1 2
R,+1 3 4
R1+2 5 6
R1+3 7 8
' ' '
' o

When bit 12 is OFF the bytes will be ORed in this order: 1, 2, 3, 4, ....
When bit 12 is ON the bytes will be ORed in this order: 2, 3, 4, 5, ....

The byte frame checksum calculation yields a 2-digit hexadecimal value which is
converted to its 4-digit ASCII equivalent. The word frame checksum calculation
yields a 4-digit hexadecimal value which is converted to its 8-digit ASCII equiva-
lent, as shown below.

Byte frame checksum value Word frame checksum value
4A F10B
D[3]a]4[1] D[3[o]4]2]
ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is

not BCD, or the DM area boundary has been exceeded.)

The number of items is not 001 to 999 BCD.



Special Instructions

Section 5-25

Example

When IR 00000 is ON in the following example, the frame checksum (0008) is
calculated for the 8 words from DM 0000 to DM 0007 and the ASCII equivalent
(30 30 30 38) is written to DM 0011 and DM 0010.

00000 Address | Instruction Operands
I} @FCS(—)
#0008 00000 LD 00000
DM 0000 00001 @FCS(—)
DM 0010 # 0008
DM 0000
DM 0010
DM 0000 | 0001 FCS
calculation
DM 0001 | 0002 loJofofojoofofojofofofo]1]ofo]o]
DM 0002 | 0003 /N
DM 0003 | 0004 0 0 0 8
DM 0004 [ 0005 ASCII code
DM 0005 | 0006 conversion
DM 0006 | 0007
pmoo1l [3]o[3]o] pmoo1o [3]0]3]8]
DM 0007 | 0008

5-25-12 FAILURE POINT DETECTION — FPD(—)

Limitations

Description

Ladder Symbols Operand Data Areas

C: Control data
— FPD(—) .
¢ T: Monitoring time (BCD)
T IR, SR, AR, DM, HR, TC. LR, #
D D: First register word
IR, AR, DM, HR, LR

D and D+8 must be in the same data area when bit 15 of C is ON.
C must be input as a constant.

FPD(—) can be used in the program as many times as desired, but each must
use a different D. It is used to monitor the time between the execution of FPD(—)
and the execution of a diagnostic output. If the time exceeds T, an FAL(06) non-
fatal error will be generated with the FAL number specified in C.

The program sections marked by dashed lines in the following diagram can be
written according to the needs of the particular program application. The proces-
sing programming section triggered by CY is optional and can used any instruc-
tions but LD and LD NOT. The logic diagnostic instructions and execution condi-
tion can consist of any combination of NC or NO conditions desired.

rl Execution | Branch FPD()
L condition !
- C
T
D
SR 25504
(CY Flag) —_————n
11 y Processing after |
LAl | error detection.
[ ——
r Logic -: Diagnostic
_| diagnostic [ output
Linstructions 1

285



Special Instructions

Section 5-25

Control Data

Logic Diagnostic Instructions

Diagnostics Output

286

1,2, 3.

1,2, 3.

When the execution condition is OFF, FPD(—) is not executed. When the exe-
cution condition is ON, FPD(—) monitors the time until the logic diagnostics
condition goes ON, turning ON the diagnostic output. If this time exceeds T, the
following will occur:

1. An FAL(06) error is generated with the FAL number specified in the first two
digits of C. If 00 is specified, however, an error will not be generated.

2. The logic diagnostic instructions are searched for the first OFF input condi-
tion and this condition’s bit address is output to the destination words begin-
ning at D.

3. The CY Flag (SR 25504) is turned ON. An error processing program section
can be executed using the CY Flag if desired.

4. If bit 15 of C is ON, a preset message with up to 8 ASCII characters will be
displayed on the Peripheral Device along with the bit address mentioned in
step 2.

The function of the control data bits in C are shown in the following diagram.

c.|15(14- - - - -08|07- - - - - 00

Not used. Set to zero. L FAL number
(2-digit BCD, 00 to 99)

Diagnostics output
0 (OFF): Bit address output (binary)
1 (ON): Bit address and message output (ASCII)

If the time until the logic diagnostics condition goes ON exceeds T, the logic diag-
nostic instructions are searched for the OFF input condition. If more than one
input condition is OFF, the input condition on the highest instruction line and
nearest the left bus bar is selected.

00000 00002 X )
11 9% Diagnostic
LA} xl output

00001 00003
]l | K
Al kg

When IR 00000 to IR 00003 are ON, the normally closed condition IR 00002
would be found as the cause of the diagnostic output not turning ON.

There are two ways to output the bit address of the OFF condition detected in the
logic diagnostics condition.

1. Bit address output (used when bit 15 of C is OFF).

Bit 15 of D indicates whether or not bit address information is stored in D+1.
If there is, bit 14 of D indicates whether the input condition is normally open
or closed.

D: [15(14(13 - - - - - - - - - - - 00

L l— Not used.

Input condition
0 (OFF): Normally open
1 (ON): Normally closed

Bit address information
0 (OFF): Not recorded in D+1.
1 (ON): Recorded in D+1.



Special Instructions

Section 5-25

D+1 contains the bit address code of the input condition, as shown below.
The word addresses, bit numbers, and TC numbers are in binary.

Data D+1 bit status
Area 11514 [13[12[11 1009 [08 [07 [06 05 [04 [03]02 [01 |00
IR, SR 1 (0 |0 |0 |Wordaddress Bit number
gsoeig ¢ |1 (0 |1 |0 |Wordaddress Bit number
HR 1 |0 |0 |1 |1 |Wordaddress Bit number
LR 1 |0 (0 |1 |0 |0 |Wordaddress Bit number
TC* 1 (0 (0 |1 (O |1 |* | Timer or counter number

Note a) *For the TC area, bit 09 of D+1 indicates whether the number is a
timer or counter. A 0 indicates a timer, and a 1 indicates a counter.
b) The status of the leftmost bit of the bit number (bit 03) is reversed.

c) Although the same word address designations are used for both
ranges, bit 13 is turned OFF to indicate IR 00000 through SR
25515 and turned ON to indicate SR 25600 through IR 51115
Example: If D + 1 contains 1000 0110 0100 1000, IR 10000 would be indi-
cated as follows:

\1OOOI 0110 0100 \1OOOI
\ \ \
IR $64 =100 Bit 00 (inverting status of bit 03)

Bit address and message output (used when bit 15 of C is ON).

Bit 15 of D indicates whether or not there is bit address information stored in
D+1 to D+3. If there is, bit 14 of D indicates whether the input condition is
normally open or closed. Refer to the following table.

Words D+5 to D+8 contain information in ASCII that are displayed on a Pe-
ripheral Device along with the bit address when FPD(—) is executed.
Words D+5 to D+8 contain the message preset by the user as shown in the
following table.

Word Bits 15 to 08 Bits 07 to 00
D+1 20 = space First ASCII character of bit address
D+2 Second ASCII character of bit address | Third ASCII character of bit address
D+3 Fourth ASCII character of bit address | Fifth ASCII character of bit address

D+4 2D =" “0"=normally open,
“1"=normally closed

D+5 First ASCII character of message Second ASCII character of message
D+6 Third ASCII character of message Fourth ASCII character of message
D+7 Fifth ASCII character of message Sixth ASCII character of message
D+8 Seventh ASCII character of message | Eighth ASCII character of message

Note If 8 characters are not needed in the message, input “OD” after the
last character.

Determining Monitoring Time The procedure below can be used to automatically set the monitoring time, T,
under actual operating conditions when specifying a word operand for T. This
operation cannot be used if a constant is set for T.

1,2, 3.

1.

2.
3.
4

Switch the C200HS to MONITOR Mode operation.
Connect a Peripheral Device, such as a Programming Console.
Use the Peripheral Device to turn ON control bit AR 2508.

Execute the program with AR 2508 turned ON. If the monitoring time cur-
rently in T is exceeded, 1.5 times the actual monitoring time will be stored in
T. FAL(06) errors will not occur while AR 2508 is ON.

Turn OFF AR 2508 when an acceptable value has been stored in T.

287



Special Instructions Section 5-25

Example In the following example, the FPD(—) is set to display the bit address and mes-
sage (“ABC") when a monitoring time of 123.4 s is exceeded.

SR 25315
1 MOv(21) Address | Instruction Operands
#4142
— 00000 | LD 25315
00001 [ MOV(21)
SR 25315 # 4142
: : MOV(21) HR 15
#430D 00002 | LD 25315
HR 16 00003 | MOV(21)
LR 0000 # 430D
: : FPD(—) HR 16
48010 00004 | LD LR 0000
#1234 00005 | FPD(—)
HR 10 # 8010
SR 25504 # 1234
(CYl lFlag) INC(38) HR 10
" 00006 | AND 25504
DM 0100
00007 | INC(38)
10000 10002 DM 0100
{| 1 @ 00008 | LD 10000
00009 | OR 10001
10001 10003 00010 LD NOT 10002
{} B 00011 | OR NOT 10003
00012 | AND LD
00013 | OUT LR 0015
FPD(—) is executed and begins monitoring when LR 0000 goes ON. If LR 0015
does not turn ON within 123.4 s and IR 10000 through IR 10003 are all ON,
IR 10002 will be selected as the cause of the error, an FAL(06) error will be gen-
erated with an FAL number of 10, and the bit address and preset message
(“10002-1ABC") will be displayed on the Peripheral Device.
HR 10 0000 HR 10 C000 Indicates information, normally closed condition
HR 11 0000 HR 11 2031 “1”
HR 12 0000 HR 12 3030 “00”
HR 13 0000 HR 13 3032 “02"
HR 14 0000 — [ HR14 2D31 g
HR 15 4142 HR 15 4142 “AB”
HR 16 430D HR 16 430D “C”, and CR code
HR 17 0000 HR 17 0000 The last two words are ignored.
HR 18 0000 HR 18 0000 (Displayed as spaces.)
Flags ER: T is not BCD.

C is not a constant or the rightmost two digits of C are not BCD 00 to 99.

Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when the time between the execution of FPD(—) and the execution
of a diagnostic output exceeds T.

288



Special Instructions

Section 5-25

5-25-13 DATA SEARCH — SRCH(—)

Ladder Symbols Operand Data Areas

— SRCH(—)

N

R1

C

Limitations

Description

1,2, 3.

Flags

N: Number of words

— @SRCH(—)

IR, SR, AR, DM, HR, TC, LR, #

N

R1: First word in range

R
! IR, SR, AR, DM, HR, TC, LR

C

C: Comparison data, result word

IR, SR, AR, DM, HR, LR

N must be BCD between 0001 to 6656.
R; and R1+N-1 must be in the same data area.

When the execution condition is OFF, SRCH(—) is not executed. When the exe-
cution condition is ON, SRCH(—) searches the range of memory from R; to
R1+N-1 for addresses that contain the comparison data in C. If one or more ad-
dresses contain the comparison data, the EQ Flag (SR 25506) is turned ON and
the lowest address containing the comparison data is identified in C+1. The ad-
dress is identified differently for the DM area:

1. For an address in the DM area, the word address is written to C+1. For ex-
ample, if the lowest address containing the comparison data is DM 0114,
then #0114 is written in C+1.

2. For an address in another data area, the number of addresses from the be-
ginning of the search is written to C+1. For example, if the lowest address
containing the comparison data is IR 114 and the first word in the search
range is IR 014, then #0100 is written in C+1.

If none of addresses in the range contain the comparison data, the EQ Flag (SR
25506) is turned OFF and C+1 is left unchanged.

ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

N is not BCD between 0001 and 6655.

EQ: ON when the comparison data has been matched in the search range.

289



Special Instructions

Section 5-25

Example

00001

In the following example, the 10 word range from DM 0010 to DM 0019 is
searched for addresses that contain the same data as DM 0000 (#FFFF). Since
DM 0012 contains the same data, the EQ Flag (SR 25506) is turned ON and

#0012 is written to DM 0001.

Address

Instruction

Operands

00000

LD

00001

00001

@SRCH(—)

# 0010

DM 0010

DM 0000

@SRCH(—)
#0010

DM 0010

DM 0000
DM 0010 | 0000
DM 0011 | 9898
DM 0012 | FFFE
DM 0013 | 9797
DM 0014 | AAAA
DM 0015 | 9595
DM 0016 | 1414
DM 0017 | 0000
DM 0018 | 0000
DM 0019 | FFFF

5-25-14 EXPANSION DM READ — XDMR(—)

Ladder Symbols

Limitations

Description

Precautions

Flags

290

XDMR(—)

N

S

D

@XDMR(—)

N

S

D

DM 0000

FEFF

DM 0001

0012

Operand Data Areas

N: Number of words

IR, SR, AR, DM, HR, TC, LR, #

S: First expansion DM word

IR, SR, AR, DM, HR, TC, LR, #

D: First destination word

IR, SR, AR, DM, HR, LR

N must be BCD between 0001 and 3000.
S must be BCD between 7000 and 9999.
S and S+N-1 must be in the same data area, as must D and D+N-1.

When the execution condition is OFF, XDMR(—) is not executed. When the exe-
cution condition is ON, XDMR(—) copies the contents of expansion DM words S
through S+N-1 to the destination words D through D+N-1.

The Expansion DM area must be set in the PC Setup before it can be used in
programming. Do not exceed the set range of the Expansion DM area.

Execution of XDMR(—) is given priority whenever a power interruption occurs.

ER:

The specified expansion DM words are non-existent. Make sure that
the specified words have been allocated to expansion DM. Refer to
7-1-15 UM Area Allocation for details.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

N is not BCD between 0001 and 3000.
S is not BCD between 7000 and 9999.



Network I nstructions

Section 5-26

Example In the following example, the 100 word range from DM 7000 through DM 7099 is
copied to DM 0010 through DM 0109 when IR 00001 is ON.
00001 Address | Instruction Operands
1} @XDMR(—)
#0100 00000 | LD 00001
#7000 00001 | @XDMR(—
DM 0010 # 0100
# 7000
DM 0010
DM 7000 to DM 7099
DM 7000 DM 9999
' DM 0010 to DM 0109
'v/
DM 0000 DM 6143

5-26 Network Instructions

The SYSMAC NET Link/SYSMAC LINK instructions are used for communicat-
ing with other PCs linked through the SYSMAC NET Link System or SYSMAC
LINK System. These instructions are applicable to the C200H-CPU31-E and
CPUS3-E only.

5-26-1 NETWORK SEND — SEND(90)

Limitations

Description

Ladder Symbols Operand Data Areas
S: Source beginning word
SEND(90) — @SEND(90)
IR, SR, AR, DM, HR, TC, LR
S S
D: Destination beginning word
D D
IR, AR, DM, HR, TC, LR
C C —
C: First control data word
IR, AR, DM, HR, TC, LR

Can be performed with the CPU31-E/33-E only. C through C+2 must be within
the same data area and must be within the values specified below. To be able to
use SEND(90), the system must have a SYSMAC NET Link or SYSMAC LINK
Unit mounted.

When the execution condition is OFF, SEND(90) is not executed. When the exe-
cution condition is ON, SEND(90) transfers data beginning at word S, to ad-
dresses specified by D in the designated node on the SYSMAC NET Link/SYS-
MAC LINK System. The control words, beginning with C, specify the number of
words to be sent, the destination node, and other parameters. The contents of
the control data depends on whether a transmission is being sent in a SYSMAC
NET Link System or a SYSMAC LINK System.

291



Network I nstructions

Section 5-26

Control Data
SYSMAC NET Link Systems

SYSMAC LINK Systems

Examples

00000
I

The status of bit 15 of C+1 determines whether the instruction is for a SYSMAC
NET Link System or a SYSMAC LINK System.

The destination port number is always set to 0. Set the destination node number
to 0 to send the data to all nodes. Set the network number to 0 to send data to a
node on the same Subsystem (i.e., network). Refer to the SYSMAC NET Link
System Manual for details.

Word Bits 00 to 07 | Bits 08 to 15
C Number of words (0 to 1000 in 4-digit hexadecimal, i.e., 0000pey t0 03E8}ex)
C+1 Network number (0 to 127 in 2-digit | Bit 14 ON: Operating level O
hexadecimal, i.e., 00hex t0 7Fhex) OFF: Operating level 1
Bits 08 to 13 and 15: Set to 0.
C+2 Destination node (0 to 126 in 2-digit | Destination port
hexadecimal, i.e., 00y t0 7Eney)* | NSB: 00
NSU: 01/02

*The node number of the PC executing the send may be set.

Set the destination node number to 0 to send the data to all nodes. Refer to the
SYSMAC LINK System Manual for details.

Word Bits 00 to 07 Bits 08 to 15
C Number of words (0 to 256 in 4-digit hexadecimal, i.e., 0000y t0 0100pey)
C+1 Response time limit (0.1 and 25.4 | Bits 08 to 11:
seconds in 2-digit hexadecimal No. of retries (0 to 15 in
without decimal point, i.e., 00nex t0 hexadecimal,
FFhex) Bit 12 Ié,e.' Oh((a)x t0 Fhex)
: : t12: etto O.
Note:  The response time will be ! i
2 seconds if the limit is set to Opey. Bit 13 ONOEE_SS()”SE not re:urne(cji.
There will be no time limit if the . . Response returned.
time limit is set to EE Bit 14 ON: Operating level 0
hex: OFF: Operating level 1
Bit 15: Setto 1.
C+2 Destination node (0 to 62 in 2-digit | Set to 0.
hexadecimal, i.e., 00nhex t0 3Eney)*

*The node number of the PC executing the send cannot be set.

This example is for a SYSMAC NET Link System. When 00000 is ON, the follow-
ing program transfers the content of IR 001 through IR 005 to LR 20 through LR
24 on node 10.

DM 0010 0 0 0

DM 0012 0 0 0

Address | Instruction Operands
SEND(90)
P 00000 LD 00000
00001 | SEND(90)
LR 20
001
DM 0010
LR 20
DM 0010
15 0 Node 10
IR 001 LR 20
DM 0011 0 0 0 IR 002 LR 21
A IR 003 |:'> LR 22
IR 004 LR 23
IR 005 LR 24

292




Network I nstructions

Section 5-26

Flags

ER: The specified node number is greater than 126 in a SYSMAC NET Link
System or greater than 62 in a SYSMAC LINK System.

The sent data overruns the data area boundaries.

Indirectly addressed DM word is non-existent. (Content of kDM word is
not BCD, or the DM area boundary has been exceeded.)

There is no SYSMAC NET Link/SYSMAC LINK Unit.

5-26-2 NETWORK RECEIVE — RECV(98)

Ladder Symbols Operand Data Areas
S: Source beginning word
— RECV(98) —1 @RECV(98)
IR, SR, AR, DM, HR, TC, LR
S S
D: Destination beginning word
D D
IR, AR, DM, HR, TC, LR
C C —
C: First control data word
IR, AR, DM, HR, TC, LR

Limitations

Description

Control Data

SYSMAC NET Link Systems

Can be performed with the CPU31-E/33-E only. C through C+2 must be within
the same data area and must be within the values specified below. To be able to
use RECV(98), the system must have a SYSMAC NET Link or SYSMAC LINK
Unit mounted.

When the execution condition is OFF, RECV(98) is not executed. When the exe-
cution condition is ON, RECV(98) transfers data beginning at S from a node on
the SYSMAC NET Link/SYSMAC LINK System to words beginning at D. The
control words, beginning with C, provide the number of words to be received, the
source node, and other transfer parameters.

The status of bit 15 of C+1 determines whether the instruction is for a SYSMAC
NET Link System or a SYSMAC LINK System.

The source port number is always set to 0. Set the network number to O to re-
ceive data to a node on the same Subsystem (i.e., network). Refer to the SYS-
MAC NET Link System Manual for details.

Word Bits 00 to 07 | Bits 08 to 15
C Number of words (0 to 1000 in 4-digit hexadecimal, i.e., 0000y t0 03E8hex)
C+1 Network number (0 to 127 in 2-digit | Bit 14 ON: Operating level O
hexadecimal, i.e., 00hex t0 7Fheyx) OFF: Operating level 1
Bits 08 to 13 and 15:
Setto O.
C+2 Source node (1 to 126 in 2-digit Source port
hexadecimal, i.e., 01hex t0 7Epex) NSB: 00
NSU: 01/02

293



Network I nstructions Section 5-26
SYSMAC LINK Systems Refer to the SYSMAC LINK System Manual for details.
Word Bits 00 to 07 | Bits 08 to 15
C Number of words (0 to 256 in 4-digit hexadecimal, i.e., 0000y t0 0100ey)
C+1 Response time limit (0.1 and 25.4 | Bits 08 to 11:
seconds in 2-digit hexadecimal No. of retries (0
without decimal point, i.e., 00hex to | to 15 in
FFhex) _hexadecimal,
Note:  The response time will be Bit12: Setto0 I.€., Ohex 10 Fhex)
2 seconds if the limit is set to Opey. B!t 13: S tet 8 )
There will be no time limit if the itissettov.
time limit is set to EE Bit 14 ON: Operating level 0
hex: OFF: Operating level 1
Bit 15: Setto 1.
C+2 Source node (0 to 62 in 2-digit Setto 0.
hexadecimal, i.e., 00nhex t0 3Ehey)

Examples

00000
L

This example is for a SYSMAC NET Link System. When 00000 is ON, the follow-
ing program transfers the content of IR 001 through IR 005 to LR 20 through LR
24 on node 10.

DM 0010
DM 0011
DM 0012

Flags

294

Address | Instruction Operands
RECV/(98)
oL 00000 | LD 00000
00001 | RECV(98)
LR 20
001
DM 0010
LR 20
DM 0010
Node 10
IR 001 LR 20
IR 002 LR 21
IR 003 :> LR 22
IR 004 LR 23
IR 005 LR 24

ER:

The specified node number is greater than 126 in a SYSMAC NET Link
System or greater than 62 in a SYSMAC LINK System.

The received data overflows the data area boundaries.

Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)

There is no SYSMAC NET Link/SYSMAC LINK Unit.



Network I nstructions

Section 5-26

5-26-3 About Network Communications

Timing

Successful

SEND(90) and RECV(98) are based on command/response processing. That
is, the transmission is not complete until the sending node receives and ac-
knowledges a response from the destination node. Note that the
SEND(90)/RECV(98) Enable Flag is not turned ON until the first END(01) after
the transmission is completed. Refer to the SYSMAC NET Link System Manual
or SYSMAC LINK System Manual for details about command/response opera-
tions.

If multiple SEND(90)/RECV(98) operations are used, the following flags must be
used to ensure that any previous operation has completed before attempting
further send/receive SEND(90)/RECV/(98) operations

SR Flag Functions
SEND(90)/RECV(98) OFF during SEND(90)/RECV(98) execution (including
Enable Flags command response processing). Do not start a
(SR 25201, SR 25204) SEND(90)/RECV(98) operation unless this flag is ON.
SEND(90)/RECV(98) OFF following normal completion of SEND/RECV (i.e.,
Error Flags after reception of response signal)

(SR 25200, SR 25203) ON after an unsuccessful SEND(90)/RECV/(98) attempt.
Error status is maintained until the next
SEND(90)/RECV(98) operation.

Error types:

Time-out error (command/response time greater than 1
second)

Transmission data errors

send/receivi
execution E—‘%%I—‘ | I

Send/receive

error

Data Processing for
SEND(90)/RECV(98)

Programming Example:
Multiple
SEND(90)/RECV(98)

) )

) )

) ( (‘ )

] )) ]

A A A A A
Instruction Transmission Instruction Transmission Instruction
received completes received error received

normally

Data is transmitted for SEND(90) and RECV(98) for all PCs when
SEND(90)/RECV(98) is executed. Final processing for transmissions/recep-
tions is performed during servicing of peripheral devices and Link Units.

To ensure successful SEND(90)/RECV(98) operations, your program must use
the SEND(90)/RECV(98) Enable Flags and SEND(90)/RECV(98) Error Flags to
confirm that execution is possible. The following program shows one example of
how to do this for a SYSMAC NET Link System.

295



Network I nstructions Section 5-26

SEND(90)/RECV(98) Enable Flag

OOIOOO 2aap  ue s 12800 prevents execution of SEND(90) until

! A KEEP(11) RECV(98) (below) has completed. IR 00000
12801 is turned ON to start transmission.
_I ! R 12800
=
12800
: @MOV(21)

#000A

DM 0000

@MOV(21)

#0000

DM 0001

Data is placed into control data words to
@MoV(21) specify the 10 words to be transmitted to

40003 node 3 in operating level 1 of network 00
(NSB).

DM 0002

XFER(70)
#0010

000

DM 0010

@SEND(90)
DM 0010

DM 0020

DM 0000

SEND(90)/RECV(98) Error Flag
12800 25203
| 11

Turns ON to indicate transmission error.
I 11 00200

12800 25204

— | {1 [oruas  1201]  Resets 12800, above.

00001 25204 12800
I Il L

S

I 1 pql KEEP(LD) 12802 prevents execution of RECV(98)
when SEND(90) above has not completed.
128103 R 12802 IR 00001 is turned ON to start transmission.
I
12802 25204 25203
I e | |
0016 Transmitted data moved into words
0 beginning at DM 0030 for storage.
DM 0030
12802
I @MOV(21)
#0010
DM 0003
@Mov(21) Data moved into control data words to
#0000 specify the 16 words to be transmitted from
node 126 in operating level 1 of network 00
DM 0004 (NSB).
@MOV(21)
#007E
DM 0005
@RECV(98)
HR 10
LR 10
SEND(90)/RECV/(98) Error Flag DM 0003
12802 25203 . . .
I T 00201 Turns ON to indicate reception error.

12802 25204

_“ “ : DIFU(13) 12803| Resets 12802, above.

296




Serial Communications I nstructions Section 5-27
Address | Instruction Operands Address | Instruction Operands
00000 (LD 00000 00019 | AND NOT 12800
00001 |AND 25204 00020 |LD 12803
00002 |AND NOT 12802 00021 | KEEP(11) 12802
00003 |LD 12801 00022 | LD 12802
00004 |KEEP(11) 12800 00023 | AND 25204
00005 (LD 12800 00024 | AND NOT 25203
00006 |@MOV(21) 00025 | XFER(70)
# 000A # 0016
DM 0000 000
00007 |@mov(21) DM 0030
# 0000 00026 |LD 12802
DM 0001 00027 | @MOV(21)
00008 |@MOV(21) # 0010
# 0003 DM 0003
DM 00002 00028 | @MOV(21)
00009 |@XFER(70) # 0000
# 0010 DM 0004
000 00029 | @MOV(21)
DM 0002 # 007E
00010 |@SEND(90) DM 0005
DM 0010 00030 | @RECV(98)
DM 0020 HR 10
DM 0000 LR 10
00011 (LD 12800 DM 0003
00012 |AND 25203 00031 |LD 12802
00013 |OUT 00200 00032 | AND 25203
00014 (LD 12800 00033 | OUT 00201
00015 |AND 25204 00034 | LD 12802
00016 |DIFU(13) 12801 00035 | AND 25204
00017 (LD 00001 00036 | DIFU(13) 12803
00018 |AND 25204

5-27 Serial Communications Instructions

5-27-1 RECEIVE — RXD(—)

Limitations

Description

Ladder Symbols

RXD(—)

D

C

N

@RXD(—)

D

C

N

Operand Data Areas

D: First destination word

IR, SR, AR, DM, HR, TC, LR

C: Control word

IR, SR, AR, DM, HR, TC, LR, #

N: Number of bytes

IR, SR, AR, DM, HR, TC, LR, #

D and D+(N+2)-1 must be in the same data area.
N must be BCD from #0000 to #0256. (#0000 to #0061 in host link mode)

When the execution condition is OFF, RXD(—) is not executed. When the exe-
cution condition is ON, RXD(—) reads N bytes of data received at the peripheral
port, and then writes that data in words D to D+(N+2)-1. Up to 256 bytes of data
can be read at one time.

If fewer than N bytes are received, the amount received will be read.

297



Serial Communications | nstructions Section 5-27

Note RXD(—) is required to receive data via the peripheral port or RS-232C port only.
Transmission sent from a host computer to a Host Link Unit are processed auto-
matically and do not need to be programmed.

&Caution The PC will be incapable of receiving more data once 256 bytes have been received if received
data is not read using RXD(—). Read data as soon as possible after the Reception Completed
Flag is turned ON (SR 26414 for peripheral port).

Control Word The value of the control word determines the port from which data will be read
and the order in which data will be written to memory.

Digit number: 321 0

— Byte order  0: Most significant bytes first
1: Least significant bytes first

Not used. (Set to 00.)

— Port 0: RS-232C port (C200HS-CPU21-E/23-E/31-E/CPU33-E)
1: Peripheral port

The order in which data is written to memory depends on the value of digit O of C.
Eight bytes of data 12345678... will be written in the following manner:

Digit0 =0 Digit 0 = 1
MSB _LSB MSB _LSB
D 112 D 2 |1
D+1 3 4 D+1 4 3
D+2 5 6 D+2 6 5
D+3 7 | 8 D+3 8 | 7
Flags ER: The CPU is not equipped with an RS-232C port.

Another device is not connected to the specified port.

There is an error in the communications settings (PC Setup) or the oper-
and settings.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

The destination words (D to D+(N+2)—1) exceed the data area.

Peripheral Port

26414: SR 26414 will be turned ON when data has been received normally at
the peripheral port and will be reset when the data is read using
RXD(—) is executed.

266: SR 266 contains the number of bytes received at the peripheral port and
is reset to 0000 when RXD(—) is executed.

RS-232C Port

26406: SR 26406 will be turned ON when data has been received normally at
the peripheral port and will be reset when the data is read using
RXD(—) is executed.

265: SR 265 contains the number of bytes received at the RS-232C port and
is reset to 0000 when RXD(—) is executed.

Note Communications flags and counters can be cleared either by specifying 0000 for
N or using the Port Reset Bit (SR 25208 for peripheral port and SR 25209 for
RS-232C port).

298



Serial Communications | nstructions Section 5-27

5-27-2 TRANSMIT — TXD(—)

Ladder Symbols Operand Data Areas
S: First source word
—1 TXD(—) —1 @TXD(—)
IR, SR, AR, DM, HR, TC, LR
S S
C: Control word
C C
IR, SR, AR, DM, HR, TC, LR, #
N N N: Number of bytes
IR, SR, AR, DM, HR, TC, LR, #

Limitations

Description

Note

Host Link Mode

S and S+(N+2)-1 must be in the same data area.
N must be BCD from #0000 to #0256. (#0000 to #0061 in host link mode)

When the execution condition is OFF, TXD(—) is not executed. When the exe-
cution condition is ON, TXD(—) reads N bytes of data from words S to
S+(N+2)-1, converts it to ASCII, and outputs the data from the specified port.
TXD(—) operates differently in host link mode and RS-232C mode, so these
modes are described separately.

The following flags will be ON to indicate that communications are possible
through the various ports. Be sure the corresponding flag is ON before executing
TXD(—).

SR 26405: RS-232C port
SR 26413: Peripheral port
SR 26705: Host Link Unit #0
SR 26713: Host Link Unit #1

N must be BCD from #0000 to #0061 (i.e., up to 122 bytes of ASCII). The value of
the control word determines the port from which data will be output, as shown
below.

Digitnumber: 3210

Byte order 0: Most significant bytes first
1: Least significant bytes first

Not used. (Set to 00.)

» Port 0: Specifies RS-232C port
(C200HS-CPU21-E/23-E/31-E/CPU33-E).

1: Specifies peripheral port.

2: Specifies Host Link Unit #0

3: Specifies Host Link Unit #1

The specified number of bytes will be read from S through S+(N/2)-1, converted
to ASCII, and transmitted through the specified port. The bytes of source data
shown below will be transmitted in this order: 12345678...

MSB LSB
S 1 2
S+1 3 4
S+2 5 6
S+3 7 8

299



Serial Communications | nstructions Section 5-27

RS-232C Mode

Control Word

Flags

300

The following diagram shows the format for host link command (TXD) sent from
the C200HS. The C200HS automatically attaches the prefixes and suffixes,
such as the node number, header, and FCS.

| | | |
Node Header Data (122 ASCII characters max.) FCS Terminator
number code (EX)

N must be BCD from #0000 to #0256. The value of the control word determines
the port from which data will be output and the order in which data will be written
to memory.

The value of the control word determines the port from which data will be read
and the order in which data will be written to memory.

Digit number: 32 10

Byte order 0: Most significant bytes first
1: Least significant bytes first

Not used. (Set to 00.)

———» Port 0: Specifies RS-232C port
(C200HS-CPU21-E/23-E/31-E/CPU33-E).
1: Specifies peripheral port.

The specified number of bytes will be read from S through S+(NP2)-1 and trans-
mitted through the specified port.

MSB LSB
S 1 2
S+1 3 4
S+2 5 6
S+3 7 8
' ' '
' ' '

When digit 0 of C is 0, the bytes of source data shown above will be transmitted in
this order: 12345678...

When digit 0 of C is 1, the bytes of source data shown above will be transmitted in
this order: 21436587 ...

Note When start and end codes are specified the total data length should be 256 bytes

max., including the start and end codes.

ER: Another device is not connected to the peripheral port.
There is an error in the communications settings (PC Setup) or the oper-
and settings.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

The source words (S to S+(N+2)-1) exceed the data area.

26405: RS-232C Port Communications Enabled Flag
26413: Peripheral Port Communications Enabled Flag
26705: Host Link Unit #0 Communications Enabled Flag
26713: Host Link Unit #1 Communications Enabled Flag



Advanced | /O I nstructions

Section 5-28

5-28 Advanced I/O Instructions

Advanced I/O instructions enable control, with a single instruction, of previously
complex operations involving external 1/0 devices (digital switches, 7-segment
displays, etc.).

There are five advanced I/O instructions, as shown in the following table. All of
these are expansion instructions and must be assigned to function codes before

they can be used.

Name Mnemonic

Function

7-SEGMENT DISPLAY OUTPUT | 7SEG(—)

BCD output to 7-segment dis-
play

DIGITAL SWITCH INPUT DSW(—) Data input from a digital switch

HEXADECIMAL KEY INPUT HKY(—) Hexadecimal input from 16-key
keypad

TEN-KEY INPUT TKY(—) BCD input from 10-key keypad

MATRIX INPUT MTR(—) Data input from an 8 x 8 matrix

Although TKY(—) is used only to simplify programming, the other advanced 1/0
instructions can be used to shorten cycle time, reduce the need for Special I/0
Units, and reduce system cost. With the exception of TKY(—), however, the ad-
vanced I/O instructions can only be used once each in the program and cannot
be used for 1/0 Units mounted to Slave Racks, where Special /O Units must be
used.

5-28-1 7-SEGMENT DISPLAY OUTPUT — 7SEG(—)

Limitations

Overview

Ladder Symbols Operand Data Areas
S: First source word
—1 7SEG(—)
IR, SR, AR, DM, HR, TC, LR
S
O: Output word
0]
IR, SR, AR, HR, LR
C
C: Control data
000 to 007

S and S+1 must be in the same data area.
Do not set C to values other than 000 to 007.

When the execution condition is OFF, 7SEG(—) is not executed. When the exe-
cution condition is ON, 7SEG(—) reads the source data (either 4 or 8-digit), con-
verts it to 7-segment display data, and outputs that data to the 7-segment display
connected to the output indicated by O.

The value of C indicates the number of digits of source data and the logic for the
Input and Output Units, as shown in the following table.

Source data | Display’s data input logic | Display’s latch input logic C
4 digits (S) Same as Output Unit Same as Output Unit 0000
Different from Output Unit 0001

Different from Output Unit Same as Output Unit 0002

Different from Output Unit 0003

8 digits Same as Output Unit Same as Output Unit 0004
(S, S+1) Different from Output Unit | 0005
Different from Output Unit Same as Output Unit 0006

Different from Output Unit 0007

301



Advanced | /O Instructions

Section 5-28

Precautions

Hardware

Note

If there are 8 digits of source data, they are placed in S and S+1, with the most
significant digits placed in S+1. If there are 4 digits of source data, they are
placed in S.
7SEG(—) displays the 4 or 8-digit data in 12 cycles, and then starts over and
continues displaying the data.
The 7-segment display must provide four data lines and one latch signal line for
each display digit.

1. Consider the cycle time and the characteristics of the 7-segment display

when designing the system.

2. Output bits not used here can be used as ordinary output bits.

I/O refreshing must be performed for all I/O points used by 7SEG(—) each time it
is executed to ensure effective operation. The I/O REFRESH instruction must
thus be used with 7SEG(—) whenever 7SEG(—) is used in a subroutine to en-
sure that the 1/0 points are refreshed each execution. Refer to page 315 for an
example of this type of programming.

7SEG(—) will be executed from the first cycle whenever program execution is
started, including restarts made after power interruptions.

Do not use 7SEG(—) more than once in the program.
7SEG(—) cannot be used for I/O Units mounted to Slave Racks.

This instruction outputs word data to a 7-segment display. It utilizes either 8 out-
put bits for 4 digits or 12 output bits for 8 digits. The 7-segment display is con-
nected to an Output Unit as shown in the diagram below. For 4-digit display, the
data outputs (DO to D3) are connected to output points 0 through 3 (allocated
word O), and latch outputs (CS0 to CS3) are connected to output points 4
through 7. Output point 12 (for 8-digit display) or output point 8 (for 4-digit dis-
play) will be turned ON when one round of data is displayed, but there is no need
to connect them unless required by the application.

Do Vbp Vbp Do

D (+) (+) Dy

D, Vss Vss D>

D3 (0) (0) D3 |
LE3 LE2 LE1 LEO LE3 LE2 LE1 LEO

302

COM

Note

The outputs must be connected from an Output Unit with 8 or more output points
for four digits or 16 or more output points for eight digits. Basic Output, Special
I/0O, or High-density Output Units can be used.

1. Output Unit outputs normally employ negative logic. (Only the PNP output
type employs positive logic.)



Advanced | /O Instructions Section 5-28

2. The 7-segment display may require either positive or negative logic, de-
pending on the model.

3. The 7-segment display must have 4 data signal lines and 1 latch signal line
for each digit.

Using the Instruction If the first word holding the data to be displayed is specified at S, and the output
word is specified at O, and the SV taken from the table below is specified at C,
then operation will proceed as shown below when the program is executed. If
only four digits are displayed, then only word S will be used.

Data Storage Format

Leftmost 4 digits Rightmost 4 digits
S+1
Timing The timing of data output is shown in the following table. “O” is the first word hold-
ing display data and “C” is the output word.
Function Bit(s) in O Output status (Data and latch logic depends on C)
(4 digits, | (4 digits,
1 block) | 2 blocks)
i = |
Data output 00 to 03 0010 03 100 10! 102 103 Note O to 3: Data output for word S
04 to 07 4 to 7: Data output for word S+1
Latch output O 04 08
Latch output 1 05 09 -
Latch output 2 06 10 -
Latch output 3 07 11 .
One Round Flag 08 12
012 3 456 7 8 9 1011 12
\ |
12 cycles required to complete one round

Application Example This example shows a program for displaying 8-digit BCD numbers at a 7-seg-
ment LED display. Assume that the 7-segment display is connected to output
word IR 100. Also assume that the Output Unit is using negative logic, and that
the 7-segment display logic is also negative for data signals and latch signals.

I 25313 (Always ON)
1 7SEG(—)

DM0120

100

004

The 8-digit BCD data in DM 0120 (rightmost 4 digits) and DM 0121 (leftmost 4
digits) are always displayed by means of 7SEG(—). When the contents of
DM 0120 and DM 0121 change, the display will also change.

Flags ER: S and S+1 are not in the same data area. (When set to display 8-digit
data.)

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

There is an error in operand settings.

25409: SR 25409 will be ON while 7SEG(—) is being executed.

303



Advanced I/O I nstructions Section 5-28
5-28-2 DIGITAL SWITCH INPUT — DSW(—)
Ladder Symbols Operand Data Areas
IW: Input word
—— DSW(—)
IR, SR, AR, HR, LR
W
OW: Output word
ow
IR, SR, AR, HR, LR
R R: First result word
IR, SR, AR, DM, HR, LR

Overview

Precautions

304

DSW(—) is used to read the value set on a digital switch connected to I/0O Units.
When the execution condition is OFF, DSW(—) is not executed. When the exe-
cution condition is ON, DSW(—) reads the 8-digit value set on the digital switch
from IW and places the result in R.

The 8-digit value it is placed in R and R+1, with the most significant digits placed
in R+1.

DSW(—) reads the 8-digit value in 20 executions, and then starts over and con-
tinues reading the data.

The digital switch must provide four data lines and one latch signal line and read
signal line for each digit being input.

I/O refreshing must be performed for all I/O points used by DSW(—) each time it
is executed to ensure effective operation. The I/O REFRESH instruction must
thus be used with DSW(—) whenever DSW(—) is used in a subroutine to en-
sure that the 1/0 points are refreshed each execution. Refer to page 315 for an
example of this type of programming.

DSW(—) will be executed from the first cycle whenever program execution is
started, including restarts made after power interruptions.

Do not use DSW(—) more than once in the program.
DSW(—) cannot be used for I/O Units mounted to Slave Racks.

Note Input and output bits not used here can be used as ordinary input and output bits.



Advanced | /O Instructions Section 5-28

Hardware With this instruction, 8-digit BCD set values are read from a digital switch.
DSW(—) utilizes 5 output bits and 8 input bits. Connect the digital switch and the
Input and Output Units as shown in the diagram below. Output point 5 will be
turned ON when one round of data is read, but there is no need to connect output
point 5 unless required for the application.

ID212 :
o Input Unit
D Do 7 . . L.
i Dtl) Interface Dg AT7E data line rightmost digits
3 Bz BZ
51 Do o 7 ATE
T 5 5 L]
o D3 b | A7Edataline | —
- 7§ 01 leftmost digits Leftmost digits Rightmost digits
]| css cs; !
] ii s ©3s° To ATE chip selection
15 To A7E RD terminal
[___|COM
COM
0oD212 Note An interface to convert signals from 5V to 24 Vis
T ° required to connect an A7E digital switch.
,727
3
i
6
7
8
9
10
11
12
13
14
o icom| | Output Unit
COM L

305



Advanced | /O Instructions Section 5-28

The following example illustrates connections for an A7B Thumbwheel Switch.

306

D212 Input Unit
0
1  E—
[ 12
3
[ 14
5  E—
6
-
[ |8
9
T YVyY vy vV vV Yy vy vy v vAB
1 vy VYV YV VvV vivy vyl v|y v y| Thumbwheel
- Switch
12
13 8421
14
15 OoD212
COM .
CoM Switch no. 8 7 6 5 4 3 2 1 C o
B 1
3
[ 14
5
6
7
L |8
9
10
11
12
13
14
. 15
Output Unit 'oe |
l COM
Note The data read signal is not required in the example. |

[

The inputs must be connected to a DC Input Unit with 8 or more input points and
the outputs must be connected from a Transistor Output Unit with 8 or more out-
put points.



Advanced | /O Instructions

Section 5-28

Using the Instruction

W

If the input word for connecting the digital switch is specified at for word A, and
the output word is specified for word B, then operation will proceed as shown
below when the program is executed.

Four digits: 00 to 03

100 10!

102 103

Eight digits: 00 to 03, 04 to 07
Wd 0

00

01

02

03

04

05

0 1

2 3 4 56 7

8 9 10 11 12 13 14 15 16

Application Example

Flags

16 cycles to complete one round of execution

Input data
Leftmost Rightmost
4 digits 4 digits

—[e1 J[o ]

When only 4 digits are read,
only word D is used.

CS signal

RD (read) signal

1 Round Flag

This example shows a program for reading 8 digits in BCD from the digital
switch. Assume that the digital switch is connected to IR 000 (input) and IR 100

(output).

00015 10005
| Y%
—| } 4 05000
05000
_| |
I
05000
--1 }-—-—-—-—-—-—-—-—- DSW
000
100
HR51
10005
—| |— @MoV(21)
HR51
DMO0000

When IR 00015 turns ON, the IR 05000 will hold itself ON until the One Round
Flag (IR 10005) turns ON upon completion of one round of reading by DSW(—).

The data set from the digital switch by DSW(—) is stored in HR 51.

When the One Round Flag (10005) turns ON after reading has been completed,
the number stored in HR 51 is transferred to DM 0000.

ER:

Indirectly addressed DM word is non-existent. (Content of *DM word is

not BCD, or the DM area boundary has been exceeded.)

R and R+1 are not in the same data area.

25410: ON while DSW(—) is being executed.

307



Advanced |/O Instructions Section 5-28
5-28-3 HEXADECIMAL KEY INPUT — HKY(—)
Ladder Symbols Operand Data Areas
IW: Input word
— HKY(—)
IR, SR, AR, HR, LR
W
OW: Control signal output word
ow
IR, SR, AR, HR, LR
D D: First register word
IR, SR, AR, DM, HR, LR

Limitations

Overview

Precautions

308

1,2, 3.

Note

D and D+2 must be in the same data area.

When the execution condition is OFF, HKY(—) is not executed. When the exe-
cution condition is ON, HKY(—) inputs data from a hexadecimal keypad con-
nected to the input indicated by IW. The data is input in two ways:

1. An 8-digit shift register is created in D and D+1. When a key is pressed on
the hexadecimal keypad, the corresponding hexadecimal digit is shifted into
the least significant digit of D. The other digits of D, D+1 are shifted left and
the most significant digit of D+1 is lost.

2. The bits of D+2 and bit 4 of OW indicate key input. When one of the keys on
the keypad (0 to F) is being pressed, the corresponding bit in D+2 (00 to 15)
and bit 4 of OW are turned ON.

1. When one of the keypad keys is being pressed, input from the other keys is
disabled.

2. Input and output bits not used here can be used as ordinary input and output
bits.

With this instruction, one key input is read in 4 to 13 cycles. More than one cycle
is required because the ON keys can only be determined as the outputs are
turned ON to test them.

The hexadecimal key input device must be connectable in a 4 x 4 matrix.

I/O refreshing must be performed for all I/O points used by HKY(—) each time it
is executed to ensure effective operation. The I/O REFRESH instruction must
thus be used with HKY(—) whenever HKY(—) is used in a subroutine to ensure
that the 1/O points are refreshed each execution. Refer to page 315 for an exam-
ple of this type of programming.

HKY(—) will be executed from the first cycle whenever program execution is
started, including restarts made after power interruptions.

Do not use HKY(—) more than once in the program.

HKY(—) cannot be used for I/O Units mounted to Slave Racks.



Advanced | /O Instructions Section 5-28

Hardware This instruction inputs 8 digits in hexadecimal from a hexadecimal keyboard. It
utilizes 5 output bits and 4 input bits. Prepare the hexadecimal keyboard, and
connect the 0 to F numeric key switches, as shown below, to input points 0
through 3 and output points 0 through 3. Output point 4 will be turned ON while
any key is being pressed, but there is no need to connect it unless required by
the application.

OoD212
SIC LGP SE [ IF o |
I F - L ]
é‘s é‘g é‘/.\ é‘B‘ 2 |
Lol Lol el Lo } .
5‘4 6‘5 é‘e 6‘7 4
Lol 1ol 1ol |9 5
6‘0 é‘l é‘z 6‘3 6
I I 7
8
ID212 .
0 o |
e — 11
372 12
2 13
e 14
5oL 15
6 com
[ coMm
3 Ll
. |
10
u Output Unit
L 12
13 1]
14
15
coM
coMm

Input Unit

The inputs connected to the input terminals must be on a DC Input Unit with 8 or
more input points and the outputs connected to the output terminals must be
from a Transistor Output Unit with 8 points or more.

309



Advanced | /O Instructions

Section 5-28

Using the Instruction

If the input word for connecting the hexadecimal keyboard is specified at word A,
and the output word is specified at word B, then operation will proceed as shown

00

below when the program is executed.

01

02

03

16—ke8/

to

to

D+2
00

to
09

to

15
ow
04

— |

L le—1 17

0123456789101112

16-key selection
control signals

Status of 16 keys

Turn ON flags corre-
sponding to input
keys (The flags re-
main ON until the
next input.)

ON for a 12-cycle
period if a key is

‘ ‘ pressed.
Once per 12 cycles l
D+1 D D+1 D D+1 D

Flags ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)
D and D+2 are not in the same data area.

SR 25408: ON while HKY(—) is being executed.
Example This example shows a program for inputting numbers from a hexadecimal key-

310

board. Assume that the hexadecimal keyboard is connected to IR 000 (input)
and IR 100 (output).

25313 (Always ON)
]l
1T HKY(—)

000

100

DM1000

00015
| @XFER(70)

#0002

DM1000

DMO0000

The hexadecimal key information that is input to IR 000 by HKY(—) is converted
to hexadecimal and stored in words DM1000 and DM1001.

IR 00015 is used as an “ENTER key”, and when IR 00015 turns ON, the numbers
stored in DM 1000 and DM 1001 are transferred to DM 0000 and DM 0001.



Advanced | /O I nstructions

Section 5-28

5-28-4 TEN KEY INPUT — TKY(—)

Limitations

Overview

Hardware

1,2, 3.

Note

Ladder Symbols Operand Data Areas
IW: Input word
— 1 TKY(—)
IR, SR, AR, HR, LR
W
D;: First register word
D
' IR, SR, AR, DM, HR, LR
D2

D,: Key input word

IR, SR, AR, DM, HR, LR

D; and D;+1 must be in the same data area.

When the execution condition is OFF, TKY(—) is not executed. When the execu-
tion condition is ON, TKY(—) inputs data from a ten-key keypad connected to
the input indicated by IW. The data is input in two ways:

TKY(—) can be used in several locations in the program by changing the input
word, IW.

1. An 8-digit shift register is created in D; and D1+1. When a key is pressed on
the ten-key keypad, the corresponding BCD digit is shifted into the least sig-
nificant digit of D1. The other digits of Dy, D1+1 are shifted left and the most
significant digit of D1+1 is lost.

2. The first ten bits of D, indicate key input. When one of the keys on the key-
pad (0 to 9) is being pressed, the corresponding bit of D, (00 to 09) is turned
ON.

1. While one key is being pressed, input from other keys will not be accepted.

2. If more than eight digits are input, digits will be deleted beginning with the
leftmost digit.

3. Input bits not used here can be used as ordinary input bits.

This instruction inputs 8 digits in BCD from a 10-key keypad and uses 10 input
points. Prepare a 10-key keypad, and connect it so that the switches for numeric
keys 0 through 9 are input to points 0 through 9 as shown in the following dia-
gram. The inputs on a DC Input Unit with 16 or more input points can be used.

D212 0
0 : oL :
1 R
2 —r
3 o0
4 6
5 o
6 oo
7 s
N S 6
0 e
10 | |
| .9
12 '
13 oo L
| 10-key
15
coM
coMm oV
DC Input Unit

311



Advanced | /O I nstructions Section 5-28

Using the Instruction If the input word for connecting the 10-key keypad is specified for IW, then opera-
tion will proceed as shown below when the program is executed.

Iw
O A Dy+1 Dy
o1 y—[lll o Before ‘0‘0‘0‘0‘0‘0‘0‘0‘
; : [ o execution
02 ! I I I ]
w T L Input from 10-key
o o @ ‘0‘0‘0‘0‘0‘0‘0‘1‘
09— |
| oo - l “1” key input
Dy ‘
NI s B @ |ojolojojoo[1]o0]
01— — T l “0” key input
R s Turn ON flags corre- yinp
02 — L : sponding to 10-key 3) ‘0‘0‘0‘0‘0‘1‘0‘2‘
Lo L inputs (The flags re-
to o Do main ON until the
0 : o : r_ next input.) l “2” key input
= o = o [ofoe[o[+]o]z[s]
10 ‘ | r_‘ | | r_ ON if a key is pressed.
v @ ©® @ 9" key Input
Flags ER: Indirectly addressed DM word is non-existent. (Content of >kDM word is
not BCD, or the DM area boundary has been exceeded.)
D; and D1+1 are not in the same data area.
Example In this example, a program for inputting numbers from the 10-key is shown. As-

sume that the 10-key is connected to IR 000.

25313 (Always ON)
Il
I TKY(—)

000

DM1000

DM1002

00015
11 @XFER(70)

#0002

DM1000

DM 0000

The 10-key information input to IR 000 using TKY(—) is converted to BCD and
stored in DM 1000 and DM 1001. Key information is stored in DM 1002.

IR 00015 is used as an “ENTER key”, and when IR 00015 turns ON, the data
stored in DM 1000 and DM 1001 will be transferred to DM 0000 and DM 0001.

312



Advanced | /O I nstructions

Section 5-28

5-28-5 MATRIX INPUT — MTR(—)

Limitations

Overview

OW bits 00 to 07
(for Output Unit
outputs 00 to 07)

Bit 08 is turned ON to indi-
cate that the entire matrix
has been read.

—

Ladder Symbols Operand Data Areas
IW: Input word
—1 MTR(—)

IR, SR, AR, HR, LR

W
OW: Output word

ow

IR, SR, AR, HR, LR
D

D: First destination word

IR, SR, AR, DM, HR, LR

D and D+3 must be in the same data area.

When the execution condition is OFF, MTR(—) is not executed. When the exe-
cution condition is ON, MTR(—) inputs data from an 8 x 8 matrix and records
that data in D to D+3. Data for all 64 points in the matrix will be recorded even
when fewer than 64 keys are connected.

OO (0] 1 2 3 4 5 6 7
Ol 8 (o] 1 11 121 1 1 1
02 1 171 1 2 21 221 2
03 24 25 26 27 28 29 30 31
04 3333 34 33 38 37 38 3
05 40 41 42| 43 44 45 46 47
06 48 49 50 51| 52 53 54 §
07 56l 571 58 59 60 6 6 63
08

00lo1l02103]04|05|06| 07 ——» Keyinput data is written
to D through D+3 (see

table below).

IW bits 00 to 07
(for Input Unit inputs 00 to 07)

A selection signal is output to OW bits 00 to 07 consecutively for 3 cycles. Only
one output bit will be turned on at a time. Bit 08 of OW is turned ON for 3 cycles
after 07 to indicate when each round of reading the matrix has been completed.

When one of the 64 keys is pressed, an input will be received at one of the input
bits. The key that was pressed is identified by comparing the output bit to which
the signal was output and input bit at which it was received.

When an key input is detected, the corresponding bit in D through D+3 is turned
ON. The following table shows the correspondence between keys and bits in D
through D+3.

Word Bits Corresponding Keys
D 00 to 15 Oto 15

D+1 00 to15 16 to 31

D+2 00 to 15 321to 47

D+3 00to 15 48 to 63

313



Advanced | /O I nstructions

Section 5-28

Hardware

Precautions

314

This instruction inputs up to 64 signals from an 8 x 8 matrix using 8 input points
and 8 output points. Any 8 x 8 matrix can be used. The inputs must be connected
through a DC Input Unit with 8 or more points and the outputs must be connected
through a Transistor Output Unit with 8 or more points. The basic wiring and tim-
ing diagrams for MTR(—) are shown below.

Wiring
6‘ 6‘ (5‘ 8th row
6‘ 6‘ 6‘ 7th row
[As]A7]a6]A5]A4]A3]A2]AL]AC] ? TS 777777 ?
[B9|B8[B7[B6[BS5|B4[B3[B2[B1[BO]
R
. LT
1

]
[A9]ag]a7]a6]A5]A4]A3[A2]AL[A0] D 211 I/O Unit

Timing Diagram

00 _ . ]

01 [l [l
02 (| (|

03 [l [l

04 [l [l
05 (| (|

06 (| -
07 [P [l
00

32

64 4
00

32 —} Bits indicating

64 ——— input status

Matrix select signal

Matrix status

\_Y_/

06 - One-round Flag (bit
\ | 08 of output word)

Each round completed in 24 executions

The 64 keys can be divided into 8 rows (including a row for OW bit 08) which are
scanned consecutively. Since each row is scanned for 3 cycles, a delay of up to
25 cycles can occur before a given row of keys is scanned for inputs.

I/O refreshing must be performed for all I/O points used by MTR(—) each time it
is executed to ensure effective operation. The I/O REFRESH instruction must
thus be used with MTR(—) whenever MTR(—) is used in a subroutine to ensure
that the 1/O points are refreshed each execution.

MTR(—) will be executed from the first cycle whenever program execution is
started, including restarts made after power interruptions.

SR 25403, which is turned on while MTR(—) is being executed, is reset in an
interlocked program section and MTR(—) is not executed in an interlocked pro-
gram section.

Do not use MTR(—) more than once in the program.

MTR(—) cannot be used for I/0O Units mounted to Slave Racks.



Advanced | /O I nstructions Section 5-28

Example The following examples shows programming MTR(—) in a scheduled subrou-
tine, where IORF(97) is programmed to ensure that the 1/0O words used by
MTR(—) are refreshed each time MTR(—) is executed.

INT(89)

001

004

#0002

INT(89)

000

004

#0002

SBN(92) 99

MTR(—)

D1

D2

IORF(97)

D1

D2

: RET(93) I
: END(01) I

Flags ER: Indirectly addressed DM word is non-existent. (Content of kDM word is
not BCD, or the DM area boundary has been exceeded.)

25403: SR 25403 is ON while MTR(—) is being executed.

315



SECTION 6
Program Execution Timing

Thetiming of various operations must be considered both when writing and debugging a program. The time required to ex-
ecute the program and perform other CPU operations is important, asis the timing of each signal coming into and leaving the
PC in order to achieve the desired control action at the right time. This section explains the cycle and shows how to calculate
the cycle time and 1/O response times.

B-L  CYCIETIME .ottt 318
6-2 Calculaing Cycle Time . .. ..o e 322
6-2-1 PCwithl/OUNItSONlY ... .o e 322
6-2-2 PCwithLink Units . ... ... i e 323
6-3  Instruction EXeCUtioN TIMES . . ... oot e 324
B6-4 1O REPONSE TIME . ..ttt e e e 333
B-4-1  BaSiC Sy SOmMS ..ttt e 333
6-4-2 RemMOte /O SyStemMS . ..ot 334
6-4-3  HOSELINK Systems . . .. ..o e 336
6-4-4  PCLINK SyStemMS . ..ot e 337
6-4-5 One-to-oneLink I/ORespoNseTime . .. ...t 339
6-4-6 Interrupt ReSPONSE TIMES . ..ottt ettt et e 341

317



Cycle Time

Section 6-1

6-1 Cycle Time

318

To aid in PC operation, the average, maximum, and minimum cycle times can be
displayed on the Programming Console or any other Programming Device and
the maximum cycle time and current cycle time values are held in AR 26 and
AR 27. Understanding the operations that occur during the cycle and the ele-
ments that affect cycle time is, however, essential to effective programming and
PC operations.

The major factors in determining program timing are the cycle time and the 1/O
response time. One run through all required CPU operations is called a cycle;
the time required for each cycle is called the cycle time.

The overall flow of the CPU operation is as shown in the following flowchart.



Cycle Time

Section 6-1

Flowchart of CPU Operation

< Power application )

!

Clears IR area and
resets all timers

v

Checks I/0 Unit connections

Y

Resets watchdog timer

Initialization
on power-up

Checks hardware and
Program Memory

NO

\

|

Check OK?

YES

Sets error flags and turns
ON or flashes indicator

Resets watchdog timer and
program address counter

ERROR
(Solid ON)

Overseeing
processes

Executes user program |

ALARM
(Flashing)

Note A minimum cycle
time can be set
either in DM 6619
of the PC Setup
or by executing

End of program?

<>

YES

Program
execution

SCAN(18).

Resets watchdog timer and waits
until the set cycle time has elapsed

r

Calculates cycle time

>y

Resets watchdog timer

{

Refreshes input bits
and output signals

v

Services RS-232C

port
v

Services Host Link

v

Services Peripheral Devices

!

Services SYSMAC LINK and
SYSMAC NET Link Units

Cycle time
calculation

I/0
refreshing

RS-232C port
servicing

Host Link Unit
servicing

Peripheral
device
servicing

SYSMAC LINK|
and SYSMAC
NET Link Unit
servicing

PC
cycle
time

319



Cycle Time

Section 6-1

The first three operations immediately after power application are performed
only once each time the PC is turned on. The rest of the operations are per-
formed in cyclic fashion. The cycle time is the time that is required for the CPU to
complete one of these cycles. This cycle includes basically eight types of opera-

SYSMAC LINK
servicing
(CPU31-E/33-E only)

mounted.
0.8 ms + 10 ms max. per Unit.

tion.
1,2,3... 1. Overseeing
2. Program execution
3. Cycle time calculation
4. 1/O refreshing
5. Host Link Unit servicing
6. RS-232C port servicing
7. Peripheral Device servicing
8. SYSMAC NET/SYSMAC LINK servicing.
The cycle time is the total time required for the PC to perform all of the above
operations. The time required for operation 3, cycle time calculation, is negligi-
ble and can be ignored in actual calculations
Operation Time required Function
1. Overseeing 0.7ms Watchdog timer set. I/0 Bus, Program
Memory checked. Clock refreshed.
2. Program Total execution time for all instructions varies | Program executed.
execution with program size, the instructions used, and
execution conditions. Refer to 6-3 Instruction
Execution Times for details.
3. Cycle time Negligible, but a wait can be generated to Cycle time calculated. When the CYCLE
calculation bring the cycle time up to the minimum set- | TIME instruction (SCAN(18)) is executed,
ting if one has been made. waits until the set time has elapsed and
then resets the watchdog timer.
4. 1/0 refreshing Total of following times: Input bits set according to status of input
20 us per input byte (8 points). 20 us per :'tgtnfslséf%%ttpftsblﬁg?rl]s ns]gnmt oarccordlng to
output byte. (12-point Output Units calcu- P Y-
lated as 16 points.) Inputs and Outputs in Remote I/O Systems
PC Link Unit I/O refresh time. refres.hed. _ .
Special I/O Unit refresh time. Special I/O- Units s§rV|ced. _ )
1.1 ms per Remote I/O Master Unit + Group-2 High-density I/O Units serviced.
0.17 ms per I/O word used on Slave Racks.
Group-2 (High-density) I/O Unit refresh time.
Refer to the tables below for details on PC
Link, Special 1/0 Unit, and Group-2 High-
density 1/0 Unit refresh times.
5. Host Link Unit 6 ms per Unit max. Commands from computers connected
servicing through Rack-mounting Host Link Units
processed.
6. RS-232C port 0 ms when no device is connected. Communications with devices connected
servicing . . to RS-232C port processed.
(except CPUO1-E/03-E) i'lr']égé?gii;vnhzre T is the cycle time calculated
7. Peripheral device 0 ms when no device is connected. Commands from Programming Devices
servicing 0.26 ms minimum or T x 0.05. where T is the (computers, Programming Consoles, etc.)
cycle time calculated in operation 3 processed.
8. SYSMAC NET/ 0 ms when no Communications Unit is Commands from computers and other de-

vices connected to SYSMAC NET/SYS-
MAC LINK Units processed.

320




Cycle Time Section 6-1

PC Link Unit I/O Refresh I/O pts to refresh Time required
(ms)
512 7.4
256 4.1
128 2.7
64 1.7
Special I/0 Unit Refresh Unit Time required per Unit
C200H-ID501/215 0.6 ms
C200H-0OD501/215 0.6 ms when set for 32 1/O pts.
C200H-MD501/215 1.6 ms when set for dynamic 1/0
C200H-CT001-V1/CT002 2.6 ms
C200H-NC111/NC112 2.5ms
C200H-NC211 5.0 ms
C200H-ADO01 1.3ms
C200H-DA001 1.0ms
C200H-TS001/TS101 1.2ms
C200H-ASCO02 1.9 ms normally, 5.0 ms for @ format
C200H-IDS01-V1/IDS21 2.0 ms normally, 5.5 ms for command transfer
C200H-0OV001 4.1 ms
C200H-Fz001 2.0 ms
C200H-TC001/002/003/ 3.0ms
101/102/103
C200H-CP114 2.5ms
C200H-AD002 1.4 ms
C200H-PIDOIO 3.0ms
Group-2 High-density 1/0 Unit Time required per Unit
Unit Refresh C200H-1D216 0.18 ms
C200H-0OD218 0.14 ms
C200H-1D217 0.31 ms
C200H-0OD219 0.23 ms
NT Links If the PC is connected to a Programmable Terminal (PT) via a C200H Interface
Unit, the times shown in the following table will be required to refresh I/O for the
PT.
Number of table entries for PT 1/0O refresh time
Minimum setting: 25ms

Character string table: 0
Numeral table: 0

Maximum setting: 5.4 ms
Character string table: 32
Numeral table: 128

Watchdog Timer and Long Within the PC, the watchdog timer measures the cycle time and compares it to a

Cycle Times set value. If the cycle time exceeds the set value of the watchdog timer, a FALS
9F error is generated and the CPU stops. WDT(94) can be used to extend the set
value for the watchdog timer.

321



Calculating Cycle Time

Section 6-2

Online Editing

Even if the cycle time does not exceed the set value of the watchdog timer, a long
cycle time can adversely affect the accuracy of system operations as shown in
the following table.

Cycle time (ms) Possible adverse affects

10 or greater TIMH(15) inaccurate when TC 016 through TC 511 are used.
(Accuracy when using TC 000 through TC 0015 not affected.)

20 or greater 0.02-second clock pulse (SR 25401) not accurately readable.

100 or greater 0.1-second clock pulse (SR 25500) not accurately readable and
Cycle Time Error Flag (SR 25309) turns ON.

200 or greater 0.2-second clock pulse (SR 25501) not accurately readable.

6,500 or greater | FALS code 9F generated regardless of watchdog timer setting
and the system stops.

When online editing is executed from a Programming Device, operation will be
interrupted for a maximum of 260 ms and interrupts will be masked to rewrite the
user program. No warnings will be given for long cycle times during this interval.
Check the effects on 1/O response time before editing the program online.

&Caution Editing the program online can cause delays in I/O responses with no warnings being given from
the system for the long cycle time produced by editing online. Before editing online, make sure that
delays in 1/0 responses will not create a dangerous situation in the controlled system.

6-2 Calculating Cycle Time

The PC configuration, the program, and program execution conditions must be
taken into consideration when calculating the cycle time. This means taking into
account such things as the number of 1/O points, the programming instructions
used, and whether or not peripheral devices are employed. This section shows
some basic cycle time calculation examples. To simplify the examples, the in-
structions used in the programs have been assumed to be all either LD or OUT.
The average execution time for the instructions is thus 0.47 pus. (Execution times
are given in the table in 6-3 Instruction Execution Times.)

6-2-1 PC with I/O Units Only

322

Here, we’ll compute the cycle time for a simple PC. The CPU controls only I/O
Units, eight on the CPU Rack and five on a 5-slot Expansion I/O Rack. The PC
configuration for this would be as shown below. It is assumed that the program
contains 5,000 instructions requiring an average of 0.47 us each to execute.

8-point Inﬁnut Units 8-point‘0utput Units

CPU Rack

3| R RRR Lk T

|12}

TR EEREERERE ]

Expansion I/O Rack

B

\ \
16-point Input Units 12-point Output Units
8-point Output Unit



Calculating Cycle Time Section 6-2

Calculations The equation for the cycle time from above is as follows:
Cycle time =  Overseeing time + Program execution time + /O refresh time +
Peripheral device servicing time
Process Calculation With Peripheral Without
Device Peripheral Device
Overseeing Fixed 0.7ms 0.7ms
Program execution | 0.47 us/instruction 2.35ms 2.35ms
% 5,000
instructions
I/O refresh See below. 0.34 ms 0.34 ms
Peripheral device Minimum time 0.26 ms 0.0 ms
servicing
Cycle time Total of above 3.65ms 3.39ms

The 1/O refresh time would be as follows for two16-point Input Units, four 8-point
Input Units, two 12-point Output Units (12-point Units are treated as 16-point
Units), and five 8-point Output Units controlled by the PC:

X 20 us = 0.34 ms

(16 pts x 2) + (8 pts x 4) X 20 pis + (16 pts x 2) + (8 pts x 5)
8 pts 8 pts

6-2-2 PC with Link Units

Here, the cycle time is computed for a PC with a CPU21-E or CPU23-E CPU that
has a Memory Unit with a clock function installed. The PC configuration for this
could be as shown below.

The CPU controls three 8-point Input Units, three 8-point Output Units, a Host
Link Unit, and a Remote I/O Master Unit connected to a Remote 1/O Slave Rack
containing four 16-point Input Units and four 12-point Output Units.

It is assumed that the program contains 5,000 instructions requiring an average
of 0.47 us each to execute, and that nothing is connected to the RS-232C port
and no SYSMAC NET/SYSMAC LINK Unit is mounted.

Host Link Unit

8-point 8-point

Remote /0 Input Units ~ Output Units

Master Unit
ﬁ
Gl
|
|
o
&  CPU Rack
Iy
X
e
Bl Slave Rack
2

16-point 12-point
Input Units Output Units

323



I nstruction Execution Times

Section 6-3

Calculations

The equation for the cycle time is as follows:

Cycle time =  Overseeing time + Program execution time
+ 1/O refreshing time + Host Link Unit servicing time
+ Peripheral device servicing time
Process Calculation With Peripheral Without
Device Peripheral Device
Overseeing Fixed 0.7ms 0.7ms
Program execution | 0.47 us/instruction 2.35ms 2.35ms
x 5,000
instructions
I/O refresh See below. 2.58 ms 2.58 ms
Host Link servicing | Fixed 6.0 ms 6.0 ms
Peripheral device 0.7+235+2.58 + 0.58 ms 0.0 ms
servicing 6=11.63
11.63 x 0.05 = 0.58
Cycle time Total of above 12.21 ms 11.63 ms

The 1/O refreshing time would be as follows for three 8-point Input Units and
three 8-point Output Units mounted in the CPU Rack, and eight Units mounted in
a Slave Rack.

(8 pts x 3) + (8 pts x 3)

x20us + 1.1 ms+8Units x 0.17 ms = 2.58 ms

8 pts
6-3 Instruction Execution Times
The following table lists the execution times for all instructions that are available
for the C200HS. The maximum and minimum execution times and the condi-
tions which cause them are given where relevant. When “word” is referred to in
the Conditions column, it implies the content of any word except for indirectly
addressed DM words. Indirectly addressed DM words, which create longer
execution times when used, are indicated by “>kDM".
Execution times for most instructions depend on whether they are executed with
an ON or an OFF execution condition. Exceptions are the ladder diagram in-
structions OUT and OUT NOT, which require the same time regardless of the
execution condition. The OFF execution time for an instruction can also vary de-
pending on the circumstances, i.e., whether it is in an interlocked program sec-
tion and the execution condition for IL is OFF, whether it is between JMP(04) 00
and JME(05) 00 and the execution condition for JIMP(04) 00 is OFF, or whether it
is reset by an OFF execution condition. “R”, “IL", and “JMP" are used to indicate
these three times.
All execution times are given in microseconds unless otherwise noted.
Instruction Conditions ON execution time (us) OFF execution time (us)
LD For IR and SR 23600 to SR 25515 0.375 0.375
For SR 25600 to SR 51115 0.75 0.375
LD NOT For IR and SR 23600 to SR 25515 0.375 0.375
For SR 25600 to SR 51115 0.75 0.375
AND For IR and SR 23600 to SR 25515 0.375 0.375
For SR 25600 to SR 51115 0.75 0.375
AND NOT For IR and SR 23600 to SR 25515 0.375 0.375
For SR 25600 to SR 51115 0.75 0.375
OR For IR and SR 23600 to SR 25515 0.375 0.375
For SR 25600 to SR 51115 0.75 0.375
OR NOT For IR and SR 23600 to SR 25515 0.375 0.375
For SR 25600 to SR 51115 0.75 0.375

324




I nstruction Execution Times

Section 6-3

Instruction Conditions ON execution time (us) | OFF execution time (us)
AND LD - 0.375 0.375
OR LD - 0.375 0.375
ouT For IR and SR 23600 to SR 25515 0.563 0.563
For SR 25600 to SR 51115 0.938 0.563
OUT NOT For IR and SR 23600 to SR 25515 0.563 0.563
For SR 25600 to SR 51115 0.938 0.563
TIM Constant for SV 1.125 R: 1.125
IL: 1.125
JMP: 1.125
*kDM for SV R: 39.0875
IL: 1.125
JMP: 1.125
For designated words 256 to 511 R: 22.2875
IL: 1.125
JMP: 1.125
CNT Constant for SV 1.125 R: 1.125
IL: 1.125
JMP: 1.125
>*kDM for SV R: 39.0875
IL: 1.125
JMP: 1.125
For designated words 256 to 511 R: 22.0875
IL: 1.125
JMP: 1.125
SET For IR and SR 23600 to SR 25515 0.563 0.563
For SR 25600 to SR 51115 0.938 0.563
RSET For IR and SR 23600 to SR 25515 0.563 0.563
For SR 25600 to SR 51115 0.938 0.563
NOP(00) 0.375
END(01) 34.20
IL(02) 11.44 14.00
ILC(03) - 12.60 12.64
JMP(04) - 12.32 14.56
JME(05) 12.28 12.28
FAL(06) 01 to 99 - 93.76 0.375
FAL(06) 00 - 77.56 0.375
FALS(07) 4.28 ms 0.375
STEP(08) --- 50.60 (with operand) 2.25
24.56 (without operand)
SNXT(09) 13.96 2.25

325




I nstruction Execution Times Section 6-3
Instruction Conditions ON execution time (us) | OFF execution time (us)
SFT(10) With 1-word shift register 47.06 R: 35.80
IL: 15.70
JMP:  15.60
With 100-word shift register 340.00 R: 256.80
IL: 15.72
JMP:  15.68
With 250-word shift register 800.00 R: 590.80
IL: 15.60
JMP:  15.66
KEEP(11) For IR and SR 23600 to SR 25515 0.563 0.563
For SR 25600 to SR 51115 0.938
CNTR(12) Constant for SV 38.20 R: 27.90
IL: 20.30
JMP:  20.30
*kDM for SV 53.20 R: 28.00
IL: 20.30
JMP:  20.30
DIFU(13) 20.60 Normal: 20.60
IL: 20.40
JMP:  18.00
DIFD(14) 20.40 Normal: 20.40
IL: 20.20
JMP:  17.80
TIMH(15) Interrupt Constant for SV 32.20 R: 40.40
IL: 39.20
JMP: 2490
Normal cycle 29.40 R: 36.30
IL: 35.20
JMP:  20.80
Interrupt >kDM for SV 29.80 R: 59.80
IL: 58.60
JMP: 2490
Normal cycle 27.40 R: 56.00
IL: 54.60
JMP:  20.80
WSFT(16) When shifting 1 word 36.90 3
When shifting 6,144 words using >kDM 11.27 ms
CMP(20) When comparing a constant to a word 24.20 1.125
When comparing two words 26.40
When comparing two >kDM 61.80
MOV(21) When transferring a constant to a word 19.00 1.125
When comparing two words 21.20
When transferring >kDM to >kDM 57.20
MVN(22) When transferring a constant to a word 20.20 1.125
When comparing two words 22.40
When transferring kDM to >kDM 57.20

326




I nstruction Execution Times Section 6-3
Instruction Conditions ON execution time (us) | OFF execution time (us)

BIN(23) When converting a word to a word 40.40 1.125
When converting >kDM to kDM 74.80

BCD(24) When converting a word to a word 38.40 1.125
When converting DM to kDM 72.80

ASL(25) When shifting a word 21.20 0.75
When shifting kDM 38.20

ASR(26) When shifting a word 21.20 0.75
When shifting kDM 38.20

ROL(27) When rotating a word 21.80 0.75
When rotating kDM 39.00

ROR(28) When rotating a word 21.80 0.75
When rotating kDM 39.00

COM(29) When inverting a word 21.90 0.75
When inverting kDM 39.30

ADD(30) Constant + word — word 40.10 15
Word + word— word 42.50
>*kDM + kDM — *kDM 94.10

SUB(31) Constant — word — word 40.10 15
Word — word— word 42.50
*kDM - kDM — kDM 94.10

MUL(32) Constant x word — word 56.90 15
Word x word— word 59.30
*kDM x *kDM — >*kDM 110.90

DIV(33) Word + constant — word 56.90 1.5
Word =+ word— word 59.10
>*kDM + *kDM — kDM 110.70

ANDW(34) Constant AND word — word 34.10 15
Word AND word— word 37.10
*kDM AND DM — >kDM 88.70

ORW(35) Constant OR word — word 34.10 15
Word OR word— word 36.70
>*kDM OR kDM — kDM 88.30

XORW(36) Constant XOR word — word 34.10 15
Word XOR word— word 36.70
*kDM XOR *kDM — *xDM 88.30

XNRW(37) Constant XNOR word — word 34.30 15
Word XNOR word— word 36.90
>kDM XNOR *kDM — *xDM 88.50

INC(38) When incrementing a word 23.70 0.75
When incrementing kDM 41.10

DEC(39) When decrementing a word 24.30 0.75
When decrementing kDM 41.70

STC(40) 12.20 0.375

CLC(41) 12.30 0.375

TRSM(45) 27.70 27.70

MSG(46) Designated as DM 23.20 0.75
Designated as kDM 40.80

327




I nstruction Execution Times

Section 6-3

Instruction Conditions ON execution time (us) | OFF execution time (us)

ADB(50) Constant + word — word 43.20 15
Word + word — word 45.80
>*kDM + kDM — kDM 97.40

SBB(51) Constant — word — word 43.20 15
Word — word — word 45.80
>*kDM - *kDM — kDM 97.40

MLB(52) Constant x word — word 36.00 15
Word x word — word 38.50
*kDM x kDM — >*kDM 91.10

DVB(53) Word =+ constant — word 36.70 15
Word =+ word — word 39.30
kDM + *kDM — kDM 90.80

ADDL(54) Word + word — word 45.50 15
kDM + kDM — *kDM 99.00

SUBL(55) Word — word — word 45.50 15
>*kDM — *kDM — kDM 99.00

MULL(56) Word x word — word 155.90 15
>*kDM x kDM — kDM 209.50

DIVL(57) Word =+ word — word 166.10 15
kDM + *kDM — kDM 219.70

BINL(58) When converting words to words 58.70 1.125
When converting >kDM to kDM 93.50

BCDL(59) When converting words to words 47.30 1.125
When converting kDM to kDM 82.20

XFER(70) When transferring 1 word 54.80 15
When transferring 1,024 words using 2.40 ms
>kDM
When transferring 6,143 words using 13.99 ms
kDM

BSET(71) When setting a constant to 1 word 37.70 15
When setting kDM ms to 1,024 words 26.20
using kDM
When setting *kDM ms to 6,144 words 95.80
using kDM

ROOT(72) When taking root of word and placing ina | 68.60 1.125
word
When taking root of 99,999,999 in >kDM 137.80
and placing in kDM

XCHG(73) Between words 33.50 1.125
Between >kDM 68.50

SLD(74) When shifting 1 word 34.00 1.125
When shifting 1,024 DM words using kDM 4.35 ms
When shifting 6,144 DM words using kDM 25.93 ms

SRD(75) When shifting 1 word 34.00 1.125
When shifting 1,024 DM words using ><DM 4.35 ms
When shifting 6,144 DM words using >kDM 26.01 ms

MLPX(76) When decoding word to word 86.80 15
When decoding kDM to kDM 178.20

328




I nstruction Execution Times Section 6-3
Instruction Conditions ON execution time (us) | OFF execution time (us)

DMPX(77) When encoding a word to a word 48.90 15
When encoding *kDM to *kDM 185.90

SDEC(78) When decoding a word to a word 53.20 15
When decoding 2 digits >kDM to >kDM 113.60
When decoding 4 digits >kDM to kDM 126.00

FDIV(79) Word + word — word (equals 0) 118.20 15
Word =+ word — word (doesn’t equal 0) 357.20
*kDM + *DM — kDM 409.20

DIST(80) Constant — (word + (word)) 49.00 15
kDM — (>kDM + (>kDM)) 106.70

COLL(81) (Word + (word)) — word 52.90 15
(>kDM + (*kDM)) — *kDM 113.50

MOVB (82) When transferring a constant to a word 38.60 15
When transferring word to a word 45.30
When transferring kDM to >kDM 97.60

MOVD(83) When transferring a constant to a word 34.00 15
When transferring word to a word 41.00
When transferring kDM to *kDM 97.60

SFTR(84) When shifting 1 word 48.40 15
When shifting 1,024 >kDM using ><DM 1.92 ms
When shifting 6,144 kDM using kDM 11.8 ms

TCMP(85) Comparing to words in a designated table | 69.10 15
Comparing to words in a designated table | 71.50
Comparing kDM — >kDM-designated table 123.50

ASC(86) Between words 56.90 15
Between >*kDM 133.50

SEND(90) 1-word transmit 563 3.75
1000-word transmit 752

SBS(91) 37.6 2.25

SBN(92)

RET(93) 45.6 13.7

WDT(94) 17.60 0.75

IORF(97) 1-word refresh 130.70 1.125
30-word refresh 2.27ms

RECV(98) 1-word refresh 559 3.75
1000-word refresh 764

MCRO(99) Designating a word parameter 91.00 15
Designating a kDM parameter 125.80

ASFT(—) When resetting 1 word 43.60 15

Default code: (17) | When shifting 1 word using kDM 50.30
When shifting 10 word using kDM 68.80

SCAN(—) Constant for SV 31.80 15

Default code: (18) | kDM for SV 51.20

MCMP(—) Comparing 2 words, result word 104.30 15

Default code: (19) | Comparing 2 *kDM, result >kDM 159.30

LMSG(—) Word for SV 104.30 15

Default code: (47) | kDM for SV 159.30

329




I nstruction Execution Times Section 6-3
Instruction Conditions ON execution time (us) | OFF execution time (us)
TERM(—) 16.40 15
Default code: (48)
CMPL(—) When comparing words to words 51.40 15
Default code: (60) | When comparing >kDM to kDM 85.90
MPRF(—) 1 Unit 33.70 1.5
Default code: (61) | 10 Units 74.20
XFRB(—) Sending 1 bit from word to word 45.50 15
Default code: (62) | Sending FF bits from >kDM to >kDM 241.90
LINE(—) When transferring from words to a 102.90 15
Default code: (63) | constant
When transferring from words to a word 106.40
When transferring kDM to kDM 293.80
COLM(—) When transferring from a constant to 115.20 1.5
Default code: (64) | words
When transferring from a word to words 118.70
When transferring kDM to kDM 303.10
SEC(—) DM to DM 78.50 15
Default code: (65) | >kDM to kDM 112.90
HMS(—) DM to DM 80.00 15
Default code: (66) | kDM to kDM 114.50
BCNT(—) Constant for SV 69.56 15
Default code: (67) | kDM for SV 37.52 ms
BCMP(—) Comparing constant to word-designated 105.00 15
Default code: (68) | table
To a word after comparing with a word 107.40
Comparing kDM — >kDM-designated table 166.50
APR(—) SIN designation 43.90 15
Default code: (69) | >kDM for SV 740.70
TTIM(—) Setting to a constant 43.50 Constant input OFF: 36.9
Default code: (87) R: 38.4
IL: 36.8
JPM:  36.8
Setting to >kDM 81.70 Constant input OFF: 75.1
R: 76.6
IL: 75.0
JPM:  75.1
ZCP(—) Comparing a constant to a word 35.40 15
Default code: (88)
Comparing a word to a word 38.00
Comparing DM to a >kDM 89.70
INT(—) Word for SV 21.70 to 47.40 15
Default code: (89) | >kDM for SV 21.70 to 64.60
TKY(—) Input to DM 63.10 15
Input to kDM 97.90
RXD(—) When designating a word 76.50 15
When designating >kDM 128.50
TXD(—) When designating a word 65.30 15
When designating kDM 125.30
7SEG(—) Word-designated 4 digits 49.10 to 55.40 21.70

330




I nstruction Execution Times

Section 6-3

Instruction Conditions ON execution time (us) | OFF execution time (us)

>kDM-designated 4 digits 66.60 to 72.80
Word-designated 8 digits 56.70 to 64.80
>kDM-designated 8 digits 74.20 to 82.30

FPD(—) Word designation, code output 121.00 to 147.50 17.30
*kDM designation, message output 170.50 to 228.80

SRCH(—) Constant for SV 78.50 15
>kDM for SV 211 ms
kDM for SV 12.10 ms

MAX(—) DM search 57.20 15
>kDM search 2.05 ms

MIN(—) DM search 57.20 15
kDM search 2.05ms

SUM(—) DM add 60.10 15
>kDM add 1.80 ms

FCS(—) Add a word — word 52.90 15
Add 999 words — *kDM 141 ms

HEX(—) DM conversion 66.70 15
>kDM conversion 169.90

AVG(—) Average of an operation 61.40 19.7
Average of 64 operations 223.70

PID(—) When designating a word 83.00 15
When designating kDM 138.00

XDMR(—) Constant for SV 74.20 15
Word for SV 2.32ms
>*kDM for SV 6.89 ms

MTR(—) Input to DM 54.60 to 63.60 21.7
Input to kDM 72.00 to 81.20

ADBL(—) DM + DM — DM 72.20 1.5
*kDM + kDM — kDM 123.30

SBBL(—) DM — DM — DM 71.70 15
>*kDM - kDM — *xDM 123.30

MBS(—) Constant x word — word 50.20 15
DM x DM — DM 52.80
*kDM x *kDM — kDM 104.30

DBS(—) Constant + word — word 51.20 15
DM + DM — DM 53.70
>*kDM + kDM — kDM 106.20

MBSL(—) DM x DM — DM 81.90 1.5
*kDM x DM — >kDM 133.50

DBSL(—) DM + DM — DM 90.70 1.5
>*kDM + kDM — kDM 143.70

CPS(—) When comparing two constants 34.20 15
When comparing DM to DM 29.70
When comparing DM to kDM 64.80

CPSL(—) When comparing two DM 50.90 15
When comparing two kDM 86.10

331




I nstruction Execution Times

Section 6-3

Instruction Conditions ON execution time (us) | OFF execution time (us)

NEG(—) When converting a constant to a word 34.90 15
When converting a word to a word 37.50
When converting >kDM to kDM 72.10

NEGL(—) When converting a word to a word 47.00 15
When converting >kDM to kDM 81.90

ZCPL(—) When comparing two words 71.90 15
When comparing two kDM 123.10

SCL(—) Word for SV 98.20 15
*kDM for SV 150.00

HKY(—) When designating a word 55.7 21.7
When designating kDM 72.9

DSW(—) DM CS output 60.20 211
DM RD output 61.00
DM data retrieval 78.80
>kDM CS output 77.70
>*kDM RD output 78.40
>kDM data retrieval 94.20

332




|/O Response Time

Section 6-4

6-4 1/0O Response Time

6-4-1 Basic Systems

Minimum I/O Response
Time

The 1/0O response time is the time it takes for the PC to output a control signal
after it has received an input signal. The time it takes to respond depends on the
cycle time and when the CPU receives the input signal relative to the input re-
fresh period.

The minimum and maximum I/O response time calculations described below
are for where IR 00000 is the input bit that receives the signal and IR 00200 is the
output bit corresponding to the desired output point.

| 00000
| i | 00200

The PC responds most quickly when it receives an input signal just prior to the
I/O refresh period in the cycle. Once the input bit corresponding to the signal has
been turned ON, the program will have to be executed once to turn ON the out-
put bit for the desired output signal and then the 1/O refresh operation would
have to be repeated to refresh the output bit. The 1/O response time in this case
is thus found by adding the input ON-delay time, the cycle time, and the output
ON-delay time. This situation is illustrated below.

)
+—— Cycletime ——se—— Cycletime ——=

Cvel Instruction Instruction Instruction
ycle execution execution execution
)
. /0 refresh

)

)

Input '
signal !

[ ]

' v ! CPU reads !
Input + ! :
)

]

1

X w— Output ON delay
)
Output '
signal |
' [
' '
:~— I/O response time ——————=

)

input signal !

ON delay ! '
P—. )

)

)

)

1

)

Minimum 1/O response time =
Input ON delay + Cycle time + I/O refresh time + Output ON delay

333



|/O Response Time

Section 6-4

Maximum I/O Response
Time

Calculation Example

Note

The PC takes longest to respond when it receives the input signal just after the
I/O refresh phase of the cycle. In this case the CPU does not recognize the input
signal until the end of the next cycle. The maximum response time is thus one
cycle longer than the minimum 1/O response time, except that the 1/O refresh
time would not need to be added in because the input comes just after it rather
than before it.

*—— Cycletime ——s—— Cycletime ——'<—— Cycle time

Cvel Instruction Instruction Instruction
ycle execution execution execution
. I/O refresh . .
. refres ' \
I_nput ! ! : ,
v o
v Vo CPU reads
Input v ' input signal
' )

+ Output
r— ON delay
1

o
c
=3
S
c
=4

1/0O response time

Maximum I/O response time =
Input ON delay + (Cycle time x 2) + Output ON delay

The data in the following table would produce the minimum and maximum cycle
times shown calculated below.

Item Time
Input ON-delay 1.5ms
Output ON-delay 15 ms
Cycle time 20 ms

Minimum 1/O response time = 1.5 + 20 + 15 = 36.5 ms
Maximum I/O response time = 1.5 + (20 x 2) +15 = 56.5 ms

In this example the 1/O refresh time is negligible has not been included in the
minimum 1/O response time.

6-4-2 Remote I/O Systems

334

With C200HS Remote I/0 Systems, only the cycle time of the PC needs to be
considered in computing the I/O response times as long as the remote I/O trans-
mission time is negligible and smaller than the cycle time. The cycle time, how-
ever, is increased by the presence of the Remote I/O System.

The processing that determines and the methods for calculating maximum and
minimum response times from input to output are provided in this section. Calcu-
lations assume that both the input and the output are located on Slave Racks in a
Remote 1/0O System, but the calculations are the same for I/O points on Optical
I/0 Units, I/O Link Units, 1/O Terminals, etc.

Input on Output on
Slave Rack Slave Rack
— ®

Although more precise equations are possible if required, equations used for the
following calculations do not consider fractions of a scan.



|/O Response Time

Section 6-4

In looking at the following timing charts, it is important to remember the se-
guence in which processing occurs during the PC scan, particular that inputs will
not produce programmed actions until the program has been executed.
When calculating the response times involving inputs and outputs from another
CPU connected by an I/O Link Unit, the cycle time of the controlling CPU and the
cycle time of the PC to which the I/O Link Unit is mounted must both be consid-
ered.

&Caution Noise may increase I/O delays.

Remote I/O Transmission

Times

Minimum I/O Response

Time

C200HS
CPU

Master

Slave

Input

Output

Maximum /O Response

Time

] ]
~— Cycle time —"

] ]
~— Cycle time—"

The remote /O transmission time is computed as follows:

Trv = Total Slave transmission time for one Master
= XTrr+ TrT
Trr = Transmission time for each Slave

= 1l4ms+(0.2msxn)
Where n = number of I/O words on the Slave Rack
T = Optical I/O Unit/l/O Terminal transmission time
= 2msxm
Where m = number of Optical I/O Units/I/O Terminals

The minimum response time occurs when all signals are processed as soon as
they are received. Here, three scans are required so that the program is
executed, as shown in the following diagram.

Time = Input ON delay + cycle time x 3 + output ON delay

Program execution

Transfer to CPU

—

t Transfer to Master

i [

Slave 1/0 refrgsh

)

—1 - _--.---------

i :

Note

The maximum response time occurs when the input just misses the program ex-
ecution portion of the scan, meaning that processing must wait for the next trans-
mission and then the next (i.e., the fourth) scan.

Time = Input ON delay + cycle time x 4 + output ON delay

Use the maximum cycle time output to AR 26 in computing the maximum 1/O re-
sponse time.

C200HS
CPU

Program execution

Transfer to CPU

—

Master

Slave 1/O refresh

Transfer to Master

—

Slave

Input i

Output

|
0 1
|
i
|

BT

335



|/O Response Time

Section 6-4

Example Calculations

Note

Calculations would be as shown below for an input ON delay of 1.5 ms, an out-
put ON delay of 15 ms, and a cycle time of 20 ms.

Minimum I/O Response Time
Time = 1.5ms+(20msx3)+15ms=76.5ms
Maximum I/O Response Time
Time = 1.5ms+ (20 ms x4) +15ms =96.5ms
1. The cycle time may be less than or equal to the remote I/O transmission time
when there are Special I/O Units on Slave Racks. If this is the case, there

may be cycles when I/O is not refreshed between the Master and the
C200HS CPU.

2. Refreshing is performed for Masters only once per cycle, and then only after
confirming completion of the remote cycle.

3. The short duration of ON/OFF status produced by differentiated instructions
can cause inaccurate signals when dealing with Remote I/O Systems un-
less appropriate programming steps are taken.

6-4-3 Host Link Systems

Host computer

The following diagram illustrates the processing that takes place when an input
on one PC is transferred through the Host Link System to turn ON an output on
another PC. Refer to Host Link System documentation for further details.

Input on #0 Output on #32

i ®

Command/response for Unit # 0 Command/response for Unit # 31

7

N 7

| Command Command
Response

Buffer for Host CPU reads

Link Unit #0

Buffer for Host
Link Unit # 31

PC for Host
Link Unit # 31

Input
signal -

Output

input signal

processing time
) ] )
Cycle time '
PC for Host .:lI
Link Unit# 0

A

Host computer

1/0 refresh /

Host link service CPU writes
- output signal

)
—— Cycle time '

Host link service : 1/0 refresh

, Input ON delay 'l Output ON delay
)

signal

Minimum response time =

Maximum response time =

336

I/O response time d

The equations used to calculate the minimum and maximum cycle times are giv-
en below. The number of cycles required for each PC depends on the amount of
data being read/written.

Input ON delay + Command transmission time + (Cycle time of PC for Unit #0 x 3) + Response transmis-
sion time + Host computer processing time + Command transmission time + (Cycle time of PC for Unit #31
x 3) + Output ON delay

Input ON delay + Command transmission time + (Cycle time of PC for Unit #0 x 10) + Response transmis-
sion time + Host computer processing time + Command transmission time + (Cycle time of PC for Unit #31
x 10) + Output ON delay



|/O Response Time

Section 6-4

6-4-4 PC Link Systems

The processing that determines and the methods for calculating maximum and
minimum response times from input to output are provided in this subsection.
The following System and 1/O program steps will be used in all examples below.
This System contains eight PC Link Units.

In looking at the following timing charts, it is important to remember the se-
guence processing occurs during the PC scan, particular that inputs will not pro-
duce programmed-actions until the program has been execution.

&Caution

PC Link Conditions

Minimum Response Time

Cycle time

PC Link Unit

Unit 0

PC
—OOJ

Input

Input i LR XXXX

Input on PC

of Unit 0

f Unit 7
| bit_ of Unit

X

PC Link Unit

PC

| |
I il (P

Noise may increase I/O delays.

Output on PC I-@

Output

O 1

®

Unit 7

LR XXXX l Output

The PC Link System used in this example consists of the following:
¢ No. of PCs linked: 8
e No. of LR points linked: 128 per PC

e Maximum PC:
¢ LR points used:

8
1,024

The following illustrates the data flow that will produce the minimum response
time, i.e., the time that results when all signals and data transmissions are pro-
cessed as soon as they occur.

— Program executed.

110 reflresh

PC with
Unit 0

110

Buffer in Unit 0

PC Link Unit trans-
missions

Buffer in Unit 7

PC with
Unit 7

Minimum transmission time

Program 1/0 refresh
y_ executed. Y
Cycle time

Input

Output

/

——

The equation for minimum 1/O response time is thus as follows:
Response time = Input ON delay + Cycle time of PC of Unit O + Minimum trans-

mission time + (Cycle time of PC of Unit 7 x 2) + Output ON

delay

337



|/O Response Time

Section 6-4

Maximum Response Time

Inserting the following values into this equation produces a minimum 1/O re-
sponse time of 149.3 ms.

Input ON delay: 1.5ms
Output ON delay: 15 ms
Cycle time for PC of Unit O: 20 ms
Cycle time for PC of Unit 7: 50 ms

The following diagram illustrates the data flow that will produce the maximum
response time. Delays occur because signals or data is received just after they
would be processed or because data is sent during processing. In either case,
processing must wait until the next scan/polling cycle.

First output to the buffer in the polling unit is delayed by the setting of the number
of LR bits to be refreshed each scan. A similar delay is present when the LR data
reaches Unit 7. The polling delay is the result of the LR data in its PC being up-
dated immediately after the previous was sent to the buffer in the PC Link Unit,
cause a delay until the next polling cycle. One more polling cycle is then required
before the data reaches the buffer in PC Link Unit 7.

1/0 refresh
Cycle time |
e (T TSI 1
Unit 0 |
‘ ? PC Link
Buffer in Unit 0 Link
Polling delay polling time

PC Link Unit
transmissions

Buffer in Unit 7

Induction sequence
processing time

I
. Maximum __,.
transmission

[ TSI |

PC with
Unit 7 -~
Cycle time
Input 4L
Y
Output

338

The equation for maximum 1/O response time is thus as follows:

Response time = Input ON delay + [Cycle time of PC of Unit 0 x (Number of LR
transfer bits + I/O refresh bits)] + o + (PC Link polling time +
Induction sequence processing time) + {Cycle time of PC of
Unit 7 x [(Number of LR transfer bits + I/O refresh bits) x 2 + 1]}
+ B + Output ON delay

If cycle time of PC of Unit 0 > PC Link polling time, o. = cycle time of PC of Unit 0. If
cycle time of PC of Unit 0 < PC Link polling time, o = PC Link polling time.

If cycle time of PC of Unit 7 > PC Link polling time, B = cycle time of PC of Unit 7. If
cycle time of PC of Unit 7 < PC Link polling time, B = PC Link polling time.

Inserting the following values into this equation produces a maximum 1/O re-
sponse time of 661.3 ms.

Input ON delay: 1.5ms
Output ON delay: 15ms
Cycle time for PC of Unit O: 20 ms
Cycle time for PC of Unit 7: 50 ms
PC Link polling time: 28msx8PCs+10ms=324ms



|/O Response Time Section 6-4

Induction sequence processing: 15 ms x (8 PCs — 8 PCs) = 0 ms

I/O refresh bits for Unit 0 256
I/O refresh bits for Unit 7 256
Reducing Response Time IORF(97) can be used in programming to shorten the I/O response time greater

than is possible by setting a high number of refresh bits. (Remember, increasing
the number of refresh bits set on the back-panel LED shortens response time,
but increases the cycle time of the PC.)

The following calculations for the maximum cycle time use the same example
System configuration as that used in 5-2 Response Times. In programming the
PCs for PC Link Units #0 and #7, IORF(97) is executed during every PC scan for
the PC Link Units. The basic equation for the maximum /O response time is as
follows:

Response time = Input ON delay + [Cycle time of PC of Unit 0 x (Number of LR
transfer bits + Number of 1/O refresh bits + 2)] + o + PC Link
polling time + Induction sequence processing time + {Cycle
time of PC of Unit 7 x [(Number of LR transfer bits + Number of
I/O refresh bits + 2) x 2 + 1]} + B + Output ON delay

If cycle time of PC of Unit 0 > PC Link polling time, o = cycle time of PC of Unit 0. If
cycle time of PC of Unit 0 < PC Link polling time, o = PC Link polling time.

If cycle time of PC of Unit 7 > PC Link polling time, B = cycle time of PC of Unit 7. If
cycle time of PC of Unit 7 < PC Link polling time, 3 = PC Link polling time.

The required data from the example System configuration is as follows:

Input ON delay 1.5ms
Output ON delay 15ms
Cycle time of PC of Unit 0 20ms +5.7ms =25.7
(5.7 ms required for IORF execution)
Cycle time of PC of Unit 7 50 ms + 5.7 ms =55.7
(5.7 ms required for IORF execution)
Number of PC Link Units 8
Number of LR bits 1,024
Number of refresh bits for Unit O 256
Number of refresh bits for Unit 7 256
PC Link polling time 28msx8PCs+10ms=324ms

Induction sequence processing time 15ms x (8 PCs -8 PCs)=0ms

Placing these values into the equation produces a maximum I/O response time
of 466.9 ms, approximately 200 ms shorter than when IORF is not used.

6-4-5 One-to-one Link I/O Response Time

When two C200HSs are linked one-to-one, the I/O response time is the time re-
quired for an input executed at one of the C200HSs to be output to the other
C200HS by means of one-to-one link communications.

One-to-one link communications are carried out reciprocally between the mas-
ter and the slave. The respective transmission times are as shown below, de-
pending on the number of LR words used.

Number of words used Transmission time
64 words (LR 00 to LR 63) 39 ms
32 words (LR 00 to LR 31) 20 ms
16 words (LR 00 to LR 15) 10 ms

339



|/O Response Time Section 6-4

The minimum and maximum I/O response times are shown here, using as an
example the following instructions executed at the master and the slave. In this
example, communications proceed from the master to the slave.

QOutput (LR) Input Output

|“=PUt Q (L;R) O

The following conditions are taken as examples for calculating the 1/0 response

times.
Input ON delay: 8 ms
Master cycle time: 10 ms
Slave cycle time: 14 ms

Output ON delay: 10 ms
Number of LR words: 64 words

Minimum I/O Response Time The C200HS responds most quickly under the following circumstances:

1,2,3... 1. The C200HS receives an input signal just prior to the input refresh phase of
the cycle.
2. The master to slave transmission begins immediately.

3. The slave executes communications servicing immediately after comple-
tion of communications.

Input - I/O refresh

point Input ON delay Overseeing, communica-

tions, etc.
’<— Cycle time —

CPU Instruction Instruction
processing execution execution

One-to-one link « Master to
communications ' Slave '

CPU Instruction Instruction
processing execution execution
Output ON

delay

Master| Input
bit

Slave

Output point W

The minimum I/O response time is as follows:

Input ON delay: 8 ms
Master cycle time: 10 ms
Transmission time: 39ms
Slave cycle time: 15ms
+ Qutput ON delay: 10 ms

Minimum 1/O response time: 82 ms
Maximum 1/O Response Time The C200HS takes the longest to respond under the following circumstances:

1,2,3... 1. The C200HS receives an input signal just after the input refresh phase of the
cycle.

2. The master to slave transmission does not begin immediately.

340



|/O Response Time

Section 6-4

3. Communications are completed just after the slave executes communica-
tions servicing.

Input - I/O refresh
oint
P Input ON delay |:| Overseeing, communica-
Master| Input tions, etc.
bit
k— Cycle time —~
CPU Instruction Instruction Instruction
processing execution execution execution

One-to-one link

to « Master to

communications ' Slave ' Master ' Slave !
CPU Instruction Instruction Instruction
processing execution execution execution
Slave
Output ON
delay
Output point W

The maximum /O response time is as follows:

Input ON delay: 8 ms

Master cycle time: 10ms x 2

Transmission time: 39ms x 3

Slave cycle time: 15ms x 2
+ QOutput ON delay: 10 ms

Maximum /O response time: 185 ms

6-4-6 Interrupt Response Times

The response time from the time an interrupt input is received until the interrupt
subroutine execution has been completed is described next.

I
;«tl’l
—

Input Interrupts

External interrupt input signal

Internal interrupt signal

Interrupt subroutine execution

t1 = ON delay of Interrupt Input Unit

t2 = Software interrupt response time
Total interrupt response time = t1 + t2
The ON delay of Interrupt Input Unit is 0.2 ms or less.
The software interrupt response time depends on the interrupt response param-
eter setting in DM 6620 of the PC Setup. If the DM 6620 is set for the C200H-
compatible mode (0000), the software interrupt response time is less than
10 ms. If the DM 6620 is set for the C200HS mode (1xxx), the software interrupt
response time is less than 1 ms. The total interrupt response time is thus as
shown in the following table.

Interrupt response setting
C200H-compatible mode

Total interrupt response time

0.2 ms + (Total of following: Special I/O
processing time, Remote 1/O processing time,
Host Link servicing time, instruction execution)

1.2 ms or less

C200HS mode

341



|/O Response Time

Section 6-4

Scheduled Interrupts

Note

Interrupt Processing Time

342

Scheduled in-
terrupt interval

Hardware time clock I I I I

Scheduled interrupt :
subroutine execution =3 ] =3 =13 ~t3

t3 = Software interrupt response time
Total interrupt response time = t3 (software interrupt response time)

The software interrupt response time depends on the interrupt response param-
eter setting in DM 6620 of the PC Setup. If the DM 6620 is set for the C200H-
compatible mode (0000), the software interrupt response time is less than
10 ms. If the DM 6620 is set for the C200HS mode (1xxx), the software interrupt
response time is less than 1 ms. The total interrupt response time is thus as
shown in the following table.

Interrupt response setting Total interrupt response time

C200H-compatible mode Total of following: Special /0O processing time,
Remote I/O processing time, Host Link
servicing time, instruction execution

C200HS mode 1.0 ms or less

1. If there is any instruction in the program that requires longer than 10 ms to
execute when using the C200H-compatible mode, the total interrupt re-
sponse time will be equal to the execution time of the instruction requiring
longer than 10 ms.

2. The above calculations assume that only one interrupt requires executed at
any one time. If multiple interrupts are generated at the same time, execu-
tion of all but the first interrupt will go on standby, increasing the response
times given above.

3. If SYSMAC NET/SYSMAC LINK Units are being serviced when an interrupt
occurs, the interrupt will not be processed until SYSMAC NET/SYSMAC
LINK Unit servicing has been completed. The response times in this case
will be as shown in the following table and will not be affected by the interrupt
response setting.

Interrupt Total interrupt response time
Input interrupt 10.2 ms max.
Scheduled interrupt | 10 ms max.

The processing time from receiving an interrupt input, through program execu-
tion, and until a return is made to the original program location is described next.

The limit of the count frequency resulting from using the scheduled interrupt pe-
riod or input interrupts as the count input is determined by the interrupt proces-
sing time.
Interrupt processing time =
Total interrupt response time + Interrupt program execution time +
Interrupt return time

The interrupt program execution time is determined by the content of the inter-
rupt subroutine. This time is negligible f only SBN(92) and RET(93) are
executed.

The interrupt return time is 0.04 ms.



|/O Response Time

Section 6-4

Note

Interrupt Input Pulse Width

1. If there are several elements that can cause interrupts or if the interrupt peri-
od is shorted than the average interrupt processing time, the interrupt sub-
routine will be executed and the main program will not be executed. This will
cause the cycle monitoring time to be exceeded and an FALS 9F error will be
generated, stopping PC operation.

2. The maximum interrupt program execution time is contained in SR 262 and
SR 263.

The pulse width input to Interrupt Input Units must be set to within the conditions

shown in the following diagram.

‘ <— 0.5 ms min. —=

0.2 ms min
ON time: 0.2 ms min.
OFF time: 0.5 ms min.

343



SECTION 7
Program Monitoring and Execution

This section provides the procedures for monitoring and controlling the PC through a Programming Console. Refer to the LSS
Operation Manual for LSS procedures if you are using a computer running LSS.

7-1 Monitoring Operation and ModifyingData . .. ...t 346
7-1-1  Bit/Word MONItOr .. ... e 346
7-1-2  FOrced SE/RESEL . ..o 349
7-1-3  Forced Set/Reset Cancel . ... 351
7-1-4  Hexadecimal/BCD DataModification. ..., 352
7-1-5 Hex/ASCIHI Display Change . . ... ..ot e 354
7-1-6  4-digit Hex/Decima DisplayChange ..., 355
7-1-7  8-digit Hex/Decima Display Change .. ..., 356
7-1-8  Differentiation MONITOr .. ... ... 357
7-1-9  3-word MONItOr . ... 358
7-1-10 3-word DataModification ... ... ...t 358
7-1-11 Binary MONItOr . ... e e 359
7-1-12 Binary DataModification ......... ... . i 361
7-1-13 Changing TImer/Counter SV .. ...t 362
7-1-14 Expansion Instruction Function Code Assignments . ...................... 365
7-1-15 UM Area AlloCation ... ..ottt 366
7-1-16 Reading and SettingtheClock ... ... ... .. i 367
7-1-17 Expansion Keyboard Mapping .........coiiiiiiniiiii i 367
7-1-18 Keyboard Mapping . ... .oonii et e 368

345



Monitoring Operation and Modifying Data Section 7-1

7-1

7-1-1

346

Monitoring Operation and Modifying Data

The simplest form of operation monitoring is to display the address whose oper-
and bit status is to be monitored using the Program Read or one of the search
operations. As long as the operation is performed in RUN or MONITOR mode,
the status of any bit displayed will be indicated.

This section provides other procedures for monitoring data as well as proce-
dures for modifying data that already exists in a data area. Data that can be
modified includes the PV (present value) and SV (set value) for any timer or
counter.

All monitor operations in this section can be performed in RUN, MONITOR, or
PROGRAM mode and can be cancelled by pressing CLR.

All data modification operations except for timer/counter SV changes are per-
formed after first performing one of the monitor operations. Data modification is
possible in either MONITOR or PROGRAM mode, but cannot be performed in
RUN mode.

Bit/Word Monitor

The status of any bit or word in any data area can be monitored using the follow-
ing operation. Although the operation is possible in any mode, ON/OFF status
displays will be provided for bits in MONITOR or RUN mode only.

The Bit/Digit Monitor operation can be entered either from a cleared display by
designating the first bit or word to be monitored or it can be entered from any
address in the program by displaying the bit or word address whose status is to
be monitored and pressing MONTR.

When a bit is monitored, it's ON/OFF status will be displayed (in MONITOR or
RUN mode); when a word address is designated other than a timer or counter,
the digit contents of the word will be displayed; and when a timer or counter num-
ber is designated, the PV of the timer will be displayed and a small box will ap-
pear if the completion flag of a timer or counter is ON. When multiple words are
monitored, a caret will appear under the leftmost digit of the address designation
to help distinguish between different addresses. The status of TR bits and SR
flags (e.g., the arithmetic flags), cleared when END(01) is executed, cannot be
monitored.

Up to six memory addresses, either bits, words, or a combination of both, can be
monitored at once, although only three of these are displayed at any one time. To
monitor more than one address, return to the start of the procedure and continue
designating addresses. Monitoring of all designated addresses will be main-
tained unless more than six addresses are designated. If more than six ad-
dresses are designated, the leftmost address of those being monitored will be
cancelled.

To display addresses that are being monitored but are not presently on the Pro-
gramming Console display, press MONTR without designating another ad-
dress. The addresses being monitored will be shifted to the right. As MONTR is
pressed, the addresses being monitored will continue shifting to the right until
the rightmost address is shifted back onto the display from the left.

During a monitor operation the up and down keys can be pressed to increment
and decrement the leftmost address on the display and CLR can be pressed to
cancel monitoring the leftmost address on the display. If the last address is can-
celled, the monitor operation will be cancelled. The monitor operation can also
be cancelled regardless of the number of addresses being monitored by press-
ing SHIFT and then CLR.

LD and OUT can be used only to designate the first address to be displayed; they
cannot be used when an address is already being monitored.



Monitoring Operation and Modifyi ng Data

Section 7-1

Key Sequence

Examples

=}

L’[SHIFT]

» [Address]

Clears leftmost

((conr |
# J |
) R
CH | .
= » LR >
| S—
) R
» HR >
) S—

address

Cancels monitor
operation

Y

The following examples show various applications of this monitor operation.

Program Read then Monitor

L)l e

\4

MONTR

L Indicates Completion flag is ON

Monitor operation
is cancelled

347



Monitoring Operation and Modifying Data Section 7-1

Bit Monitor

CLR

Note The status of TR bits SR flags SR 25503 to 25507 (e.qg., the arithmetic flags),
cleared when END(01) is executed, cannot be monitored.

Word Monitor

)

CLR

SHIFT

L .....

llll ‘IIII
o
e * 2

MONTR

348



Monitoring Operation and Modifying Data Section 7-1

+Multiple Address Monitoring

TIM

MONTR

Cancels monitoring
of leftmost address

Monitor operation
is cancelled

| Indicates Force Reset

in operation.

Indicates Force Set
in operation.

7-1-2 Forced Set/Reset

When the Bit/Digit Monitor operation is being performed and a bit, timer, or
counter address is leftmost on the display, PLAY/SET can be pressed to turn ON
the bit, start the timer, or increment the counter and REC/RESET can be pressed
to turn OFF the bit or reset the timer or counter. Timers will not operate in PRO-
GRAM mode. SR bits cannot be turned ON and OFF with this operation.

349



Monitoring Operation and Modifying Data Section 7-1

Key Sequence

Example

350

1,2, 3.

Note

Bit status will remain ON or OFF only as long as the key is held down; the original
status will return as soon as the key is released. If a timer is started, the comple-
tion flag for it will be turned ON when SV has been reached.

SHIFT and PLAY/SET or SHIFT and REC/RESET can be pressed to maintain
the status of the bit after the key is released. The bit will not return to its original
status until the NOT key is pressed, or one of the following conditions is met.

1. The Force Status Clear operation is performed.

2. The PC mode is changed. (See note.)

3. Operation stops due to a fatal error or power interruption.
4. The 1/O Table Registration operation is performed.

This operation can be used in MONITOR mode to check wiring of outputs from
the PC prior to actual program execution. This operation cannot be used in RUN
mode.

The forced set/reset bit status will be maintained when switching from PRO-
GRAM to MONITOR mode if the Force Status Hold Bit is ON and DM 6601 of the
PC Setup has been set maintain the bit's status. Refer to 3-6-4 PC Setup for de-
tails.

Bit or Timer/Counter f—
currently monitored PLAY
on left of display. l SET

REC
RESET

SHIFT

PLAY
SET
e —
M

REC
RESET
—

SHIFT

W0 E

NOT

The following example shows how either bits or timers can be controlled with the
Force Set/Reset operation. The displays shown below are for the following pro-
gram section.

00100

: TIM 000 0123s

#0123

TIM 000
: 00500

Address| Instruction Data

00200 | LD 00100

00201 | TIM 000
# . 0123

00202 | LD T™ . 000

00203 | OUT . 00500




Monitoring Operation and Modifyi ng Data

Section 7-1

The following displays show what happens when TIM 000 is set with 00100 OFF
(i.e., 00500 is turned ON) and what happens when TIM 000 is reset with 00100
ON (i.e., timer starts operation, turning OFF 00500, which is turned back ON
when the timer has finished counting down the SV).

(This example is performed in MONITOR mode.)

Monitoring 00100 and 00500.

a

Force set bit status.

SET

\— Indicates that force set/reset is in progress.

Reset the force-set bit.

Monitoring TIM 000.

PLAY

Force setting TIM 000
turns ON 00500.

TIM 000 returns to its original status
when PLAY/SET is released.

7-1-3

Key Sequence

Display with 0010 originally ON.

Timer starts timing, turning

00500 OFF.*

When the time is up, 00500
goes ON again.

\— Indicates that the time is up.

*Timing not done in PROGRAM mode.

Forced Set/Reset Cancel

This operation restores the status of all bits in the I/O, IR, TIM, CNT, HR, AR, or
LR areas which have been force set or reset. It can be performed in PROGRAM
or MONITOR mode.

PLAY REC
CLR
SET RESET

NOT ]

When the PLAY/SET and REC/RESET keys are pressed, a beeper will sound. If
you mistakenly press the wrong key, then press CLR and start again from the
beginning.

351



Monitoring Operation and Modifying Data Section 7-1

Example

The following example shows the displays that appear when Restore Status is
carried out normally.

CLR

)
5

[72]
m
-

)
m
(2]

RESET

NOT

7-1-4 Hexadecimal/BCD Data Modification

Key Sequence

352

When the Bit/Digit Monitor operation is being performed and a BCD or hexadeci-
mal value is leftmost on the display, CHG can be input to change the value. SR
words cannot be changed.

If a timer or counter is leftmost on the display, the PV will be displayed and will be
the value changed. See 7-1-13 Changing Timer/Counter SV for the procedure to
change SV. PV can be changed in MONITOR mode only when the timer or
counter is operating.

To change contents of the leftmost word address, press CHG, input the desired
value, and press WRITE

Word currently
monitored on CHG [ Data ]
left of display.



Monitoring Operation and Modifying Data Section 7-1

Example The following example shows the effects of changing the PV of a timer.

This example is in MONITOR mode

CLR
TIM Monitor status of timer PV
that will be changed.
MONTR| | . " ... S
e’

Timing :

PV decrementing

Timing !

Timing

PV changed. Timer/counter PVs
can be changed even when the
timer/counter is operating.

Timing

353



Monitoring Operation and Modifying Data Section 7-1

7-1-5 Hex/ASCII Display Change

This operation converts DM data displays from 4-digit hexadecimal data to AS-
Cll and vice versa.

Key Sequence

Word currently R

displayed.

Example

CLR

DM Monitor the desired DM word.

MONTR

Press TR to change the display
to ASCII code.

=

Press TR again to return the
display to hexadecimal.

TR

354



Monitoring Operation and Modifyi ng Data

Section 7-1

7-1-6

4-digit Hex/Decimal Display Change

This operation converts data displays from normal or signed 4-digit hexadecimal
data to decimal and vice versa.

Decimal values from 0 to 65,535 are valid when inputting normal 4-digit hexade-
cimal data, and decimal values from —32,768 to +32,767 are valid when inputting
signed 4-digit hexadecimal data.

Key Sequence

Single word or
3-word monitor
currently displaye

Example

MONTR

HE)

TR

SHIFT

FeEHEH

PLAY

|
d.

|U)
m
-

J

\

-— ~

)

WRITE

H

TR

|

r>

B

NOT

— [New data] —“—.[WRITE]—D[SHIFT][ TR ]

CLR

Clear new input data.

Specifies positive

(NOT switches between
normal and signed data.)

E

R

signed data.

Specifies negative

RESET

0 6

signed data.

Monitor the desired word.
(Leftmost word in 3-word monitor.)

Press SHIFT and TR to change the
display to signed decimal.

Press NOT to switch back and forth
between signed and normal data.

Press CHG to change the content of the
displayed word.

Press PLAY/SET to specify positive
signed data.

Input the new value.

Press WRITE to enter the new data to
memory.

Press SHIFT and TR to change the
display back to hexadecimal.

355



Monitoring Operation and Modifyi ng Data

7-1-7  8-digit Hex/Decimal Display Change

This operation converts data displays from normal or signed, 4 or 8-digit hexa-

decimal data to decimal and vice versa.

Decimal values from 0 to 4,294,967,295 are valid when inputting normal 8-digit
hexadecimal data, and decimal values from —2,147,483,648 to +2,147,483,647

are valid when inputting signed 8-digit hexadecimal data.

Key Sequence

Section 7-1

T

F’[ CHG ]——> [New data] —“—.[WRITE]—D[SHIFT][ TR ]

3-word monitor ——[smFT][ R H EXT ]_'_,[ *
currently displayed.

4

(NOT switches between
normal and signed data.)

Example

MONTR

htl

SHIFT TR

H

EXT

M

NOT

M

NOT

H

CHG

H

PLAY
SET

[New data]

¥

WRITE

L Rightmost four digits

356

CLR
( PLAY Specifies positive
SET signed data.
REC Specifies negative
'LiSET/ signed data.

Monitor the first of the desired words.
(Leftmost word in 3-word monitor.)

Press SHIFT and TR to change the
display to signed decimal.

Press EXT to change the display to
8-digit signed decimal.
(In this case, LR 02 contains FFFE.)

Press NOT to switch back and forth
between signed and normal data.

Press CHG to change the contents of
the displayed words.

Press PLAY/SET to specify positive
signed data.

Input the new value.
(1234567890 in this case.)

Press WRITE to enter the new data to
memory.

Press SHIFT and TR to change the
display back to hexadecimal.

Clear new input data.



Monitoring Operation and Modifying Data Section 7-1

7-1-8 Differentiation Monitor

Key Sequence

Example

MONTR

This operation can be used to monitor the up or down differentiation status of bits
in the IR, SR, AR, LR, HR, and TC areas. To monitor up or down differentiation
status, display the desired bit leftmost on the bit monitor display, and then press
SHIFT and the Up or Down Arrow Key.

A CLR entry changes the Differentiation Monitor operation back to a normal bit
monitor display.

Bit monitor in progress Jl * » CLR

-
(+]

Monitor the desired bit so that it is
leftmost on the screen.

Press SHIFT and Up Arrow to
specify up differentiation (U@).

(Press SHIFT and Down Arrow to
specify down differentiation (D@).

The buzzer will sound when up
(U@) or down (D@) differentiation is
detected.

- - - - - -
- - - - -

The original bit monitor display will
return when differentiation
monitoring is completed.

Press CLR to cancel differentiation
monitoring and return to the original
bit monitor display.

357



Monitoring Operation and Modifying Data Section 7-1

7-1-9  3-word Monitor

To monitor three consecutive words together, specify the lowest nhumbered
word, press MONTR, and then press EXT to display the data contents of the
specified word and the two words that follow it.

A CLR entry changes the Three-word Monitor operation to a single-word display.

Single-word monitor in progress ——[ EXT } > *

Key Sequence

Example

CLR

Specify the first of the 3 words
you want to monitor.

=)
=

Press the Up and Down Arrow
keys to change word addresses.

HoaHe e M-

CLR

[

7-1-10 3-word Data Modification

This operation changes the contents of a word during the 3-Word Monitor opera-
tion. The blinking square indicates where the data can be changed. After the
new data value is keyed in, pressing WRITE causes the original data to be over-
written with the new data. If CLR is pressed before WRITE, the change operation
will be cancelled and the previous 3-word Monitor operation will resume.

This operation cannot be used to change SR 253 through SR 255. Only those
words displayed on the 3-word Monitor display can be changed.

Key Sequence

3 words currentl
displayed g CHG — [Data ] —

358



Monitoring Operation and Modifying Data Section 7-1

Example

3-word Monitor
in progress.

Stops in the middle
of monitoring.

Input new data.

FeHE -

WRITE

-

Resumes previous

CLR -
monitoring.

|

7-1-11 Binary Monitor

You can specify that the contents of a monitored word be displayed in binary by
pressing SHIFT and MONTR after the word address has been input. Words can
be successively monitored by using the up and down keys to increment and dec-
rement the displayed word address. To clear the binary display, press CLR.

Key Sequence

CLR |l C*H I| > [Word]—‘ SHlFT]ﬁAONT%_"——[ *

Binary CLR
» HR monitor clear

| S—
All monitor SHIFT || CLR
SHIFT ﬂ clear

359



Monitoring Operation and Modifying Data Section 7-1

Example

CLR

SHIFT

SHIFT | [MONTR

=
=

MONTR

GHEH

I SHIFT | [MONTR
CLR
—/

/@

[SHIFT LCLR ][ CLR
J J

| Indicates Force Reset

in effect

Indicates Force Set
in effect

360



Monitoring Operation and Modifying Data Section 7-1

7-1-12 Binary Data Modification

Key Sequence

This operation assigns a new 16-digit binary value to an IR, HR, AR, LR, or DM
word.

The cursor, which can be shifted to the left with the up key and to the right with the
down key, indicates the position of the bit that can be changed. After positioning
to the desired bit, a 0 or a 1 can then be entered as the new bit value. The bit can
also be Force Set or Force Reset by pressing SHIFT and either PLAY/SET or
REC/RESET. An S or R will then appear at that bit position. Pressing the NOT
key will clear the force status, S will change to 1, and R to o. After a bit value has
been changed, the blinking square will appear at the next position to the right of
the changed bit.

M\
Word currently CHG > * » | WRITE
displayed in binary.

—» (Force Status Clear)

361



Monitoring Operation and Modifying Data Section 7-1

Example

SHIFT

SHIFT | [MONTR

SHIFT

RE
SHIFT

7-1-13 Changing Timer/Counter SV

362

There are two ways to change the SV of a timer or counter. It can be done either
by inputting a new value; or by incrementing or decrementing the current SV.
Either method can be used only in MONITOR or PROGRAM mode. In MONI-
TOR mode, the SV can be changed while the program is being executed. Incre-
menting and decrementing the SV is possible only when the SV has been en-
tered as a constant.

To use either method, first display the address of the timer or counter whose SV
is to be changed, presses the down key, and then press CHG. The new value
can then be input numerically and WRITE pressed to change the SV or EXT can
be pressed followed by the up and down keys to increment and decrement the
current SV. When the SV is incremented and/or decremented, CLR can be
pressed once to change the SV to the incremented or decremented value but
remaining in the display that appeared when EXT was pressed or CLR can be
pressed twice to return to the original display with the new SV.

This operation can be used to change a SV from designation as a constant to a
word address designation and visa verse.



Key Sequence

Example

Inputting New SV and
Changing to Word
Designation

Monitoring Operation and Modifying Data Section 7-1
TmerCouner e, —— ¥ o ove frof o He{ ¥
- 4

[New SV]

The following examples show inputting a new constant, changing from a con-

stant to an address, and incrementing to a new constant.

)

Inputting
new SV.

Changing to
word designation.

363



Monitoring Operation and Modifying Data Section 7-1

Incrementing and
Decrementing

364

)

CLR

M

TIM

H

SRCH

B0y

<%

B8040

\— Current SV (during
change operation)

SV before the change

Returns to original display
with new SV




Monitoring Operation and Modifying Data Section 7-1

7-1-14 Expansion Instruction Function Code Assignments

Note

Key Sequence

Example

This operation is used to read or change the function codes assigned to expan-
sion instructions. There are 18 function codes that can be assigned to expansion
instructions: 17, 18, 19, 47, 48, 60 to 69, and 87 to 89. More than one function
code can be assigned to an expansion instruction.

Function Code Assignments can be read in any mode, but can be changed in
PROGRAM mode only.

CHHOHH O
(-

Press CLR to bring up the initial
display.

Press EXT to begin displaying function
code assignments.

Press the Up and Down Arrow keys to
scroll through the function code
assignments.

The Up Arrow key displays function
codes in ascending order:
17,18, ..., 89, 17,18, ...

The Down Arrow key displays function
codes in descending order:
17, 89, 88, ... 17, 89, ...

Press CHG to change the displayed
function code assignment.

Press the Up and Down Arrow keys to
scroll through the instructions.

Press WRITE to enter the change into
memory.

Press CLR to return to the initial
display.

365



Monitoring Operation and Modifying Data Section 7-1

7-1-15 UM Area Allocation

This operation is used to allocate part of the UM Area for use as expansion DM. It
can be performed in PROGRAM mode only. Memory allocated to expansion DM
is deducted from the ladder program area.

The amount of memory available for the ladder program depends on the amount
of RAM in the CPU. About 15.2 KW of memory is available with the16-KW RAM
and about 31.2 KW is available with the 32-KW RAM.

This operation cannot be used to allocate UM to the /O comment area. UM can
be allocated to the I/O comment area only with a host computer equipped with
LSS (V6 or higher).

Lo Jr i o )7 T2 0 Moo

Key Sequence

c

Clear memory when .
changing allocation

Example

)

Clear memory completely if the UM Area
allocation will be changed.

CLR

H

The current UM Area allocation will be displayed.
“2?” will be displayed if the allocation information
has been lost.

H

CHG Press CHG to change the UM Area allocation.

Expansion DM can be set to 00, 01, 02, or 03 KW.

Enter the password by pressing PLAY/SET and
9713.

-5

The new UM Area allocation will be displayed. UM
allocated to expansion DM is deducted from the
ladder program.

WRITE

H

CLR Press CLR to return to the initial display.

[

366



Monitoring Operation and Modifying Data Section 7-1

7-1-16 Reading and Setting the Clock

Example

CLR

()

~

MONTR

=

This operation is used to read or set the CPU’s clock. The clock can be read in
any mode, but it can be set in MONITOR or PROGRAM mode only.

The CPU will reject entries outside of the acceptable range, i.e., 01 to 12 for the
month, 01 to 31 for the day of the month, 00 to 06 for the day of the week, or 00 to
60 for the seconds, but it will not recognize non-existent dates, such as 2/31.

Press CLR to bring up the initial display.

The display will monitor the current date and time.

Press CHG to change the date and/or time. The “9”
in “93” will blink, indicating that it can be changed.

Press the Up and Down Arrow keys to move the

cursor through the data and time settings. Input

new values to change settings if necessary.

In this case, a “0” was input to replace the “8”.

Press CLR to return to the initial display.

7-1-17 Expansion Keyboard Mapping

TERMINAL Mode

This operation is used to control the ON/OFF status of bits SR 27700 through
SR 27909 by pressing keys on the Programming Console’s keyboard. The
C200HS also supports the C200H’s Keyboard Mapping operation, which con-
trols the status of bits in AR 22. These operations can be performed in any PC
mode, but the Programming Console must be in TERMINAL or expansion TER-
MINAL mode.

To enable expansion keyboard mapping, pin 6 of the CPU’s DIP switch and
AR 0709 must be ON and AR 0708 must be OFF.
Bits turned ON with this operation can be turned OFF by toggling AR 0708. Turn

AR 0709 OFF to stop expansion keyboard mapping and switch the Program-
ming Console from Expansion TERMINAL mode to CONSOLE mode.

The Programming Console can be put into TERMINAL mode by pressing CHG
or executing TERM(48) in the program. Pin 6 of the CPU’s DIP switch must be
OFF.

CONSOLE mode

Switch the Programming Console to TERMINAL
mode by pressing CHG or executing TERM(48).

Press CHG again to return to CONSOLE mode.

367



Monitoring Operation and Modifying Data Section 7-1

Expansion TERMINAL Mode The Programming Console can be put into Expansion TERMINAL mode by turn-

ing ON AR 0709. Pin 6 of the CPU’s DIP switch must be ON.

CONSOLE mode

Switch the Programming Console to Expansion
TERMINAL mode by turning AR 0709 ON.

Turn AR 0709 OFF to return to CONSOLE mode.

7-1-18 Keyboard Mapping

TERMINAL mode
(DIP switch pin 6 OFF)

Press the CHG Key or
execute TERM(48).

The C200HS supports the expansion keyboard mapping as well as normal key-
board mapping. Expansion keyboard mapping controls the status of the 41 bits
SR 27700 through SR 27909, while normal keyboard mapping controls only the
16 bits in AR 22. The status of these bits can be controlled by pressing the corre-
sponding Programming Console keys when the Programming Console is in
TERMINAL mode or expansion TERMINAL mode.

The following diagram shows how to switch the Programming Console between
CONSOLE mode (normal operating mode) and TERMINAL or expansion TER-
MINAL mode.

Turn ON AR 0709.

<

Expansion TERMINAL mode
CONSOLE mode . .
(DIP switch pin 6 ON)

TERMINAL Mode

Expansion TERMINAL Mode

368

» <
> <

Press the CHG key. Turn OFF AR 0709

or turn OFF DIF switch pin 6.

The Programming Console can be put into TERMINAL mode by pressing CHG
or executing TERM(48) in the program. Pin 6 of the CPU’s DIP switch must be
OFF.

Press the CHG key again to return to CONSOLE mode.

When the Programming Console is in TERMINAL mode it can perform normal
keyboard mapping and display messages output by MSG(46) or LMSG(47).
With keyboard mapping, bits 00 to 15 of AR 22 will be turned ON when keys 0 to
F are pressed on the Programming Console’s keyboard. A bit will remain ON
after the Programming Console’s key is released.

All bits in AR 22 will be turned OFF when AR 0708 is turned ON. Keyboard map-
ping inputs are disabled when AR 0708 is ON.

In addition to the keyboard mapping function, TERMINAL mode allows mes-
sages output by MSG(46) and LMSG(47) to be displayed on the Programming
Console. These messages will be erased if the Programming Console is switch
back to CONSOLE mode.

The Programming Console can be put into Expansion TERMINAL mode by turn-
ing ON AR 0709. Pin 6 of the CPU'’s DIP switch must be ON.

Turn off AR 0709 or pin 6 of the CPU’s DIP switch to return to CONSOLE mode.

When the Programming Console is in TERMINAL mode it can perform expan-
sion keyboard mapping and display messages output by MSG(46) or
LMSG(47). With expansion keyboard mapping, bits SR 27700 through
SR 27909 will be turned ON when the corresponding key is pressed on the Pro-
gramming Console’s keyboard. A bit will remain ON after the Programming Con-
sole’s key is released.



Monitoring Operation and Modifyi ng Data

Section 7-1

All bits from SR 27700 through SR 27909 will be turned OFF when AR 0708 is
turned ON. Expansion keyboard mapping inputs are disabled when AR 0708 is

ON.

In addition to the keyboard mapping function, expansion TERMINAL mode al-
lows messages output by MSG(46) and LMSG(47) to be displayed on the Pro-
gramming Console. These messages will be erased if the Programming Con-
sole is switch back to CONSOLE mode.

The following diagram shows the correspondence between the position of Pro-
gramming Console keys and bits in the SR Area. Each key corresponds 1 to 1
with a bit. Shifted inputs are not recognized. Keys 0 to 15 correspond to bits
SR 27700 to SR 27715, keys 16 to 31 correspond to bits SR 27800 to SR 27815,

and keys 32 to 41 correspond to bits SR 27900 to SR 27909.

FUN key —» 0

1 4 5
6 7 8 9 10 | 11
12 |13 |14 |15 | 16 | 17
18 |19 |20 |21 | 22 | 23
24 |25 |26 |27 | 28 | 29
30 |31 |32 |33 |34 |35
36 |37 |38 |39 |40 | 41

The following table shows the correspondence between the actual Program-

ming Console keys and bits SR 27700 to SR 27909.

SR word

277

Bit Corresponding key(s)
00 ( 7
FUN
N
01 ( )
SET
N’
02 ( )
NOT
03 *1
04 *2
05 )
SHIFT
06 AND
-+
=4
08 )
CNT
09 )
TR
10 )
LR
11 ( )
HR

369




Monitoring Operation and Modifyi ng Data

370

Section 7-1

SR word Bit Corresponding key(s)

277 12 (o )
)
)
13 ouTt
N
14 )
TIM
N’
15 )
DM
278 00 (ch )
*
01 CONT
#
N’
02 )
7
03 ( )
8
N’
04 )
9
05 ( )
EXT
06 ( )
CHG
N’
07 )
SRCH
08 E )
q
N’
09 (F _ )
5
10 ( )
6
1 (PLav )
SET
N’
12 )
DEL

13
MONTR
14 (B )
1
e’
15 ( )
€2
279 00 CONR
3
N’
01 (Rec
RESET
02 ( )
INS




Monitoring Operation and Modifyi ng Data

Section 7-1

SR word

279

Bit Corresponding key(s)
03 ( * )
04 )
"o
05 *3
06 )
CLR
07 )
VER
08 ( )
WRITE
09 ( * )

371




SECTION 8
Communications

This section provides an overview of the communications features provided by the C200HS.

8-1 INtrodUCHION . ... . i e 374
8-2 Parametersfor Host Link and RS-232C Communications ................c.covuuu... 374
8-2-1 Standard CommunicationsParameters . ... 375
8-2-2  Specific CommunicationsParameters .. ... 376
8-2-3  WINNG POIS . . .o 377
8-2-4 Host Link CommUNICaLIONS . . ..o vttt et 377
8-2-5 RS-232C COMMUNICAIONS . ..ottt ettt e et e 379
8-2-6  One-to-oneLink Communications .............cc.itiiiitirnnennnn.n. 382
8-2-7  NT LINKS ..ot e e e e 384

373



Parametersfor Host Link and RS-232C Communications Section 8-2

8-1 Introduction

The C200HS supports the following types of communications.

e Communications with Programming Devices (e.g., Programming Console,
LSS, or SSS.)

e Host Link communications with personal computers and other external de-
vices.

e RS-232C (no-protocol) communications with personal computers and other
external devices.

* One-to-one link communications with another C200HS CPU or a CQM1 CPU.

o NT link communications with Programmable Terminals (PTs) equipped with an
NT link interface.

This section describes the connection methods and application of all of these
different types of communications except for communications with Program-
ming Devices, which is described elsewhere in this manual.

Note 1. One-to-one link communications are possible only with CPUs that have an
RS-232C port. They are not possible with the C200HS-CPUO01-E/03-E

2. Refer to documentation on the NT-series Interface Units for details on NT
link communications.

3. One-to-one link communications and NT link communications are not pos-
sible through the peripheral port.

8-2 Parameters for Host Link and RS-232C Communications

The parameters in the PC Setup described in this section are used both by Host
Link communications and RS-232C (no-protocol) communications. These pa-
rameters must be set in advance to enable communications.

Note 1. PC Setup parameters in DM 6645 to DM 6654 can be set under the PC Set-
up item on the Utility Menu.

2. The parameters set in the PC Setup will be ignored and the following com-
munications settings will be used if pin 5 on the C200HS CPU’s DIP switch is

turned ON.
Item Setting
Communications mode Host Link
Unit no. 00
Start bits 1
Data length 7
Stop bits 2
Parity Even
Baud rate 9,600 bps
Transmission delay None

Note The above settings apply to CPUs manufactured from July 1995 (lot number
**75 for July 1995). For CPUs manufactured before July 1995 (lot number **65
for June 1995), only 1 stop bit will be set and the baud rate will be 2,400 bps.

374



Parametersfor Host Link and RS-232C Communications Section 8-2

8-2-1 Standard Communications Parameters

The settings in DM 6645 and DM 6650 determine the main communications pa-
rameters, as shown in the following diagram.

The settings in bits 00 through 07 and bits 12 through 15 are valid only when pin
5 on the CPU’s DIP switch is OFF. Bits 08 though 11 are valid only in a PC set as
the master for a 1:1 link.

Bit 15 0
DM 6645: RS-232C port
DM 6650: Peripheral port

Communications mode
0: Host link
1: RS-232C
2: One-to-one link slave
3: One-to-one link master
4: NT link

Link words for one-to-one link
0:LROOto LR 63
1: LR00to LR 31
2:LR00to LR 16

Port settings
00: Standard communication parameters
01: According to setting in DM 6646 and DM 6651 (
(defaults: standard communications parameter and
Host Link mode)

The standard communications parameters are as shown in the following table.

Item Setting
Start bits 1
Data length 7
Stop bits 2
Parity Even
Baud rate 9,600 bps

Be sure to set the proper communications mode.

If the above parameters are acceptable, set the rightmost two digits (port set-
tings) to 00. To change the parameters, use the setting described next.

375



Parametersfor Host Link and RS-232C Communications

Section 8-2

8-2-2 Specific Communications Parameters

Transmission Frame
Format

Baud Rate

Transmission Delay Time

376

The following settings are valid only when pin 5 on the CPU’s DIP switch is
turned OFF and DM 6645 and DM 6655 are set to specify using the settings in
words DM 6646 and DM 6656.

Be sure to set the communications parameters to the same settings for both
ends of the communications.

Baud rate (See table below.)

DM 6646: RS-232C port
DM 6651: Peripheral port

Bit

Transmission Frame Format (See table below.)

15

0

L]

:I_H;

Setting Stop bits Data length Stop bits Parity
00 1 7 1 Even
01 1 7 1 Odd
02 1 7 1 None
03 1 7 2 Even
04 1 7 2 Odd
05 1 7 2 None
06 1 8 1 Even
07 1 8 1 Odd
08 1 8 1 None
09 1 8 2 Even
10 1 8 2 Odd
11 1 8 2 None

Setting Baud rate

00 1,200 bps
01 2,400 bps
02 4,800 bps
03 9,600 bps
04 19,200 bps

Depending on the devices connected to the RS-232C port, it may be necessary
to allow time for transmission. When that is the case, set the transmission delay
to regulate the amount of time allowed.

DM 6647: RS-232C port
DM 6652: Peripheral port

Transmission delay (4 digits BCD; unit: 10 ms)

Set to 0000 to 9999 (i.e., 0 to 99.9 s)

Default: No delay

Bit 15

0

]

L

]



Parametersfor Host Link and RS-232C Communications Section 8-2

8-2-3 Wiring Ports

Note

Use the wiring diagram shown below as a guide in wiring the port to the external
device. Refer to documentation provided with the computer or other external de-
vice for wire details for it.

The connections between the C200HS and a personal computer are illustrated
below as an example.

C200HS Personal computer
Signal Pin Pin Signal
No. No.

FG 1 s I E— 1 -

SD 2 2 RD
RD 3 3 SD
RS 4 4 DTR
Cs 5 j /‘g 5 SG
- 6 6 DSR
- 7 7 RS
— 8 [ 8 CS
SG 9 9 -

Shielded cable

Applicable Connectors
The following connectors are applicable. One plug and one hood are included
with the CPU.

Plug: XM2A-0901 (OMRON) or equivalent
Hood: XM2S-0901 (OMRON) or equivalent

Ground the FG terminal on the C200HS and at the computer to 100 Q or less.
Refer to the C200HS Installation Manual and to the documentation for your com-
puter for detalils.

8-2-4 Host Link Communications

Note

This section describes the PC Setup parameters and communications proce-
dure for the Host Link communications mode.

Host link communications were developed by OMRON to connect PCs and one
or more host computers by RS-232C cable, and to control PCs through commu-
nications from the host computer. Normally the host computer issues a com-
mand to a PC, and the PC automatically sends back a response. Thus the com-
munications are carried out without the PCs being actively involved. The PCs
also have the ability to initiate data transmissions when direct involvement is
necessary.

In general, there are two means for implementing host link communications.
One is based on C-mode commands, and the other on FINS (CV-mode) com-
mands. The C200HS supports C-mode commands only. For details on host link
communications, refer to Section 11 Host Link Commands.

The C200HS supports Host Link communications either through the peripheral
or RS-232C port, or though Host Link Units (#0 and #1) mounted to the PC. The
Host Link Units include the C200H-LD201-V1, C200H-LD202-V1, and C200H-
LK101-PV1.

The leftmost two digits of DM 6645 and/or DM 6650 must be set to 00 to enable
the Host Link Mode. Also, set the rightmost two digits of DM 6645 and DM 6655
and all digits of DM 6646 and DM 6656 to the required communications parame-
ters before attempting to use Host Link communications.

377



Parametersfor Host Link and RS-232C Communications Section 8-2

PC Setup

Communications Procedure

The following parameter in the PC Setup is used only when the Host Link com-
munications mode is being used.

Host Link Node Number
A node number must be set for host link communications to differentiate be-
tween nodes when multiple nodes are participating in communications.

Set the node number to 00 unless multiple nodes are connected in a network.

Bit 15 0

DM 6648: RS-232C port nn—
DM 6653: Peripheral port

Node number j

(2 digits BCD): 00 to 31
Default: 00

This section explains how to use the host link to execute data transmissions from
the C200HS. Using this method enables automatic data transmission from the
C200HS when data is changed, and thus simplifies the communications pro-
cess by eliminating the need for constant monitoring by the computer.

1,2,3... 1. Check to see that SR 26405 (RS-232C Port Transmit Ready Flag) or
SR 26413 (Peripheral Port Transmit Ready Flag) is ON. If using Host Link
Units, check SR 26705 for Unit #0 and SR 26713 for Unit #1.

2. Use the TXD(—) instruction to transmit the data.

—1 (@TXD S: Address of first word of transmission data

S C: Control data

c 0000:  RS-232C port
1000: Peripheral port
2000: Host Link Unit #0
3000: Host Link Unit #1

N: Number of bytes of data to be sent (4 digits BCD)

0000 to 0061

3. From the time this instruction is executed until the data transmission is com-
plete, SR 26405, SR 26413, SR 26705, or SR 26713 will remain OFF. The
bits for the RS-232C or peripheral port will turn ON again upon completion of
the data transmission. The bits for the Host Link Units will turn ON again
when the data transmission has been passed to the Host Link Unit.

4. The TXD(—) instruction does not provide for a response, so in order to re-
ceive confirmation that the computer has received the data, the computer’s
program must be written so that it gives notification when data is written from
the C200HS.

Note 1. The transmission data frame is as shown below for data transmitted in the
Host Link mode by means of the TXD(—) instruction.
\ 1 T \ \
@ Ix10t x100 E X ‘ x -
Node Header code Data (up to 122 characters) FCS Terminator

No. (Must be “EX”)

378

2. To reset the RS-232C port (i.e., to restore the initial status), turn ON
SR 25209. To reset the peripheral port, turn ON SR 25208. These bits will
turn OFF automatically after the reset. Host Link Unit #0 is reset using
SR 25213 and Host Link Unit #1 is reset using SR 25207.

3. If the TXD(—) instruction is executed while the C200HS is in the middle of
responding to a command from the computer, the response transmission
will first be completed before the transmission is executed according to the



Parametersfor Host Link and RS-232C Communications Section 8-2

Application Example

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220

TXD(—) instruction. In all other cases, data transmission based on a
TXD(—) instruction will be given first priority.

This example shows a program for using the RS-232C port in the Host Link
mode to transmit 10 bytes of data (DM 0000 to DM 0004) to a computer. From
DM 0000 to DM 0004, “1234" is stored in every word.

The default values are assumed for all of the PC Setup (i.e., the RS-232C port is
used in Host Link mode, the node number is 00, and the standard communica-
tions parameters are used.)

00100 SR 26405

L e A

DM 0000 If SR 26405 (the Transmit Ready Flag) is ON
when IR 00100 turns ON, the ten bytes of
#0000 data (DM 0000 to DM 0004) will be trans-
#0010 mitted.

The following type of program must be prepared in the host computer to receive
the data. This program allows the computer to read and display the data re-
ceived from the PC while a host link read command is being executed to read
data from the PC.

" C200HS SAMPLE PROGRAM FOR EXCEPTI ON
CLCSE 1
CLS
OPEN “COM E73" AS #1
kKEYI N
I NPUT “DATA —————— ", S$
I F S$=" " THEN GOTO 190
PRI NT “SEND DATA = "; S$
ST$=S$
I NPUT “SEND OK? Y or N?=",B$
IF B$="Y" THEN GOTO 130 ELSE GOTO >kKEYI N
S$=STS$
PRI NT #1, S$ ’ Sends command to PC
I NPUT #1, R$ ' Receives response from PC
PRI NT “RECV DATA = "; R$
I F MD$(RS, 4,2)="EX" THEN GOTO 210 '’ Identifies command from PC
I F RIGHT$(RS$, 1) <>" k" THEN S$=" ":GOTO 130
GOTO *kKEYI N
CLCSE 1
END
PRI NT “EXCEPTI ONl'! DATA"
GOTO 140

The data received by the computer will be as shown below. The FCS is “59.”
“@O00EX1234123412341234123459>«CR”

8-2-5 RS-232C Communications

This section explains RS-232C communications. By using RS-232C commu-
nications, the data can be printed out by a printer or read by a bar code reader.
Handshaking is not supported for RS-232C communications.

Note The leftmost two digits of DM 6645 and/or DM 6650 must be set to 10 to enable

the RS-232C communications. Also, set the rightmost two digits of DM 6645 and
DM 6655 and all digits of DM 6646 and DM 6656 to the required communications
parameters before attempting to use Host Link communications.

379



Parametersfor Host Link and RS-232C Communications Section 8-2

PC Setup Start and end codes or the amount of data to be received can be set as shown in
the following diagrams if required for RS-232C communications. This setting is
required only for RS-232C communications.

The following settings are valid only with pin 5 on the CPU’s DIP switch is turned
OFF.

Enabling Start and End Codes

DM 6648: RS-232C port Bit 15 0

DM 6653: Peripheral port . nn

End code usage
0: Not set (Amount of reception data specified.)
1: Set (End code specified.)

2: CRILF

Start code usage
0: Not set
1: Set (Start code specified.)

Defaults: No start code; data reception complete at 256 bytes.

Specify whether or not a start code is to be set at the beginning of the data, and
whether or not an end code is to be set at the end. Instead of setting the end
code, it is possible to specify the number of bytes to be received before the re-
ception operation is completed. Both the codes and the number of bytes of data
to be received are set in DM 6649 or DM 6654.

Setting the Start Code, End Code, and Amount of Reception Data

Bit 15 0
DM 6649: RS-232C port
DM 6654: Peripheral port
L\J L
End code or number of bytes to be received

For end code: (00 to FF)
For amount of reception data: 2 digits hexadecimal, 00 to FF (00: 256 bytes)

Start code 00 to FF

Defaults: No start code; data reception complete at 256 bytes.

Communications Procedure
Transmissions

1,2,3... 1. Check to see that SR 26413 (Peripheral Port Transmit Ready Flag) or
SR 26405 (RS-232C Port Transmit Ready Flag) is ON.

2. Use the TXD(—) instruction to transmit the data.

—1 (@TXD S: Address of first word of data to be transmitted

C: Control data
Bits 00 to 03
0: Leftmost bytes first
1: Rightmost bytes first
Bits 12 to 15
0: RS-232C port
1: Peripheral port

N: Number of bytes to be transmitted (4 digits BCD),
0000 to 0256

3. From the time this instruction is executed until the data transmission is com-
plete, SR 26405 (or SR 25413 for the peripheral port) will remain OFF. It will
turn ON again upon completion of the data transmission.

380



Parametersfor Host Link and RS-232C Communications

Section 8-2

1,2, 3.

Start and end codes are not included when the number of bytes to be transmitted
is specified. The largest transmission that can be sent with or without start and
end codes in 256 bytes, i.e., N will be between 254 and 256 depending on the
designations for start and end codes. If the number of bytes to be sent is set to
0000, only the start and end codes will be sent.

256 bytes max.

 /
End code

Start code

To reset the RS-232C port (i.e., to restore the initial status), turn on SR 25209. To
reset the peripheral port, turn on SR 25208. These bits will turn OFF automati-
cally after the reset.

Receptions
1. Check to see that SR 26414 (Peripheral Port Reception Ready Flag) or
SR 26406 (RS-232C Port Reception Ready Flag) is ON.
2. Use the RXD(—) instruction to receive the data.

(@RXD D: Leading word no. for storing reception data

C: Control data
Bits 00 to 03
0: Leftmost bytes first
1: Rightmost bytes first
Bits 12 to 15
0: RS-232C port
1: Peripheral port

N: Number of bytes stored (4 digits BCD), 0000 to 0256
(including start and end bits)

3. The status resulting from reading the data received will be stored in the SR
Area. Check to see that the operation was successfully completed. The con-
tents of these bits will be reset each time RXD(—) is executed.

RS-232C Peripheral Error

SR 26400 to | SR 26408 to | Communications port error code (1 digit BCD)

SR 26403 SR 2641 0: Normal completion
1: Parity error
2: Framing error
3: Overrun error

SR 26404 SR 26412 Communications error

SR 26407 SR 26415 Reception Overrun Flag (After reception was com-
pleted, the subsequent data was received before the
data was read by means of the RXD instruction.)

SR 265 SR 266 Number of bytes received (not including start and
end bits)

Note The contents of SR 265 and SR 266 may not be zero when power is turned on or

Note

when the communications cable is attached. Execute a dummy RXD(—) or re-
set the communications port to reset these words to zero.

To reset the RS-232C port (i.e., to restore the initial status), turn ON SR 25209.
To reset the peripheral port, turn ON SR 25208. These bits will turn OFF auto-
matically after the reset.

Always program the Transmit Ready Flag in a NO condition on the instruction
line to TXD(—) to ensure that this Flag is ON before the transmission can be
executed.

381



Parametersfor Host Link and RS-232C Communications

Section 8-2

Application Example

This example shows a program for using the RS-232C port in the RS-232C

mode to transmit 10 bytes of data (DM 0100 to DM 0104) to the computer, and to

store the data received from the computer in the DM area beginning with

DM 0200. Before executing the program, the following PC Setup setting must be

made.

DM 6645: 1000 (RS-232C port in RS-232C mode; standard communications
conditions)

DM 6648: 2000 (No start code; end code CR/LF)

The default values are assumed for all other PC Setup settings. From DM 0100

to DM 0104, 3132 is stored in every word. From the computer, execute a pro-

gram to receive C200HS data with the standard communications conditions.

00100

e CTENIY

00101 SR 26405

— @D

If SR 26405 (the Transmit Ready Flag) is ON
when IR 00100 turns ON, the ten bytes of data
(DM 0100 to DM 0104) will be transmitted, left-
most bytes first.

DM 0100

#0000

#0010

SR 26406

— | @RXD

When SR 26406 (Reception Completed Flag)

goes ON, the number of bytes of data specified in

SR 265 will be read from the C200HS’s reception

#0000 buffer and stored in memory starting at DM 0200,
265 leftmost bytes first.

DM 0200

The data will be as follows:
“31323132313231323132CR LF”

8-2-6 One-to-one Link Communications

One-to-one Links

Master area

Slave area

Wiring

382

If two C200HSs or one C200HS and one CQML1 are linked one-to-one by con-
necting them together through their RS-232C ports, they can share common LR
areas. When two PCs are linked one-to-one, one of them will serve as the mas-
ter and the other as the slave.

Note The peripheral port cannot be used for 1:1 links.
A one-to-one link allows two C200HSs (or a CQM1) to share common data in
their LR areas. As shown in the diagram below, when data is written into a word
the LR area of one of the linked Units, it will automatically be written identically
into the same word of the other Unit. Each PC has specified words to which it can
write and specified words that are written to by the other PC. Each can read, but
cannot write, the words written by the other PC.

Master Slave
Write “1” —> == =|= = === === q-=-=-=-=-=-=-9-~---~-~-~-- >~ 1| Master area
""""""" Written automatically. ===~ =-==-1
l14-------9--------b------- - - -1 <— Write| Slave area

The word used by each PC will be as shown in the following table, according to
the settings for the master, slave, and link words.

DM 6645 setting

LR 00O to LR 63

LROOto LR 31

LROOto LR 15

Master words

LROO to LR31

LROO to LR15

LROO to LRO7

Slave words

LR32 to LR63

LR16 to LR31

LRO8 to LR15

Wire the cable as shown in the diagram below using the connector listed.

Applicable Connectors
The following connectors are applicable. One plug and one hood are included

with the CPU.




Parametersfor Host Link and RS-232C Communications Section 8-2

Plug: XM2A-0901 (OMRON) or equivalent

Hood: XM2S-0901 (OMRON) or equivalent

C200HS C200HS
Signal Pin Pin Signal
Abb. No. No. Abb.

FG 1 I 1 FG
SD 2 — () R E— 2 SD
/><\

RD 3 | I 3 RD
RS 4 4 RS
CS 5 ] [ 5 CS
- 6 6 -
— 7 7 —
— 8 8 —
SG 9 9 SG

Note Ground the FG terminals the C200HS to a resistance of 100 Q or less.

PC Setup

Communications Procedure

Application Example

To use a 1:1 link, the only settings necessary are the communications mode and
the link words. Set the communications mode for one of the PCs to the 1:1 mas-
ter and the other to the 1:1 slave, and then set the link words in the PC desig-
nated as the master. Bits 08 to 11 are valid only for the master for link one-to-one.

Bit 15 0
DM 6645: RS-232C port

L
Communications mode
2: One-to-one link slave
3: One-to-one link master

Link words for one-to-one link
0: LR OO to LR 63
1: LR00to LR 31
2:LR0O0to LR 16

Port settings
00: Standard communication parameters

If the settings for the master and the slave are made correctly, then the one-to-
one link will be automatically started up simply by turning on the power supply to
both the C200HSs and operation will be independent of the C200HS operating
modes.

This example shows a program for verifying the conditions for executing a one-
to-one link using the RS-232C ports. Before executing the program, set the fol-
lowing PC Setup parameters.

Master: DM 6645: 3200 (one-to-one link master; Area used: LR 00 to LR 15)
Slave: DM 6645: 2000 (one-to-one link slave)

The defaults are assumed for all other PC Setup parameters. The words used
for the one-to-one link are as shown below.

Master Slave
LROO LROO
Area for writing |::> Area for reading
\RO7 [ __ __ _____ A YL LRO7
LRO8 Area for reading <:| Area for writing LRO8
LR15 LR15

383



Parametersfor Host Link and RS-232C Communications Section 8-2

8-2-7 NT Links

NT Links

PC Setup

Application

384

Note

When the program is executed at both the master and the slave, the status of
IR 001 of each Unit will be reflected in IR 100 of the other Unit. IR 001 is an input
word and IR 100 is an output word.

In the Master

25313 (Always ON)
1 MOV(21)

001

LROO

MOV(21)

LRO8

100

In the Slave

25313 (Always ON)
1 MOV(21)

001

LRO8

MOV(21)

LROO

100

NT links can be established by connecting the RS-232C port of the C200HS to
the NT Link Interface Unit of a Programmable Terminal.

The peripheral port cannot be used for NT links.

NT link allow high-speed communications with a Programmable Terminal
through direct access of PC memory.

Only the following setting is necessary.
Bit 15 0

DM 6645: RS-232C port nnm

Communications mode
4: NT link

Refer to documentation provided for the NT Link Interface Unit for details on ac-
tual application of an NT link.



SECTION 9
Memory Cassette Operations

This section describes how to manage both UM Areaand IOM data via Memory Cassettes. mounted in the CPU.

O-1  Memory Cassalles .. ... ..ttt et e 386
9-2 Memory Cassette Settingsand Hlags .. ... i 386
9-3 UM AIEADAa ...ttt 387
9-4  IOM AreaData . . ..o ottt 388

385



Memory Cassette Settings and Flags Section 9-2

9-1 Memory Cassettes

&Caution
&Caution

The C200HS comes equipped with a built-in RAM for the user’s program so pro-
grams can be created even without installing a Memory Cassette. An optional
Memory Cassette, however, can provide flexibility in handling program data, PC
Setup data, DM data, /0O comment data, and other IOM Area data. Memory Cas-
settes can be used for the following purposes.

e Saving, retrieving, and comparing data in the UM Area. This UM Area data can
include the user program, fixed DM data such as the PC Setup, expansion DM
data, I/0O comment data, 1/O table data, and UM Area allocation data.

¢ Automatically loading Memory Cassette data on PC startup.

e Saving and retrieving IOM Area data. IOM data includes IR 000 to IR 231, the
two work areas, the two SR Areas, the LR Area, the HR Area, the AR Area, the
TC Area, and DM 0000 to DM 6143.

There are two types of Memory Cassette available, each with a capacity of 16K

words. For instructions on installing Memory Cassettes, refer to the C200HS

Installation Guide.

The following table shows the Memory Cassettes used with C200HS PCs.

Memory Capacity Model number Features

EEPROM 16K words | C200HS-ME16K | Can be written to while mounted in
the C200HS.

Can be used for both UM Area data
and IOM Area data.

A memory backup battery is not re-
quired.

EPROM 16K words | C200HS-MP16K | Can be written with a commercially
available PROM writer.

Can be used for only UM Area data.

Note 1. Memory Cassettes for the C200HS cannot be used with the C200H, and

Memory Units for the C200H cannot be used with the C200HS.

2. EEPROM can be written up to 50,000 times. Data may be corrupted if this
limit is exceeded.

3. EPROM chips are sold separately.

The C200HS will not operate properly unless the data for it is created on LSS version 3 or later. The
C200HS is not supported by earlier versions of the LSS.

Do not mount or remove a Memory Cassette without turning off the power supply to the C200HS

CPU.

9-2 Memory Cassette Settings and Flags

The following settings and flags are available for Memory Cassettes in the SR
Area. Bits/words used in the procedures to manipulate Memory Cassettes are
described in the remainder of this section. Refer to page 46 for other details on
SR Area operation.

Word Bit(s) Function
SR 269 00 to 07 Memory Cassette Contents  00: Nothing; 01: UM; 02: IOM (03: HIS)
08to 10 Memory Cassette Capacity  0: 0 KW (no board); 3: 16 KW
11to 13 Reserved by system (not accessible by user)
14 EEPROM Memory Cassette Protected or EPROM Memory Cassette Mounted Flag
15 Memory Cassette Flag

386



UM Area Data Section 9-3
Word Bit(s) Function
SR 270 00 Save UM to Cassette Bit Data transferred to Memory Cassette when Bit is turned
ON in PROGRAM mode. Bit will automatically turn OFF.
01 Load UM from Cassette Bit An error will be produced if turned ON in any other
mode.
02 Collation Execution Flag
03 Collation NG Flag
04to11 Reserved by system (not accessible by user)
12 Transfer Error Flag: Not Data will not be transferred from UM to the Memory
PROGRAM mode Cassette if an error occurs (except for Board Checksum
13 Transfer Error Flag: Read Only Error)._ De_tailed information on checl_<sum errors
- — occurring in the Memory Cassette will not be output to
14 Transfer Error Flag: Insufficient | s 272 hecause the information is not needed. Repeat
Capacity or No UM the transmission if SR 27015 is ON.
15 Transfer Error Flag: Board
Checksum Error
SR 271 00to 07 Ladder program size stored in Memory Cassette
Ladder-only File: 04: 4 KW; 08: 8 KW; 12: 12 KW; ... (64: 64 KW)
00: No Ladder program or no file
Data updated at data transfer from CPU at startup. The file must begin in segment 0.
08to 15 Ladder program size and type in CPU (Specifications are the same as for bits 00 to 07.)
SR 272 00to 10 Reserved by system (not accessible by user)
11 Memory Error Flag: PC Setup Checksum Error
12 Memory Error Flag: Ladder Checksum Error
13 Memory Error Flag: Instruction Change Vector Area Checksum Error
14 Memory Error Flag: Memory Cassette Online Disconnection
15 Memory Error Flag: Autoboot Error
SR273 00 Save IOM to Cassette Bit Data transferred to Memory Cassette when Bit is turned
ON in PROGRAM mode. Bit will automatically turn OFF.
01 Load IOM from Cassette Bit An error will be produced if turned ON in any other
mode.
02to 11 Reserved by system (not accessible by user)
12 Transfer Error Flag: Not Data will not be transferred from IOM to the Memory
PROGRAM mode Cassette if an error occurs (except for Read Only Error).
13 Transfer Error Flag: Read Only
14 Transfer Error Flag: Insufficient
Capacity or No IOM

9-3 UM Area Data

Writing Data

The following procedures can be used to read UM Area data from, write UM Area
data to, and compare UM Area data on an EEPROM Memory Cassette mounted
to a C200HS CPU. This UM Area data can include the user program, fixed DM
data such as the PC Setup, expansion DM data, I/O comment data, I/O table
data, and UM Area allocation data. The procedures cannot be used to write to
EPROM Memory Cassettes, which require a PROM writer. Refer to the LSS op-
eration manuals for PROM writer procedures.

Note The data inside the Memory Cassette should be protected by turning on the
write-protect switch whenever you are not planning to write to the Cassette.

The following procedure is used to write UM Area data from the C200HS CPU to
a Memory Cassette mounted in the CPU.

1,2, 3. 1. Turn off the write-protect switch on the Memory Cassette to write-enable it.

2. Make sure that power to the C200HS CPU is turned OFF.
3. Mount the Memory Cassette to the CPU.

387



|OM Area Data

Section 9-4

Reading Data

Comparing Data

1,2, 3.

1,2, 3.

1,23.

Note

4. Turn on the CPU.

5. If the desired program or UM Area data is not already in the CPU, write the
data or transfer it to the CPU.

6. Switch the C200HS to PROGRAM mode.

7. Turn ON SR 27000 from the LSS or a Programming Console. The UM Area
data will be written to the Memory Card and SR 27000 will be turned OFF
automatically.

The following procedures are used to read UM Area data from a Memory Cas-
sette mounted in the C200HS CPU to the CPU. This can be achieved either au-
tomatically when the C200HS is turned on or manually from a Programming De-
vice.

Automatic Reading at Startup

1. Turn ON pin 2 on the CPU'’s DIP switch to enable reading at startup.

2. Make sure that power to the C200HS CPU is turned OFF.

3. Mount the Memory Cassette containing the data to be read to the CPU.

4. Turn on the CPU. The data in the Memory Cassette will be read to the CPU.
Manual Reading

1. Make sure that power to the C200HS CPU is turned OFF.

. Mount the Memory Cassette containing the data to be read to the CPU.
. Turn on the CPU.

. Switch the C200HS to PROGRAM mode.

. Turn ON SR 27001 from the LSS or a Programming Console. The data in the
Memory Cassette will be read to the CPU and SR 27001 will be turned OFF
automatically.

a b~ WD

The following procedure is used to compare the UM Area data in a Memory Cas-

sette to the UM Area data in the CPU.

1. Make sure that power to the C200HS CPU is turned OFF.

. Mount the Memory Cassette containing the data to be compared.

. Turn on the CPU.

. Switch the C200HS to PROGRAM mode.

. Turn ON SR 27002 from the LSS or a Programming Console. The data in the
Memory Cassette will be compared to the data in CPU and SR 27002 will be
turned OFF automatically.

6. Read the status of SR 27003 to determine the results of the comparison. If
SR 27003 is OFF, the data in the Memory Cassette is the same as that in the
CPU. If SR 27003 is ON, either the data is different or the C200HS was not in
PROGRAM mode when the operation was performed.

1. SR 27003 is used only to show the results of comparisons and cannot be
manipulated by the user.

2. If the comparison operation is executed in any but PROGRAM mode, SR
27002 will turn ON, as will SR 27003. In this case, the status of SR 27003 will
be meaningless.

3. SR 273003 will turn ON if the comparison operation is used without a
Memory Cassette mounted to the CPU.

a b~ wWwN

9-4 |OM Area Data

388

The following procedures can be used to read IOM data from and write IOM data
to an EEPROM Memory Cassette mounted to a C200HS CPU. IOM data in-
cludes IR 000 to IR 231, the two work areas, the two SR Areas, the LR Area, the
HR Area, the AR Area, the TC Area, and DM 0000 to DM 6143. This procedure
cannot be used to write to EPROM Memory Cassettes, which require a PROM
writer. Refer to the LSS operation manuals for PROM writer procedures.



|OM Area Data

Section 9-4

Writing Data

Reading Data

Note The data inside the Memory Cassette should be protected by turning on the
write-protect switch whenever you are not planning to write to the Cassette.

1,2, 3.

1,23.

The following procedure is used to write IOM data from the C200HS CPU to a
Memory Cassette mounted in the CPU.

1.
. Make sure that power to the C200HS CPU is turned OFF.

. Mount the Memory Cassette to the CPU.

. Turn on the CPU.

. Switch the C200HS to PROGRAM mode.

. Turn ON SR 27300 from the LSS or a Programming Console. The IOM data

o OB~ WN

Turn off the write-protect switch on the Memory Cassette to write-enable it.

will be written to the Memory Card and SR 27300 will be turned OFF auto-
matically.

The following procedures are used to read IOM data from a Memory Cassette
mounted in the C200HS CPU to the CPU. This data cannot be read out automat-
ically at startup and must be read manually. Also, the error log in DM 6000 to DM
6030 cannot be read with this procedure.

1.
. Mount a Memory Cassette to the CPU.

. Turn on the CPU.

. Switch the C200HS to PROGRAM mode.

. Turn ON SR 27301 from the LSS or a Programming Console. The IOM data

a b~ W N

Make sure that power to the C200HS CPU is turned OFF.

in the Memory Cassette will be read to the CPU and SR 27301 will be turned
OFF automatically.

389



SECTION 10
Troubleshooting

The C200HS provides self-diagnostic functions to identify many types of abnormal system conditions. These functions mini-
mize downtime and enable quick, smooth error correction.

This section provides information on hardware and software errors that occur during PC operation. Program input errors are
described in 4-7 Inputting, Modifying, and Checking the Program. Although described in Section 3 Memory Areas, flags and
other error information provided in SR and AR areas are listed in 10-5 Error Flags.

10-1 AlarmINdiCaIOrS . . . . oot e 392
10-2 Programmed Alarms and Error MESSAgES . . ... o v it ettt 392
10-3 Reading and Clearing Errorsand MeSSages . . . .. .o v v e it 392
104 ENTOr MESSAgES . o . v vt ettt et e e e e e e e e 392
10-5 Error Flags . ..o 397
10-6 HOSE LINK EITOrs . . oo e 399

391



Error Messages

Section 10-4

10-1 Alarm Indicators

The ALM/ERR indicator on the front of the CPU provides visual indication of an
abnormality in the PC. When the indicator is ON (ERROR), a fatal error (i.e.,
ones that will stop PC operation) has occurred; when the indicator is flashing
(ALARM), a nonfatal error has occurred. This indicator is shown in 2-1-1 CPU
Indicators.

&Caution The PC will turn ON the ALM/ERR indicator, stop program execution, and turn OFF all outputs
from the PC for most hardware errors, for certain fatal software errors, or when FALS(07) is exe-
cuted in the program (see tables on following pages). PC operation will continue for all other er-
rors. It is the user’s responsibility to take adequate measures to ensure that a hazardous situation
will not result from automatic system shutdown for fatal errors and to ensure that proper actions
are taken for errors for which the system is not automatically shut down. System flags and other
system and/or user-programmed error indications can be used to program proper actions.

10-2 Programmed Alarms and Error Messages

10-3 Reading and

FAL(06), FALS(07), and MSG(46) can be used in the program to provide
user-programmed information on error conditions. With these three instructions,
the user can tailor error diagnosis to aid in troubleshooting.

FAL(06) is used with a FAL number other than 00, which is output to the SR area
when FAL(06) is executed. Executing FAL(06) will not stop PC operation or di-
rectly affect any outputs from the PC.

FALS(07) is also used with a FAL number, which is output to the same location in
the SR area when FALS(07) is executed. Executing FALS(07) will stop PC op-
eration and will cause all outputs from the PC to be turned OFF.

When FAL(06) is executed with a function number of 00, the current FAL number
contained in the SR area is cleared and replaced by another, if more have been
stored in memory by the system.

When MSG(46) is used a message containing specified data area words is dis-
played onto the Programming Console or another Programming Device.

The use of these instructions is described in detail in Section 5 Instruction Set.

Clearing Errors and Messages

System error messages can be displayed onto the Programming Console or
other Programming Device.

On the Programming Console, press the CLR, FUN, and MONTR keys. If there
are multiple error messages stored by the system, the MONTR key can be
pressed again to access the next message. If the system is in PROGRAM mode,
pressing the MONTR key will clear the error message, so be sure to write down
all message errors as you read them. (It is not possible to clear an error or a mes-
sage while in RUN or MONITOR mode; the PC must be in PROGRAM mode.)
When all messages have been cleared, “ERR CHK OK” will be displayed.

Details on accessing error messages from the Programming Console are pro-
vided in 7-1 Monitoring Operation and Modifying Data. Procedures for the LSS
are provided in the LSS Operation Manual.

10-4 Error Messages

392

There are basically three types of errors for which messages are displayed: in-
itialization errors, non-fatal operating errors, and fatal operating errors. Most of
these are also indicated by FAL number being transferred to the FAL area of the
SR area.



Error Messages

Section 10-4

Initialization Errors

The type of error can be quickly determined from the indicators on the CPU, as
described below for the three types of errors. If the status of an indicator is not
mentioned in the description, it makes no difference whether it is lit or not.

After eliminating the cause of an error, clear the error message from memory
before resuming operation.

Asterisks in the error messages in the following tables indicate variable numeric
data. An actual number would appear on the display.

The following error messages appear before program execution has been
started. The POWER indicator will be lit and the RUN indicator will not be lit for
either of these. The RUN output will be OFF for each of these errors.

Error and message

FAL no. Probable cause Possible correction

Waiting for Special 1/0
or Interrupt Input Units

Perform the 1/0 Table Read
operation to check unit

None A Special I/0 Unit or

Interrupt Input Unit has not

initialized. numbers. Replace Unit if it
is indicated by “$” only in

the 1/O table.

(High-density I/O Units will
not appear on 1/O Table
Read display for all
peripheral devices.)

Waiting for Remote 1/O

None Power to Remote I/O Unitis | Check power supply to

off or terminator cannot be
found.

Remote I/O Units,
connections between
Remote I/O Units, and

terminator setting.

Non-fatal Operating Errors

The following error messages appear for errors that occur after program execu-
tion has been started. PC operation and program execution will continue after
one or more of these errors have occurred. For each of these errors, the
POWER and RUN indicators will be lit and the ALM/ERR indicator will be flash-
ing. The RUN output will be ON.

Error and message

FAL no.

Probable cause

Possible correction

01to99

FAL error

FAL(06) has been executed
in program. Check the FAL
number to determine
conditions that would cause
execution (set by user).

Correct according to cause
indicated by FAL number
(set by user).

8A

Interrupt Input Unit error

An error occurred in data
transfer between the
Interrupt Input Unit and the
CPU.

Replace the Interrupt Input
Unit.

8B

Interrupt subroutine
containing Special I1/0 Unit
refresh was too long.

Cyclic Special I/0 Unit
refreshing was not disabled
for interrupt subroutine
refresh.

Check the interrupt
subroutine and PC Setup.

393




Error Messages

Section 10-4

Battery error

its voltage has dropped.

Error and message FAL no. Probable cause Possible correction
9A An error occurred in data Check AR 0205 to AR 0214
High-density I/O Unit error transfer between a to identify the Unit with a
; High-density 1/0O Unit and problem, replace the Unit,
the CPU. and restart the PC.
9B An error has been detected | Check an correct PC Setup
PC Setup error in the PC Setup. This error | settings.
; will be generated when the
setting is read or used for
the first time.
9D An error has occurred Make sure that the PC is in
Memory Cassette Transfer error during data transmission PROGRAM mode.
mYEmORRIL OFHLED t():etwe(?tn l;M and aMemory | \1aue sure that the Memory
assetle because: Cassette is not
Not in PROGRAM Mode. write-protected.
UM or Memory Cassette is | Make sure that the UM and
read-only. Memory Cassette capacity
Insufficient capacity in UM is sufficient.
or Memory Cassette. Make sure that SYSMAC
A checksum error occurred NEtT dzaltalllnktsharte notf
in the Memory Cassette active during the transter.
Transfer the data again.
Cycle time overrun F8 Watchdog timer has Program cycle time is
i exceeded 100 ms. longer than recommended.
Reduce cycle time if
possible.
1/0 table verification error E7 Unit has been removed or Use I/O Table Verify
T IR replaced by a different kind | Operation to check I/O table
of Unit, making I/O table and either connect dummy
incorrect. Units or register the 1/0
table again.
Remote I/O error BO or B1 | Error occurred in Check transmission line
: transmissions between between PC and Master
Remote /0 /* Remote I/O Units. and between Remote 1/0
Master Unit number Units.
. . DO Error has occurred in PC Determine the unit number
S.peC|aI /O Unit error Link Unit, Remote I/O of the Unit which caused the
: Master Unit, between a error (AR 00), correct the
Host Link, SYSMAC LINK, | error, and toggle the
or SYSMAC NET Link Unit | appropriate Restart Bit in
and the CPU, or in refresh AR 01, SR 250, or SR 252.
between Special 1/0 Unit If the Unit does not restart,
and the CPU. replace it.
9A An error has occurred Determine the unit number
Group-2 High-density I/O error during data transmission of the Unit which caused the
o T T between the CPU and a error (AR 02), replace the
Group-2 High-density 1/0 Unit, and try to power-up
Unit. again.
F7 Backup battery is missing or | Check battery, and replace

if necessary.

394




Error Messages

Section 10-4

Fatal Operating Errors

The following error messages appear for errors that occur after program execu-
tion has been started. PC operation and program execution will stop and all out-
puts from the PC will be turned OFF when any of the following errors occur. No
CPU indicators will be lit for the power interruption error. For all other fatal oper-
ating errors, the POWER and ALM/ERR indicators will be lit. The RUN output will
be OFF.

Error and message FAL no. Probable cause Possible correction
Power interruption None Power has been Check power supply voltage
No message. interrupted for at least and power lines. Try to
10 ms. power-up again.
CPU error None Watchdog timer has Restart system in PROGRAM
NO message exceeded maximum mode and check program.
ge. setting (default setting: Reduce cycle time or reset
130 ms). watchdog timer if longer time
required. (Consider effects of
longer cycle time before
resetting.)
Memory error F1 SR 27211 ON: Check the PC Setup.
E : A checksum error has
occurred in the PC
Setup (DM 6600 to
DM 6655).
SR 27212 ON: Check the program.
A checksum error has
occurred in the program,
indicating an incorrect
instruction.
SR 27213 ON
A checksum error has
occurred in an
expansion instruction
change.
SR 27214 ON: Install the Memory Cassette
Memory Cassette was correctly.
installed or removed
with the power on.
SR 27215 ON: Check whether the CPU
Autoboot error. memory is protected or a .
checksum error occurred in the
Memory Cassette.
No END(01) instruction FO END(01) is not written Write END(01) at the final
LT DTy IRIOT anywhere in program. address of the program.
1/O bus error COto C2 | Error has occurred in The rightmost digit of the FAL
* the bus line between the | number will indicate the number
Rack no. CPU and I/O Units. of the Rack where the error was
detected. Check cable
connections between the
Racks.

395




Error Messages

Section 10-4

Error and message FAL no. Probable cause Possible correction
Too many Units El Two or more Special I/O | Perform the I/O Table Read
T Units are set to the operation to check unit
same unit number numbers, and eliminate
duplications. (High-density 1/0
L‘?’o or more Group-_2 Units other than Group-2 are
gh-density I/O Units . .
are set to the same 1/O Special I/0 Units, too.)
number or I/O word. Set unit numbers of 64-pt
The 1/O number of a tGroup-2 High-density /0 Units
64-pt Group-2 0 numbers other than 9.
High-density 1/0 Unitis | Check the SYSMAC NET Link
setto 9. and SYSMAC LINK Unit
Two SYSMAC NET Link oper.atin_g levels and eliminate
or SYSMAC LINK Units | duplications.
share the same Mount only one Interrupt Input
operating level. Unit.
Two or more Interrupt
Input Units are mounted.
Input-output 1/O table error EO Input and output word Check the 1/0O table with 1/O
designations registered | Table Verification operation and
in I/O table do no agree | check all Units to see that they
with input/output words | are in correct configuration.
required by Units When the system has been
actually mounted. confirmed, register the 1/O table
again.
FALS error 01to 99 | FALS has been Correct according to cause
R or 9F executed by the indicated by FAL number. If FAL
program. Check the FAL | number is 9F, check watchdog
number to determine timer and cycle time, which may
conditions that would be to long. 9F will be output
cause execution (Set by | when FALS(07) is executed and
user or by system). the cycle time is between 120
and 130 ms.

Communications Errors

Other Error Messages

396

If errors occur in communications, the indicator for the peripheral port (COMM/
COMM1 when using RS-232C Programming Console cable) or the RS-232C
port (COMM2) will not light. Check the connection, programming on both ends
(C200HS and peripheral), and then reset the port using the reset bits (peripheral
port: SR 25208; RS-232C port: SR 25209).

A number of other error messages are detailed within this manual. Errors in pro-
gram input and debugging can be examined in Section 4 Writing and Inputting
the Program.



Error Flags

Section 10-5

10-5 Error Flags

SR Area

The following table lists the flags and other information provided in the SR and
AR areas that can be used in troubleshooting. Details are provided in 3-4 SR
Area and 3-5 AR Area.

Address(es)

Function

23600 to 23615

Node loop status for SYSMAC NET Link system

23700 to 23715

Completion/error code output area for SEND(90)/RECV(98) in SYSMAC LINK/SYSMAC NET Link
System

24700 to 25015

PC Link Unit Run and Error Flags

25100 to 25115

Remote I/O Error Flags

25200

SYSMAC LINK/SYSMAC NET Link Level 0 SEND(90)/RECV(98) Error Flag

25203

SYSMAC LINK/SYSMAC NET Link Level 1 SEND(90)/RECV(98) Error Flag

25206

Rack-mounting Host Link Unit Level 1 Error Flag

25300 to 25307

FAL number output area.

25308

Low Battery Flag

25309 Cycle Time Error Flag

25310 I/O Verification Error Flag

25311 Rack-mounting Host Link Unit Level O Error Flag

25312 Remote I/O Error Flag

25411 Interrupt Input Unit Error Flag

25413 Interrupt Programming Error Flag

25414 Group-2 High-density 1/0 Unit Error Flag

25415 Special Unit Error Flag (Special 1/0, PC Link, Host Link, Remote 1/0 Master, SYSMAC NET Link, or
SYSMAC Link Unit Error Flag)

25503 Instruction Execution Error (ER) Flag

26400 to 26403 | RS-232C Port Error Code

26404 RS-232C Port Communications Error

26408 to 26411 | Peripheral Port Error Code (except Peripheral Mode)

26412 Peripheral Port Communications Error Flag (except Peripheral Mode)

27011 UM Transfer Error Flag: SYSMAC NET data link active during data link table transfer.

27012 UM Transfer Error Flag: Not PROGRAM mode

27013 UM Transfer Error Flag: Read Only

27014 UM Transfer Error Flag: Insufficient capacity or no UM

27015 UM Transfer Error Flag: Board Checksum Error

27211 Memory Error Flag: PC Setup Checksum Error

27212 Memory Error Flag: UM or Ladder Checksum Error

27213 Memory Error Flag: Expansion Instruction Code Change Area Checksum Error

27214 Memory Error Flag: Memory Cassette Online Disconnection

27215 Memory Error Flag: Autoboot Error

27312 IOM Transfer Error Flag: Not PROGRAM mode

27313 IOM Transfer Error Flag: Read Only

27314 IOM Transfer Error Flag: Insufficient capacity

27315 IOM Transfer Error Flag: Checksum Error

27500 PC Setup Error (DM 6600 to DM 6614)

27501 PC Setup Error (DM 6615 to DM 6644)

27502 PC Setup Error (DM 6645 to DM 6655)

397



Error Flags Section 10-5

AR Area
Address(es) Function
0000 to 0009 Special I/O or PC Link Unit Error Flags
0010 SYSMAC LINK/SYSMAC NET Link Level 1 System Error Flags
0011 SYSMAC LINK/SYSMAC NET Link Level 0 System Error Flags
0012 Rack-mounting Host Link Unit Level 1 Error Flag
0013 Rack-mounting Host Link Unit Level 0 Error Flag
0014 Remote I/O Master Unit 1 Error Flag
0015 Remote I/O Master Unit O Error Flag

0200 to 0204 Error Flags for Slave Racks O to 4

0205 to 0215 Group-2 High-density I/O Unit Error Flags (AR 0205 to AR 0214 correspond to 1/0 numbers 0 to 9.)

0215 Group-2 High-density I1/0 Unit was not recognized.

0300 to 0315 Optical I/O Units (0 to 7) Error Flags

0400 to 0415 Optical I/O Units (8 to 15) Error Flags

0500 to 0515 Optical I/O Units (16 to 23) Error Flags

0600 to 0615 Optical I/O Units (24 to 31) Error Flags

0710 to 0712 Error Flags for Slave Racks 5to 7

0713 to 0715 Error History Bits

1114 Communications Controller Error Flag Level 0
1115 EEPROM Error Flag for operating level O
1514 Communications Controller Error Flag Level 1
1515 EEPROM Error Flag for operating level 1

398




Host Link Errors

Section 10-6

10-6 Host Link Errors

These error codes are received as the response code (end code) when a com-
mand received by the C200HS from a host computer cannot be processed. The
error code format is as shown below.

\ \ \ \ \ \
@ X X X X X X X X >k o
\ \ \ \ \ \
Node Header End code FCS Terminator
no. code

The header code will vary according to the command and can contain a subcode
(for composite commands).

End Contents Probable cause Corrective measures
code

00 Normal completion

01 Not executable in RUN mode The command that was sent can- Check the relation between the
not be executed when the PC isin | command and the PC mode.
RUN mode.

02 Not executable in MONITOR mode | The command that was sent can-
not be executed when the PC is in
MONITOR mode.

0B Not executable in PROGRAM The command that was sent can- This code is not presently being

mode not be executed when the PCisin | used.
PROGRAM mode.

13 FCS error The FCS is wrong. Either the FCS | Check the FCS calculation method.
calculation is mistaken or there is If there was influence from noise,
adverse influence from noise. transfer the command again.

14 Format error The command format is wrong. Check the format and transfer the

command again.

15 Entry number data error The areas for reading and writing Correct the areas and transfer the
are wrong. command again.

16 Command not supported The specified command does not Check the command code.
exist.

18 Frame length error The maximum frame length was Divide the command into multiple
exceeded. frames.

19 Not executable Items to read not registered for Execute QQ to register items to
composite command (QQ). read before attempting batch read.

23 User memory write-protected Pin 1 on C200HS DIP switch is ON. | Turn OFF pin 1 to execute.

A3 Aborted due to FCS error in trans- | The error was generated while a Check the command data and try

mit data command extending over more the transfer again.

A4 Aborted due to format error in :hgn one frame was being execu-

transmit data ed.
A5 Aborted due to entry number data | Note: The data up to that point has
error in transmit data alreaqu been written to the ap-
propriate area of the CPU.
A8 Aborted due to frame length error
in transmit data
Other | --- Influence from noise was received. | Transfer the command again.

Power Interruptions

The following responses may be received from the C200HS if a power interrup-

tion occurs, including momentary interruptions. If any of these responses are re-
ceived during or after a power interruption, repeat the command.

Undefined Command Response

@O0IC4A*

No Response

If no response is received, abort the last command and resend.

399




SECTION 11
Host Link Commands

This section explains the methods and procedures for using host link commands, which can be used for host link communica-
tions viathe C200HS ports.

11-1 CommunicatioNSProCedUre . . ... ottt e et et e e e 402
11-2 Command and ReSpONSE FOrMaLS . . ... oottt e e 404
11-2-1 CommandsfromtheHost Computer . ...ttt 404
11-2-2 CommandsfromthePC . ... ... .. .. . i e 406
11-3 Host Link Commands . . . ....ooi e e e e e 407
11-3-1 IRISRAREAREAD —RR ... e e 407
11-3-2 LRAREA READ — RL ... i e e e e 407
11-3-3 HRAREA READ — RH . ... . e e 408
11-3-4 PV READ — RC ... 408
11-3-5 TCSTATUSREAD —RG ... . i e e e 409
11-3-6 DM AREA READ —RD ...ttt 409
11-3-7 ARAREA READ — RJ ... e e e 410
11-3-8 IRISRAREAWRITE—WR ... .. e 410
11-3-9 LRAREAWRITE—WL ... i e e e e e 411
11-3-10 HRAREA WRITE—WH ... e e e 411
11-3-11 PV WRITE—WC .. e e e 412
11-3-12 TCSTATUSWRITE —WG . . ... e e 412
11-3-13 DM AREA WRITE—WD . . ..o e e e 413
11-3-14 ARAREAWRITE—WJ . .. . e e e e e 413
11-3-15 SV READ L — R ..ot e 414
11-3-16 SV READ 2— RS . ... 415
11-3-17 SV READ 3— R0 ..ottt e 416
11-3-18 SV CHANGE L1 —WH ... e e e e e 417
11-3-19 SV CHANGE 2— WS ... e e 417
11-3-20 SV CHANGE 3— W00 . . .ottt et et e e ettt 418
11-3-21 STATUS READ — M S .. o e e e e e 419
11-3-22 STATUSWRITE — SC ... it e e e e 420
11-3-23 ERROR READ — MF .. o e e e e e 421
11-3-24 FORCED SET — K S .. e e e e 422
11-3-25 FORCED RESET — KR . ..o i e e 423
11-3-26 MULTIPLEFORCED SET/RESET —FK . ... .. oo 424
11-3-27 FORCED SET/RESET CANCEL —KC . ... . 425
11-3-28 PCMODEL READ — MM ... e e e 425
11-3-20 TEST— TS .. e e e e e e e 426
11-3-30 PROGRAM READ — RP . . ... e e e 426
11-3-31 PROGRAM WRITE—WP ... e e 427
11-3-32 /O TABLE GENERATE — M1 ... . e 427
11-3-33 COMPOUND COMMAND —QQ ..ttt et e 427
11-3-34 ABORT — XZ . oot e 429
11-3-35 INITIALIZE — KK .o e e 430
11-3-36 Undefined Command — IC ... ... ... o e 430
11-4 HOSt LiNK Brrors . ..o e e e 431

401



Communications Procedure Section 11-1

11-1 Communications Procedure

Command Chart The commands listed in the chart below can be used for host link communica-
tions with the C200HS. These commands are all sent from the host computer to
the PC.

Header code PC mode Name Page
RUN MON PRG
RR Valid Valid Valid IR/SR AREA READ 407
RL Valid Valid Valid LR AREA READ 407
RH Valid Valid Valid HR AREA READ 408
RC Valid Valid Valid PV READ 408
RG Valid Valid Valid TC STATUS READ 409
RD Valid Valid Valid DM AREA READ 409
RJ Valid Valid Valid AR AREA READ 410
WR Not valid | Valid Valid IR/ISR AREA WRITE 410
WL Not valid | Valid Valid LR AREA WRITE 411
WH Not valid | Valid Valid HR AREA WRITE 411
WC Not valid | Valid Valid PV WRITE 412
WG Not valid | Valid Valid TC STATUS WRITE 412
WD Not valid | Valid Valid DM AREA WRITE 413
WJ Not valid | Valid Valid AR AREA WRITE 413
R# Valid Valid Valid SV READ 1 414
R$ Valid Valid Valid SV READ 2 415
R% Valid Valid Valid SV READ 3 416
Wi Not valid | Valid Valid SV CHANGE 1 417
Ww$ Not valid | Valid Valid SV CHANGE 2 417
W% Not valid | Valid Valid SV CHANGE 3 418
MS Valid Valid Valid STATUS READ 419
SC Valid Valid Valid STATUS WRITE 420
MF Valid Valid Valid ERROR READ 421
KS Not valid | Valid Valid FORCED SET 422
KR Not valid | Valid Valid FORCED RESET 423
FK Not valid | Valid Valid MULTIPLE FORCED SET/RESET 424
KC Not valid | Valid Valid FORCED SET/RESET CANCEL 425
MM Valid Valid Valid PC MODEL READ 425
TS Valid Valid Valid TEST 426
RP Valid Valid Valid PROGRAM READ 426
WP Not valid | Not valid | Valid PROGRAM WRITE 427
Ml Not valid | Not valid | Valid I/O TABLE GENERATE 427
QQ Valid Valid Valid COMPOUND COMMAND 427
XZ Valid Valid Valid ABORT (command only) 429
ek Valid Valid Valid INITIALIZE (command only) 430
IC Undefined command (response only) 430

402



Communications Procedure

Section 11-1

Host link communications are executed by means an exchange of commands
and responses between the host computer and the PC. With the C200HS, there
are two communications methods that can be used. One is the normal method,
in which commands are issued from the host computer to the PC. The other
method allows commands to be issued from the PC to the host computer.

Frame Transmission and Reception

Commands from Host

Host
computer

PC

Commands and responses are exchanged in the order shown in the illustration
below. The block of data transferred in a single transmission is called a “frame”.
A single frame is configured of a maximum of 131 characters of data.

The right to send a frame is called the “transmission right”. The Unit that has the
transmission right is the one that can send a frame at any given time. The trans-
mission right is traded back and forth between the host computer and the PC
each time a frame is transmitted. The transmission right is passed from the
transmitting Unit to the receiving Unit when either a terminator (the code that
marks the end of a command or response) or a delimiter (the code that sets
frames apart) is received.

In host link communications, the host computer ordinarily has the transmission
right first and initiates the communications. The PC then automatically sends a
response.

Frame (command)
Unit no.
Header code

Text

FCS

Terminator

Frame (command)
Unit no.
Header code

Text

FCS
Terminator

Next frame transmission
enabled (i.e., transmission

right transferred)

Unit no.

Header code

End code

Text

FCS

Terminator

Frame (response)

Unit no.

Header code

End code

Text

FCS

Terminator

Frame (response)

Commands from PC

It is also possible in host link communications for the PC to send commands to
the host computer. In this case it is the PC that has the transmission right and
initiates the communications.

Host
computer
No response
Unit no.

Header code

pPC Text
FCS
Terminator

403



Command and Response Formats Section 11-2

When commands are issued to the host computer, the data is transmitted in one
direction from the PC to the host computer. If a response to a command is re-
quired use a host link communications command to write the response from the
host computer to the PC.

11-2 Command and Response Formats

This section explains the formats for the commands and responses that are ex-
changed in host link communications.

11-2-1 Commands from the Host Computer

Command Format

When a command is issued from the host computer, the command and re-
sponse formats are as shown below.

When transmitting a command from the host computer, prepare the command
data in the format shown below.

‘ ,
@ |x10! x 100 * J
| | o | |
Node no. Header Text FCS Terminator
code
@
An “@” symbol must be placed at the beginning.
Node No.

Response Format

Identifies the PC communicating with the host computer.

Specify the node number set for the PC in the PC Setup (DM 6648, DM 6653).
Header Code

Set the 2-character command code.

Text

Set the command parameters.

FCS
Set a 2-character Frame Check Sequence code. See page 405.

Terminator
Set two characters, “>” and the carriage return (CHR$(13)) to indicate the end
of the command.

The response from the PC is returned in the format shown below. Prepare a pro-
gram so that the response data can be interpreted and processed.

\
@ |x101 x 100
|

\ \ \
x161‘x160 | >|<‘ |

Node no. Header End code Text FCS Terminator

code

404

@, Node No., Header Code
Contents identical to those of the command are returned.

End Code
The completion status of the command (e.g., whether or not an error has oc-
curred) is returned.

Text
Text is returned only when there is data such as read data.

FCS, Terminator
Refer to the corresponding explanations under “Command Format”.



Command and Response Formats

Section 11-2

Long Transmissions

Framel (command)

The largest block of data that can be transmitted as a single frame is 131 charac-
ters. A command or response of 132 characters or more must therefore be di-
vided into more than one frame before transmission. When a transmission is
split, the ends of the first and intermediate frames are marked by a delimiter
instead of a terminator.

As each frame is transmitted, the receiving node waits for the delimiter to be
transmitted. After the delimiter has been transmitted, the next frame will then be
sent. This procedure is repeated until the entire command or response has been
transmitted. The following diagram shows an example of host link communica-
tions addressed to a PC.

Frame2 (command) Frame3 (command)

Unit no.
Header code
Host
computer Text p Text 4 Text
FCS FCS FCS
Delimiter Delimiter Terminator
o Unit no.
Header code
End code
Text
FCS
Terminator
Frame (response)
Precautions for Long Transmissions
When dividing commands such as WR, WL, WC, or WD that execute write op-
erations, be careful not to divide into separate frames data that is to be written
into a single word. As shown in the illustration below, be sure to divide frames so
that they coincide with the divisions between words.
Frame 1
\ \ ) \ \ \ \
@ | 0 0O | W D Data a
\ \ L \ \ \ \
Node Header One word of data FCS Delimiter
no. code
Data from the same word is not divided.
Frame 3
\ \ T \ \
Data *k J
\ \ L \ \
One word of data FCS Terminator

Data from the same word is not divided.

FCS (Frame Check Sequence) When a frame is transmitted, an FCS is placed just before the delimiter or termi-

nator in order to check whether any data error has been generated. The FCS is
8-bit data converted into two ASCII characters. The 8-bit data is the result of an
EXCLUSIVE OR performed on the data from the beginning of the frame until the
end of the text in that frame (i.e., just before the FCS). Calculating the FCS each

405



Command and Response Formats

Section 11-2

Example Program for FCS

time a frame is received and checking the result against the FCS that is included
in the frame makes it possible to check for data errors in the frame.

- \
@ 1 0 R R 0 0 0 1 4 2 sk J
o \
Node no. Header code Text FCS Terminator
FCS calculation range
ASCII code
@ 40 0100 0000
EOR
1 31 0011 0001
EOR
0 30 0011 0000
EOR
R 52 0101 0010
1 31 0011 0001
Calculation 0100 0010 .
result l l Converted to hexadecimal.
4 2 Handled as ASCII characters.

This example shows a BASIC subroutine program for executing an FCS check

on a frame received by the host computer.

400 * FCSCHECK
410 L=LEN(RESPONSE$) ' . ... ...... Data transmitted and received
420 Q=0: FCSCK$=" "
430 A$=RI GHT$( RESPONSE$, 1)
440 PRI NT RESPONSES, AS, L
450 | F A$="*" THEN LENGS=LEN( RESPONSE$) - 3
ELSE LENGS=LEN( RESPONSE$) - 2
460 FCSP$=M D$( RESPONSES$, LENGS+1,2) ' . ... FCS data received
470 FOR 1=1 TOLENGS ' . ........ .. Number of characters in FCS
480 Q=ASC(M D$( RESPONSES$, 1,1)) XOR Q
490 NEXT |
500 FCSD$=HEX$(Q
510 | F LEN( FCSD$) =1 THEN FCSD$=" 0" +FCSD$ ' FCS result
520 | F FCSD$<>FCSP$ THEN FCSCK$="ERR’
530 PRI NT*“ FCSD$="; FCSD$, “ FCSP$="; FCSP$, “ FCSCK$="; FCSCK$
540 RETURN

Note 1. Normal reception data includes the FCS, delimiter or terminator, and so on.
When an error occurs in transmission, however the FCS or some other data
may not be included. Be sure to program the system to cover this possibility.

2. In this program example, the CR code (CHR$(13)) is not entered for RE-
SPONSES$. When including the CR code, make the changes in lines 430
and 450.

11-2-2 Commands from the PC

In host link communications, commands are ordinarily sent from the host com-
puter to the PC, but it is also possible for commands to be sent from the PC to the
host computer. In Host Link Mode, any data can be transmitted from the PC to
the host computer. To send a command to the host computer, use the TRANS-
MIT instruction (TXD(--)) in the PC program in Host Link Mode.

TXD(—) outputs data from the specified port (the RS-232C port or the peripher-
al port). Refer to page 299 for details on using TXD(—).

406



Host Link Commands

Section 11-3

Reception Format

When TXD(—) is executed, the data stored in the words beginning with the first
send word is converted to ASCII and output to the host computer as a host link
command in the format shown below. The “@” symbol, node number, header
code, FCS, and delimiter are all added automatically when the transmission is
sent. At the host computer, it is necessary to prepare in advance a program for
interpreting and processing this format.

E

\ S \ \
X 122 characters max. sk i
S \ \

Node no.

Header code Text FCS Terminator
(Must be “EX”)

One byte of data (2 digits hexadecimal) is converted to two characters in ASCI|
for transmission, the amount of data in the transmission is twice the amount of
words specified for TXD(—). The maximum number of characters for transmis-
sion is 122 and the maximum number of bytes that can be designated for
TXD(—) is one half of that, or 61.

11-3 Host Link Commands

This section explains the commands that can be issued from the host computer
to the PC.

11-3-1 IR/SR AREA READ — RR

Command Format

Reads the contents of the specified number of IR and SR words, starting from
the specified word.

Response Format

\ \ \ \ \ \ \ \ \ \
@ |x10! x10° R R |x10% x102 x 101 x 109|x 103 x 102 x 101 x 10° * o
\ \ \ \ \ \ \ \ \ \
Node no.  Header Beginning word No. of words FCS Terminator
code (0000 to 0511) (0000 to 0512)
\ \ \ \ \ \ T \ \
@ |x10! x109 R R |x161 x 1609 |x 163 x 162 x 161 x 160 sk o
\ \ \ \ \ \ R \ \
Node no. Header End code Read data (1 word) FCS Terminator
code

Parameters

Read data (for number of words read)

Read Data (Response)

The contents of the number of words specified by the command are returned in
hexadecimal as a response. The words are returned in order, starting with the
specified beginning word.

11-3-2 LR AREA READ —RL

Command Format

Reads the contents of the specified number of LR words, starting from the speci-
fied word.

\
@ |x10! x 100

\ \ \ \ \ \ \ \
L |x103 x 102 x 10! x 100|x 103 x 102 x 101 x 100 sk a

R
\ \ \ \ \ \ \ \ \ \
Node no. Header Beginning word No. of words FCS Terminator
code (0000 to 0063) (0001 to 0064)

407



Host Link Commands Section 11-3

Response Format

\ \ \ \ \ \ \ \
@ |x10! x10°| R L |x16% x160x16% x 162 x 16 x 160 k4

\ \ \ \ \ \ L \ \
Node no.  Header End code Read data (1 word) FCS Terminator
code

Read data (for number of words read)

Parameters Read Data (Response)
The contents of the number of words specified by the command are returned in
hexadecimal as a response. The words are returned in order, starting with the
specified beginning word.

11-3-3 HR AREA READ — RH

Reads the contents of the specified number of HR words, starting from the speci-

fied word.
Command Format
\ \ \ \ \ \ \ \ \ \
@ |x10! x100| R H |x103 x 102 x 101 x 100|x 103 x 102 x 10! x 100 sk N
\ \ \ \ \ \ \ \ \ \
Node no.  Header Beginning word No. of words FCS Terminator
code (0000 to 0099) (0001 to 0100)
Response Format
\ \ \ \ \ \ T \ \
@ |x10! x100| R H |x161 x 160|x 163 x 162 x 161 x 160 sk N
\ \ \ \ \ \ L \ \
Node no. Header End code Read data (1 word) FCS Terminator
code Read data (for number of words read)
Parameters Read Data (Response)

The contents of the number of words specified by the command are returned in
hexadecimal as a response. The words are returned in order, starting with the
specified beginning word.

11-3-4 PV READ — RC

Reads the contents of the specified number of timer/counter PVs (present val-
ues), starting from the specified timer/counter.

Command Format

\ \ \ \ \ \ \ \ \ \
@ |x10! x100| R C |x103x102 x 10! x 100|x 103 x 102 x 101 x 100 * o
\ \ \ \ \ \ \ \ \ \
Node no. Header Beginning timer/counter  No. of timers/counters FCS Terminator
code (0000 to 0511) (0001 to 0512)

Response Format

\ \ \ \ \ \ T \ \
@ |x10! x10° R C |x161 x169|x 103 x 102 x 101 x 100 * J
\ \ \ \ \ \ R \ \
Node no.  Header End code Read data (1 word) FCS Terminator
code

Read data (for number of words read)

Parameters Read Data (Response)
The number of present values specified by the command is returned in hexade-

408



Host Link Commands Section 11-3

cimal as a response. The PVs are returned in order, starting with the specified
beginning timer/counter.

11-3-5 TC STATUS READ — RG

Reads the status of the Completion Flags of the specified number of timers/
counters, starting from the specified timer/counter.

Command Format

\ \ \ \ \ \ \ \ \ \
@ |x10! x109 R G |x103 x102 x 10! x 100|x 103 x 102 x 101 x 100 * N
\ \ \ \ \ \ \ \ \ \
Node no. Header Beginning timer/counter  No. of timers/counters FCS Terminator
code (0000 to 0511) (0001 to 0512)

Response Format

x 101 x 100 x 161 x 160| ON/
© \ R \ ¢ \ OFF | \ 8 -
Node no. Header End code FCS Terminator
code Read data
\ (1 timer/counter) ,
Read data

(for number of TC read)

Parameters Read Data (Response)
The status of the number of Completion Flags specified by the command is re-
turned as a response. “1” indicates that the Completion Flag is ON.

11-3-6 DM AREA READ — RD

Reads the contents of the specified number of DM words, starting from the spe-

cified word.
Command Format
\ \ \ \ \ \ \ \ \ \
@ |x10! x109| R D |x10%x102 x 101 x109|x 103 x 102 x 101 x 10° * o
\ \ \ \ \ \ \ \ \ \
Node no. Header Beginning word No. of words FCS Terminator
code (0000 to 9999) (0001 to 10000)

(see note)

Note 1. If 10,000 words have to be read, specify the number of words to be read as
0000.

2. DM 6656 to DM 6999 do not exist. An error will not, however, result if you try
to read these words. Instead, “0000” will be returned as a response.

Response Format

I I I I I I T I I
@ |x10! x100| R D |x161 x169|x 163 x 162 x 161 x 169 k J
| | | | | | I | |
Node no. Header End code Read data (1 word) FCS Terminator
code

Read data (for number of words read)

Parameters Read Data (Response)
The contents of the number of words specified by the command are returned in
hexadecimal as a response. The words are returned in order, starting with the
specified beginning word.

409



Host Link Commands

Section 11-3

11-3-7 AR AREA READ —RJ

Command Format

Reads the contents of the specified number of AR words, starting from the speci-
fied word.

Response Format

\
@ |x10! x109 R J | x10% x 102 x 10! x 109|x 103 x 102 x 101 x 100 *k o
\ \ \ \ \ \ \ \ \ \
Node no. Header Beginning word No. of words FCS Terminator
code (0000 to 0027) (0001 to 0028)
\ \ \ \ \ \ T \ \
@ |x10! x109| R J |x161 x160|x 163 x 162 x 161 x 160 sk o
_ \ |
Node no. Header End code Read data (1 word ) FCS Terminator
code

Parameters

Read data
(for number of words read)

Read Data (Response)

The contents of the number of words specified by the command are returned in
hexadecimal as a response. The words are returned in order, starting with the
specified beginning word.

11-3-8 IR/SR AREA WRITE — WR

Command Format

Writes data to the IR and SR areas, starting from the specified word. Writing is
done word by word.

\ \ \ \ \ \ \ \ S \ \
@ |x10! x10°] w R |x103 x102 x 10! x 100|x 163 x 162 x 161 x 160 * J
\ \ \ \ \ \ \ \ \ \
Node no. Header Beginning word Write data (1 word) FCS Terminator
code (0000 to 0511)

Response Format

Parameters

410

Write data
(for number of words to write)

Note Data cannot be written to words 253 to 255. If there is an attempt to write to these
words, no error will result, but nothing will be written to these words.

\ \ \ \ \
@ [x101 x10° w R |x16! x16° sk o
\ \ \ \ \
Node no. Header End code FCS Terminator
code

Write Data (Command)
Specify in order the contents of the number of words to be written to the IR or SR
area in hexadecimal, starting with the specified beginning word.

If data is specified for writing which exceeds the allowable range, an error will be
generated and the writing operation will not be executed. If, for example, 511 is
specified as the beginning word for writing,and two words of data are specified,
then 0512 will become the last word for writing data, and the command will not be
executed because SR 512 is beyond the writeable range.

Note



Host Link Commands

Section 11-3

11-3-9 LR AREA WRITE — WL

Command Format

Writes data to the LR area, starting from the specified word. Writing is done word
by word.

Response Format

Parameters

@ |x101 x100| w L |x103x102 x 10! x 100|x 163 x 162 x 161 x 169 * J
\ \ \ \ \ \ \ \ R \ \
Node no. Header Beginning word Write data (1 word) FCS Terminator
code (0000 to 0063)

Write data
(for number of words to write )

@ |x101 x10° w L |x16% x16° %4
\ \ \ \ \
Node no. Header End code FCS Terminator
code

Write Data (Command)
Specify in order the contents of the number of words to be written to the LR area
in hexadecimal, starting with the specified beginning word.

Note If data is specified for writing which exceeds the allowable range, an error will be

generated and the writing operation will not be executed. If, for example, 60 is
specified as the beginning word for writing and five words of data are specified,
then 64 will become the last word for writing data, and the command will not be
executed because LR 64 is beyond area boundary.

11-3-10 HR AREA WRITE — WH

Command Format

Writes data to the HR area, starting from the specified word. Writing is done word
by word.

Response Format

Parameters

\ \ \ \ \ \ \ \ S \ \
@ |x10! x109 w H [x103x102 x 10! x100|x 163 x 162 x 161 x 16° sk a
| | | | | | | | R | |
Node no. Header Beginning word Write data (1 word) FCS Terminator
code (0000 to 0099) -
Write data

(for no. of words to write)

\ \ \ \ \
@ |x10! x100 w  H |x161 x 160 sk J
\ \ \ \ \
Node no. Header End code FCS Terminator
code

Write Data (Command)
Specify in order the contents of the number of words to be written to the HR area
in hexadecimal, starting with the specified beginning word.

Note If data is specified for writing which exceeds the allowable range, an error will be

generated and the writing operation will not be executed. If, for example, 98 is
specified as the beginning word for writing, and three words of data are speci-
fied, then 100 will become the last word for writing data, and the command will
not be executed because HR 100 is beyond area boundary.

411



Host Link Commands Section 11-3

11-3-11 PV WRITE — WC

Writes the PVs (present values) of timers/counters starting from the specified
timer/counter.

Command Format

\ \ \ \ \ \ \ \ ST \ \
@ |x10! x100| w C |x103 x102 x 10! x 100|x 163 x 162 x 161 x 160 k N
| | | | | | | | . | |

Node no. Header Beginning timer/counter . Write data (1 timer/counter) FCS Terminator
code (0000 to 0511)

Write data
(for no. of PV to write)

Response Format

\ \ \ \ \
@ |x101 x100 w C |x161 x 160 & o
\ \ \ \ \
Node no. Header  End code FCS Terminator
code
Parameters Write Data (Command)

Specify in decimal nhumbers (BCD) the present values for the number of timers/
counters that are to be written, starting from the beginning timer/counter.

Note 1. When this command is used to write data to the PV area, the Completion
Flags for the timers/counters that are written will be turned OFF.

2. If data is specified for writing which exceeds the allowable range, an error
will be generated and the writing operation will not be executed. If, for exam-
ple, 510 is specified as the beginning word for writing, and three words of
data are specified, then 512 will become the last word for writing data, and
the command will not be executed because TC 512 is beyond area bound-
ary.

11-3-12 TC STATUS WRITE — WG

Writes the status of the Completion Flags for timers and counters in the TC area,
starting from the specified timer/counter (number). Writing is done number by
number.

Command Format

\ \ \ \ \ ON/ \ \

@ |x10! x10° w G |x10%x102 x 10! x 10° & a
\ \ L OFF | \ \
Node no. Header  Beginning timer/counter FCS Terminator
code (0000 to 0511) .
Write data
\ (1 timer/counter),
Write data

(for number of TC to write)

Response Format

\ \ \ \ \
@ |x101 x100 w G |x161 x 160 sk J
\ \ \ \ \
Node no. Header  End code FCS Terminator
code
Parameters Write Data (Command)

Specify the status of the Completion Flags, for the number of timers/counters to
be written, in order (from the beginning word) as ON (i.e., “1") or OFF (i.e., “0").
When a Completion Flag is ON, it indicates that the time or count is up.

412



Host Link Commands Section 11-3

Note If data is specified for writing which exceeds the allowable range, an error will be
generated and the writing operation will not be executed. If, for example, 510 is
specified as the beginning word for writing, and three words of data are speci-
fied, then 512 will become the last word for writing data, and the command will
not be executed because TC 512 is beyond area boundary.

11-3-13 DM AREA WRITE — WD

Writes data to the DM area, starting from the specified word. Writing is done
word by word.

Command Format

\
@ |x10! x109 w D [x103x102 x 10! x100|x 163 x 162 x 161 x 16° sk a
\ \ \ \ \ \ \ \ . \ \
Node no. Header Beginning word Write data (1 word) FCS Terminator
code (0000 to 9999) -
Write data

(for number of words to write)

Note DM 6656 to DM 6999 do not exist. An error will not, however, result if you try to
write to these words.

Response Format

\ \ \ \ \
@ [x101 x10° w D |x161 x16° k a
| | | | |
Node no. Header End code FCS Terminator
code
Parameters Write Data (Command)

Specify in order the contents of the number of words to be written to the DM area
in hexadecimal, starting with the specified beginning word.

Note 1. If data is specified for writing which exceeds the allowable range, an error
will be generated and the writing operation will not be executed. If, for exam-
ple, 9998 is specified as the beginning word for writing, and three words of
data are specified, then 10000 will become the last word for writing data, and
the command will not be executed because DM 10000 is beyond the write-
able range.

2. Be careful about the configuration of the DM area, as it varies depending on
the CPU model.

11-3-14 AR AREA WRITE — WJ

Writes data to the AR area, starting from the specified word. Writing is done word

by word.
Command Format
I I I I I I I I T I I
@ |x10! x109| w J |x103 x102 x 10! x 100|x 163 x 162 x 161 x 160 * N
| | | | | | | | I | |
Node no. Header Beginning word Write data (1 word) FCS Terminator
code (0000 to 0027)

Write data
(for the number of words to write)

Response Format

@ |x10! x100| w J [x161 x 160 *k o
\ \ \ \ \
Node no. Header End code FCS Terminator
code

413



Host Link Commands Section 11-3

Parameters Write Data (Command)
Specify in order the contents of the number of words to be written to the AR area
in hexadecimal, starting with the specified beginning word.

Note If data is specified for writing which exceeds the allowable range, an error will be
generated and the writing operation will not be executed. If, for example, 26 is
specified as the beginning word for writing, and three words of data are speci-
fied, then 28 will become the last word for writing data, and the command will not
be executed because AR 28 is beyond the writeable range.

11-3-15SVREAD 1 — R#

Searches for the first instance of a TIM, TIMH(15), CNT, CNTR(12), or TTIM(87)
instruction with the specified TC number in the user’s program and reads the PV,
which assumed to be set as a constant. The SV that is read is a 4-digit decimal
number (BCD). The program is searched from the beginning, and it may there-
fore take approximately 10 seconds to produce a response.

Command Format

I I I I I I I I I I
@ |x10! x109 R # | OPl OP2 OP3 OP4|x103 x 102 x 10! x 109 * J
| | | | | | | | | |
Node no. Header Name TC number FCS Terminator
code (0000 to 0511)

Response Format

@ |x101 x10°| R # |x16! x16%|x 103 x 102 x 10! x 100 * 4
\ \ \ \ \ \ \ \
Node no. Header End code SV FCS Terminator
code
Parameters Name, TC Number (Command)

Specify the instruction for reading the SV in “Name”. Make this setting in 4 char-
acters. In “TC number”, specify the timer/counter number used for the instruc-

tion.
Instruction name Classification TC number
OP1 OoP2 OP3 OP4 range
T | M (S) TIMER 0000 to 0511
T | M H HIGH-SPEED TIMER
C N T (S) COUNTER
C N T R REVERSIBLE COUNTER
T T | M TOTALIZING TIMER
(S): Space

SV (Response)
The constant SV is returned.

Note 1. The instruction specified under “Name” must be in four characters. Fill any
gaps with spaces to make a total of four characters.

2. If the same instruction is used more than once in a program, only the first one
will be read.

3. Use this command only when it is definite that a constant SV has been set.

414



Host Link Commands

Section 11-3

11-3-16 SV READ 2 — R$

Reads the constant SV or the word address where the SV is stored. The SV that
is read is a 4-digit decimal number (BCD) written as the second operand for the
TIM, TIMH(15), CNT, CNTR(12), or TTIM(87) instruction at the specified pro-
gram address in the user’s program. This can only be done with a program of

Command Format

less than 10K.

\ \ \ \ \ \ \ \ \ \ \ \ \
@ |[x10! x100| R $ |x103 x102 x 101 x 10°| OP1 OP2 OP3 OP4 |x 103 x 102 x 10 x 100 sk .J
| | | | | | | | | | | | |
Node no.  Header Program Name Timer/counter FCS Terminator
code address (0000 to 0511)
Response Format
\ \ \ \ \ \ \ \ \ \ \
@ |x10! x109 R $ |x16! x160|OP1 OP2 OP3 OP4 |x 103 x 102 x 10 x 100 koo
| | | | | | | | |
Node no. Header End code Operand SV FCS Terminator
code
Parameters Name, TC Number (Command)

Specify the name of the instruction for reading the SV in “Name”. Make this set-
ting in 4 characters. In “TC number”, specify the timer/counter number used by

the instruction.

Instruction name Classification TC number
OP1 OP2 OP3 OP4 range
T | M (S) TIMER 0000 to 0511
T | M H HIGH-SPEED TIMER
C N T (S) COUNTER
C N T R REVERSIBLE COUNTER
T T I M TOTALIZING TIMER
(S): Space

Operand, SV (Response)
The name that indicates the SV classification is returned to “Operand”, and ei-
ther the word address where the SV is stored or the constant SV is returned to

“SV”.
Operand Classification Constant or
oP1 | op2 | oP3 | oP4 word address

C I (0] (S) IR or SR 0000 to 0511

L R (S) (S) LR 0000 to 0063

H R (S) (S) HR 0000 to 0099

A R (S) (S) AR 0000 to 0027

D M (S) (S) DM 0000 to 6655

D M >k (S) DM (indirect) 0000 to 6655

C (0] N (S) Constant 0000 to 9999

Note The instruction name specified under “Name” must be in four characters. Fill any
gaps with spaces to make a total of four characters.

415



Host Link Commands

Section 11-3

11-3-17 SV READ 3 — R%

Command Format

Reads the constant SV or the word address where the SV is stored. The SV that
is read is a 4-digit decimal number (BCD) written in the second word of the TIM,
TIMH(15), CNT, CNTR(12), or TTIM(87) instruction at the specified program ad-
dress in the user’s program. With this command, program addresses can be
specified for a program of 10K or more.

h)
\ \ \ \ \ \ \ \ \ \ \ \ | 0
@ |x10! x109 R % |x10% x10% x 103 x 102 x 101 x 109/0P1 OP2 OP3 OP4 |x 103 x 102 x 101 x 100
| | | | | | | | | \ \ \ | -
[¢
Node no. Header Program Name Timer/counter
code address (0000 to 0511)
Must be “0”
— \ \
sk .J
- | |
FCS Terminator
Response Format
\ \ \ \ \ \ \ \ \ \ \
@ |[x10! x109 R % |x16! x160/OP1 OP2 OP3 OP4 |x 103 x 102 x 101 x 100 koo
| | | | | | | | | | |
Node no. Header End code Operand SV FCS Terminator
code
Parameters Name, TC Number (Command)

Specify the name of the instruction for reading the SV in “Name”. Make this set-
ting in 4 characters. In “TC number”, specify the timer/counter number used by
the instruction.

Instruction name Classification TC number
OP1 OP2 OP3 OP4 range
T | M S) TIMER 0000 to 0511
T | M H HIGH-SPEED TIMER
C N T (S) COUNTER
C N T R REVERSIBLE COUNTER
T T I M TOTALIZING TIMER
(S): Space

Operand, SV (Response)

The name that indicates the SV classification is returned to “Operand”, and ei-
ther the word address where the SV is stored or the constant SV is returned to
“SV!).

Operand Classification Constant or
oP1 | op2 | oP3 | oPa word address
C | o (S) IR or SR 0000 to 0511
L R (S) (S) LR 0000 to 0063
H R (S) (S) HR 0000 to 0099
A R (S) (S) AR 0000 to 0027
D M (S) (S) DM 0000 to 6655
D M *k (S) DM (indirect) 0000 to 6655
C (0] N (S) Constant 0000 to 9999

Note The instruction name specified under “Name” must be in four characters. Fill any

416

gaps with spaces to make a total of four characters.



Host Link Commands Section 11-3

11-3-18 SV CHANGE 1 — W#

Searches for the first instance of the specified TIM, TIMH(15), CNT, CNTR(12),
or TTIM(87) instruction in the user’s program and changes the SV to new
constant SV specified in the second word of the instruction. The program is
searched from the beginning, and it may therefore take approximately 10 se-
conds to produce a response.

Command Format

I I I I I I | I I | I I I
@ |x10! x109 w # |OP1 OP2 OP3 OP4 |x10% x 102 x 101 x 109 x 103 x 102 x 101 x 100 kood
| | | | | | | | | | | | |
Node no. Header Name Timer/counter SV (0000 to 9999) FCS Terminator
code (0000 to 0511)

Response Format

\ \ \ \ \
@ |x10! x100 w  # |x16! x 160 koo
| | | | |
Node no. Header End code FCS Terminator
code
Parameters Name, TC Number (Command)

In “Name”, specify the name of the instruction, in four characters, for changing
the SV. In “TC number”, specify the timer/counter number used for the instruc-

tion.
Instruction name Classification TC number
OP1 OoP2 OP3 OP4 range
T | M S) TIMER 0000 to 0511
T | M H HIGH-SPEED TIMER
C N T (S) COUNTER
C N T R REVERSIBLE COUNTER
T T I M TOTALIZING TIMER
(S): Space

11-3-19 SV CHANGE 2 — W$

Changes the contents of the second word of the TIM, TIMH(15), CNT,
CNTR(12), or TTIM(87) at the specified program address in the user’s program.
This can only be done with a program of less than 10K.

Command Format

\ \ \ \ \ \ \ \ \ \ \
@ [x101 x10° w $ |x103x102 x10! x 100/ OP1 OP2 OP3 OP4 |x 103 x 102 x 10! x 10
| | | | | | | | | | | )

(
\
Node no. Header Program Name Timer/counter
code address (0000 to 0511)
( \ \ \ \ \ \ \ \
OP1 OP2 OP3 OP4 |x 103 x 102 x 101 x 100 ko4
\ \ \ \ \ \ \ \
Operand SV FCS Terminator
Response Format
\ \ \ \ \
@ |x10! x10°0 w $ |x16! x169 ko4
\ \ \ \ \
Node no. Header End code FCS Terminator

code

417



Host Link Commands

Section 11-3

Parameters

Name, TC Number (Command)

In “Name”, specify the name of the instruction, in four characters, for changing
the SV. In “TC number”, specify the timer/counter number used for the instruc-
tion.

Instruction name Classification TC number
OP1 OP2 OP3 OP4 range
T [ M (S) TIMER 0000 to 0511
T | M H HIGH-SPEED TIMER
C N T (S) COUNTER
C N T R REVERSIBLE COUNTER
T T | M TOTALIZING TIMER
(S): Space

Operand, SV (Response)
In “Operand”, specify the name that indicates the SV classification. Specify the
name in four characters. In “SV”, specify either the word address where the SV is
stored or the constant SV.

Operand Classification Constant or
oP1 | op2 | oP3 | oPa word address

C I O (S) IR or SR 0000 to 0511

L R (S) (S) LR 0000 to 0063

H R (S) (S) HR 0000 to 0099

A R (S) (S) AR 0000 to 0027

D M (S) (S) DM 0000 to 6655

D M >k (S) DM (indirect) 0000 to 6655

C (0] N (S) Constant 0000 to 9999
(S): Space

11-3-20 SV CHANGE 3 — W%

Command Format

Changes the contents of the second word of the TIM, TIMH(15), CNT,
CNTR(12), or TTIM(87) at the specified program address in the user’s program.
With this command, program address can be specified for a program of more
than 10K.

@ |x10! x109 w % |x105 x104 x 103 x 102 x 101 x 10| OP1 OP2 OP3 OP4 |x 103 x 102 x 101 x 100

\ \ \ \ \ \ \ \ \ \ \ (

Header
code

Node no.

Response Format

418

Must be “0”

Program Name Timer/counter
address (0000 to 0511)
¢ [ [ [ [ [ \ \ \
OP1 OP2 OP3 OP4 |x103 x 102 x 101 x 100 ko4
\ \ \ \ \ \ \ |
Operand SV FCS Terminator
I I I I I
@ |x10! x10° w 9% |x16! x 169 kood
| | | | |
Node no. Header End code FCS Terminator

code



Host Link Commands Section 11-3

Parameters Name, TC Number (Command)
In “Name”, specify the name of the instruction, in four characters, for changing
the SV. In “TC number”, specify the timer/counter number used for the instruc-

tion.
Instruction name Classification TC number
OP1 oP2 OP3 OP4 range
T | M (S) TIMER 0000 to 0511
T | M H HIGH-SPEED TIMER
C N T (S) COUNTER
C N T R REVERSIBLE COUNTER
T T | M TOTALIZING TIMER
(S): Space

Operand, New SV (Response)

In “Operand”, specify the name that indicates the SV classification. Specify the
name in four characters. In “SV”, specify either the word address where the SV is
stored or the constant SV.

Operand Classification Constant or
oP1 | op2 [ op3 [ oP4 word address
C | 0] S) IR or SR 0000 to 0511
L R (S) (S) LR 0000 to 0063
H R (S) (S) HR 0000 to 0099
A R (S) (S) AR 0000 to 0027
D M (S) (S) DM 0000 to 6655
D M >k (S) DM (indirect) 0000 to 6655
C o N (S) Constant 0000 to 9999
(S): Space

11-3-21 STATUS READ — MS

Reads the PC operating conditions.

Command Format

\ \ \ \
@ |x101 x10° M s koood
\ \ \ \
Node no. Header FCS Terminator
code

Response Format

\ \
@ [x10! x109 M S |x16! x160/x 163 x 162

I I I
x 161 x 169| 16 characters sk J

\ \ \ | \ [ \ \
Node no.  Header End code Status data Message FCS Terminator
code

419



Host Link Commands Section 11-3

Parameters Status Data, Message (Response)
“Status data” consists of four digits (two bytes) hexadecimal. The leftmost byte
indicates CPU operation mode, and the rightmost byte indicates the size of the
program area.

x 163 x 162

Bit 15 14 13 12 11 10 9 8
_lofof Jof [ [ ]
[ Bit Operation mode

1: Remote 1/0 98
waiting for power 0| 0| PROGRAM mode
application

1: Fatal error generated | 1 | 0 | RUN mode

This area is different
1: FALS generated 1|1 MONITOR mode from that of

STATUS WRITE.

x 161 x 169

Bt 7 6 5 4 3 2 1 0

Program area write enable

) 0: Disabled (DIP switch pin 1 is ON)
Bit Program area | 1: Epabled (DIP switch pin 1 is OFF)
6 | 5|4
1,010 32 Kbytes

“Message” indicates the FAL/FALS number generated at the point when the
command is executed. When there is no message, this is omitted.

11-3-22 STATUS WRITE — SC

Changes the PC operating mode.

Command Format

\ \ \ \ \
@ |x101 x10° s C [x161 x 160 ko4
\ \ \ \ \
Node no. Header Mode data FCS Terminator
code
Response Format
\ \ \ \ \
@ |x101 x10°0 s C |x16! x169 kood
\ \ \ \ \
Node no. Header  End code FCS  Terminator
code

420



Host Link Commands Section 11-3

Parameters Mode Data (Command)
“Mode data” consists of two digits (one byte) hexadecimal. With the leftmost two
bits, specify the PC operating mode. Set all of the remaining bits to “0”.

x 161 x 160

Bt 7 6 5 4 3 2 1 0
[oJofofofofo] [ ]

Bit Operation mode

0
0|0 PROGRAM mode
0

MONITOR mode
This area is different
1|1 RUN mode from that of STATUS
READ.

11-3-23 ERROR READ — MF

Reads and clears errors in the PC. Also checks whether previous errors have
been cleared.

Command Format

\ \ \ \ \
‘ @ |x101 x100 ™ F |x10! x 100 ‘ ko4 ‘
| | | \ \
Node no. Header  Error clear FCs Terminator
code
Response Format
\ \ \ \ \ \ \ \ \ \ \
@ |x101 x100| ™ F |x161 x 169 x 163 x 162 x 161 x 169 x 163 x 162 x 161 x 160 ko4
\ \ \ \ \ | | | | \ \
Node no. Header End code Error information Error information FCS Terminator
code (st word) (2nd word)
Parameters Error Clear (Command)

Specify 01 to clear errors and 00 to not clear errors (BCD). Fatal errors can be
cleared only when the PC is in PROGRAM mode.

421



Host Link Commands Section 11-3

Error Information (Response)
The error information comes in two words.

1st word
x 163 x 162 x 161 x 169

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0

/ BN (Data from 1/O bus)
0 1: Group 2 (data bus failure)

0 0: CPU Rack
0 1: Expansion I/O Rack 1
1 0: Expansion I/O Rack 2
1 1: Expansion I/O Rack 3

- - ON: Battery error (Error code F7)
R ON: Special I/O Unit error
ffffffff ON: System error (FAL)
””””””” ON: Memory error (Error code F1)
”””””””” ON: I/O bus error (Error code CO0)
****************** ON: PC link error
*********************** ON: Host Link Unit transmission error
************************** ON: No end instruction error (FALS)

77777777777777777777777777777 ON: System error (FALS)

2nd word
x 163 x 162 x 161 x 169

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LI [ [ fofofo]

- - - FAL, FALS No. (B CDOO to 99)
—————————————————————— ON: I/O verify error (Error code F7)
e ON: Cycle time overrun (Error code F8)
**************************** ON: I/O Unit overflow (Error code E1)
ffffffffffffffffffffffffffffff ON: 1/O setting error (Error code EQ)
ffffffffffffffffffffffffffffffff ON: Remote /O error (Error codes BO to B3)

11-3-24 FORCED SET — KS

Force sets a bit in the IR, SR, LR, HR, AR, or TC area. Once a bit has been forced
set or reset, that status will be retained until FORCED SET/RESET CANCEL
(KC) is transmitted.

Command Format

I I I I I I I I I I I
@ |[x10! x109| K S |OP1 OP2 OP3 OP4|x 103 x 102 x 10 x 100| x 101 x 100 k .J
| | | | | | | | \ \ \
Node no.  Header Name Word Bit FCS  Terminator
code address
Response Format
I I I I I
@ |x10! x100| K S |x16! x 160 ko
| | | \ \
Node no. Header End code FCSs Terminator
code

422



Host Link Commands Section 11-3

Parameters Name, Word address, Bit (Command)
In “Name”, specify the area (i.e., IR, SR, LR, HR, AR, or TC) that is to be forced
set. Specify the name in four characters. In “Word address”, specify the address
of the word, and in “Bit” the number of the bit that is to be forced set.
Name Classification Word address setting Bit
OP1 | OP2 | OP3 | OP4 range
C I (0] (S) IR or SR 0000 to 0511 00 to 15 (decimal)
L R (S) (S) LR 0000 to 0063
H R (S) (S) HR 0000 to 0099
A R (S) (S) AR 0000 to 0027
T I M (S) Completion Flag (timer) 0000 to 0511 Always 00.
T I M H Completion Flag (high-speed timer)
Cc N T (S) Completion Flag (counter)
C N T R Completion Flag (reversible counter)
T T | M Completion Flag (totalizing timer)
(S): Space

Note 1. The area specified under “Name” must be in four characters. Fill any gaps
with spaces to make a total of four characters.

2. Words 253 to 255 cannot be set when the CIO Area is specified.

11-3-25 FORCED RESET — KR

Command Format

Force resets a bit in an IR, SR, LR, HR, AR, or TC area. Once a bit has been
forced set or reset, that status will be retained until FORCED SET/RESET CAN-
CEL (KC) is transmitted.

\ \ \ \ \ \ \ \ \ \ \
‘ @ |x101! x100| K R ‘OPl OP2 OP3 OP4 |x 103 x 102 x 101 x 100| x 10! x 100 ‘ ko4 ‘
\ \ \ \ \ \ \ \ \ | |
Node no. Header Name Word Bit FCS Terminator
code address
Response Format
\ \ \ \ \
@ |x10! x100| K R |x16! x 160 kood
\ \ \ | \
Node no. Header End code FCS Terminator
code
Parameters Name, Word address, Bit (Command)
In “Name”, specify the area (i.e., IR, SR, LR, HR, AR, or TC) that is to be forced
reset. Specify the name in four characters. In “Word address”, specify the ad-
dress of the word, and in “Bit” the number of the bit that is to be forced reset.
Name Classification Word address setting Bit
OP1 | OP2 | OP3 | OP4 range
C [ 0 (S) IR or SR 0000 to 0511 00 to 15 (decimal)
L R (S) (S) LR 0000 to 0063
H R (S) (S) HR 0000 to 0099
A R (S) (S) AR 0000 to 0027
T I M (S) Completion Flag (timer) 0000 to 0511 Always 00.
T I M H Completion Flag (high-speed timer)
C N T (S) Completion Flag (counter)
C N T R Completion Flag (reversible counter)
T T | M Completion Flag (totalizing timer)
(S): Space

423



Host Link Commands

Section 11-3

Note 1. The area specified under “Name” must be in four characters. Fill any gaps

with spaces to make a total of four characters.

2. Words 253 to 255 cannot be set when the CIO Area is specified.

11-3-26 MULTIPLE FORCED SET/RESET — FK

Command Format

Force sets, force resets, or cancels the status of the bits in one word in the IR,
SR, LR, HR, AR, or TC area.

\ \ \ \ \ \ \ \ (
@ |[x10! x109 F K |OP1 OP2 OP3 OP4|x103 x 102 x 101 x 100
\ \ \ \ \ \ \ \ )
Node no. Header Name Word
code address
) )
T 7 Forded setfreset/éancel Hafa I T ] ! * ! o
x160‘x160‘x160‘x160‘x160‘x160‘ X 160 x 16° | |
¢
T T T T [ [ [ [ FCS Terminator
Bit 15 14 13 12 11 10 1 0
Response Format
\ \ \ I \
@ |x10! x109| F K |x161 x 160 ko4
\ \ \ \ \
Node no. Header End code FCS Terminator
code
Parameters Name, Word address (Command)
In “Name”, specify the area (i.e., IR, SR, LR, HR, AR, or TC) that is to be forced
set or reset. Specify the name in four characters. In “Word address”, specify the
address of the word that is to be forced set or reset.
Name Classification Word address setting Bit
OP1 | OP2 | OP3 | OP4 range
C I (0] (S) IR or SR 0000 to 0511 00 to 15 (decimal)
L R (S) (S) LR 0000 to 0063
H R (S) (S) HR 0000 to 0099
A R (S) (S) AR 0000 to 0027
T I M (S) Completion Flag (timer) 0000 to 0511 Always 00.
T I M H Completion Flag (high-speed timer)
C N T (S) Completion Flag (counter)
C N T R Completion Flag (reversible counter)
T T | M Completion Flag (totalizing timer)

424

(S): Space

Note Words 253 to 255 cannot be set when the CIO Area is specified.



Host Link Commands

Section 11-3

Forced set/reset/cancel Data (Command)

A separate hexadecimal digit is used to specify the desired process for each bit
in the specified word, bits 00 to bit 5. The bits that are merely set or reset may
change status the next time the program is executed, but bits that are force-set
or force-reset will maintain the forced status until it is cleared. If the item speci-
fied under “Name” is a timer or counter, the status of the Completion Flag can be
force-set or force-reset using bit 15, and all other bits will be ignored. Only force-
setting and force-resetting are possible for timers/counters.

Bits 00 to 15 Setting
00 Bit status not changed
02 Reset
03 Set
04 Forced-reset
05 Forced-set
08 Forced set/reset status cancel

Note The item specified under “Name” must be in four characters. Fill any gaps with

spaces to make a total of four characters.

11-3-27 FORCED SET/RESET CANCEL — KC

Command Format

Response Format

Cancels all forced set and forced reset bits (including those set by FORCED
SET, FORCED RESET, and MULTIPLE FORCED SET/RESET). If multiple bits
are set, the forced status will be cancelled for all of them. It is not possible to can-
cel bits one by one using KC.

11-3-28 PC MODEL READ — MM

Command Format

Response Format

\ \ \ \
@ |x101 x100) Kk cC koood
\ \ \ \
Node no. Header FCS Terminator
code
I I I I I
@ |[x10! x100| K C |x16! x16° >k o
Node no. Header End code FCS Terminator
code
Reads the model type of the PC.
\ \ \ \
@ |x101 x100 M ™ kood
\ \ \ \
Node no.  Header FCS Terminator
code
I I I I I I
@ |x101 x1000 M M [x161 x16°|x 161 x 160 koood
| | | | | |
Node no. Header End code Model FCs Terminator
code code

425



Host Link Commands

Parameters

11-3-29 TEST—TS

Command Format

Response Format

Parameters

Section 11-3
Model Code
“Model code” indicates the PC model in two digits hexadecimal.
Model code Model

01 C250

02 C500

03 C120

OE C2000

10 C1000H

11 C2000H/CQM1

12 C20H/C28H/C40H/C200H/C200HS

20 CVv500

21 CV1000

22 CVv2000

40 CVM1-CPUOL-E

41 CVM1-CPU11-E

Returns, unaltered, one block of data transmitted from the host computer.

\ \ \ - \ \ \ \
@ |x10! x100| T S 122 characters max. K o
| | | \ B | \ \
Node no. Header Characters FCS Terminator
code
\ \ \ \ - \ \ \ \
@ |x10! x100| T S 122 characters max. koood
\ \ | \ B \ | \ \
Node no.  Header Characters FCS Terminator
code

Characters (Command, Response)

For the command, this setting specifies any characters other than the carriage
return (CHR$(13)). For the response, the same characters as specified by the
command will be returned unaltered if the test is successful.

11-3-30 PROGRAM READ — RP

Command Format

Response Format

426

Reads the contents of the PC user’s program area in machine language (object
code). The contents are read as a block, from the beginning to the end.

\ \ [ \
@ |x10! x100| R P ko
\ \ \ \
Node no. Header FCS Terminator
code

I I I I - I I
@ |x10! x1000 R P |x161 x160|x 161 x 160 |
\ \ \ \ _ \ \
Node no.  Header End code 1 byte FCS Terminator
code

Program (for entire UM area)



Host Link Commands Section 11-3

Parameters Program (Response)
The program is read from the entire program area.

Note To stop this operation in progress, execute the ABORT (XZ) command.

11-3-31 PROGRAM WRITE — WP

Writes to the PC user’s program area the machine language (object code) pro-
gram transmitted from the host computer. The contents are written as a block,
from the beginning.

Command Format

\ \ \ B \ \
@ |x101 x10° w P [x16% x 160 koood
\ \ \ _ \ \
Node no.  Header 1 byte FCS Terminator
code

Program (Up to maximum memory size)

Response Format

\ \ \ \ \
@ |x10! x100] w P |x16! x160 ko4
\ \ \ | |
Node no. Header End code FCs Terminator
code
Parameters Program ((Command)

Program data up to the maximum memory size.

11-3-32 1/0 TABLE GENERATE — Ml

Corrects the registered I/O table to match the actual I/O table.

Command Format

I I I I
@ |x10! x100| M I ko4
\ \ \ \
Node no. Header FCS Terminator
code
Response Format
\ \ \ [ \
@ |x10! x100| M I [x161 x 169 ko4
\ \ \ \ \
Node no. Header End code FCS Terminator
code

11-3-33 COMPOUND COMMAND — QQ

Registers at the PC all of the bits, words, and timers/counters that are to be read,
and reads the status of all of them as a batch.

Registering Read Information
Register the information on all of the bits, words, and timers/counters that are to
be read.

427



Host Link Commands Section 11-3
Command Format
\ \ \ \ \ \ \ \ \ \ ‘
@ xlOl‘xloo Q | Q | M | R OP1‘0P2‘0P3‘OP4 x103‘x102‘x101‘x100 OPl‘OPZ ,
NV
Node no.  Header Sub-header Read area Read word address Data Data break
code code format
Single read information
Total read information (128 max.)
p)
OP1 ‘OPZ ‘OP3 | OP4 | x 103‘x 102‘ X 101‘x 100 OPl‘ oP2 | *k | o
) ’ \ \ \ \ \ \ \ | \
Data break Read area Read word address Data FCS Terminator
format
Single read information
Total read information (128 max.)
Response Format
@ xlOl‘xloo Q Q| M R x161‘x160 k4
\ \ \ \ \ |
Node no. Header Sub-header End code FCS Terminator
code code
Parameters Read Area (Command)
Specify in four-character code the area that is to be read. The codes that can be
specified are listed in the following table.
Read Word address, Data Format (Command)
Depending on the area and type of data that are to be read, the information to be
read is as shown in the following table. The “read data” is specified in four digits
BCD, and the data format is specified in two digits BCD.
Area classification Read data Read area Read word Data format
IR or SR Bit Cl0O(S) 0000 to 0255 00 to 15 (decimal)
Word “CH”
LR Bit LR (S) (S) 0000 to 0063 00 to 15 (decimal)
Word “CH”
HR Bit HR (S) (S) 0000 to 0099 00 to 15 (decimal)
Word “CH”
AR Bit AR(S) (S) 0000 to 0027 00 to 15 (decimal)
Bit “CH”
Timer Completion Flag TIM(S) 0000 to 0511 2 characters other than “CH”
PV “CH”
High-speed timer Completion Flag TIMH 0000 to 0511 2 characters other than “CH”
PV “CH”
Counter Completion Flag CNT(S) 0000 to 0511 2 characters other than “CH”
PV “CH”
Reversible counter Completion Flag CNTR 0000 to 0511 2 characters other than “CH”
PV “CH”
Totalizing timer Completion Flag TTIM 0000 to 0511 2 characters other than “CH”
PV “CH”
DM Word DM (S)(S) 0000 to 6655 Any 2 characters

428

(S): Space




Host Link Commands Section 11-3

Data Break (Command)

The read information is specified one item at a time separated by a break code
(,). The maximum number of items that can be specified is 128. (When the PV of
a timer/counter is specified, however, the status of the Completion Flag is also
returned, and must therefore be counted as two items.)

Batch Reading

The bit, word, and timer/counter status is read as a batch according to the read
information that was registered with QQ.

Command Format

\ \ \ \ \
@ |x101 x10°0 @ Q I R *od
\ \ \ \ \

Node no. Header  Sub-header FCS Terminator
code code

Response Format

)

\ \ \ \ \ \ \ (
@ x101x10° @ Q@ | 1 R |x16!x16% OV |x10% x 102 x 101 x 10°
\ \ \ \ \ \ \ )
Node no. Header  Sub-header End code Timer/Counter Data break
code code If PV is specified the sta-

tus of the Completion Flag
is also returned.

( I I I I \
ON/ 3y 162 1y 160 .
OFF x16‘x16‘x16‘x16 | >k | .J
(
T Word data FCS Terminator
Bit data IR, SR, LR, HR,
ON/OFF AR, DM
Parameters Read Data (Response)

Read data is returned according to the data format and the order in which read
information was registered using QQ. If “Completion Flag” has been specified,
then bit data (ON or OFF) is returned. If “Word” has been specified, then word
data is returned. If “PV” has been specified for timers/counters, however, then
the PV is returned following the Completion Flag.

Data Break (Response)
The break code (, ) is returned between sections that are read.

11-3-34 ABORT — XZ

Aborts the Host Link operation that is currently being processed, and then en-
ables reception of the next command. The ABORT command does not receive a
response.

Command Format

\ \ \ \
@ |x10! x100| X z ko4
\ \ \ |
Node no.  Header FCS Terminator
code

429



Host Link Commands Section 11-3

11-3-35 INITIALIZE — 3k3k

Initializes the transmission control procedure of all the PCs connected to the
host computer. The INITIALIZE command does not use node numbers or FCS,
and does not receive a response.

Command Format

11-3-36 Undefined Command — IC

This response is returned if the header code of a command cannot be decoded.
Check the header code.

Response Format

\ \ \ \
@ |x10! x100| | C ko4

Node no. Header FCS Terminator
code

430



Host Link Errors

Section 11-4

11-4 Host Link Errors

These error codes are received as the response code (end code) when a com-
mand received by the C200HS from a host computer cannot be processed. The
error code format is as shown below.

\ \ \
@ X X X X X
\ \ \

X X X |k d

Node Header
no. code

End code

FCS Terminator

The header code will vary according to the command and can contain a subcode
(for composite commands).

End Contents Probable cause Corrective measures
code

00 Normal completion

01 Not executable in RUN mode The command that was sent can- Check the relation between the
not be executed when the PCisin | command and the PC mode.
RUN mode.

02 Not executable in MONITOR mode | The command that was sent can-
not be executed when the PC is in
MONITOR mode.

0B Not executable in PROGRAM The command that was sent can- This code is not presently being

mode not be executed when the PCisin | used.
PROGRAM mode.

13 FCS error The FCS is wrong. Either the FCS | Check the FCS calculation method.
calculation is mistaken or there is If there was influence from noise,
adverse influence from noise. transfer the command again.

14 Format error The command format is wrong. Check the format and transfer the

command again.

15 Entry number data error The areas for reading and writing Correct the areas and transfer the
are wrong. command again.

16 Command not supported The specified command does not Check the command code.
exist.

18 Frame length error The maximum frame length was Divide the command into multiple
exceeded. frames.

19 Not executable Items to read not registered for Execute QQ to register items to
composite command (QQ). read before attempting batch read.

23 User memory write-protected Pin 1 on C200HS DIP switch is ON. | Turn OFF pin 1 to execute.

A3 Aborted due to FCS error in trans- | The error was generated while a Check the command data and try

mit data command extending over more the transfer again.

A4 Aborted due to format error in :hgn one frame was being execu-

transmit data ed.
A5 Aborted due to entry number data Note: The data up to that point has
error in transmit data alreaqu been written to the ap-
propriate area of the CPU.
A8 Aborted due to frame length error
in transmit data
Other | --- Influence from noise was received. | Transfer the command again.

Power Interruptions

The following responses may be received from the C200HS if a power interrup-

tion occurs, including momentary interruptions. If any of these responses are re-
ceived during or after a power interruption, repeat the command.

Undefined Command Response

@O0IC4A*

No Response

If no response is received, abort the last command and resend.

431




C200HS Racks

Appendix A
Standard Models

Name

Specifications

Model number

‘ Conforms to EC directives

24 VDC

Backplane (same for all Racks) 10 slots C200H-BC101-V2
8 slots C200H-BC081-V2
5 slots C200H-BC051-V2
3 slots C200H-BC031-V2
CPU Rack |CPU 100 to 120/200 to 240 VAC w/built-in | — C200HS-CPUO1-E
power supply Conforms to EC C200HS-CPUO1-EC
directives (see note)
RS-232C port C200HS-CPU21-E
RS-232C port and C200HS-CPU21-EC
conforms to EC
directives
RS-232C port and C200HS-CPU31-E
SYSMAC NET/
SYSMAC LINK
supported
24 VDC w/built-in power supply Conforms to EC C200HS-CPUO3-E
directives (see note)
RS-232C port C200HS-CPU23-E
RS-232C port and C200HS-CPU33-E
SYSMAC NET/
SYSMAC LINK
supported
Memory Cassette EPROM Chip; 27256; 150 ns ROM-JD-B
EPROM Chip; 27512; 150 ns ROM-KD-B
EEPROM,; 16K words C200HS-ME16K
EPROM; 16K words C200HS-MP16K
Expansion | 1/O Power Supply 100 to 120/200 to 240 VAC (switchable) C200H-PS221
/O Racks | Unit Conforms to EC C200H-PS221-C
directives
24VDC Conforms to EC C200H-PS211
directives (see note)
I/O Connecting 30cm C200H-CN311
Cable (maX. total 70 cm C200H-CN711
length: 12 m)
2m C200H-CN221
5m C200H-CN521
10m C200H-CN131
Slave Remote I/O Slave 100 to 120/200 to 240 VAC (switchable) APF/ C200H-RT001-P
Racks Unit 24 VDC PCF [ C200H-RTO02-P
100 to 120/200 to 240 VAC (switchable) Wired | C200H-RT201

C200H-RT201-C

C200H-RT202

Note: Units with lot numbers CI1JZ5 (Dec. 1995) or later.

433




Standard Models

Appendix A

C200H Standard /O Units

(switchable)

Name Specifications Model number
Input Units AC Input Unit 8 pts 100 to 120 VAC C200H-1A121
16 pts 100 to 120 VAC C200H-1A122/122V
8 pts 200 to 240 VAC C200H-1A221
16 pts 200 to 240 VAC C200H-1A222/222V
DC Input Unit 8 pts No-voltage contact; NPN C200H-1D001
8 pts No-voltage contact; PNP C200H-1D002
8 pts 12 to 24 VDC C200H-ID211
16 pts 24VDC C200H-1D212
AC/DC Input Unit 8 pts 12 to 24 VAC/DC C200H-IM211
16 pts 24 VAC/DC C200H-IM212
Interrupt Input Unit? | 8 pts 12 to 24 VDC C200HS-INTO1
Output Units | Relay Output Unit 8 pts 2 A, 250 VAC/24 VDC (For resistive loads) C200H-0C221
12 pts 2 A, 250 VAC/24 VDC (For resistive loads) C200H-0C222
16 pts 2 A, 250 VAC/24 VAC (For resistive loads) C200H-0C2252: 3
5 pts 2 A, 250 VAC/24 VDC (For resistive loads) C200H-0C223
Independent commons
8 pts 2 A, 250 VAC/24 VDC (For resistive loads) C200H-0C224
Independent commons
12 pts 2 A, 250 VAC/24 VDC (For resistive loads) C200H-0C222V
16 pts 2 A, 250 VAC/24 VDC (For resistive loads) C200H-0C226
8 pts 2 A, 250 VAC/24 VDC (For resistive loads) C200H-0C224V
Independent commons
Triac Output Unit 8 pts 1A, 120 VAC C200H-OA121-E
8 pts 1.2 A, 120 VAC C200H-OA122-E
8 pts 1A, 200 VAC C200H-0A221
12 pts 0.3 A, 250 VAC C200H-OA222V
12 pts 0.5 A, 250 VAC C200H-OA224
Transistor Output 8 pts 1A, 121048 VDC C200H-OD411
Unit 12 pts 0.3 A, 24 VDC C200H-0D211
16 pts 0.3A,24VDC C200H-0D2122
8 pts 2.1 A, 24VDC C200H-0OD213
8 pts 0.8 A, 24 VDC,; source type (PNP); with load C200H-0OD214
short protection
8 pts 5 to 24 VDC,; source type (PNP) C200H-OD216
12 pts 5 to 24 VDC,; source type (PNP) C200H-0OD217
16 pts 1.0 A, 24 VDC; source type (PNP); with load C200H-OD21A
short protection
Analog Timer Unit 4 timers 0.1to 1 s/1to 10 s/10 to 60 s/1 min to 10 min C200H-TMO001

16 output pts

Variable Resistor Connector w/lead wire (2 m) for 1 external resistor C4K-CN223
Connector
Standard B7A Interface Units 16 input pts Connects to B7A Link Terminals. C200H-B7AI1

C200H-B7A01

Note 1. If the Interrupt Input Unit is mounted on an Expansion I/O Rack, the interrupt function cannot be used and the Inter-
rupt Input Unit will be treated as an ordinary 8-point Input Unit. Moreover, Interrupt Input Units cannot be used on
Slave Racks. In addition, Interrupt Input Units require that a version 2 (i.e., model numbers with a “-V2” suffix) Back-
plane be used at the CPU Rack. If an earlier version Backplane is mounted, the interrupt function cannot be used.

2. Transistor Output Unit C200H-OD212 and Contact Output Unit C200H-OC225 must be mounted to either a C200H-
BC031-V1/V2, C200H-BC051-V1/V2, C200H-BC081-V1/V2, or C200H-BC101-V1/V2 Backplane.

3. The C200H-OC225 might overheat if more than 8 outputs are turned ON simultaneously.

434




Standard Models Appendix A

C200H Group-2 High-density I/O Units

Name Specifications Model number
DC Input Unit 32 pts. 24 VDC C200H-1D216
C200H-1D218
64 pts. 24 VDC C200H-1D217
C200H-1D219
Transistor Output Unit | 32 pts. 16 mA 4.5 VDC to 100 mA 26.4 VDC C200H-0OD218
0.5 A (5A/Unit) 24 VDC C200H-0OD21B
64 pts. 16 mA 4.5 VDC to 100 mA 26.4 VDC C200H-0OD219
C200H Group-2 B7A Interface Units

Name Specifications Model number

Group-2 B7A Interface Units | 32 input pts Connects to B7A Link C200H-B7A12

Terminals.

32 output pts C200H-B7A02

16 input pts and 16 output points C200H-B7A21

C200H-B7A22

32 input pts and 32 output points

C200H Special I/0O Units

All of the following are classified as Special I/O Units except for the ASCII Unit, which is an Intelligent I/O Unit.

Name Specifications Model number
High-den- | DC Input Unit | 32 pts 5 VDC (TTL inputs); with high-speed input function C200H-ID501
f}'%t'slo 32 pts 24 VDC; with high-speed inputs C200H-ID215
Transistor 32 pts 0.1 A, 24 VDC (usable as 128-point dynamic output unit) | C200H-OD215
Output Unit
32 pts 35 mA, 5 VDC (TTL outputs) (usable as 128-point dy- | C200H-OD501
namic output unit)
DC Input/ 16 input/ 12-VDC inputs; with high-speed input function C200H-MD115
Transistor 16 output pts | 0.1 A, 12-VDC outputs (usable as 128-point dynamic in-
Output Unit put unit)
16 input/ 24-VDC inputs; with high-speed input function C200H-MD215
16 output pts | 0.1 A, 24-VDC outputs (usable as 128-point dynamic in-
put unit)
16 input/ 5 VDC (TTL inputs); with high speed input function 35 | C200H-MD501
16 output pts | mA, 5 VDC Output (TTL outputs) (usable as 128-point
dynamic input unit)
Analog I/0 | Analog Input | 4 to 20 mA, 1 to 5/0 to 10 V (switchable); 4 inputs C200H-ADO001
Units Unit 410 20 mA, 1 to 5/0 to 10/~10 to 10 V (switchable); 8 inputs C200H-AD002
Analog 410 20 mA, 1to 5/0 to 10 V (switchable); 2 outputs C200H-DA001
Output Unit
Temperature Sensor Unit Thermocouple (K(CA) or J(IC)) (switchable); 4 inputs C200H-TS001
Thermocouple (K(CA) or L(Fe-CuNi)) (switchable); 4 inputs C200H-TS002
Platinum resistance thermometer (JPt) (switchable), DIN standards; | C200H-TS101
4 inputs
Platinum resistance thermometer (Pt) (switchable); 4 inputs C200H-TS102
Temperature Control Unit Thermocou- | Transistor output C200H-TCO001
ple Voltage output C200H-TC002
Current output C200H-TC003
Pt resis- Transistor output C200H-TC101
tance ther-
mometer Voltage output C200H-TC102
Current output C200H-TC103

435




Standard Models

Appendix A

Name Specifications Model number
Heat/Cool Temperature Thermocou- | Transistor output C200H-TV001
Control Unit ple
Voltage output C200H-TV002
Current output C200H-TV003
Pt resis- Transistor output C200H-TV101
tance ther-
mometer Voltage output C200H-TV102
Current output C200H-TV103

PID Control Unit

Position Control Unit

Transistor output C200H-PIDO1

Voltage output C200H-PID02

Current output C200H-PID03

1 axis Pulse output; speeds: 1 to 99,990 pps C200H-NC111

1 axis Directly connectable to servomotor driver; compatible | C200H-NC112
with line driver; speeds: 1 to 250,000 pps

2 axis 1 to 250000. pps. 53 pts per axis C200H-NC211

Cam Positioner Unit

Detects angles of rotation by means of a resolver and provides ON and
OFF outputs at specified angles. A maximum of 48 cam outputs (16 ex-
ternal outputs and 32 internal outputs) maximum are available.

C200H-CP114

High-speed Counter Unit 1 axis Pulse input; counting speed: 50 kcps; C200H-CT001-V1
5VDC/12 VDC/24 VDC
1 axis Pulse input; counting speed: 75 kcps; C200H-CT002
RS-422 line driver
ASCII Unit EEPROM C200H-ASCO02

1/D Sensor Unit

Local application, electromagnetic coupling

C200H-IDS01-V1

Remote application, microwave transmissions

C200H-IDS21

Read/Write Electromagnetic type V600-H series
Head Microwave type V620-H series
Data Carrier | SRAM type for V600-H series. V600-DOORONO
(see note) EEPROM type for V600-H series. V600-DOOIPOO
Voice Unit 60 messages max.; message length: 32, 48, or 64 s (switchable) C200H-0V001
Connecting RS-232C C200H-CN224
Cable
Fuzzy Logic Unit Up to 8 inputs and 4 outputs. (/O to and from specified data area words) | C200H-FZ001
Fuzzy Available on either 3.5” or 5.25” floppy disks. C500-SU981-E
Support
Software

Note For Read/Write Head and Data Carrier combinations, refer to the V600 FA ID System R/W Heads and EE-
PROM Data Carriers Operation Manual and Supplement or V600 FA ID System R/W Heads and SRAM
Data Carriers Operation Manual and Supplement.

C200H Link Units

Name Specifications Model number
Host Link Unit Rack-mounting C200H only APF/PCF C200H-LK101-PV1
RS-422 C200H-LK202-V1
RS-232C C200H-LK201-V1
PC Link Unit Multilevel RS-485 C200H-LK401
Remote /O Master Unit Up to two per PC; connectable to up to 5 APF/PCF C200H-RMO001-PV1
Slaves per PC total
Wired C200H-RM201

436



Standard Models

Appendix A

SYSMAC LINK Unit/SYSMAC NET Link Unit

The SYSMAC LINK Units and SYSMAC NET Link Unit can only be used with the C200HS-CPU31-E and C200HS-

CPUSS-E CPUs.

Name

Specifications

Model number

SYSMAC LINK Unit

Wired via coaxial cable.
Bus Connection Unit required separately. One
C1000H-CEO001 F Adapter included.

C200HS-SLK22

Wired via optical fiber cable.

Bus Connection Unit required separately. An Optical Fiber
Cable Bracket must be used to support an optical cable con-
nected to the SYSMAC LINK Unit.

C200HS-SLK12

Terminator One required for each node at ends of System C1000H-TERO1
Attachment Stirrup Provided with SYSMAC LINK Unit C200H-TLO01
F Adapter C1000H-CEO01

F Adapter Cover

C1000H-COVO01

Communications
Cable

Coaxial cables Manufactured by Hitachi

ECXF5C-2V

Manufactured by Fujigura

5C-2v

ply Unit

Auxiliary Power Sup-

Supplies backup power to either one or two SYSMAC LINK
Units. One C200H-CN111 Power Connecting Cable included.

C200H-APS03

SYSMAC NET Link Unit

Bus Connection Unit required separately. An Optical Fiber
Cable Bracket must be used to support an optical cable con-
nected to the SYSMAC NET Link Unit.

C200HS-SNT32

Power Supply Adapt- | Required when supplying power from Central | For 1 Unit C200H-APSO01

er Power Supply For 2 Units | C200H-APS02

Power Cable Connects Power Supply Adapter and SYS- For 1 Unit C200H-CN111

MAC NET Link Unit For 2 Units | C200H-CN211

Bus Connection Unit Connects SYSMAC LINK Unit or SYSMAC For 1 Unit C200H-CEO001
NET Link Unit to C200HS-CPU31-E/CPU33-E 52 Units | C200H-CE002

Optional Products

Name

Specifications

Model number

1/0 Unit Cover

Cover for 10-pin terminal block

C200H-COV11

Terminal Block Cover

Short protection for 10-pin terminal block

C200H-COVO02

Short protection for 19-pin terminal block

C200H-COV03

Connector Cover

Protective cover for unused I/0 Connecting Cable connectors

C500-COVv02

Space Unit Used for vacant slots C200H-SP001
Battery Set For C200H RAM Memory Unit only C200H-BAT09
Relay 24 VDC G6B-1174P-FD-US DC24

Backplane Insulation Plate

For 10-slot Backplane

C200H-ATTAL

For 8-slot Backplane

C200H-ATT81

For 5-slot Backplane

C200H-ATT51

For 3-slot Backplane

C200H-ATT31

1/0O Bracket

For 10-slot Backplane

C200H-ATTA3

For 8-slot Backplane

C200H-ATT83

For 5-slot Backplane

C200H-ATT53

For 3-slot Backplane

C200H-ATT33

Note 1. When ordering, specify the model name (any component of which is not sold separately).
2. Order the press-fit tool from the manufacturer.

437




Standard Models

Appendix A

Mounting Rails and Accessories

Name Specifications Model number
DIN Track Mounting Bracket | 1 set (2 included) C200H-DINO1
DIN Track Length: 50 cm; height: 7.3 mm PFP-50N
Length: 1 m; height: 7.3 mm PFP-100N
Length: 1 m; height: 16 mm PFP-100N2
End Plate PFP-M
Spacer PFP-S

Link Adapters

Name

Specifications

Model number

Link Adapter

3 RS-422 connectors

3G2A9-AL001

3 optical connectors (APF/PCF)

3G2A9-AL002-PE

3 optical connectors (PCF)

3G2A9-AL002-E

1 connector each for APF/PCF, RS-422, and RS-232C

3G2A9-AL004-PE

1 connector each for PCF, RS-422, and RS-232C

3G2A9-AL004-E

1 connector each for APF/PCF and APF

3G2A9-AL005-PE

1 connector each for PCF and AGF

3G2A9-AL005-E

1 connector for APF/PCF; 2 for AGF

3G2A9-AL006-PE

1 connector for PCF; 2 for AGF

3G2A9-AL006-E

O/E converter; 1 connector for RS-485, 1 connector each for APF/PCF

B500-AL0O07-PE

Used for on-line removal of SYSMAC NET Link Units from the SYSMAC
NET Link System, SYSMAC NET Optical Link Adapter 3 connectors for

APF/PCF.

B700-ALOO1

SYSMAC BUS/SYSMAC WAY Optical Fiber Products

Plastic Clad Optical Fiber Cable/All Plastic Optical Fiber Cable

Name

Specifications

Model number

(indoor)

Plastic Clad Optical Fiber Cable

0.1 m, w/connectors

1 m, w/connectors

2 m, w/connectors

3 m, w/connectors

5 m, w/connectors

10 m, w/connectors

20 m, w/connectors

30 m, w/connectors

40 m, w/connectors

50 m, w/connectors

Ambient temp:

—10° to 70°C

3G5A2-0OF011

3G5A2-OF101

3G5A2-0OF201

3G5A2-0OF301

3G5A2-0OF501

3G5A2-0OF111

3G5A2-0OF211

3G5A2-0OF311

3G5A2-0OF411

3G5A2-0OF511

5 and 100 m, or in increments of 200 m or 500 m.

Cable only; order desired length between 1 B500-OF002
and 200 m in increments of 1 m.
All Plastic Optical Fiber Cable Cable only; order desired length in 5 m increments between | B500-PF002

Optical Connectors A

Two optical connectors (brown) for APF (10 m max.)

3G5A2-CO001

Optical Connectors B

Two optical connectors (black) for APF (8 to 20 m)

3G5A2-C0O002

438




Standard Models Appendix A
Name Specifications Model number
All Plastic Optical Fiber Cable Set | 1-m cable with an Optical Connector A connected to each 3G5A2-PF101
end
Optical Fiber Processing Kit Accessory: 125-mm nipper (Muromoto Tekko’s 550M) for 3G2A9-TL101
APF
H-PCFE
Name Specifications Model number
Optical Fiber Cable 10 m, black Two-core cable S3200-HCCB101
SYSMAC BUS, SYSMAC WAY 50 m. black S3200-HCCB501
100 m, black S3200-HCCB102
500 m, black S3200-HCCB502
1000 m, black S3200-HCCB103

10 m, orange

50 m, orange

100 m, orange

500 m, orange

1000 m, orange

S3200-HCCO101

S3200-HCCO501

S3200-HCCO102

S3200-HCCO502

S3200-HCCO103

C200H-RM001-PV1
C200H-RT001/RT002-P
C500-RM001-(P)V1
C500-RTO01/RT002-(P)V1
B500-JJC)(-P)

for Remote I/O Mas-
ter, Remote 1/0
Slave, Host Link
Unit, and Link
Adapter

10 m, black Two-core cable S3200-HBCB101
50 m, black S3200-HBCB501
100 m, black S3200-HBCB102
500 m, black S3200-HBCB502
1000 m, black S3200-HBCB103
Optical Fiber Cable Connector SYSMAC BUS: Half-lock connector | S3200-COCH82

Note 1.

Optical fiber cables must be prepared and connected by specialists.

2. If the user prepares and connects optical fiber cables, the user must take a seminar held under the aus-
pices of Sumitomo Electric Industries, Ltd. and obtain a proper certificate.

3. The Optical Power Tester, Head Unit, Master Fiber Set, and Optical Fiber Assembling Tool are required
to connect optical fiber cables.

Optical Fiber Assembling Tool

Name

Specifications

Model number

Optical Fiber Assembling Tool

NET.

Used to connect H-PCF and crimp-cut connectors for opti-
cal transmission systems such as the SYSMAC C- and
CV-series SYSMAC BUS, SYSMAC LINK and SYSMAC

S$3200-CAK1062

Note 1. Optical fiber cables must be prepared and connected by specialists.

2. The Optical Power Tester, Head Unit, Master Fiber set, and Optical Fiber Assembling Tool are required
to connect optical fiber cables.

439



Standard Models Appendix A

Optical Power Tester

Name Specifications Head Unit Model number
Optical Power Tester (see note) SYSMAC BUS: S3200-CAT2822 | S3200-CAT2820
(provided with a connector adapter, C200H-RM001-PV1 (provided with the
light source unit, small single-head C200H-RT001/RT002-P Tester)
plug, hard case, and AC adapter) C500-RM001-(P)V1
C500-RT001/RT002-(P)V1

Note: There is no difference between the light source unit and connector adapter for the Head Unit and those for
the Optical Power Tester.

Head Unit
Name Specifications Model number
Head Unit (a set consisting of light | SYSMAC BUS: S3200-CAT2822
source unit and connector adapter) C200H-RMO001-PV1
(see note) C200H-RT001/RT002-P
SYSMAC NET: S3200-CAT3202

S3200-LSU03-V1/LSUO3-01E
C500-SNT31-V4
3G8FX-TM111

3G8SX-TM111

Note: Use a proper Head Unit model for the optical module to be used. If two types of optical modules (unit type
and board type) are used, order an Optical Power Tester plus a proper Head Unit model.

Master Fiber Set

Name Specifications Model number
Master Fiber Set (1 m) S3200-CAT3202 (SYSMAC NET, NSB, NSU, Bridge) S3200-CAT3201
S3200-CAT2002/CAT2702 (SYSMAC NET, SYSMAC S3200-CAT2001H
LINK)
S3200-CAT2822 (SYSMAC BUS) S3200-CAT2821

Note 1. The Master Fiber Set is used in combination with the Optical Power Tester to check the optical levels of
optical fiber cables connected to optical fiber cable connectors.

2. Optical fiber cables must be prepared and connected by specialists.

3. The Optical Power Tester, Head Unit, Master Fiber set, and Optical Fiber Assembling Tool are required
to connect optical fiber cables.

SYSMAC LINK/SYSMAC NET Link Optical Fiber Products

Optical Fiber Cables for SYSMAC LINK and SYSMAC NET Link Systems

Use hard-plastic-clad quartz optical fiber (H-PCF) cables for SYSMAC LINK and SYSMAC NET Link Systems.
H-PCF cables are available with connectors already attached, or cables and connectors can be purchased sepa-
rately and assembled by the user. Refer to the System Manual for the SYSMAC LINK or SYSMAC NET Link Sys-
tems for assembly procedures. Models numbers for H-PCF cables with connecters attached are provided in the
following illustration.

Model Numbers for H-PCF Cables with Connectors

$3200-CNOIOH-00-010]

]

Cable length Connectors
201: 2m 20-25: Full-lock connector on
501: 5m one end, half-lock con-
102: 10 m nector on other end.
152: 15m 25-25:  Half-lock connectors
202: 20m on both ends
Blank:  Over 20 m ’
(Specify.)

440



Standard Models Appendix A

An Optical Fiber Cable Bracket must be used to support an optical fiber cable connected to the C200HS-SNT32
SYSMAC NET Link Unit or C200HS-SLK12 SYSMAC LINK Unit.

User optical fiber cables with both tension members and power supply lines.

The following half-lock connector is used and connects to the C200HS SYSMAC LINK and SYSMAC NET Link
Units: S3200-COCF2511.

The following full-lock connector is used and connects to the CV500 SYSMAC LINK and SYSMAC NET Link Units
and the C1000H SYSMAC LINK Unit: S3200-COCF2011. This full-lock connector cannot be connected to the
C200HS SYSMAC LINK and SYSMAC NET Link Units.

The above connectors cannot be used for the C500 SYSMAC NET Link Unit, cable relays, and the SYSMAC NET
Link Network Service Board. Refer to the SYSMAC NET Link System Manual for further information.

Programming Devices

Name Specifications Model number
Programming Console Hand-held, w/backlight; requires the C200H-CN222 or C200H-PRO27-E
C200H-CN422, see below
2-m Connecting Cable attached. CQM1-PROO1-E
Programming Console Used to attach Hand-held Programming Console to a panel. | C200H-ATT01
Mounting Bracket
Programming Console Con- For Hand-held Programming Console 2m C200H-CN222
necting Cables 4m C200H-CN422
Data Setting Console Used for data input and process value display for the C200H-DSCO01
C200H-TCLIL], C200H-TVLICIL, C200H-CP114, and
C200H-PIDO[.
Data Setting Console For C200H-DSCO1 2m C200H-CN225
Connecting Cables
4m C200H-CN425
Connecting Cable Used to connect an IBM PC/AT or com- 3.3m CQM1-CIF02
patible to the C200HS.
Ladder Support Software (LSS)
Name Specifications Model number
Ladder Support Software (for 5.25”, 2D for IBM PC/AT compatible C500-SF711-EV3
C20, cOOP, COOIK, C120,
CLILIH, C200H, C200HS, C500, 3.5”, 2HD for IBM PC/AT compatible C500-SF312-EV3
C1000H, C2000H, and CQM1)
SYSMAC Support Software (SSS)
Product Description Model no.
SYSMAC Support Software 3.5", 2HD for IBM PC/AT compatible C500-ZL3AT1-E
Training Materials
Name Specifications Model number
SYSMAC Training System Includes text book, cassette tape, and input switch C200H-ETLO1-E
board.
Fuzzy Training System Includes a Fuzzy Training System Manual, a Main Unit, | C200H-ETL13-E

a C200H-MR831 Memory Unit, a C200H-PRO27-E
Programming Console, a C200H-CN222 Cable for the
Programming Console, C500-SU381-E Fuzzy Training
Software, an RS-232C Cable, and a carrying belt.

441



Appendix B
Programming Instructions

A PC instruction is input either by pressing the corresponding Programming Console key(s) (e.g., LD, AND, OR,
NOT) or by using function codes. To input an instruction with its function code, press FUN, the function code, and

then WRITE. Refer to the pages listed programming and instruction details.

Code | Mnemonic Name Function Page

— AND AND Logically ANDs status of designated bit with execution 129
condition.

— AND LD AND LOAD Logically ANDs results of preceding blocks. 130

— AND NOT | AND NOT Logically ANDs inverse of designated bit with execution 129
condition.

— CNT COUNTER A decrementing counter. 145

— LD LOAD Used to start instruction line with the status of the desig- 129
nated bit or to define a logic block for use with AND LD
and OR LD.

— LD NOT LOAD NOT Used to start instruction line with inverse of designated bit. | 129

— OR OR Logically ORs status of designated bit with execution con- | 129
dition.

— OR LD OR LOAD Logically ORs results of preceding blocks. 130

— OR NOT OR NOT Logically ORs inverse of designated bit with execution con- | 129
dition.

— ouT OUTPUT Turns ON operand bit for ON execution condition; turns 130
OFF operand bit for OFF execution condition.

— OUT NOT | OUTPUT NOT Turns operand hit OFF for ON execution condition; turns 130
operand bit ON for OFF execution condition (i.e., inverts
operation).

— RSET RESET Turns the operand bit OFF when the execution condition is | 133
ON, and does not affect the status of the operand bit when
the execution condition is OFF.

— SET SET Turns the operand bit ON when the execution condition is | 133
ON, and does not affect the status of the operand bit when
the execution condition is OFF.

— TIM TIMER ON-delay (decrementing) timer operation. 139

00 NOP NO OPERATION Nothing is executed and program moves to next instruc- 138
tion.

01 END END Required at the end of the program. 138

02 IL INTERLOCK If interlock condition is OFF, all outputs are turned OFF 135
and all timer PVs reset between this IL(02) and the next

03 ILC INTERLOCK CLEAR | ILC(03). Other instructions are treated as NOP; counter 135
PVs are maintained.

04 JMP JUMP If jump condition is OFF, all instructions between JMP(04) | 137

05 IME JUMP END and the corresponding JME(05) are ignored. 137

(@)06 FAL FAILURE ALARM Generates a non-fatal error and outputs the designated 275

AND RESET FAL number to the Programming Console.
07 FALS SEVERE FAILURE Generates a fatal error and outputs the designated FALS 275
ALARM number to the Programming Console.

08 STEP STEP DEFINE When used with a control bit, defines the start of a new 266
step and resets the previous step. When used without N,
defines the end of step execution.

09 SNXT STEP START Used with a control bit to indicate the end of the step, reset | 266
the step, and start the next step.

10 SFT SHIFT REGISTER Creates a bit shift register. 150

11 KEEP KEEP Defines a bit as a latch controlled by set and reset inputs. | 133

12 CNTR REVERSIBLE Increases or decreases PV by one whenever the incre- 148

COUNTER ment input or decrement input signals, respectively, go
from OFF to ON.

443




Programming I nstructions

Appendix B

Code | Mnemonic Name Function Page
13 DIFU DIFFERENTIATE UP | Turns ON the designated bit for one cycle on the rising 131
edge of the input signal.
14 DIFD DIFFERENTIATE Turns ON the bit for one cycle on the trailing edge. 131
DOWN
15 TIMH HIGH-SPEED TIMER | A high-speed, ON-delay (decrementing) timer. 143
(@)16 WSFT WORD SHIFT Shifts data between starting and ending words in word 157
units, writing zeros into starting word.
17 to 19 | For expansion instructions.
20 CMP COMPARE Compares the contents of two words and outputs resultto | 170
GR, EQ, and LE Flags.
(@)21 MOV MOVE Copies source data (word or constant) to destination word. | 159
(@)22 MVN MOVE NOT Inverts source data (word or constant) and then copiesitto | 159
destination word.
(@)23 BIN BCD TO BINARY Converts four-digit, BCD data in source word into 16-bit 180
binary data, and outputs converted data to result word.
(@)24 BCD BINARY TO BCD Converts binary data in source word into BCD, and outputs | 181
converted data to result word.
(@)25 ASL ARITHMETIC SHIFT | Shifts each bit in single word of data one bit to left, with CY. | 154
LEFT
(@)26 ASR ARITHMETIC SHIFT | Shifts each bit in single word of data one bit to right, with 154
RIGHT
(@)27 ROL ROTATE LEFT Rotates bits in single word of data one bit to left, with CY. 155
(@)28 ROR ROTATE RIGHT Rotates bits in single word of data one bit to right, with CY. | 155
(@)29 COM COMPLEMENT Inverts bit status of one word of data. 249
(@)30 ADD BCD ADD Adds two four-digit BCD values and content of CY, and 205
outputs result to specified result word.
(@)31 SUB BCD SUBTRACT Subtracts a four-digit BCD value and CY from another 207
four-digit BCD value and outputs result to the result word.
(@)32 MUL BCD MULTIPLY Multiplies two four-digit BCD values and outputs result to 211
specified result words.
(@)33 DIV BCD DIVIDE Divides four-digit BCD dividend by four-digit BCD divisor 212
and outputs result to specified result words.
(@)34 ANDW LOGICAL AND Logically ANDs two 16-bit input words and sets corre- 250
sponding bit in result word if corresponding bits in input
words are both ON.
(@)35 ORW LOGICAL OR Logically ORs two 16-bit input words and sets correspond- | 251
ing bit in result word if one or both of corresponding bits in
input data are ON.
(@)36 XORW EXCLUSIVE OR Exclusively ORs two 16-bit input words and sets bit in re- 252
sult word when corresponding bits in input words differ in
status.
(@)37 XNRW EXCLUSIVE NOR Exclusively NORs two 16-bit input words and sets bit in 253
result word when corresponding bits in input words are
same in status.
(@)38 INC BCD INCREMENT Increments four-digit BCD word by one. 204
(@)39 DEC BCD DECREMENT Decrements four-digit BCD word by one. 204
(@)40 STC SET CARRY Sets carry flag (i.e., turns CY ON). 205
(@)41 CLC CLEAR CARRY Clears carry flag (i.e, turns CY OFF). 205
45 TRSM TRACE MEMORY Initiates data tracing. 277
SAMPLE
(@)46 MSG MESSAGE Displays a 16-character message on the Programming 278
Console display.
47 & 48 | For expansion instructions.
(@)50 ADB BINARY ADD Adds two four-digit hexadecimal values and content of CY, | 219
and outputs result to specified result word.
(@)51 SBB BINARY SUBTRACT | Subtracts a four-digit hexadecimal value and CY from 221
another four-digit hexadecimal value and outputs result to
the result word.




Programming I nstructions

Appendix B

Code | Mnemonic Name Function Page
(@)52 MLB BINARY MULTIPLY Multiplies two four-digit hexadecimal values and outputs 224
result to specified result words.
(@)53 DVB BINARY DIVIDE Divides four-digit hexadecimal dividend by four-digit hexa- | 224
decimal divisor and outputs result to specified result words.
(@)54 ADDL DOUBLE BCD ADD Adds two eight-digit values (2 words each) and content of | 206
CY, and outputs result to specified result words.
(@)55 SUBL DOUBLE BCD Subtracts an eight-digit BCD value and CY from another 209
SUBTRACT eight-digit BCD value and outputs result to the result
words.
(@)56 MULL DOUBLE BCD Multiplies two eight-digit BCD values and outputs resultto | 212
MULTIPLY specified result words.
(@)57 DIVL DOUBLE BCD Divides eight-digit BCD dividend by eight-digit BCD divisor | 213
DIVIDE and outputs result to specified result words.
(@)58 BINL DOUBLE BCD TO Converts BCD value in two consecutive source words into | 181
DOUBLE BINARY binary and outputs converted data to two consecutive re-
sult words.
(@)59 BCDL DOUBLE BINARY TO | Converts binary value in two consecutive source words 182
DOUBLE BCD into BCD and outputs converted data to two consecutive
result words.
60 to 69 | For expansion instructions.
(@)70 XFER BLOCK TRANSFER Moves content of several consecutive source words to 161
consecutive destination words.
(@)71 BSET BLOCK SET Copies content of one word or constant to several consec- | 160
utive words.
(@)72 ROOT SQUARE ROOT Computes square root of eight-digit BCD value and out- 217
puts truncated four-digit integer result to specified result
word.
(@)73 XCHG DATA EXCHANGE Exchanges contents of two different words. 162
(@)74 SLD ONE DIGIT SHIFT Left shifts data between starting and ending words by one | 156
LEFT digit (four bits).
(@)75 SRD ONE DIGIT SHIFT Right shifts data between starting and ending words by 156
RIGHT one digit (four bits).
(@)76 MLPX 8-TO-256 DECODER | Converts up to four hexadecimal digits in source word into | 185
decimal values from 0 to 15 and turns ON, in result
word(s), bit(s) whose position corresponds to converted
value.
Can also convert up to eight hexadecimal digits and turn
ON corresponding bits in result words R to R+15.
(@)77 DMPX 256-TO-8 ENCODER | Determines position of highest ON bit in source word(s) 188
and writes the ON bit’s position (0 to F) to digit(s) in R.
Can also determine the position of the highest ON bit in
one or two groups of 16 words (S to S+15, S+16 to S+31)
and writes the ON bit's position (00 to FF) to byte(s) in R.
(@)78 SDEC 7-SEGMENT Converts hexadecimal values from source word to data for | 191
DECODER seven-segment display.
(@)79 FDIV FLOATING POINT Divides one floating point value (Dd+1, Dd) by another 214
DIVIDE (Dr+1, Dr) and outputs the result to R+1 and R.
(@)80 DIST SINGLE WORD Moves one word of source data to destination word whose | 162
DISTRIBUTE address is given by destination base word plus offset.
(@)81 COLL DATA COLLECT Extracts data from source word and writes it to destination | 164
word.
(@)82 MOVB MOVE BIT Transfers designated bit of source word or constant to des- | 166
ignated bit of destination word.
(@)83 MOVD MOVE DIGIT Moves hexadecimal content of specified four-bit source 167
digit(s) to specified destination digit(s) for up to four digits.
(@)84 SFTR REVERSIBLE SHIFT | Shifts data in specified word or series of words to either left | 152
REGISTER or right.
(@)85 TCMP TABLE COMPARE Compares four-digit hexadecimal value with values in table | 175
consisting of 16 words.

445




Programming I nstructions Appendix B

Code | Mnemonic Name Function Page

(@)86 ASC ASCIl CONVERT Converts hexadecimal values from the source word to 194
eight-bit ASCII code starting at leftmost or rightmost half of
starting destination word.

87 to 89 | For expansion instructions.

(@)90 SEND NETWORK SEND Used for communications with other PCs linked through 291
the SYSMAC NET Link System or SYSMAC LINK System.
(CPU31-E/33-E only)

(@)91 SBS SUBROUTINE Calls and executes subroutine N. 257
ENTRY

92 SBN SUBROUTINE Marks start of subroutine N. 259
DEFINE

93 RET RETURN Marks the end of a subroutine and returns control to main | 259

program.

(@)94 WDT WATCHDOG TIMER | Increases the watchdog timer PV by 0 to 6300 ms. 281
REFRESH

(@)97 IORF I/O REFRESH Refreshes all I/O words between the start and end words. | 281

(@)98 RECV NETWORK RECEIVE | Used for communications with other PCs linked through 293

the SYSMAC NET Link System or SYSMAC LINK System.
(CPU31-E/33-E only)

(@)99 MCRO MACRO Calls and executes a subroutine replacing I/O words. 260

Expansion Instructions

The following table shows the instructions that can be treated as expansion instructions. The default function
codes are given for instructions that have codes assigned by default.

Code | Mnemonic Name Function Page
17 (@)ASFT | ASYNCHRONOUS SHIFT | Creates a shift register that exchanges the contents of | 157
REGISTER adjacent words when one of the words is zero and the
other is not.
18 (@)SCAN | CYCLE TIME Sets the minimum cycle time (0 to 999.0 s). 276
19 (@)MCMP | MULTI-WORD COMPARE | Compares a block of 16 consecutive words to another | 169
block of 16 consecutive words.
47 (@)LMSG | 32-CHARACTER MES- Outputs a 32-character message to the Programming | 279
SAGE Console.
48 (@)TERM | TERMINAL MODE Switches the Programming Console to TERMINAL 280
mode for the normal keyboard mapping operation.
60 CMPL DOUBLE COMPARE Compares two eight-digit hexadecimal values. 172
61 (@)MPRF | GROUP-2 HIGH-DEN- Refreshes I/O words allocated to Group-2 High-density | 282
SITY I/O REFRESH I/O Units.
62 (@)XFRB | TRANSFER BITS Copies the status of up to 255 specified source bitsto | 168
the specified destination bits.
63 (@)LINE COLUMN TO LINE Copies a bit column from 16 consecutive words to the | 200
specified word.
64 (@)COLM | LINE TO COLUMN Copies the 16 bits from the specified word to a bit col- | 201
umn of 16 consecutive words.
65 (@)SEC HOURS TO SECONDS Converts hour and minute data to second data. 183
66 (@)HMS SECONDS TO HOURS Converts second data to hour and minute data. 184
67 (@)BCNT | BIT COUNTER Counts the total number of bits that are ON in the spe- | 283
cified block of words.
68 (@)BCMP | BLOCK COMPARE Judges whether the value of a word is within 16 ranges | 174
(defined by lower and upper limits).
69 (@)APR ARITHMETIC PROCESS | Performs sine, cosine, or linear approximation 239
calculations.
87 TTIM TOTALIZING TIMER Creates a totalizing timer. 144
88 ZCP AREA RANGE COMPARE | Compares a word to a range defined by lower and 176
upper limits and outputs the result to the GR, EQ, and
LE flags.

446



Programming I nstructions

Appendix B

Code | Mnemonic Name Function Page
89 (@)INT INTERRUPT CONTROL Performs interrupt control, such as masking and un- 262
masking the interrupt bits for I/O interrupts.
7SEG 7-SEGMENT DISPLAY Converts 4- or 8-digit BCD data to 7-segment display | 301
OUTPUT format and then outputs the converted data.
(@)ADBL | DOUBLE BINARY ADD Adds two 8-digit binary values (normal or signed data) | 225
and outputs the result to R and R+1.
AVG AVERAGE VALUE Adds the specified number of hexadecimal words and | 235
computes the mean value. Rounds off to 4 digits past
the decimal point.
CPS SIGNED BINARY Compares two 16-bit (4-digit) signed binary values and | 178
COMPARE outputs the result to the GR, EQ, and LE flags.
CPSL DOUBLE SIGNED Compares two 32-bit (8-digit) signed binary values and | 179
BINARY COMPARE outputs the result to the GR, EQ, and LE flags.
(@)DBS SIGNED BINARY DIVIDE | Divides one 16-bit signed binary value by another and | 231
outputs the 32-bit signed binary result to R+1 and R.
(@)DBSL | DOUBLE SIGNED Divides one 32-bit signed binary value by another and | 232
BINARY DIVIDE outputs the 64-bit signed binary result to R+3 to R.
DSW DIGITAL SWITCH INPUT | Inputs 4- or 8-digit BCD data from a digital switch. 304
(@)FCS FCS CALCULATE Checks for errors in data transmitted by a Host Link 283
command.
FPD FAILURE POINT DETECT | Finds errors within an instruction block. 285
(@)HEX ASCII-TO-HEXADECIMAL | Converts ASCII data to hexadecimal data. 195
(@)MAX FIND MAXIMUM Finds the maximum value in specified data area and 233
outputs that value to another word.
(@)MBS SIGNED BINARY Multiplies the signed binary content of two words and | 229
MULTIPLY outputs the 8-digit signed binary result to R+1 and R.
(@)MBSL | DOUBLE SIGNED Multiplies two 32-bit (8-digit) signed binary values and | 230
BINARY MULTIPLY outputs the 16-digit signed binary result to R+3
through R.
(@)MIN FIND MINIMUM Finds the minimum value in specified data area and 234
outputs that value to another word.
MTR MATRIX INPUT Inputs data from an 8 input point x 8 output point ma- | 313
trix and records that data in D to D+3.
(@)NEG 2'S COMPLEMENT Converts the four-digit hexadecimal content of the 202
source word to its 2's complement and outputs the
result to R.
(@)NEGL | DOUBLE 2'S Converts the eight-digit hexadecimal content of the 203
COMPLEMENT source words to its 2's complement and outputs the
result to R and R+1.
(@)PID PID CONTROL PID control is performed according to the operand and | 242
PID parameters that are preset.
(@)RXD RECEIVE Receives data via a communications port. 297
(@)sSBBL | DOUBLE BINARY Subtracts an 8-digit binary value (normal or signed 227
SUBTRACT data) from another and outputs the result to R and
R+1.
(@)SCL SCALING Performs a scaling conversion on the calculated value. | 198
(@)SRCH | DATA SEARCH Searches the specified range of memory for the speci- | 289
fied data. Outputs the word address(es) of words in
the range that contain the data.
(@)SUM SUM CALCULATE Computes the sum of the contents of the words in the | 237
specified range of memory.
(@)TKY TEN KEY INPUT Inputs 8 digits of BCD data from a 10-key keypad. 311
(@)TXD TRANSMIT Sends data via a communications port. 299

447




Programming I nstructions Appendix B
N
Code | Mnemonic Name Function Page
(@)XDMR | EXPANSION DM READ The contents of the designated number of words of the | 290
fixed expansion DM data are read and output to the
destination word on the PC side.
ZCPL DOUBLE AREA RANGE Compares an 8-digit value to a range defined by lower | 177

COMPARE

and upper limits and outputs the result to the GR, EQ,
and LE flags.

448




Appendix C
Error and Arithmetic Flag Operation

The following table shows the instructions that affect the ER, CY, GR, LE and EQ flags. In general, ER indicates
that operand data is not within requirements. CY indicates arithmetic or data shift results. GT indicates that a com-
pared value is larger than some standard, LT that it is smaller, and EQ, that it is the same. EQ also indicates a result
of zero for arithmetic operations. Refer to Section 5 Instruction Set for details.

Vertical arrows in the table indicate the flags that are turned ON and OFF according to the result of the instruction.
Although ladder diagram instructions, TIM, and CNT are executed when ER is ON, other instructions with a vertical

arrow under the ER column are not executed if ER is ON. All of the other flags in the following table will also not
operate when ER is ON.

Instructions not shown do not affect any of the flags in the table. Although only the non-differentiated form of each
instruction is shown, differentiated instructions affect flags in exactly the same way.

The ER, CY, GR, LE and EQ Flags are turned OFF when END(01) is executed, so their status cannot be monitored
with a Programming Console.

Instructions 25503 (ER) 25504 (CY) 25505 (GR) 25506 (EQ) 25507 (LE) Page
TIM } Unaffected Unaffected Unaffected Unaffected 139
CNT 145
END(01)! OFF OFF OFF OFF OFF 138
STEP(08) Unaffected Unaffected Unaffected Unaffected Unaffected 266
SNXT(09) 266
CNTR(12) $ Unaffected Unaffected Unaffected Unaffected 148
TIMH(15) 143
WSFT(16) 157
CMP(20) $ Unaffected $ } $ 170
MOV(21) $ Unaffected Unaffected } Unaffected 159
MVN(22) 159
BIN(23) 180
BCD(24) 181
ASL(25) } ! Unaffected ! Unaffected 154
ASR(26) 154
ROL(27) 155
ROR(28) 155
COM(29) $ Unaffected Unaffected ! Unaffected 249
ADD(30) $ ! Unaffected ! Unaffected 205
SUB(31) 207
MUL(32) $ Unaffected Unaffected ! Unaffected 211
DIV(33) 212
ANDW(34) 250
ORW(35) 251
XORW(36) 252
XNRW(37) 253
INC(38) 204
DEC(39) 204
STC(40) Unaffected ON Unaffected Unaffected Unaffected 205
CLC(41) Unaffected OFF Unaffected Unaffected Unaffected 205
MSG(46) $ Unaffected Unaffected Unaffected Unaffected 278
ADB(50)! $ } Unaffected } Unaffected 219
SBB(51)! 221

449



Error and Arithmetic Flag_] Operation Appendix C

Instructions 25503 (ER) 25504 (CY) 25505 (GR) 25506 (EQ) 25507 (LE) Page
MLB(52) Unaffected } Unaffected Unaffected ! 224
DVB(53) } Unaffected Unaffected ! Unaffected 224
ADDL(54) $ } Unaffected } Unaffected 206
SUBL(55) 209
MULL(56) } Unaffected Unaffected ! Unaffected 212
DIVL(57) 213
BINL(58) 181
BCDL(59) 182
XFER(70) $ Unaffected Unaffected Unaffected Unaffected 161
BSET(71) 160
ROOT(72) $ Unaffected Unaffected ! Unaffected 217
XCHG(73) $ Unaffected Unaffected Unaffected Unaffected 162
SLD(74) 156
SRD(75) 156
MLPX(76) 185
DMPX(77) 188
SDEC(78) 191
FDIV(79) $ Unaffected Unaffected ! Unaffected 214
DIST(80) 162
COLL(81) 164
MOVB(82) $ Unaffected Unaffected Unaffected Unaffected 166
MOVD(83) 167
SFTR(84) $ ! Unaffected Unaffected Unaffected 152
TCMP(85) $ Unaffected Unaffected } Unaffected 175
ASC(86) $ Unaffected Unaffected Unaffected Unaffected 194
SEND(90) 291
SBS(91) 257
RECV(98) 293
MCRO(99) 260

Note END(01), ADB(50), and SBB(51) also affect the signed binary arithmetic flags. Refer to page 451 for de-
tails.
Expansion Instructions

Instructions 25503 (ER) 25504 (CY) 25505 (GR) 25506 (EQ) 25507 (LE) Page
7SEG(—)2 $ Unaffected Unaffected Unaffected Unaffected 301
ADBL(—)? $ : Unaffected Unaffected Unaffected 225
APR(69) $ Unaffected Unaffected ! Unaffected 239
ASFT(17) $ Unaffected Unaffected Unaffected Unaffected 157
AVG(—) 235
BCMP(68) $ Unaffected Unaffected Unaffected Unaffected 174
BCNT(67) $ Unaffected Unaffected ! Unaffected 283
CMPL(60) $ Unaffected $ } $ 172
COLM(64) $ Unaffected Unaffected ! Unaffected 201
CPS(—) $ Unaffected $ ! $ 178
CPSL(—) 179
DBS(—) $ Unaffected Unaffected ! Unaffected 231
DBSL(—) 232
DSW(—)3 $ Unaffected Unaffected Unaffected Unaffected 304
FCS(—) 283

450



Error and Arithmetic Flag_] Operation Appendix C

Instructions 25503 (ER) 25504 (CY) 25505 (GR) 25506 (EQ) 25507 (LE) Page
FPD(—) $ ! Unaffected Unaffected Unaffected 285
HEX(—) $ Unaffected Unaffected Unaffected Unaffected 195
HMS(66) $ Unaffected Unaffected } Unaffected 184
INT(89) $ Unaffected Unaffected Unaffected Unaffected 262
LINE(63) $ Unaffected Unaffected } Unaffected 200
LMSG(47) $ Unaffected Unaffected Unaffected Unaffected 279
MAX(—) $ Unaffected Unaffected ! Unaffected 233
MBS(—) 229
MBSL(—) 230
MCMP(19) 169
MIN(—) 234
MTR(—)* $ Unaffected Unaffected Unaffected Unaffected 313
NEG(—)? $ Unaffected Unaffected b Unaffected 202
NEGL(—)? 203
PID(—) 242
RXD(—) $ Unaffected Unaffected Unaffected Unaffected 297
SBBL(—)? $ } Unaffected Unaffected Unaffected 227
SCAN(18) $ Unaffected Unaffected Unaffected Unaffected 276
SCL(—) $ Unaffected Unaffected ! Unaffected 198
SEC(65) 183
SRCH(—) 289
SUM(—) 237
TKY(—) $ Unaffected Unaffected Unaffected Unaffected 311
TTIM(87) 144
TXD(—) 299
XFRB(62) 168
XDMR(—) 290
ZCP(88) $ Unaffected $ ! $ 176
ZCPL(—) 177

Note 1. SR 25409 will be ON when 7SEG(—) is being executed.

2. ADBL(—), NEG(—), NEGL(—), and SBBL(—) also affect the signed binary arithmetic flags. Refer to
page 451 for details.

3. SR 25410 will be ON when DSW(—) is being executed.
4. SR 25408 will be ON when MTR(—) is being executed.

Signed Binary Arithmetic Flags

The following table shows the instructions that affect the OF and UF flags. In general, OF indicates that the result of
a 16-bit calculation is greater than 32,767 (7FFF) or the result of a 32-bit calculation is greater than 2,147,483,647
(7FFF FFFF). UF indicates that the result of a 16-bit calculation is less than —32,768 (8000) or the result of a 32-bit
calculation is less than —2,147,483,648 (8000 0000). Refer to Section 5 Instruction Set for details.

Vertical arrows in the table indicate the flags that are turned ON and OFF according to the result of the instruction.
Instructions not shown do not affect any of the flags in the table.

The OF and UF Flags are turned OFF when END(01) is executed, so their status cannot be monitored with a Pro-
gramming Console.

451



Error and Arithmetic Flag_] Operation Appendix C

Instructions SR 25404 (OF) SR 25405 (UF) Page
END(01) OFF OFF 138
ADB(50) $ $ 219
SBB(51) 221
ADBL(—) 225
SBBL(—) 227
NEG(—) Unaffected } 202
NEGL(—) 203

These instructions also affect the ER, CY, and EQ Flags. Refer to the previous tables in this appendix for details.

452



Appendix D
Memory Areas

Overview
The following table shows the data areas in PC memory.
Area Size Range Comments
1/0O Area 480 bits IR 000 to IR 029
Group-2 High-density | 320 bits IR 030 to IR 049 Can be used as ordinary 1/O or, if not used for
1/0 Unit Area real 1/0, can be used as work bits.
SYSMAC BUS Area 800 bits IR 050 to IR 099 Can be used as work bits if not used for real 1/O.
Special I/O Unit Area 1,600 bits IR 100 to IR 199 "
Optical I/O Unit Area 512 bits IR 200 to IR 231
Work Area 1 64 bits IR 232 to IR 235
Special Relay Area 1 320 bits SR 236 to SR 255
Special Relay Area 2 704 bits SR 256 to SR 299
Macro Area 64 bits SR 290 to SR 293 Inputs
64 bits SR 294 to SR 297 Outputs
Work Area 2 3,424 bits IR 298 to IR 511
Temporary Relay Area | 8 bits TR 00 to TR 07
Holding Relay Area 1,600 hits HR 00 to HR 99
Auxiliary Relay Area 448 buts AR 00 to AR 27
Link Relay Area 1,024 bits LR 00 to LR 63
Timer/Counter Area 512 counters/ TC 000to TC 511 TIM 000 through TIM 015 can be refreshed via
timers interrupt processing as high-speed timers.
Data Memory Area 6,144 words DM 0000 to DM 6143 | Read/Write
1,000 words DM 0000 to DM 1999 | Special I/0O Unit Area (see note)
31 words DM 6000 to DM 6030 | History Log
(44 words) DM 6100 to DM 6143 | Link test area (reserved)
512 words DM 6144 to DM 6655 | Fixed DM Area (read only)
456 words DM 6144 to DM 6599 | (SYSMAC NET Area)
56 words DM 6600 to DM 6655 | PC Setup
Expansion DM Area 3,000 words max. DM 7000 to DM 9999 | Read only
1/0 Comment Area All UM Area max. Stores 1/0 comments in the user program. Must
be set using LSS.
Ladder Program Area | All UM Area max. Stores the user program executed by the CPU.
The program is retained even after the power
supply is turned off.

Note The PC Setup can be set to use DM 7000 through DM 7999 as the Special I/0O Area.

453




Memory Areas Appendix D
SR Area
Word(s) Bit(s) Function
236 00to 07 Node loop status output area for operating level 0 of SYSMAC NET Link System
08 to 15 Node loop status output area for operating level 1 of SYSMAC NET Link System
237 00to 07 Completion code output area for operating level 0 following execution of
SEND(90)/RECV(98) SYSMAC LINK/SYSMAC NET Link System
08 to 15 Completion code output area for operating level 1 following execution of
SEND(90)/RECV(98) SYSMAC LINK/SYSMAC NET Link System
238 and 241 |00to 15 Data link status output area for operating level 0 of SYSMAC LINK or SYSMAC NET Link
System
242 and 245 |00to 15 Data link status output area for operating level 1 of SYSMAC LINK or SYSMAC NET Link
System
246 00to 15 Reserved by system
247 and 248 | 00 to 07 PC Link Unit Run Flags for Units 16 through 31 or data link status for operating level 1
08 to 15 PC Link Unit Error Flags for Units 16 through 31 or data link status for operating level 1
249 and 250 |00 to 07 PC Link Unit Run Flags for Units 00 through 15 or data link status for operating level 0
08to 15 PC Link Unit Error Flags for Units 00 through 15 or data link status for operating level 0
251 00 Remote I/O Error Read Bit
Writeable 01 and 02 | Not used
03 Remote I/O Error Flag
04 to 06 Unit number of Remote I/O Unit or Optical I/O Unit with error
07 Not used
08to 15 Word allocated to Remote 1/0O Unit or Optical I/O Unit with error
252 00 SEND(90)/RECV(98) Error Flag for operating level 0 of SYSMAC LINK or SYSMAC NET
Link System
01 SEND(90)/RECV(98) Enable Flag for operating level 0 of SYSMAC LINK or SYSMAC NET
Link System
02 Operating Level 0 Data Link Operating Flag
03 SEND(90)/RECV(98) Error Flag for operating level 1 of SYSMAC LINK or SYSMAC NET
Link System
04 SEND(90)/RECV(98) Enable Flag for operating level 1 of SYSMAC LINK or SYSMAC NET
Link System
05 Operating Level 1 Data Link Operating Flag
06 Rack-mounting Host Link Unit Level 1 Communications Error Flag
07 Rack-mounting Host Link Unit Level 1 Restart Bit
08 Peripheral Port Restart Bit
09 RS-232C Port Restart Bit
10 PC Setup Clear Bit
11 Forced Status Hold Bit
12 Data Retention Control Bit
13 Rack-mounting Host Link Unit Level O Restart Bit
14 Not used.
15 Output OFF Bit
253 00 to 07 FAL number output area (see error information provided elsewhere)
08 Low Battery Flag
09 Cycle Time Error Flag
10 I/O Verification Error Flag
11 Rack-mounting Host Link Unit Level 0 Communications Error Flag
12 Remote I/O Error Flag
13 Always ON Flag
14 Always OFF Flag
15 First Cycle Flag

454




Memory Areas Appendix D
Word(s) Bit(s) Function
254 00 1-minute clock pulse bit
01 0.02-second clock pulse bit
02 and 03 | Reserved for function expansion. Do not use.
04 Overflow Flag (for signed binary calculations)
05 Underflow Flag (for signed binary calculations)
06 Differential Monitor End Flag
07 Step Flag
08 MTR Execution Flag
09 7SEG Execution Flag
10 DSW Execution Flag
11 Interrupt Input Unit Error Flag
12 Reserved by system
13 Interrupt Programming Error Flag
14 Group-2 High-density 1/0 Unit Error Flag
15 Special Unit Error Flag (Special I/O, PC Link, Host Link, Remote I/O Master)
255 00 0.1-second clock pulse bit
01 0.2-second clock pulse bit
02 1.0-second clock pulse bit
03 Instruction Execution Error (ER) Flag
04 Carry (CY) Flag
05 Greater Than (GR) Flag
06 Equals (EQ) Flag
07 Less Than (LE) Flag
08 to 15 Reserved by system (used for TR bits)
256 to 261 00to 15 Reserved by system
262 00 to 15 Longest interrupt subroutine (action) execution time (0.1 ms)
263 00 to 15 Number of interrupt subroutine (action) with longest execution time.
(8000 to 8512) 8000 to 8007, 8099
Bit 15: Interrupt Flag
264 00 to 03 RS-232C Port Error Code
0: No error 1: Parity error
2: Framing error 3: Overrun error
04 RS-232C Port Communications Error
05 RS-232C Port Send Ready Flag
06 RS-232C Port Reception Completed Flag
07 RS-232C Port Reception Overflow Flag
08to 11 Peripheral Port Error Code in General /0 Mode
0: No error 1: Parity error
2: Framing error 3: Overrun error
F: When in Peripheral Bus Mode
12 Peripheral Port Communications Error in General /0O Mode
13 Peripheral Port Send Ready Flag in General I/O Mode
14 Peripheral Port Reception Completed Flag in General I/O Mode
15 Peripheral Port Reception Overflow Flag in General /O Mode
265 00to 15 RS-232C Port Reception Counter in General /O Mode
266 00 to 15 Peripheral Reception Counter in General I/O Mode (BCD)

455




Memory Areas Appendix D
Word(s) Bit(s) Function
267 00 to 04 Reserved by system (not accessible by user)
05 Host Link Level 0 Send Ready Flag
06 to 12 Reserved by system (not accessible by user)
13 Host Link Level 1 Send Ready Flag
14 and 15 | Reserved by system (not accessible by user)
268 00to 15 Reserved by system (not accessible by user)
269 00 to 07 Memory Cassette Contents  00: Nothing; 01: UM; 02: IOM (03: HIS)
08 to 10 Memory Cassette Capacity
0: 0 KW (no cassette); 3: 16 KW
11to 13 Reserved by system (not accessible by user)
14 EEPROM Memory Cassette Protected or EPROM Memory Cassette Mounted Flag
15 Memory Cassette Flag
270 00 Save UM to Cassette Bit Data transferred to Memory Cassette when Bit is turned
o1 Load UM from Cassette Bit ON in PROGRAM mode. Bit will automatically turn OFF.
; An error will be produced if turned ON in any other
02 Compare UM to Cassette Bit mode.
03 Comparison Results
0: Contents identical; 1: Contents differ or comparison not possible
04 to 10 Reserved by system (not accessible by user)
11 Transfer Error Flag: Data will not be transferred from UM to the Memory
Transferring SYSMAC NET Cassette if an error occurs (except for Board Checksum
data link table on UM during Error). Detailed information on checksum errors
active data link. occurring in the Memory Cassette will not be output to
12 Transfer Error Flag: Not SR 272 because the information is not needed. Repeat
PROGRAM mode the transmission if SR 27015 is ON.
13 Transfer Error Flag: Read Only
14 Transfer Error Flag: Insufficient
Capacity or No UM
15 Transfer Error Flag: Board
Checksum Error
271 00 to 07 Ladder program size stored in Memory Cassette
Ladder-only File: 04: 4 KW; 08: 8 KW; 12: 12 KW; ... (64: 64 KW)
00: No ladder program or no file
Data updated at data transfer from CPU at startup. The file must begin in segment 0.
08 to 15 Ladder program size and type in CPU (Specifications are the same as for bits 00 to 07.)
Data updated when indexes generated. Default value (after clearing memory) is 16.
272 00to 10 Reserved by system (not accessible by user)
11 Memory Error Flag: PC Setup Checksum Error
12 Memory Error Flag: Ladder Checksum Error
13 Memory Error Flag: Instruction Change Vector Area Checksum Error
14 Memory Error Flag: Memory Cassette Online Disconnection
15 Memory Error Flag: Autoboot Error

456




Memory Areas Appendix D
Word(s) Bit(s) Function
273 00 Save IOM to Cassette Bit Data transferred to Memory Cassette when Bit is turned
ON in PROGRAM mode. Bit will automatically turn OFF,
01 Load IOM from Cassette Bit An error will be produced if turned ON in any other
mode.
02to11 Reserved by system (not accessible by user)
12 Transfer Error Flag: Not Data will not be transferred from IOM to the Memory
PROGRAM mode Cassette if an error occurs (except for Read Only Error).
13 Transfer Error Flag: Read Only
14 Transfer Error Flag: Insufficient
Capacity or No IOM
15 Transfer Error Flag: Checksum
Error
274 00 Special I/0O Unit #0 Restart Flag | These flags will turn ON during restart processing.
01 Special /O Unit #1 Restart Flag These flags will not turn ON for Units on Slave Racks.
02 Special I/O Unit #2 Restart Flag
03 Special I/O Unit #3 Restart Flag
04 Special I/O Unit #4 Restart Flag
05 Special I/O Unit #5 Restart Flag
06 Special I/O Unit #6 Restart Flag
07 Special I/O Unit #7 Restart Flag
08 Special I/O Unit #8 Restart Flag
09 Special I/O Unit #9 Restart Flag
10to 15 Reserved by system (not accessible by user)
275 00 PC Setup Startup Error (DM 6600 to DM 6614)
01 PC Setup RUN Error (DM 6615 to DM 6644)
02 PC Setup Communications/Error Setting/Misc. Error (DM 6645 to DM 6655)
03to 15 Reserved by system (not accessible by user)
276 00 to 07 Minutes (00 to 59) Used for time increments.
08 to 15 Hours (00 to 23)
277 to 279 00 to 15 Used for keyboard mapping. See page 368.
280 to 289 00 to 15 Reserved by system (not accessible by user)
290 to 293 00 to 15 Macro Area inputs.
294 to 297 00 to 15 Macro Area outputs.
298 to 299 00 to 15 Reserved by system (not accessible by user)

457




Memory Areas Appendix D

AR Area
Word(s) Bit(s) Function
00 00 to 09 Error Flags for Special I/O Units 0 to 9 (also function as Error Flags for PC Link Units)
10 Error Flag for operating level 1 of SYSMAC LINK or SYSMAC NET Link System
11 Error Flag for operating level 0 of SYSMAC LINK or SYSMAC NET Link System
12 Host Computer to Rack-mounting Host Link Unit Level 1 Error Flag
13 Host Computer to Rack-mounting Host Link Unit Level O Error Flag
14 Remote I/O Master Unit 1 Error Flag
15 Remote I/O Master Unit 0 Error Flag
01 00 to 09 Restart Bits for Special I/0 Units 0 to 9 (also function as Restart Bits for PC Link Units)
10 Restart Bit for operating level 1 of SYSMAC LINK or SYSMAC NET Link System
11 Restart Bit for operating level 0 of SYSMAC LINK or SYSMAC NET Link System
12,13 Not used.
14 Remote I/O Master Unit 1 Restart Flag.
15 Remote I/O Master Unit O Restart Flag.
02 00 to 04 Slave Rack Error Flags (#0 to #4)
05to 14 Group-2 High-density I/O Unit Error Flags
15 Group-2 High-density I/O Unit Error Flag
03 00to 15 Error Flags for Optical I1/0 Units 0 to 7
04 00to 15 Error Flags for Optical I1/0 Units 8 to 15
05 00to 15 Error Flags for Optical 1/0 Units 16 to 23
06 00 to 15 Error Flags for Optical 1/0 Units 24 to 31
07 00to 03 Data Link setting for operating level 0 of SYSMAC LINK System
04 to 07 Data Link setting for operating level 1 of SYSMAC LINK System
08 Normal TERMINAL Mode/Expansion TERMINAL Mode Input Cancel Bit
09 Expansion TERMINAL Mode Changeover Flag
10 and 11 | Reserved by system.
12 Terminal Mode Flag
ON: Expansion; OFF: Normal (Same as status of pin 6 on CPU’s DIP switch)
13 Error History Overwrite Bit
14 Error History Reset Bit
15 Error History Enable Bit
08to 11 00 to 15 Active Node Flags for SYSMAC LINK System nodes of operating level 0
12to 15 00 to 15 Active Node Flags for SYSMAC LINK System nodes of operating level 1
16 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating level 0 service time per cycle
17 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating level 1 service time per cycle
18 00 to 07 Seconds: 00 to 99
Writeable 08 to 15 Minutes: 00 to 59
19 00 to 07 Hours: 00 to 23 (24-hour system)
Writeable 08 to 15 Day of Month: 01 to 31 (adjusted by month and for leap year)
20 00 to 07 Month: 1 to 12
Writeable 08 to 15 Year: 00 to 99 (Rightmost two digits of year)
21 00 to 07 Day of Week: 00 to 06 (00: Sunday; 01: Monday; 02: Tuesday; 03: Wednesday; 04:
Writeable Thursday; 05: Friday; 06: Saturday)
08 to 12 Not used.
13 30-second Compensation Bit
14 Clock Stop Bit
15 Clock Set Bit
22 00to 15 Keyboard Mapping

458



Memory Areas Appendix D
Word(s) Bit(s) Function

23 00 to 15 Power Off Counter (BCD)

24 00 to 04 Reserved by system.
05 Cycle Time Flag
06 SYSMAC LINK System Network Parameter Flag for operating level 1
07 SYSMAC LINK System Network Parameter Flag for operating level O
08 SYSMAC/SYSMAC NET Link Unit Level 1 Mounted Flag
09 SYSMAC/SYSMAC NET Link Unit Level 0 Mounted Flag
10 Reserved by system.
11 and 12 | PC Link Level
13 Rack-mounting Host Link Unit Level 1 Mounted Flag
14 Rack-mounting Host Link Unit Level 0 Mounted Flag
15 CPU-mounting Device Mounted Flag

25 00to 11 Reserved by system.
12 Trace End Flag
13 Tracing Flag
14 Trace Trigger Bit (writeable)
15 Trace Start Bit (writeable)

26 00to 15 Maximum Cycle Time (0.1 ms)

27 00to 15 Present Cycle Time (0.1 ms)

DM Area (Error LoQ)

Word Function

DM 6000 Error Pointer (Incremented by 1 for each error (0000 to 000A)

DM 6001 to | Error Records (3 words per error for 10 errors, 30 words total)

DM 6030 See following table for structure of individual records.

Word Bit Content

First 00 to 07 | Error code (see error information provided elsewhere)
08 to 15 | 00 (non-fatal) or 80 (fatal)

Second 00 to 07 | Seconds Clock data read from AR
081to 15 | Minutes 18 and AR 19.

Third 00 to 07 | Hours
08 to 15 | Day of month

459




Appendix E
PC Setup

Word(s) | Bit(s) |

Function

Default

Startup Processing (DM 6600 to DM 6614)
The following settings are effective after transfer to the PC only after the PC is restarted.

DM 6600

00 to 07

Startup mode (effective when bits 08 to 15 are set to 02).
00: PROGRAM; 01: MONITOR 02: RUN

PROGRAM

08 to 15

Startup mode designation

00: Programming Console switch

01: Continue operating mode last used before power was turned off
02: Setting in 00 to 07

Programming
Console switch

DM 6601

00 to 07

Reserved

08to 11

IOM Hold Bit (SR 25212) Status
0: Reset; 1: Maintain

12to 15

Forced Status Hold Bit (SR 25211) Status
0: Reset; 1: Maintain

Reset

DM 6602

00 to 07

Reserved

08to 15

Special I/O Unit Area
00: Use DM 1000 to DM 1999

01: Transfer DM 7000 through DM 7999 to DM 1000 through DM 1999 at
startup and use DM 1000 to DM 1999.

02: Use DM 7000 to DM 7999

DM 1000 to
DM 1999

DM 6603 to
DM 6614

00to 15

Reserved

Cycle Time Settings (D

The following

settings ar

M 6615 to DM 6619)
e effective after transfer to the PC the next time operation is started.

DM 6615

00to 15

Reserved

DM 6616

00 to 07

(Servicing time for RS-232C port (effective when bits 08 to 15 are set to 01))
00 to 99 (BCD): Percentage of cycle time used to service RS-232C port.

Minimum: 0.256 ms; maximum 65.536 ms

08 to 15

(RS-232C port servicing setting enable)
00: Do not set service time
01: Use time in 00 to 07.

Service time is 10 ms when operation is stopped.

No setting (00)

DM 6617

00 to 07

Servicing time for peripheral port (effective when bits 08 to 15 are set to 01)
00 to 99 (BCD): Percentage of cycle time used to service peripheral.

Minimum: 0.256 ms; maximum 65.536 ms

08 to 15

Peripheral port servicing setting enable
00: Do not set service time
01: Use time in 00 to 07.

Service time is 10 ms when operation is stopped.

No setting (00)

DM 6618

00to 07

Cycle monitor time (effective when bits 08 to 15 are set to 01, 02, or 03)
00 to 99 (BCD): Setting (see 08 to 15)

00

08 to 15

Cycle monitor enable (Setting in 00 to 07 x unit; 99 s max.)
00: 120 ms (setting in bits 00 to 07 disabled)

01: Setting unit: 10 ms

02: Setting unit: 100 ms

03: Setting unit: 1 s

00: 120 ms

DM 6619

00to 15

Cycle time
0000: Variable (no minimum)
0001 to 9999 (BCD): Minimum time in ms

Variable

461




PC Setup Appendix E
Word(s) | Bit(s) | Function Default
Interrupt/Refresh Processing (DM 6620 to DM 6622)
The following settings are effective after transfer to the PC the next time operation is started.
DM 6620 00 to 09 | Special I/O Unit cyclic refresh (Bit number corresponds to unit number, PC Enable
Link Units included)
0: Enable cyclic refresh and I/O REFRESH (IORF(97)) from main program
1: Disable (refresh only for /O REFRESH from interrupt programs)
Disable not valid for normal (C200H) interrupt response or on Slave Racks.
10to 11 | Reserved -
12 to 15 | Interrupt response Normal
0: Normal (C200H compatible)
1: High-speed (C200HS)
DM 6621 00to 07 | Reserved ---
08 to 15 | Special I/O Unit refresh (PC Link Units included) Enable
00: Enable refresh for all Special I/O Units
01: Disable refresh for all Special I/0 Units (but, not valid on Slave Racks)
DM 6622 00 to 07 | Scheduled interrupt time unit 10 ms
00: 10 ms
01:1ms
08 to 15 | Scheduled interrupt time unit enable
00: Disable (10 ms)
01: Enable
DM 6623 to | 00to 15 | Reserved
DM 6644
RS-232C Port Settings (DM 6645 to DM 6649)
The following settings are effective after transfer to the PC.
DM 6645 00 to 07 | Port settings Standard
00: Standard (1 start bit, 7-bit data, even parity, 2 stop bits, 9,600 bps)
01: Settings in DM 6646
08 to 11 | Words linked for 1:1 link LR OOto LR 63
0: LR0O0to LR 63; 1: LR 00 to LR 31; 2: LR 00 to LR 15
12 to 15 | Communications mode Host Link
0: Host link; 1: RS-232C; 2: 1-to-1 link slave; 3: 1-to-1 link master;
4: NT (PT) link
DM 6646 00 to 07 | Baud rate 12K
00: 1.2K, 01: 2.4K, 02: 4.8K, 03: 9.6K, 04: 19.2K
08 to 15 | Frame format 1 start bit, 7-bit
Start Length Stop Parity data, 1 stop bit,
00: 1 bit 7 bits 1 bit Even even parity
01: 1 bit 7 bits 1 bit Odd
02: 1 bit 7 bits 1 bit None
03: 1 bit 7 bits 2 bit Even
04: 1 bit 7 bits 2 bit Odd
05: 1 bit 7 bits 2 bit None
06: 1 bit 8 bits 1 bit Even
07: 1 bit 8 bits 1 bit Odd
08: 1 bit 8 bits 1 bit None
09: 1 bit 8 bits 2 bit Even
10: 1 bit 8 bits 2 bit Odd
11: 1 bit 8 bits 2 bit None
DM 6647 00 to 15 | Transmission delay 0ms

0000 to 9999: BCD in ms.

462




PC Setup

Appendix E

Word(s)

Bit(s)

Function

Default

DM 6648

00 to 07

Node number (Host link)
00 to 31 (BCD)

08to 11

Start code enable (RS-232C)
0: Disable; 1: Set

Disabled

12 to 15

End code enable (RS-232C)

0: Disable (number of bytes received)
1: Set (specified end code)

2: CR, LF

Disabled

DM 6649

00 to 07

Start code (RS-232C)
00 to FF (binary)

08 to 15

12 to 15 of DM 6648 set to O:
Number of bytes received

00: Default setting (256 bytes)
01 to FF: 1 to 255 bytes

12 to 15 of DM 6648 set to 1:
End code (RS-232C)
00 to FF (binary)

Not used

The following

Peripheral Port Setting

settings ar

s (DM 6650 to DM 6654)
e effective after transfer to the PC.

DM 6650

00 to 07

Port settings
00: Standard (1 start bit, 7-bit data, even parity, 2 stop bits, 9,600 bps)
01: Settings in DM 6651

Standard

08to 11

Reserved

12to 15

Communications mode
0: Host link; 1: RS-232C

Host Link

DM 6651

00 to 07

Baud rate
00: 1.2K, 01: 2.4K, 02: 4.8K, 03: 9.6K, 04: 19.2K

12K

08to 15

Frame format
Start
00: 1 bit
01: 1 bit
02: 1 bit
03: 1 bit
04: 1 bit
05: 1 bit
06: 1 bit
07: 1 bit
08: 1 bit
09: 1 bit
10: 1 bit 8 hits
11: 1 bit 8 bits

Length
7 bits
7 bits
7 bits
7 bits
7 bits
7 bits
8 bits
8 hits
8 bits
8 bits

Stop
1 bit
1 bit
1 bit
2 bit
2 bit
2 bit
1 bit
1 bit
1 bit
2 bit
2 bit
2 bit

Parity
Even
Odd
None
Even
Odd
None
Even
Odd
None
Even
Odd
None

1 start bit, 7-bit
data, 1 stop bit,
even parity

DM 6652

00to 15

Transmission delay (Host Link)
0000 to 9999: In ms.

0Oms

DM 6653

00 to 07

Node number (Host link)
00 to 31 (BCD)

08to 11

Start code enable (RS-232C)
0: Disable; 1: Set

Disable

12to0 15

End code enable (RS-232C)

0: Disable (number of bytes received)
1: Set (specified end code)

2:CR, LF

Disable

463




PC Setup Appendix E
Word(s) Bit(s) Function Default
DM 6654 00 to 07 | Start code (RS-232C) 0000
00 to FF (binary)
08to 15 |12 to 15 of DM 6653 set to O:
Number of bytes received
00: Default setting (256 bytes)
01 to FF: 1 to 255 bytes
12 to 15 of DM 6653 set to 1:
End code (RS-232C)
00 to FF (binary)
Error Settings (DM 6655)
The following settings are effective after transfer to the PC.
DM 6655 00 to 03 | Interrupt programming error enable Detect
0: Detect interrupt programming errors
1: Do not detect
04 to 07 | (Multiple action execution error enable Detect
0: Detect multiple action execution
1: Do not detect)
08to 11 | Cycle time monitor enable Detect
0: Detect long cycles as non-fatal errors
1: Do not detect long cycles
12 to 15 | Low battery error enable Detect

1: Do not detect low batter voltage

0: Detect low battery voltage as non-fatal error

464




Appendix F
Word Assignment Recording Sheets

This appendix contains sheets that can be copied by the programmer to record I/O bit allocations and terminal
assignments, as well as details of work bits, data storage areas, timers, and counters.

465



I/O Bits

Programmer: Program: Date: Page:
Word: Unit: Word: Unit:
Bit Field device Notes Bit Field device Notes
00 00
01 01
02 02
03 03
04 04
05 05
06 06
07 07
08 08
09 09
10 10
11 11
12 12
13 13
14 14
15 15
Word: Unit: Word: Unit:
Bit Field device Notes Bit Field device Notes
00 00
01 01
02 02
03 03
04 04
05 05
06 06
07 07
08 08
09 09
10 10
11 11
12 12
13 13
14 14
15 15

466



Work Bits

Programmer: Program: Date: Page:
Area: Word: Area: Word:
Bit Usage Notes Bit Usage Notes
00 00
01 01
02 02
03 03
04 04
05 05
06 06
07 07
08 08
09 09
10 10
11 11
12 12
13 13
14 14
15 15
Area: Word: Area: Word:
Bit Usage Notes Bit Usage Notes
00 00
01 01
02 02
03 03
04 04
05 05
06 06
07 07
08 08
09 09
10 10
11 11
12 12
13 13
14 14
15 15

467




Data Storage

Programmer:

Program:

Date:

Page:

Word

Contents

Notes

Word

Contents

Notes

468




Timers and Counters

Programmer:

Program:

Date:

Page:

TC address

TorC

Set value

Notes

TC address

TorC

Set value

Notes

469



Appendix G
Program Coding Sheet

The following page can be copied for use in coding ladder diagram programs. It is designed for flexibility, allowing
the user to input all required addresses and instructions.

When coding programs, be sure to specify all function codes for instructions and data areas (or # for constant) for

operands. These will be necessary when inputting programs though a Programming Console or other Peripheral
Device.

471



Program Coding Sheet

Programmer:

Program:

Date:

Page:

Address

Instruction

Operand(s)

Address

Instruction

Operand(s)

Address

Instruction

Operand(s)

472




Normal Data

Appendix H

Data Conversion Tables

Decimal BCD Hex Binary
00 00000000 00 00000000
01 00000001 01 00000001
02 00000010 02 00000010
03 00000011 03 00000011
04 00000100 04 00000100
05 00000101 05 00000101
06 00000110 06 00000110
07 00000111 07 00000111
08 00001000 08 00001000
09 00001001 09 00001001
10 00010000 0A 00001010
11 00010001 0B 00001011
12 00010010 oc 00001100
13 00010011 oD 00001101
14 00010100 OE 00001110
15 00010101 OF 00001111
16 00010110 10 00010000
17 00010111 11 00010001
18 00011000 12 00010010
19 00011001 13 00010011
20 00100000 14 00010100
21 00100001 15 00010101
22 00100010 16 00010110
23 00100011 17 00010111
24 00100100 18 00011000
25 00100101 19 00011001
26 00100110 1A 00011010
27 00100111 1B 00011011
28 00101000 1C 00011100
29 00101001 1D 00011101
30 00110000 1E 00011110
31 00110001 1F 00011111
32 00110010 20 00100000

473



Data Conversion Tables

Appendix H

Signed Binary Data

Decimal 16-bit Hex 32-bit Hex
2147483647 —_— TFFFFFFF
2147483646 e 7FFFFFFE

32768 —_— 00008000

32767 7FFF 00007FFF

32766 7FFE 00007FFE

5 0005 00000005

4 0004 00000004

3 0003 00000003

2 0002 00000002

1 0001 00000001

0 0000 00000000

-1 FFFF FFFFFFFF

-2 FFFE FFFFFFFE

-3 FFFD FFFFFFFD

-4 FFFC FFFFFFFC

-5 FFFB FFFFFFFB

-32767 8001 FFFF8001
-32768 8000 FFFF8000
-32769 — FFFF7FFF
—-2147483647 —_— 80000001
—2147483648 —_ 80000000

474



Appendix |
Extended ASCII

Programming Console Displays

Bits 0to 3

Bits 4to 7

BIN

0000

0001

0010

0011

0100

0101

0110

0111

1010

1011

1110

1111

HEX

0

1

6

7

4

5

0000 |O NUL |DLE | space F - &

0001 |1 SOH |DC; |! 4 ¥ £ E

0010 |2 STX | DC», i B H i g

0011 |3 ETX [DCz |#  |i e 2 7 ¥

0100 |4 EOT |DCy4 E T I i

0101 |5 ENQ [NAK |& = K] g

0110 |6 ACK | SYN F i -

0111 |7 BEL |(ETB |°  |[¥ ¥ F q

1000 |8 BS CAN H 3 A ¥

1001 |9 HT EM K 7

1010 |A LF SuB g I

1011 |B VT ESC |+ #

1100 |C FF FS L 3

1101 |D CR GS - = M

1110 |E SO RS ® i i i
F

1111

S1

us

s

475




address

allocation

AND

APF

AR area

arithmetic shift

ASCII
ASCII Unit
Backplane
BCD

BCD calculation

binary

binary calculation

binary-coded decimal

bit

bit address

Glossary

The location in memory where data is stored. For data areas, an address con-
sists of a two-letter data area designation and a number that designates the
word and/or bit location. For the UM area, an address designates the instruction
location (UM area). In the FM area, the address designates the block location,
etc.

The process by which the PC assigns certain bits or words in memory for various
functions. This includes pairing 1/O bits to I/O points on Units.

A logic operation whereby the result is true if and only if both premises are true.
In ladder-diagram programming the premises are usually ON/OFF states of bits
or the logical combination of such states called execution conditions.

Acronym for all plastic fiber-optic cable.
A PC data area allocated to flags, control bits, and work bits.
A shift operation wherein the carry flag is included in the shift.

Short for American Standard Code for Information Interchange. ASCII is used to
code characters for output to printers and other external devices.

An Intelligent I/O Unit used to program in BASIC. When connected to an NSU on
a Net Link System, commands can be sent to other nodes.

A base onto which Units are mounted to form a Rack. Backplanes provide a se-
ries of connectors for these Units along with wiring to connect them to the CPU.
Backplanes also provide connectors used to connect them to other Backplanes.
In some Systems, different Backplanes are used for different Racks; in other
Systems, Racks differ only according to the Units mounted to them.

Short for binary-coded decimal.

An arithmetic calculation that uses numbers expressed in binary-coded deci-
mal.

A number system where all numbers are expressed to the base 2, i.e., any num-
ber can be written using only 1's or 2's. Each group of four binary bits is equiva-
lent to one hexadecimal digit.

An arithmetic calculation that uses numbers expressed in binary.

A system used to represent numbers so that each group of four binary bits is
numerically equivalent to one decimal digit.

A binary digit; hence a unit of data in binary notation. The smallest unit of infor-
mation that can be electronically stored in a PC. The status of a bit is either ON or
OFF. Different bits at particular addresses are allocated to special purposes,
such as holding the status input from external devices, while other bits are avail-
able for general use in programming.

The location in memory where a bit of data is stored. A bit address must specify

(sometimes by default) the data area and word that is being addressed, as well
as the number of the bit.

477



Glossary

bit designator

bit number

buffer

building-block PC

bus bar

call

carry flag

clock pulse

clock pulse bit

common data

condition

constant

control bit

Control System

controlled system
control signal

counter

478

An operand that is used to designate the bit or bits of a word to be used by an
instruction.

A number that indicates the location of a bit within a word. Bit 00 is the rightmost
(least-significant) bit; bit 15 is the leftmost (most-significant) bit.

A temporary storage space for data in a computerized device.

A PC that is constructed from individual components, or “building blocks”. With
building-block PCs, there is no one Unit that is independently identifiable as a
PC. The PC is rather a functional assembly of components.

The line leading down the left and sometimes right side of a ladder diagram. In-
struction execution proceeds down the bus bar, which is the starting point for all
instruction lines.

A process by which instruction execution shifts from the main program to a sub-
routine. The subroutine may be called by an instruction or by an interrupt.

A flag that is used with arithmetic operations to hold a carry from an addition or
multiplication operation, or to indicate that the result is negative in a subtraction
operation. The carry flag is also used with certain types of shift operations.

A pulse available at a certain bit in memory for use in timing operations. Various
clock pulses are available with different pulse widths.

A bit in memory that supplies a pulse that can be used to time operations. Vari-
ous clock pulse bits are available with different pulse widths, and therefore differ-
ent frequencies.

Data that is stored in the LR Area of a PC and which is shared by other PCs in the
same the same system. Each PC has a specified section of the LR Area allo-
cated to it. This allocation is the same in each LR Area of each PC.

An message placed in an instruction line to direct the way in which the terminal
instructions, on the right side, are to be executed. Each condition is assigned to a
bit in memory that determines its status. The status of the bit assigned to each
condition determines, in turn, the execution condition for each instruction up to a
terminal instruction on the right side of the ladder diagram.

An operand for which the actual numeric value is specified by the user, and
which is then stored in a particular address in the data memory.

A bit in a memory area that is set either through the program or via a Program-
ming Device to achieve a specific purpose, e.g., a Restart bit is turned ON and
OFF to restart a Unit.

All of the hardware and software components used to control other devices. A
Control System includes the PC System, the PC programs, and all I/O devices
that are used to control or obtain feedback from the controlled system.

The devices that are being controlled by a PC System.

A signal sent from the PC to effect the operation of the controlled system.

A dedicated group of digits or words in memory used to count the number of
times a specific process has occurred, or a location in memory accessed



Glossary

CPU

CPU Backplane

CPU Rack

CTS

cycle

cycle time

data area

data area boundary

data sharing

debug

decimal

decrement

default

definer

delay

destination

through a TC bit and used to count the number of times the status of a bit or an
execution condition has changed from OFF to ON.

An acronym for central processing unit. In a PC System, the CPU executes the
program, processes /O signals, communicates with external devices, etc.

A Backplane which is used to create a CPU Rack.

Part of a building-block PC, the CPU Rack contains the CPU, a power supply,
and other Units. With most PCs, the CPU Rack is the only Rack that provides
linkable slots.

An acronym for clear-to-send, a signal used in communications between elec-
tronic devices to indicate that the receiver is ready to accept incoming data.

The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in turn
based on execution conditions.

The time required for a single cycle of the ladder-diagram program.

An area in the PC’s memory that is designed to hold a specific type of data, e.g.,
the LR area is designed to hold common data in a PC Link System. Memory
areas that hold programs are not considered data areas.

The highest address available within a data area. When designating an operand
that requires multiple words, it is necessary to ensure that the highest address in
the data area is not exceeded.

An aspect of PC Link Systems and of Data Links in Net Link Systems in which
common data areas or common data words are created between two or more
PCs.

A process by which a draft program is corrected until it operates as intended.
Debugging includes both the removal of syntax errors, as well as the fine-tuning
of timing and coordination of control operations.

A number system where all numbers are expressed to the base 10. In a PC all
data is ultimately stored in binary form, four binary bits are often used to repre-
sent one decimal digit, via a system called binary-coded decimal.

Decreasing a numeric value.

A value automatically set by the PC when the user omits to set a specific value.
Many devices will assume such default conditions upon the application of power.

A number used as an operand for an instruction but that serves to define the in-
struction itself, rather that the data on which the instruction is to operate. Defin-
ers include jump numbers, subroutine numbers, etc.

In tracing, a value that specifies where tracing is to begin in relationship to the
trigger. A delay can be either positive or negative, i.e., can designate an offset on
either side of the trigger.

The location where an instruction is to place the data on which it is operating, as

opposed to the location from which data is taken for use in the instruction. The
location from which data is taken is called the source.

479



Glossary

differentiated instruction

differentiation instruction

digit

digit designator

distributed control

DM area

download

electrical noise

error code

exclusive OR

exclusive NOR

exection condition

execution time

Expansion I/O Backplane

Expansion I/O Rack

extended counter

480

An instruction that is executed only once each time its execution condition goes
from OFF to ON. Nondifferentiated instructions are executed each cycle as long
as the execution condition stays ON.

An instruction used to ensure that the operand bit is never turned ON for more
than one cycle after the execution condition goes either from OFF to ON for a
Differentiate Up instruction or from ON to OFF for a Differentiate Down instruc-
tion.

A unit of storage in memory that consists of four bits.

An operand that is used to designate the digit or digits of a word to be used by an
instruction.

An automation concept in which control of each portion of an automated system
is located near the devices actually being controlled, i.e., control is decentralized
and ‘distributed’ over the system. Distributed control is one of the fundamental
concepts of PC Systems.

A data area used to hold only word data. Words in the DM area cannot be ac-
cessed bit by bit.

The process of transferring a program or data from a higher-level computer to a
lower-level computer or PC.

Random variations of one or more electrical characteristics such as voltage, cur-
rent, and data, which might interfere with the normal operation of a device.

A numeric code generated to indicate that an error exists, and something about
the nature of the error. Some error codes are generated by the system; others
are defined in the program by the operator.

A logic operation whereby the result is true if one, and only one, of the premises
is true. In ladder-diagram programming the premises are usually the ON/OFF
states of bits, or the logical combination of such states, called execution condi-
tions.

A logic operation whereby the result is true if both of the premises are true or both
of the premises are false. In ladder-diagram programming the premises are usu-
ally the ON/OFF states of bits, or the logical combination of such states, called
execution conditions.

The ON or OFF status under which an instruction is executed. The execution
condition is determined by the logical combination of conditions on the same in-
struction line and up to the instruction currently being executed.

The time required for the CPU to execute either an individual instruction or an
entire program.

A Backplane which is used to create an Expansion I/O Rack.

Part of a building-block PC, an Expansion I/O Rack is connected to either a CPU
Rack or another Expansion I/O Rack to increase the number of slots available
for mounting Units.

A counter created in a program by using two or more count instructions in suc-
cession. Such a counter is capable of counting higher than any of the standard
counters provided by the individual instructions.



Glossary

extended timer

Factory Intelligent Terminal

fatal error

FIT

flag

flicker bit

floating point decimal

Floppy Disk Interface Unit

force reset

force set

function code

hardware error

hexadecimal

Host Link System

Host Link Unit

host computer

HR area

increment

indirect address

A timer created in a program by using two or more timers in succession. Such a
timer is capable of timing longer than any of the standard timers provided by the
individual instructions.

A programming device provided with advanced programming and debugging
capabilities to facilitate PC operation. The Factory Intelligent Terminal also pro-
vides various interfaces for external devices, such as floppy disk drives.

An error that stops PC operation and requires correction before operation can
continue.

Abbreviation for Factory Intelligent Terminal.

A dedicated bit in memory that is set by the system to indicate some type of oper-
ating status. Some flags, such as the carry flag, can also be set by the operator
or via the program.

A bit that is programmed to turn ON and OFF at a specific frequency.

A decimal number expressed as a number between 0 and 1 (the mantissa) multi-
plied by a power of 10, e.g., 0.538 x 10°°.

A Unit used to interface a floppy disk drive to a PC so that programs and/or data
can be stored on floppy disks.

The process of forcibly turning OFF a bit via a programming device. Bits are usu-
ally turned OFF as a result of program execution.

The process of forcibly turning ON a bit via a programming device. Bits are usu-
ally turned ON as a result of program execution.

A two-digit number used to input an instruction into the PC.

An error originating in the hardware structure (electronic components) of the PC,
as opposed to a software error, which originates in software (i.e., programs).

A number system where all numbers are expressed to the base 16. In a PC all
data is ultimately stored in binary form, however, displays and inputs on Pro-
gramming Devices are often expressed in hexadecimal to simplify operation.
Each group of four binary bits is numerically equivalent to one hexadecimal digit.

A system with one or more host computers connected to one or more PCs via
Host Link Units so that the host computer can be used to transfer data to and
from the PC(s). Host Link Systems enable centralized management and control
of PC Systems.

An interface used to connect a PC to a host computer in a Host Link System.

A computer that is used to transfer data or programs to from a PC in a Host Link
System. The host computer is used for data management and overall system
control. Host computers are generally personal or business computers.

A data area used to store and manipulate data, and to preserve data when pow-
er to the PC is turned OFF.

Increasing a humeric value.

An address whose contents indicates another address. The contents of the sec-
ond address will be used as the operand. Indirect addressing is possible in the
DM area only.

481



Glossary

initialization error

initialize

input

input bit
input device

input point

input signal

instruction

instruction block

instruction execution time

instruction line

interface

interlock

interrupt (signal)
Interrupt Input Unit

inverse condition

I/O capacity

482

An error that occurs either in hardware or software during the PC System star-
tup, i.e., during initialization.

Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

The signal coming from an external device into the PC. The term input is often
used abstractly or collectively to refer to incoming signals.

A bitin the IR area that is allocated to hold the status of an input.
An external device that sends signals into the PC System.

The point at which an input enters the PC System. Input points correspond phys-
ically to terminals or connector pins.

A change in the status of a connection entering the PC. Generally an input signal
is said to exist when, for example, a connection point goes from low to high volt-
age or from a nonconductive to a conductive state.

A direction given in the program that tells the PC of an action to be carried out,
and which data is to be used in carrying out the action. Instructions can be used
to simply turn a bit ON or OFF, or they can perform much more complex actions,
such as converting and/or transferring large blocks of data.

A group of instructions that is logically related in a ladder-diagram program. Al-
though any logically related group of instructions could be called an instruction
block, the term is generally used to refer to blocks of instructions called logic
blocks that require logic block instructions to relate them to other instructions or
logic blocks.

The time required to execute an instruction. The execution time for any one in-
struction can vary with the execution conditions for the instruction and the oper-
ands used within it.

A group of conditions that lie together on the same horizontal line of a ladder dia-
gram. Instruction lines can branch apart or join together to form instruction
blocks.

An interface is the conceptual boundary between systems or devices and usual-
ly involves changes in the way the communicated data is represented. Interface
devices such as NSBs perform operations like changing the coding, format, or
speed of the data.

A programming method used to treat a number of instructions as a group so that
the entire group can be reset together when individual execution is not required.
An interlocked program section is executed normally for an ON execution condi-
tion and partially reset for an OFF execution condition.

A signal that stops normal program execution and causes a subroutine to be run.
A Rack-mounting Unit used to input external interrupts into a PC System.

A condition that produces an ON execution condition when the bit assigned to it
is OFF, and an OFF execution condition when the bit assigned to it is ON.

The number of inputs and outputs that a PC is able to handle. This number
ranges from around one hundred for smaller PCs to two thousand for the largest
ones.



Glossary

I/O Control Unit

I/O devices

I/O Interface Unit

I/O Link

I/0O Link Unit

I/O point

I/O response time

I/O table

I/0O Unit

/0O word

IR area

JIS

jump

jump number

ladder diagram (program)

ladder diagram symbol

ladder instruction

A Unit mounted to the CPU Rack in certain PCs to monitor and control 1/O points
on Expansion I/O Units.

The devices to which terminals on I/O Units, Special I/0 Units, or Intelligent 1/O
Units are connected. I/O devices may be either part of the Control System, if they
function to help control other devices, or they may be part of the controlled sys-
tem.

A Unit mounted to an Expansion 1/0O Rack in certain PCs to interface the Expan-
sion 1/0 Rack to the CPU Rack.

Created in an Optical Remote I/O System to enable input/output of one or two IR
words directly between PCs. The words are input/output between the PC con-
trolling the Master and a PC connected to the Remote I/O System through an 1/O
Link Unit or an 1/O Link Rack.

A Unit used with certain PCs to create an I/O Link in an Optical Remote 1/0 Sys-
tem.

The place at which an input signal enters the PC System, or at which an output
signal leaves the PC System. In physical terms, 1/0O points correspond to termi-
nals or connector pins on a Unit; in terms of programming, an /O points corre-
spond to I/O bits in the IR area.

The time required for an output signal to be sent from the PC in response to an
input signal received from an external device.

A table created within the memory of the PC that lists the IR area words allocated
to each Unit in the PC System. The 1/O table can be created by, or modified from,
a Programming Device.

The most basic type of Unit mounted to a backplane to create a Rack. 1/0 Units
include Input Units and Output Units, each of which is available in a range of
specifications. 1/0 Units do not include Special 1/O Units, Link Units, etc.

A word in the IR area that is allocated to a Unit in the PC System.

A data area whose principal function is to hold the status of inputs coming into
the system and that of outputs that are to be set out of the system. Bits and words
in the IR that are used this way are called I/O bits and 1/0 words. The remaining
bits in the IR area are work bits.

Acronym for Japanese Industrial Standards.

A type of programming where execution moves directly from one point in a pro-
gram to another, without sequentially executing any instructions inbetween.
Jumps are usually conditional on an execution condition.

A definer used with a jump that defines the points from and to which a jump is to
be made.

A form of program arising out of relay-based control systems that uses cir-
cuit-type diagrams to represent the logic flow of programming instructions. The
appearance of the program is similar to a ladder, and thus the name.

A symbol used in a ladder-diagram program.

An instruction that represents the ‘rung’ portion of a ladder-diagram program.
The other instructions in a ladder diagram fall along the right side of the diagram
and are called terminal instructions.

483



Glossary

Ladder Support Software

LAN

leftmost (bit/word)

Link Adapter

link

linkable slot

Link System

Link Unit

load

local area network

logic block

logic block instruction

logic instruction

loop

LR area

LSS

484

A software package that provides most of the functions of the Factory Intelligent
Terminal on an IBM AT, IBM XT, or compatible computer.

An acronym for local area network.

The highest numbered bits of a group of bits, generally of an entire word, or the
highest numbered words of a group of words. These bits/words are often called
most-significant bits/words.

A Unit used to connect communications lines, either to branch the lines or to con-
vert between different types of cable. There are two types of Link Adapter:
Branching Link Adapters and Converting Link Adapters.

A hardware or software connection formed between two Units. “Link” can refer
either to a part of the physical connection between two Units (e.g., optical links in
Wired Remote I/O Systems) or a software connection created to data existing at
another location (Network Data Links).

A slot on either a CPU or Expansion I/0O Backplane to which a Link Unit can be
mounted. Backplanes differ in the slots to which Link Units can be mounted.

A system that includes one or more of the following systems: Remote I/O Sys-
tem, PC Link System, Host Link System, or Net Link System.

Any of the Units used to connect a PC to a Link System. These are Remote 1/0
Units, 1/O Link Units, PC Link Units, Host Link Units, and Net Link Units.

The processes of copying data either from an external device or from a storage
area to an active portion of the system such as a display buffer. Also, an output
device connected to the PC is called a load.

A network consisting of nodes or positions in a loop arrangement. Each node
can be any one of a number of devices, which can transfer data to and from each
other.

A group of instructions that is logically related in a ladder-diagram program and
that requires logic block instructions to relate it to other instructions or logic
blocks.

An instruction used to locally combine the execution condition resulting from a
logic block with a current execution condition. The current execution condition
could be the result of a single condition, or of another logic block. AND Load and
OR Load are the two logic block instructions.

Instructions used to logically combine the content of two words and output the
logical results to a specified result word. The logic instructions combine all the
same-numbered bits in the two words and output the result to the bit of the same
number in the specified result word.

A group of instructions that can be executed more than once in succession (i.e.,
repeated) depending on an execution condition or bit status.

A data area that is used in a PC Link System so that data can be transferred be-
tween two or more PCs. If a PC Link System is not used, the LR area is available
for use as work bits.

Abbreviation for Ladder Support Software.



Glossary

main program

masking

Master
memory area

mnemonic code

MONITOR mode

most-significant (bit/word)

NC input

nest

Net Link System

Net Link Unit

Network Service Board

Network Service Unit

node

NO input

noise interference

nonfatal error

normal condition

All of a program except for the subroutines.

‘Covering’ an interrupt signal so that the interrupt is not effective until the mask is
removed.

Short for Remote 1/O Master Unit.
Any of the areas in the PC used to hold data or programs.

A form of a ladder-diagram program that consists of a sequential list of the in-
structions without using a ladder diagram. Mnemonic code is required to input a
program into a PC when using a Programming Console.

A mode of PC operation in which normal program execution is possible, and
which allows modification of data held in memory. Used for monitoring or debug-
ging the PC.

See leftmost (bit/word).

An input that is normally closed, i.e., the input signal is considered to be present
when the circuit connected to the input opens.

Programming one loop within another loop, programming a call to a subroutine
within another subroutine, or programming an IF-ELSE programming section
within another IF-ELSE section.

An optical LAN formed from PCs connected through Net Link Units. A Net Link
System also normally contains nodes interfacing computers and other periph-
eral devices. PCs in the Net Link System can pass data back and forth, receive
commands from any interfaced computer, and share any interfaced peripheral
device.

The Unit used to connect PCs to a Net Link System. The full name is “SYSMAC
Net Link Unit”.

A device with an interface to connect devices other than PCs to a Net Link Sys-
tem.

A Unit that provides two interfaces to connect peripheral devices to a Net Link
System.

One of the positions in a LAN. Each node incorporates a device that can commu-
nicate with the devices at all of the other nodes. The device at a node is identified
by the node number. One loop of a Net Link System (OMRON’s LAN) can consist
of up to 126 nodes. Each node is occupied by a Net Link Unit mounted to a PC or
a device providing an interface to a computer or other peripheral device.

An input that is normally open, i.e., the input signal is considered to be present
when the circuit connected to the input closes.

Disturbances in signals caused by electrical noise.

A hardware or software error that produces a warning but does not stop the PC
from operating.

A condition that produces an ON execution condition when the bit assigned to it
is ON, and an OFF execution condition when the bit assigned to it is OFF.

485



Glossary

NOT

NSB
NSU

OFF

OFF delay

ON

ON delay

one-shot bit

on-line removal

operand

operand bit

operand word

operating error

Optical 1/0O Unit

Optical Slave Rack

OR

output

output bit

output device

486

A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND operation with the opposite of the actual status of the op-
erand bit.

An acronym for Network Service Board.
An acronym for Network Service Unit.

The status of an input or output when a signal is said not to be present. The OFF
state is generally represented by a low voltage or by non-conductivity, but can be
defined as the opposite of either.

The delay between the time when a signal is switched OFF (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an OFF
signal (i.e., as no signal) by a receiving party (e.g., output device or PC).

The status of an input or output when a signal is said to be present. The ON state
is generally represented by a high voltage or by conductivity, but can be defined
as the opposite of either.

The delay between the time when an ON signal is initiated (e.g., by an input de-
vice or PC) and the time when the signal reaches a state readable as an ON sig-
nal by a receiving party (e.g., output device or PC).

A bit that is turned ON or OFF for a specified interval of time which is longer than
one cycle.

Removing a Rack-mounted Unit for replacement or maintenance during PC op-
eration.

Bit(s) or word(s) designated as the data to be used for an instruction. An operand
can be input as a constant expressing the actual numeric value to be used or as
an address to express the location in memory of the data to be used.

A bit designated as an operand for an instruction.

A word designated as an operand for an instruction.

An error that occurs during actual PC operation as opposed to an initialization
error, which occurs before actual operations can begin.

A Unit that is connected in an Optical Remote I/O System to provide 8 1/O points.
Optical I/0 Units are not mounted to a Rack.

A Slave Rack connected through an Optical Remote 1/O Slave Unit.

A logic operation whereby the result is true if either of two premises is true, or if
both are true. In ladder-diagram programming the premises are usually ON/OFF
states of bits or the logical combination of such states called execution condi-

tions.

The signal sent from the PC to an external device. The term output is often used
abstractly or collectively to refer to outgoing signals.

A bit in the IR area that is allocated to hold the status to be sent to an output de-
vice.

An external device that receives signals from the PC System.



Glossary

output point

output signal

overseeing

overwrite

parity

PC
PCB

PC configuration

PCF

PC Link System

PC Link Unit

PC System

peripheral device

port

present value

printed circuit board

Printer Interface Unit

program

Programmable Controller

The point at which an output leaves the PC System. Output points correspond
physically to terminals or connector pins.

A signal being sent to an external device. Generally an output signal is said to
exist when, for example, a connection point goes from low to high voltage or from
a nonconductive to a conductive state.

Part of the processing performed by the CPU that includes general tasks re-
quired to operate the PC.

Changing the content of a memory location so that the previous content is lost.

Adjustment of the number of ON bits in a word or other unit of data so that the
total is always an even number or always an odd number. Parity is generally
used to check the accuracy of data after being transmitted by confirming that the
number of ON bits is still even or still odd.

An acronym for Programmable Controller.
An acronym for printed circuit board.

The arrangement and interconnections of the Units that are put together to form
a functional PC.

Acronym for plastic-clad optical fiber cable.

A system in which PCs are connected through PC Link Units to enable them to
share common data areas, i.e., each of the PCs writes to certain words in the LR
area and receives the data of the words written by all other PC Link Units con-
nected in series with it.

The Unit used to connect PCs in a PC Link System.

With building-block PCs, all of the Racks and independent Units connected di-
rectly to them up to, but not including the I/O devices. The boundaries of a PC
System are the PC and the program in its CPU at the upper end; and the 1/0
Units, Special I/O Units, Optical I/O Units, Remote Terminals, etc., at the lower
end.

Devices connected to a PC System to aid in system operation. Peripheral de-
vices include printers, programming devices, external storage media, etc.

A connector on a PC or computer that serves as a connection to an external de-
vice.

The current value registered in a device at any instant during its operation. Pres-
ent value is abbreviated as PV.

A board onto which electrical circuits are printed for mounting into a computer or
electrical device.

A Unit used to interface a printer so that ladder diagrams and other data can be
printed out.

The list of instructions that tells the PC the sequence of control actions to be car-
ried out.

A computerized device that can accept inputs from external devices and gener-
ate outputs to external devices according to a program held in memory. Pro-

487



Glossary

programmed alarm

programmed error

programmed message

Programming Console

Programming Device

PROGRAM mode

PROM Writer

prompt

PV

Rack

refresh

relay-based control

Remote I/O Master Unit

Remote I/O Slave Unit

Remote I/0O System

488

grammable Controllers are used to automate control of external devices. Al-
though single-component Programmable Controllers are available, build-
ing-block Programmable Controllers are constructed from separate compo-
nents. Such building-block Programmable Controllers are formed only when
enough of these separate components are assembled to form a functional as-
sembly, i.e., no one individual Unit is called a PC.

An alarm given as a result of execution of an instruction designed to generate the
alarm in the program, as opposed to one generated by the system.

An error arising as a result of the execution of an instruction designed to gener-
ate the error in the program, as opposed to one generated by the system.

A message generated as a result of execution of an instruction designed to gen-
erate the message in the program, as opposed to one generated by the system.

The simplest form or programming device available for a PC. Programming
Consoles are available both as hand-held models and as CPU-mounting mod-
els.

A peripheral device used to input a program into a PC or to alter or monitor a
program already held in the PC. There are dedicated programming devices,
such as Programming Consoles, and there are non-dedicated devices, such as
a host computer.

A mode of operation that allows inputting and debugging of programs to be car-
ried out, but that does not permit normal execution of the program.

A peripheral device used to write programs and other data into a ROM for per-
manent storage and application.

A message or symbol that appears on a display to request input from the opera-
tor.

Acronym for present value.

An assembly of various Units on a Backplane that forms a functional unit in a
building-block PC System. Racks include CPU Racks, Expansion I/O Racks, 1/0
Racks, and Slave Racks.

The process of updating output status sent to external devices so that it agrees
with the status of output bits held in memory and of updating input bits in memory
so that they agree with the status of inputs from external devices.

The forerunner of PCs. In relay-based control, groups of relays are intercon-
nected to form control circuits. In a PC, these are replaced by programmable cir-
cuits.

The Unit in a Remote I/O System through which signals are sent to all other Re-
mote 1/O Units. The Remote I/O Master Unit is mounted either to a CPU Rack or
an Expansion I/O Rack connected to the CPU Rack. Remote I/O Master Unit is
generally abbreviated to Master.

A Unit mounted to a Backplane to form a Slave Rack. Remote I/O Slave Unit is
generally abbreviated to Slave.

A system in which remote I/O points are controlled through a Master mounted to
a CPU Rack or an Expansion I/O Rack connected to the CPU Rack.



Glossary

Remote I/0 Unit

remote 1/0O word

reset

return

reversible counter

reversible shift register

right-hand instruction

rightmost (bit/word)

rotate register

RUN mode

scheduled interrupt

self diagnosis

self-maintaining bit

servicing

set

set value

shift register

Slave

Slave Rack

Any of the Units in a Remote I/O System. Remote I/O Units include Masters,
Slaves, Optical /0O Units, I/O Link Units, and Remote Terminals.

An I/O word allocated to a Unit in a Remote 1/O System.

The process of turning a bit or signal OFF or of changing the present value of a
timer or counter to its set value or to zero.

The process by which instruction execution shifts from a subroutine back to the
main program (usually the point from which the subroutine was called).

A counter that can be both incremented and decremented depending on the
specified conditions.

A shift register that can shift data in either direction depending on the specified
conditions.

Another term for terminal instruction.

The lowest numbered bits of a group of bits, generally of an entire word, or the
lowest numbered words of a group of words. These bits/words are often called
least-significant bits/words.

A shift register in which the data moved out from one end is placed back into the
shift register at the other end.

The operating mode used by the PC for normal control operations.

An interrupt that is automatically generated by the system at a specific time or
program location specified by the operator. Scheduled interrupts result in the ex-
ecution of specific subroutines that can be used for instructions that must be ex-
ecuted repeatedly for a specified period of time.

A process whereby the system checks its own operation and generates a warn-
ing or error if an abnormality is discovered.

A bit that is programmed to maintain either an OFF or ON status until set or reset
by specified conditions.

The process whereby the PC provides data to or receives data from external de-
vices or remote I/O Units, or otherwise handles data transactions for Link Sys-
tems.

The process of turning a bit or signal ON.

The value from which a decrementing counter starts counting down or to which
an incrementing counter counts up (i.e., the maximum count), or the time from
which or for which a timer starts timing. Set value is abbreviated SV.

One or more words in which data is shifted a specified number of units to the right
or left in bit, digit, or word units. In a rotate register, data shifted out one end is
shifted back into the other end. In other shift registers, new data (either specified
data, zero(s) or one(s)) is shifted into one end and the data shifted out at the oth-
er end is lost.

Short for Remote 1/O Slave Unit.

A Rack containing a Remote 1/O Slave Unit and controlled through a Remote 1/O
Master Unit. Slave Racks are generally located away from the CPU Rack.

489



Glossary

slot
software error

software protect

source

Special I/0 Unit

SR area

SSS

subroutine

subroutine number

SYY)
switching capacity

syntax error

SYSMAC Support Software

system configuration

system error

system error message

TC area

TC number

terminal instruction

terminator

490

A position on a Rack (Backplane) to which a Unit can be mounted.
An error that originates in a software program.

A means of protecting data from being changed that uses software as opposed
to a physical switch or other hardware setting.

The location from which data is taken for use in an instruction, as opposed to the
location to which the result of an instruction is to be written. The latter is called
the destination.

A dedicated Unit that is designed for a specific purpose. Special I/O Units in-
clude Position Control Units, High-Speed Counter Units, Analog I/O Units, etc.

A data area in a PC used mainly for flags, control bits, and other information pro-
vided about PC operation. The status of only certain SR bits may be controlled
by the operator, i.e., most SR bits can only be read.

Abbreviation for SYSMAC Support Software.

A group of instructions placed after the main program and executed only if called
from the main program or activated by an interrupt.

A definer used to identify the subroutine that a subroutine call or interrupt acti-
vates.

Abbreviation for set value.
The maximum voltage/current that a relay can safely switch on and off.

An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exist), mistakes in specify-
ing operands within acceptable parameters (e.g., specifying reserved SR bits as
a destination), and mistakes in actual application of instructions (e.g., a call to a
subroutine that does not exist).

A software package installed on a IBM PC/AT or compatible computer to func-
tion as a Programming Device.

The arrangement in which Units in a system are connected.

An error generated by the system, as opposed to one resulting from execution of
an instruction designed to generate an error.

An error message generated by the system, as opposed to one resulting from
execution of an instruction designed to generate a message.

A data area that can be used only for timers and counters. Each bit in the TC area
serves as the access point for the SV, PV, and Completion flag for the timer or
counter defined with that bit.

A definer that corresponds to a bit in the TC area and used to define the bit as
either a timer or a counter.

An instruction placed on the right side of a ladder diagram that uses the final ex-
ecution conditions of an instruction line.

The code comprising an asterisk and a carriage return (* CR) which indicates the
end of a block of data, whether it is a single-frame or multi-frame block. Frames
within a multi-frame block are separated by delimiters.



Glossary

timer

TM area

transmission distance

TR area

trace

transfer

trigger address

UM area

Unit

unit number

watchdog timer

Wired Slave Rack

word

word address

word multiplier

work bit

work word

A location in memory accessed through a TC bit and used to time down from the
timer’s set value. Timers are turned ON and reset according to their execution
conditions.

A memory area used to store the results of a trace.
The distance that a signal can be transmitted.

A data area used to store execution conditions so that they can be reloaded later
for use with other instructions.

An operation whereby the program is executed and the resulting data is stored in
TM memory to enable step-by-step analysis and debugging.

The process of moving data from one location to another within the PC, or be-
tween the PC and external devices. When data is transferred, generally a copy
of the data is sent to the destination, i.e., the content of the source of the transfer
is not changed.

An address in the program that defines the beginning point for tracing. The ac-
tual beginning point can be altered from the trigger by defining either a positive or
negative delay.

The memory area used to hold the active program, i.e., the program that is being
currently executed.

In OMRON PC terminology, the word Unit is capitalized to indicate any product
sold for a PC System. Though most of the names of these products end with the
word Unit, not all do, e.g., a Remote Terminal is referred to in a collective sense
as a Unit. Context generally makes any limitations of this word clear.

A number assigned to some Link Units and Special I/0 Units to facilitate identifi-
cation when assigning words or other operating parameters to it.

A timer within the system that ensures that the cycle time stays within specified
limits. When limits are reached, either warnings are given or PC operation is
stopped depending on the particular limit that is reached.

A Slave Rack connected through a Wired Remote 1/O Slave Unit.

A unit of data storage in memory that consists of 16 bits. All data areas consists
of words. Some data areas can be accessed only by words; others, by either
words or bits.

The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that is
being addressed.

A value between 0 and 3 that is assigned to a Master in a Remote I/O System so
that words can be allocated to non-Rack-mounting Units within the System. The
word setting made on the Unit is added to 32 times the word multiplier to arrive at
the actual word to be allocated.

A bit in a work word.

A word that can be used for data calculation or other manipulation in program-
ming, i.e., a ‘work space’ in memory. A large portion of the IR area is always re-

491



Glossary

served for work words. Parts of other areas not required for special purposes
may also be used as work words, e.g., LR words not used in a PC Link or Net Link
System.

492



A

address tracing. See tracing, data tracing.

addresses, in data area, 27

advanced |/O instructions
7-SEGMENT DISPLAY OUTPUT, 303
DIGITAL SWITCH INPUT, 306
functions, 302
HEXADECIMAL KEY INPUT, 310
MATRIX INPUT, 315
TEN-KEY INPUT, 312

application examples, 339

AR area, 48-54

arithmetic flags, 119

arithmetic operations, flags, 44

ASCII, converting data, 195, 196

battery, Low Battery Flag, 42
BCD
calculations, 205-219
converting, 28
definition, 28
binary
caculations, 220
definition, 28
signed binary, 29
unsigned binary, 29
bits
controlling, 130
forced set/reset, 349
monitoring, 346-349
buzzer, 81

C

C200H programs, transferring to C200HS, 11

calendar/clock, dedicated bits, 52
canceling, forced set/reset, 351
channel. See word
checksum, calculating frame checksum, 284
clock, reading and setting, 367
clock pulse hits, 43
communications

host link, 377

node number, 378

link, one-to-one, 382

one-to-one, 383

wiring, 377
constants, operands, 119
control bit

definition, 27

Output OFF, 42
Control System, definition, 3

| ndex

controlled system, definition, 3
counters
bitsin TC area, 60
changing SV, 362
conditions when reset, 146, 149
creating extended timers, 147
extended, 147
inputting SV, 94
Power OFF, 54
reversible counters, 148
CPU, 16
CPU-mounting Device Mounted Flag, 54
operational flow, 318-319
CPU indicators, 17
CPU Rack, definition, 18
cycle, First Cycle Flag, 43
CYCLE MONITOR TIME, PC Setup, 59
CYCLE TIME, PC Setup, 59
cycle time, 318-322
calculating, 322-324
controlling, 277
Cycle Time Indicators, 54
displaying on Programming Console, 98
error flag, 43
flag for SCAN(18), 54

D
data

comparison instructions, 169-180
converting, 28, 181-204
decrementing, 205
incrementing, 205
modifying, 358
modifying binary data, 361
modifying hex/BCD, 352
moving, 158-169
data area, definition, 25
data areas, 453
structure, 27
Data Link table, transferring, 90
data memory, fixed, 56
data retention
in AR area, 48
in HR area, 60
inIR area, 31
inLR areg, 61
in SR area, 33
in TC area, 60
in TR areq, 61
data tracing, 278-292
flags and control bits, 54
decimal

converting display between 4-digit hex and decimal, 355
converting display between 8-digit hex and decimal, 356

decrementing, 205
definers, definition, 118
delay time, in C500 Remote 1/O Systems, 335



I ndex

differentiated instructions, 119
function codes, 118
digit, monitoring, 346
digit numbers, 28
DIP switch, 23
displays
converting between 4-digit hex and decimal, 355
converting between 8-digit hex and decimal, 356
converting between hex and ASCII, 354
1/0 Unit designations, 838
Programming Console, English/Japanese switch, 80
DM area, allocating UM to expansion DM, 366

E

ER. See flag, Instruction Execution Error
error codes, programming, 276
error history, dedicated bits, 51
error messages, programming, 279, 280
errors
clearing messages, 85
fatal, 395
history area, 57
initialization, 393
Instruction Execution Error Flag, 44
message tables, 392-396
messages when inputting programs, 96
non-fatal, 393
programming indications, 392
programming messages, 279, 280
reading and clearing messages, 392
resetting, 277
SR and AR areaflags, 397
execution condition, definition, 66
execution time, instructions, 324-332
expansion DM, allocating UM to, 366
expansion DM area, alocation, 56
Expansion 1/0 Rack, definition, 19
expansion instructions, 8, 120, 446
changing function code assignments, 365
reading function code assignments, 365
expansion keyboard mapping, 367

F

FAL area, 42, 276
fatal operating errors, 395
flag
AR and SR area error flags, 397
arithmetic, 44
programming example, 171, 174, 178
CPU-mounting Device Mounted, 54
CcY
clearing, 206
setting, 206
Cycle Time Error, 43
definition, 27
First Cycle, 43
FPD Trigger Bit, 54

494

1/0O Verification Error, 43

Instruction Execution Error, 44

Link Units, 54

Low Battery, 42

Optical 1/O Error, 50

Step, 44
flags

arithmetic, 119

error and arithmetic, 449

signed binary arithmetic, 451
floating-point decimal, division, 215
forced set/reset, 349

canceling, 351-352

Forced Status Hold Bit, 41
FORCED STATUS, PC Setup, 59
Frame Check Sequence. See frames, FCS
frame checksum, calculating with FCS(—), 284
frames

dividing

See also host link
precautions, 405

FCS, 405
function codes, 118

changing expansion instruction function codes, 365

reading expansion instruction function codes, 365

G

Group-2 High-density 1/0 Units, 4
Group-2 B7A Interface Units, word allocation, 33
Group-2 High-density 1/0 Units, word allocation, 33

H

hexadecimal, definition, 28
High-density 1/O Units. See Group
Units
host link
command and response formats, 404
communications
See also host link commands
methods, 403
PC transmission, 406
procedures, 378, 403
data transfer, 403
dividing frames, 405
frame
definition, 403
maximum size, 403
node number, 378
setting parameters, start and end codes, 380
host link commands
**l 430
FK, 424
IC, 430
KC, 425
KR, 423
KS, 422
MF, 421
Ml, 427
MM, 425



I ndex

MS, 419
QQ, 427
R#, 414
R$, 415
R%, 416
RC, 408
RD, 409
RG, 409
RH, 408
RJ, 410
RL, 407
RP, 426
RR, 407
SC, 420
TS, 426
W#, 417
W$, 417
W%, 418
WC, 412
WD, 413
WG, 412
WH, 411
WJ, 413
WL, 411
WP, 427
WR, 410
XZ, 429

host link errors, 431

Host Link Systems, error bits and flags, 40

HR area, 60

1/0 bit
definition, 31
limits, 31

1/0 numbers, 33

1/0 points, refreshing, 282, 283
1/0 response time, one-to-one link communications, 339

1/0 response times, 333
1/0 status, maintaining, 42
1/0 table

clearing, 89

reading, 87

registration, 84

verification, 86

Verification Error flag, 43

1/0 Units. See Units
1/0 word
alocation, 31
definition, 31
limits, 31
incrementing, 205
indirect addressing, 119
input bit
application, 31
definition, 3
input device, definition, 3
input point, definition, 3
input signal, definition, 3
instruction set, 443

7SEG(—), 302
ADB(50), 220
ADD(30), 206
ADDL(54), 207
AND, 68, 129

combining with OR, 69
AND LD, 71, 130

combining with OR LD, 73

usein logic blocks, 72
AND NOT, 68, 129
ANDW(34), 251
APR(69), 240
ASC(86), 195
ASFT(17), 157
ASL(25), 154
ASR(26), 154
AVG(—), 236
BCD(24), 182
BCDL(59), 183
BCMP(68), 174
BCNT(67), 284
BIN(23), 181
BINL(58), 182
BSET(71), 160
CLC(41), 206
CMP(20), 170
CMPL(60), 173
CNT, 145
CNTR(12), 148
COLL(81), 164
COLM(64), 202
COM(29), 250
CPS(—), 179
CPSL(—), 180
DBS(—), 232
DBSL(—), 233
DEC(39), 205
DIFD(14), 109, 131132

using in interlocks, 136

using in jumps, 138
DIFU(13), 109, 131132

using in interlocks, 136

using in jumps, 138
DIST(80), 162
DIV(33), 213
DIVL(57), 214
DMPX(77), 189
DSW(—), 305
DVB(53), 225
END(01), 70, 124, 138
execution times, 324-332
FAL(06), 276
FALS(07), 276
FCS(—), 284
FDIV(79), 215
FPD(—), 286
HEX(—), 196
HKY (—), 309
HMS(66), 185
I1L(02), 105, 135-137
ILC(03), 105, 135-137
INC(38), 205
INT(89), 263
IORF(97), 282
JME(05), 137



I ndex

JMP(04), 137
JMP(04) and IME(05), 107
KEEP(11), 133
in controlling bit status, 109
ladder instructions, 67
LD, 68, 129
LD NQT, 68, 129
LINE(63), 201
LMSG(47), 280
MAX(—), 234
MBS(—), 230
MBSL(—), 231
MCMP(19), 169
MCRO(99), 261
MIN(—), 235
MLB(52), 225
MLPX(76), 186
MOV (21), 159
MOVB(82), 166
MOVD(83), 167
MPRF(61), 283
MSG(46), 279
MTR(—), 314
MUL(32), 212
MULL(56), 213
MVN(22), 159
NOP(00), 138
NOT, 66
operands, 64
OR, 69, 129
combining with AND, 69
ORLD, 72,130
combining with AND LD, 73
use in logic blocks, 73
OR NOT, 69, 129
ORW(35), 252
OUT, 70, 130
OUT NOT, 70, 130
PID(—), 243
RECV(98), 294
RET(93), 260
ROL(27), 155
ROOT(72), 218
ROR(28), 155
RSET, 133
RXD(—), 298
SBB(51), 222
SBN(92), 260
SBS(91), 258
SCAN(18), 277
SCL(—), 199
SDEC(78), 192
SEC(65), 184
SEND(90), 292
SET, 133
SFT(10), 150
SFTR(84), 152
SLD(74), 156
SNXT(09), 267
SRCH(—), 290, 291
SRD(75), 156
STC(40), 206
STEP(08), 267
SUB(31), 208

496

SUBL (55), 210
SUM(—), 238
TCMP(85), 176
TERM(48), 78, 281
terminology, 64
TIM, 139
TIMH(15), 143
TKY(—), 312
TRSM(45), 278
TTIM(87), 144
TXD(—), 300
WDT(94), 282
WSFT(16), 157
XCHG(73), 162
XFER(70), 161
XFRB(62), 168
XNRW(37), 254
XORW(36), 253
ZCP(88), 177
ZCPL(—), 178
instruction sets
ADBL(—), 226
NEG(—), 203
NEGL(—), 204
SBBL(—), 228
instructions
advanced 1/0O, 302
designations when inputting, 94
instruction set lists, 125
I0RF(97), 339
mnemonics list, ladder, 125
instructions tables, 8
interlocks, 135-137
using self-maintaining bits, 109
interrupts, 254
control, 263

IOM data, reading/writing Memory Cassette data, 387
IOM HOLD BIT STATUS, PC Setup, 59

IR area, 31-33

J

jump numbers, 137
jumps, 137-138

K

keyboard mapping, 368
expansion keyboard mapping, 367

L

ladder diagram
branching, 103
IL(02) and ILC(03), 105
using TR bits, 103
controlling bit status

using DIFU(13) and DIFD(14), 109, 131-132

using KEEP(11), 133-139
using OUT and OUT NOT, 70



I ndex

using SET and RSET, 133
converting to mnemonic code, 6678
display viaLSS, 65
instructions

combining, AND LD and OR LD, 73

controlling bit status

using KEEP(11), 109
using OUT and OUT NOT, 130

format, 118
notation, 118
structure, 65
using logic blocks, 71

ladder diagram instructions, 129-130

Ladder Support Software. See peripheral devices

LEDs. See CPU indicators
|leftmost, definition, 27
Link System, flags and control bits, 3941
Link Units
See also Units
flags, 54
PC cycletime, 323

logic block instructions, converting to mnemonic code, 71-77

logic blocks. See ladder diagram
logic instructions, 250-254

LR area, 61

LSS. See periphera devices

M

mapping, expansion keyboard mapping, 367
memory all clear, 82
memory areas, 453
clearing, 82
definition, 25
Memory Cassette, installing, 21

Memory Cassettes
transferring C200H programs, 11
UM AreallOM data, 386
memory clear, 84
memory partia clear, 83
messages, programming, 279, 280
mnemonic code, converting, 6678
models, C200HS, 433
modifying data, hex/binary, 352
monitoring
binary, 359
differentiation monitoring, 357
monitoring 3 words, 358

mounting Units, location, 19

N

nesting, subroutines, 259

non-fatal operating errors, 393

normally closed condition, definition, 66
NOT, definition, 66

O

one-to-one link, wiring, 382
one-to-one link communications, 1/0 response timing, 339
operand bit, 66
operands, 118

alowable designations, 118
requirements, 118

operating modes, 80
operation, preparations, 80-91
Optical 1/0 Unit, Error flag, 50
output bit

application, 31

controlling, via Output OFF bit, 42
controlling ON/OFF time, 131
controlling status, 108, 109
definition, 3

output device, definition, 3
output point, definition, 3
output signal, definition, 3

password, entering on Programming Console, 81

P

PC

configuration, 18
definition, 3
flowchart, 319

PC Link Systems

error bits and flags, 40-41
LR area application, 61

PC Setup, 58

default, 58

PC SETUPR, HEX INPUT, 59
peripheral devices, 5

Ladder Support Software (LSS), 5
Programming Console, 5, 78-80

peripheral port, communications

receiving, 381
transmitting, 380

power supply, Power OFF Counter, 54
precautions, general, xiii

present value. See PV

program execution, 114

Program Memory

setting address and reading content, 92—93
structure, 66

programming

checks for syntax, 96-98

entering and editing, 93

example, using shift register, 151

inputting, modifying and checking, 92—108
inserting and deleting instructions, 100-102
instructions, 443

jumps, 107

precautions, 112

preparing data in data areas, 160

searching, 99-100

setting and reading from memory address, 92

simplification with differentiated instructions, 132

writing, 64

497



I ndex

Programming Console, 78-80
See also peripheral devices

programs, transferring from C200H, 11

P\/
accessing via PC area, 60
CNTR(12), 149
timers and counters, 139

R

Racks, types, 18
Remote 1/O Systems, error bits and flags, 39
response time calculations, C500 PCs, 337
response times, 1/0, 333-343
rightmost, definition, 27
RS-232C
communications
one-to-one link, 382
procedures, 379
receiving, 381
transmitting, 380
connecting Units, 382

RS-232C connector, 17
RS-232C port, wiring example, 377
RS-232C SETUP, PC Setup, 59

S

self-maintaining bits, using KEEP(11), 134
set value. See SV
Settings
communications, host link, 377
PC Setup, 58
seven-segment displays, converting data, 192
shift registers, 150-158
controlling individual bits, 151
signed binary arithmetic flags, 451
signed binary data, 29
Specia 1/0 Unit Default Area, 56
Specid /0 Units. See Units
SR area, 3348

stack operation
COLL(81), 164
DIST(80), 162

STARTUP MODE, PC Setup, 59
STARTUP SETTINGS, PC Setup, 59
status indicators. See CPU indicators
step execution, Step flag, 44

step instructions, 267-276
subroutine number, 260

subroutines, 254-266

sV
accessing via TC area, 60
changing, 362
CNTR(12), 149
timers and counters, 139

498

switches, DIP. See DIP switch
SYSMAC LINK, loop status and completion codes, 37
SYSMAC LINK System

Active Node Flags, 52

instructions, 292

service time, 52
SYSMAC NET, loop status and completion codes, 37
SYSMAC NET Link System

Data Link Table transferring, 90

instructions, 292

servicetime, 52

T

TC area, 60
TC numbers, 60, 139
TERMINAL mode, 78
Key Bits, 53
time, reading and setting the clock, 367
timers
bitsin TC area, 60
changing SV, 362
conditions when reset, 140, 144
TTIM(120), 145
example using CMP(20), 171
extended timers, 141
flicker bits, 143
inputting SV, 94
ON/OFF delays, 141
one-shot bits, 142
TR area, 61
TR bits, use in branching, 103
tracing
See also See data tracing and address tracing.
flags and control bits, 54

U

UM Area
dlocation to expansion DM, 366
reading/writing Memory Cassette data, 386
UM area, 61
Units
definition, 3
High-density 1/0 Units, definition, 4
1/0O Units, definition, 3
Link Units, definition, 4
Special 1/0 Units, definition, 4
unsigned binary data, 29

W

watchdog timer, 321
extending, 282

word bit, definition, 27
work word, definition, 27



Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W235-E1-05

t

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the

previous version.

Revision Date Revised content
code
1 January 1994 Original production
2 August 1994 Host Link Commands have been added as Section 10.

Page 5: Available manuals table undated.

Page 16: Paragraph and table added at top of page.

Page 17: New CPU models and indicators graphics added.

Page 19: New C200H CPU capabilities table added.

Page 20: New C200HS CPU capabilities table added.

Pages 31, 381: Functions redefined for SR 264 and SR 265.

Page 34: New information added to SR Area table.

Page 48: First table under 3-5 AR (Auxiliary Relay) Area replaced. AR Area Flags and Control
Bits table corrected.

Page 51: 3-5-4 SYSMAC LINK System Data Link Settings added.

Page 52: 3-5-6 Active Node Flags added.

Page 52: 3-5-7 SYSMAC LINK/SYSMAC NET Link System Service Time (CPU31-E/33-E)
added.

Page 90: 4-6-9 SYSMAC NET Link Table Transfer added.

Page 125: Commands SEND(90) and RECV(98) added to tables.

Page 291: 5-26-1 Network Instructions added.

Page 329: SEND(90) and RECV/(98) added to tables.

Page 399: 9-6 Host Link Errors added.

Page 359: New CPU models added.

Page 363: SYSMAC NET Link and SYSMAC LINK models added.

Page 366: SYSMAC NET Link and SYSMAC LINK optical fiber product information added.
Appendix B : Information added to Instructions table.

Appendix C : Information added to Instructions table.

Appendix D : Information added to SR and AR Memory tables.

499



Revision History

Revision Date Revised content
code
2A April 1995 The following instructions have been corrected: ASFT(—) to ASFT(17), XFRB(—) to XFRB(62),

MCMP(—) to MCMP(19), CMPL(—) to CMPL(60), BCMP(—) to BCMP(68), ZCP(—) to ZCP(88),
SEC(—) to SEC(65), HMS(—) to HMS(66), LINE(—) to LINE(63), COLM(—) to COLM(64),
APR(—) to APR(69), INT(—) to INT(89), SCAN(—) to SCAN(18), LMSG(—) to LMSG(47),
TERM(—) to TERM(48), MPRF(—) to MPRF(61), and BCNT(—) to BCNT(67).

Page 7: Internal auxiliary relays I and II areas renamed and corrected in Increased SR Area.
Page 17: CPU Indicators descriptions corrected.

Page 21: Note added after the table.

Page 23: Functions for pin 5 corrected.

Page 34: Function of bit 09 of word 252 corrected.

Pages 36, 37: Function of bits 08 to 10 of word 269 corrected. Functions of words , 267, 270,
271, 274, and 277 to 279 corrected. Words 298 to 299 added. SYSMAC NET/SYSMAC LINK
System added.

Page 43: RS-232C Port Communications Areas added.

Page 44: “UM” changed to “Ladder Diagram”.

Page 47: Restarting Special I/O Units added.

Page 57: Note added.

Page 83: “PC Unit” corrected to “Main Rack”.

Page 139: Last sentence in Limitations replaced.

Page 154: Note removed.

Page 170: “CB+32” corrected to “CB+31" in the description. The bits for the last five ranges in
the description corrected.

Page 179: Note removed.

Page 180: Note removed. Example corrected.

Pages 196, 197: Notes removed.

Page 240: The operation amount when the SV and PV match corrected from 50% to 0%.
Page 235: Note removed.

Page 241: Second graph corrected. “Step response” corrected to “Ramp response” for the
bottom graph.

Page 242: “Step response” corrected to “Ramp response” for the top graph. Second graph
corrected.

Page 249: “DM 6618 corrected to “DM 6622” in the diagram for Scheduled Interrupts.

Page 250: SYSMAC LINK/SYSMAC NET servicing added to Normal Interrupt Mode (C200H
Compatible). Interrupt response time and Note 1 added to High-speed Interrupt Mode
(C200HS).

Page 271: Resetting Errors rewritten.

Page 275: Third paragraph in the description for 5-25-6 TERMINAL MODE — TERM(—) cor-
rected.

Page 277: Execution time for 5-25-9 GROUP-2 HIGH-DENSITY 1/0 REFRESH — MPRF(—)
corrected.

Page 282: Note c) corrected.

Pages 293 to 295: RS-232C port information added. Control word and flag information cor-
rected.

Page 297: Hardware rewritten.

Page 298: Text added to Timing. Timing chart corrected.

Page 301: Example corrected.

Pages 302, 304: Word names corrected in Using the Instruction.

Pages 302, 304, 306: Charts corrected in Using the Instruction.

Pages 312 to 317: 6-1 Cycle Time and 6-2 Calculating Cycle Time have been rewritten.
Pages 326 and 327: 6-4 I/O Response Time rewritten.

Page 353: AR area corrected to SR area. Table of corresponding keys added.

Page 355: Section 8 Communications added.

Page 364: Text added to possible correction for Memory Cassette Transfer Error.

Page 366: Text added to possible cause and correction for Too many Units. Communications
Errors added after the table.

Page 367: Error flags added to the table.

Pages 403 to 411: Standard models updated.

Page 423: Data for Special Relay Areas 1 and 2 corrected.

Pages 424 to 427: SR Area table updated to reflect SR Area table in Section 3 Memory
Areas.

Page 429: “DM 0000” corrected to “DM 6001” in DM Area (Error Log) table.

Page 432: RS-232C Port Settings added.

500




Revision History

Revision Date Revised content
code
2B July 1995 The following corrections and additions were made.

Page 6: SYSMAC Support Software added and LSS removed.

Pages 23 and 374: Default communications parameters changed.

Page 26: 1/0 Terminals and B7A Interface Unit added and macro bits corrected.
Page 31: List of Units that don’t use slot words corrected.

Pages 32, 33, 34, 39, 43, 48, 50: Group-2 B7A Interface Units and I/O Terminals
added.

Page 39: Type of data stored in SR 25108 to SR 25115 corrected to BCD.

Page 44: Section added on Special Unit Error Flag

Pages 45, 46: Mode for SR 26408 to SR 26415 changed.

Page 48: Details added to first table.

Page 52: Heading shortened.

Page 120: Caution added.

Pages 215, 216: Limits for operands clarified/corrected.

Page 243: Caution added.

Pages 243, 244: Variable name changed for Y and corrected variable description.
Page 245: Bottom graphic and related description corrected.

Page 274: Explanation in last paragraph clarified.

Page 283: Execution time corrected for IORF(97).

Pages 299 to 301: CPU models specified in control word contents corrected.
Page 314: Graphic corrected.

Page 336: Description of Host Link Systems expanded.

Page 382: Last argument corrected in application example

Page 405: Top graphic corrected and “frame 2” changed to “frame 3” in second
graphic.

Page 461: Default added for DM 6610 and DM 6618.

Page 462: Settings for DM 6620 bits 00 to 09 and DM 6621 bit 08 to 15 corrected.
Page 463: Default for DM 6654 bits 00 to 07 changed.

2C August 1996 The Precautions section was added after About this Manual.

Page 88: Special I/0 Unit type “N” corrected from Host Link Unit to Position Control
Unit.

Page 110: Ladder diagram corrected for the self-maintaining bit example.

Page 158: ASFT(17) example changed.

Page 191: “Content of the source words is zero” corrected to “Content of a source
word is zero” for the ER Flags.

Page 226: DVB(53) example changed.

Page 280: “SR” added to the first source word of LMSG(47).

Page 395: “Possible correction” for “I/O bus error” corrected.

Page 430: “Command Format” corrected to “Response Format” for 11-3-36 Unde-
fined Command — IC.

3 May 1999 Page 245: Proportional operation diagram corrected.
Page 283: Note and execution time information in 5-25-8 /0 REFRESH — IORF(97)
corrected.
Page 321: C200H-PID[][] added to Special /0 Unit Refresh.

4 April 2001 Page xv: Minor change made to precautionary information on mounting.

Page 23: Information on pin number 5 changed.
Pages 140, 144, 145: Information on SV settings added.
Pages 433, 434, 435: Information added to tables in several places.

05 February 2002 | Page 177: Ladder symbol removed.

501




OMmRON

1 Commerce Drive
Schaumburg, IL 60173
847.843.7900

For US technical support or
other inquiries: 800.556.6766

MRON CANADA, INC.

885 Milner Avenue
Toronto, Ontario M1B 5V8
416.286.6465

Global - http://www.omron.com
USA - http://www.omron.com/oei
Canada - http://www.omron.ca

UNITED STATES

To locate a Regional Sales Office, local Distributor or
to obtain product information, call: 847.843.7900

CANADA REGIONAL SALES OFFICES

Ontario Toronto 416.286.6465
Kitchener 519.896.1 144
Kingston 613.376.3968

Quebec Montreal 514.636.6676

British Columbia Vancouver 604.522.8855

Alberta Edmonton 403.440.0818
Calgary 403.257.3095

Sao Paulo 55.11.5564.6488

Cono Sur 54.114.787.1129

Florida 954.227.2121 Ciudad Juarez 656.623.7083

Mexico, D.F. 555.534.1195  Monterrey, N.L. 818.377.428I

W235-E1-5 12/02 ©2002 OMRON ELECTRONICS LLC
Printed in the U.S.A.

Specifications subject to change without notice.



@Iasﬂ U

KomnaHus ((3J'IeKTpO|_|J'|aCT» npeanaraeT 3akKn4vyeHmne onrocpoYHbIX OTHOLLIEHUN npu
NOoCTaBKaxX MMMNOPTHbIX 3NTEKTPOHHbIX KOMMOHEHTOB Ha B3aMMOBbLIFO4HbIX yCJ'IOBI/lFlX!

Hawwn npeumyuiectsa:

e OnepaTuBHbIE NOCTABKM LUMPOKOrO CMeKTpa 3NeKTPOHHbIX KOMMNOHEHTOB OTEYECTBEHHOIO U
MMMOPTHOrO NPON3BOACTBA HANPAMYO OT MPOM3BOAMTENEN U C KPYNMHENLLNX MUPOBbLIX
CKNaaos.;

MocTaBka 6onee 17-TM MUNIIMOHOB HAMMEHOBAHWUIN 3NEKTPOHHbLIX KOMMNOHEHTOB;

MocTaBka CNoXHbIX, AeULNTHBIX, MMOO CHATLIX C MPOM3BOACTBA NO3ULIUIA;

OnepaTtunBHbIE CPOKM NOCTABKM Nof 3aka3 (0T 5 pabounx gHewn);

OKcnpecc goctaska B Nnobyto Touky Poccuu;

TexHnyeckas nogaepkka npoekTa, NomMoLLlb B nogdope aHanoros, NocTaBka NPOTOTUMOB;

Cuctema MeHeXMeHTa KavyecTBa cepTuduumnposaHa no MexayHapogHomy ctaHgapTty 1ISO

9001;

o JlnueHausa ®CH Ha ocyulecTBneHne paboT ¢ NCNONb30BaHWEM CBEOEHUIN, COCTABAOLLINX
rocygapCTBEHHYIO TalHy;

o [locTaBka cneumnanmampoBaHHbIX KOMNoHeHToB (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics v gp.);

MoMMMO 3TOro, O4HMM M3 HanpaBnNeHU koMnaHum «AnekTpollnacT» ABNseTca HanpaBneHne

«UcTouHmkn nutaHua». Mel npeanaraem Bam nomoub KoHCTpyKTOpCKOro otaena:

e [logGop onTuManeHOro peleHus, TexHn4eckoe 060CHOBaHME Npu BbIOOpPE KOMMOHEHTA;
Monbop aHanoros.;
KoHcynbTaumm no NpUMEHEHMIO KOMMOHEHTA;
MocTaBka 06pa3yoB M NPOTOTUMNOB;
TexHn4veckasn noaaepka npoekTa;
3awmTa OT CHATMSA KOMMOHEHTA C NPON3BOACTBA.

Kak c Hamu cBfizaTbCcA

TenedoH: 8 (812) 309 58 32 (MHOrokaHanbHbIN)
Pakc: 8 (812) 320-02-42

OnekTpoHHas nouTta: org@eplastl.ru

Aapec: 198099, r. Cankt-INeTepbypr, yn. KannHuHa,
Oom 2, kopnyc 4, nutepa A.



mailto:org@eplast1.ru

