

Atmel AVR2052: Atmel BitCloud Quick Start
Guide

Features
• Introduces Atmel® BitCloud® Software Development Kit (SDK)
• Introduces WSNDemo application

1 Introduction
This document is intended for engineers and software developers evaluating the
Atmel BitCloud ZigBee® PRO stack.

The BitCloud SDK and the supported kits serve as the perfect vehicle to evaluate
the performance and features of Atmel microcontrollers and radio transceivers as
devices in a low-power, Atmel ZigBee-compliant wireless sensor network. The SDK
provides a complete software and documentation toolkit for prototyping,
developing, and debugging custom applications on top of the BitCloud application
programming interface (API), as well as easily demonstrating ZigBee technology in
action.

This document describes how to start quickly with the BitCloud SDK by installing
development environment and programming devices with sample applications. It
also provides a short introduction to the BitCloud API. To find more detailed
information concerning application development, refer to [2].

8-bit Atmel
Microcontrollers

Application Note

Rev. 8200N-AVR-05/12

2 Atmel AVR2052

8200N-AVR-05/12

2 Overview
Atmel BitCloud is a full-featured, professional-grade, embedded software ZigBee
stack from Atmel. The stack provides a software development platform for reliable,
scalable, secure wireless applications running on Atmel microcontrollers and radio
transceivers. BitCloud is designed to support a broad ecosystem of user-designed
applications addressing diverse requirements while enabling a full spectrum of
software customization.

The BitCloud stack is fully compliant with the Atmel ZigBee PRO and ZigBee
standards for wireless sensing and control. It provides an augmented set of APIs,
which, while maintaining full compliance with the standard, offer extended
functionality designed with developers’ convenience and ease-of-use in mind.

2.1 Supported platforms
The following hardware platforms are supported by the BitCloud SDK.

Table 2-1. Supported hardware platforms.

Name in this
document

Platform
(MCU + RF)

Supported
modules

Supported
external flash
for OTAU Supported evaluation kit SDK package

ZigBit® ATmega1281
+ AT86RF230

ATZB-24-B0
ATZB-24-A2
ATZB-A24-UFL
ATZB-900-B0

AT25F2048,
AT45DB041

N/A BitCloud for ZigBit

megaRF ATmega128RFA1 N/A AT45DB041
(only 264-byte
pages)

RCB128RFA1 and
ATAVR128RFA1-EK1 with
ATSTK600 boards

BitCloud for
megaRF

XMEGA® ATxmega256A3 /
ATxmega256D3
+ AT86RF231
or
ATxmega256A3 /
ATxmega256D3
+ AT86RF212
or
ATxmega256A3 /
ATxmega256D3
+ AT86RF230

N/A AT45DB041
(only 264-byte
pages)

ATxmega card hosted on
STK®600 and RZ600 radio
boards
ATREB212ED-EK
ATREB231ED-EK
ATREB232ED-EK

BitCloud for AVR®
XMEGA

UC3 AT32UC3A0512
+ AT86RF231

N/A N/A EVK1105 BitCloud for AVR
UC3 32-bit MCUs

SAM3S ATSAM3S4C
+ AT86RF231
or
ATSAM3S4C
+ AT86RF230
or
ATSAM3S4C
+ AT86RF212

N/A N/A SAM3S-EK and RZ600 radio
boards
Atmel RF212USB-RD
Atmel RF231USB-RD

BitCloud for
SAM3S-EK

 Atmel AVR2052

 3
8200N-AVR-05/12

Name in this
document

Platform
(MCU + RF)

Supported
modules

Supported
external flash
for OTAU Supported evaluation kit SDK package

SAM7X AT91SAM7X256
+ AT86RF231
or
AT91SAM7X256
+ AT86RF230
or
AT91SAM7X256
+ AT86RF212

N/A N/A AT91SAM7X-EK and RZ600
radio boards

BitCloud for
SAM7X-EK

Please note that this document describes the use of the Atmel BitCloud SDK with the
specific modules and evaluation kits listed in Table 2-1. Operation of BitCloud on
supported MCU/RF combinations realized in a custom hardware application is outside
the scope of this document.

4 Atmel AVR2052

8200N-AVR-05/12

3 Getting started
This document describes how to quickly get Atmel BitCloud running. A typical starting
scenario consists of the following:

• Setting up the development environment. Note that platform-specific details are
moved to the corresponding appendix chapters, as described in Table 3-1

• Programming several devices with demonstration firmware. This topic is also
described in the corresponding appendix chapter

• Monitoring activity of a network formed by the devices, with a sample wireless
sensor network (WSN) monitor PC application provided with the SDK. This topic is
described in detail in Chapter 4

• Starting the development of new or modifying existing applications based on the
BitCloud C API, as shown in Chapter 5

The BitCloud SDK is available for several platforms, as described in Section 2.1, and
so before proceeding, select the SDK version that matches your target platform.

The majority of instructions for setting up the BitCloud stack and applications depend
on the specific platform and evaluation kit. To get started, proceed to the platform-
specific sections listed below.

Table 3-1. Hardware-specific getting started sections.
For platform Refer to Section

ZigBit 8.1

megaRF 9.1

UC3 10.1

XMEGA 11.1

SAM7X 12.1

SAM3S 13.1

After completing the installation, try running the WSNDemo application by
programming the devices with ready-to-use images, as described in Section 4.2.

 Atmel AVR2052

 5
8200N-AVR-05/12

4 WSNDemo application

4.1 Overview
The network and radio frequency performance of the hardware components is
demonstrated with the WSNDemo application, which is based on the Atmel BitCloud
API. This application consists of the embedded firmware, which supports functions for
coordinator, router, and end device, and the GUI visualization application,
WSNMonitor, which is run on a PC. In WSNDemo, the nodes communicate based on
a proprietary messaging protocol.

The SDK includes the WSNMonitor PC application in binary format, and the
WSNDemo embedded application is available in binary format and source code.

The source code for the WSNDemo application can be modified and extended,
making it possible to develop WSN applications for a variety of application scenarios.
WSNMonitor is described in Section 4.5. Some more details on WSNMonitor and
WSNDemo are given in [1].

With WSNDemo installed, the devices are organized into a set of nodes forming a
ZigBee PRO network.

With Atmel ZigBit development boards, end devices, routers, and the coordinator
read the sensor data from onboard light and temperature sensors, and forward
collected data to the WSNMonitor application for visualization. On Atmel XMEGA,
Atmel SAM7X, Atmel SAM3S, Atmel megaRF, and Atmel UC3 platforms, zero values
are sent to the network coordinator to emulate sensor data and demonstrate data
transmission.

End devices follow a duty cycle (that is, the microcontroller and radio transceiver are
put to sleep periodically) and wake up to transmit data to the coordinator. Using the
serial connection, the coordinator transmits the received packets, along with its own
sensor data (or emulated sensor data), to the WSNMonitor application. Those
transmitted values are displayed on WSNMonitor panes as temperature, light, and
battery level measurements.

WSNMonitor also visualizes network topology by drawing a tree of nodes that have
joined the network. For each of the nodes, parameters like node address, node
sensor information, and link quality data are displayed.

RSSI indicates a link’s current condition and is measured in dBm. The RSSI
resolution is 3dBm. LQI, a numeric parameter defined within the 0 to 255 range, is
used to measure the link quality. Larger values mean a better link, while values close
to zero indicate a poor connection.

In WSNDemo, the number of routers and end devices is limited only by the network
parameter settings.

In reference to the WSNDemo application, Section 4.3 describes how to set up and
use the boards. The user interface is described in Section 4.5.

The application is delivered with source code that demonstrates how to develop a
wireless network application using the Atmel BitCloud API, and provides a number of
useful programming templates for common application tasks. Development of custom
applications is described in Section 4.5.

6 Atmel AVR2052

8200N-AVR-05/12

4.2 Programming the boards
As a first step, WSNDemo images should be loaded onto the boards. The locations of
the WSNDemo image files are platform specific, and are provided in the “Installing the
SDK” subsection of the sections specified in Table 3-1.

The programming instructions and the sets of pre-built application images provided
with the SDK also depend on the target platform. Table 4-1 provides references to the
sections that describe how to program each target platform and evaluation kit.

Table 4-1. Platform-specific programming sections.
For platform Refer to Section

ZigBit / ZigBit Amp / ZigBit 900 8.2

megaRF 9.2

UC3 10.2

XMEGA 11.2

SAM7X 12.2

SAM3S 13.2

Running any ZigBee or ZigBee PRO application, WSNDemo included, requires that
every device in the network have a unique, 64-bit MAC address. See the appropriate
sections in Table 4-1 for how MAC addresses are assigned for each type of
supported board. In order to make initial setup easier, there are a number of pre-
compiled images provided with the SDK that can be used right away without any
modification.

Atmel ZigBit platform does not require manual assignment of MAC addresses, as the
evaluation boards are equipped with a dedicated unique ID chip or EEPROM, which
the BitCloud stack uses automatically on startup. Also, note that the default images
are configured to use a particular extended PAN ID and channel mask. To change
these parameters, the user must modify the configuration.h file included in the
project and rebuild the application. Special care must be taken by the user when
configuring an application so that each compiled image contains a unique MAC
address and all images share the same extended PAN ID and channel mask.

4.3 Running WSNDemo
Each target platform requires its own set of instruction for getting the WSNDemo
application to run. Table 4-2 provides references to the sections with platform-specific
instructions.

Table 4-2. Platform-specific WSNDemo sections.
For platform Refer to Section

ZigBit 8.4

megaRF 9.4

UC3 10.4

XMEGA 11.4

SAM7X 12.4

SAM3S 13.4

 Atmel AVR2052

 7
8200N-AVR-05/12

4.4 Network startup
The coordinator organizes the wireless network automatically. Upon starting, every
node informs the network of its role.

When the coordinator is powered on, it switches to an active state even though no
child node is present. This is normal, and it indicates that the coordinator is ready and
that child nodes can join the network with the coordinator’s extended PAN ID. By
default, the coordinator uses extended PAN ID 0xAAAAAAAAAAAAAAAA, which is
recognized by all routers. A short PAN ID is chosen at random. The extended PAN ID
can be modified by the user through the application’s configuration.h file.

NOTE If the coordinator is absent or has not been turned on, the routers and end devices
will remain in the network search mode. In this mode, routers scan the channels
specified in the channel mask in search of a network with the specified extended PAN
ID.

By default, the channel mask for all application images provided with the SDK
contains a single channel. In rare cases, if the frequency corresponding to the radio
channel is busy, the coordinator node may stay in the network search mode. If this
happens, it may become necessary to change the application’s channel mask to
select another channel by changing the application’s configuration.h file and
recompiling the application.

Network health can be monitored by looking at the individual node’s LED state (LED
states are platform specific, and are described in platform-specific sections noted in
Table 4-2) or through the WSNMonitor application described in the next section.

4.5 WSNMonitor
WSNMonitor is a PC counterpart to the WSNDemo embedded application, and can
be used to display ZigBee network topology and other information about a wireless
sensor network. A typical WSNMonitor screen is shown in Figure 4-1. It contains
topology, sensor data, and node data panes and application toolbars.

8 Atmel AVR2052

8200N-AVR-05/12

Figure 4-1. WSNMonitor GUI.

Topology pane

Selected
node

Click to make the
node identify itself
by flashing LED

Coordinator
node

Router node

List of
connected
nodes

Serial port settings

Specific parameters
for the selected node

Sensor data pane

Menu bar

Show additional data on
the topology pane (LQI,
RSSI, or sensor data)

The topology pane displays the network topology in real time, which helps the user
monitor the formation of and dynamic changes in the network while nodes join, send
data across, or leave the network. The network topology is constructed on the basis
of next-hop information for each of the nodes, and each link is also tipped with RSSI
and LQI values. Each of the nodes displayed is depicted by an icon, with the node’s
address or name below and sensor readings to the right of the icon, if required by
settings.

The sensor data pane displays data coming from onboard sensors of the selected
node (see Section 4.5.2). It is presented in graph and table form. Other parameters
can be observed for each node in table form. The node data pane includes a sensor
selection combo-box, which is used to switch between sensor types.

By default in the topology pane, nodes are labeled with their short addresses.
However, another title can be assigned to any desired node by a double click. If
“Cancel” is pressed in the opened window, the node’s title is set back to the short
address.

4.5.1 Identifying nodes

When a user clicks a node in the topology pane a button that can be used to identify
the node appears under the node’s icon. When the user clicks this button
WSNMonitor sends a command, which is delivered to the coordinator through the

 Atmel AVR2052

 9
8200N-AVR-05/12

serial connection and wirelessly to the target node. The target node, receiving the
command, blinks with its LED for several seconds.

4.5.2 Node timeouts

The Window/Preferences menu of WSNMonitor contains a number of parameters
used to control application behavior. Timeouts are used to tune visualization of
coordinator, routers, and end devices as the nodes disappear from the network each
time a connection is lost, power is down, or a reset has occurred. A node timeout
corresponds to the time the WSNMonitor application waits for a packet from a
particular node before assuming that the node is no longer part of the network. Note
that this value does not correspond to the frequency with which data are transmitted
by each type of device. To get smooth topology visualization, setting timeouts to 20
seconds is recommended for coordinator and router, and 30 seconds is
recommended for an end device. Assuming a default application configuration, these
timeouts cover three periods between sending a packet, and so at least three packets
would need to be lost before a node is removed from the WSNMonitor topology pane.

Figure 4-2. WSNMonitor preferences menu.

4.5.3 Sensor data visualization

Each board sends temperature/light/battery sensor readings (or emulated values) to
the coordinator, which in turn sends it to the PC. WSNMonitor displays the readings
from onboard sensors next to a node icon inside the topology pane. A corresponding
option can be selected in the node/link parameters from the quick settings toolbar.

The user can select any node in the topology pane to monitor the node’s activity and
see the node data in one of three different forms:

• Text table
• Chart
• The onboard sensor’s data displayed next to each node in the topology pane.

These values are also tipped with arrows indicating whether the value increased
or decreased in relation to the previous sample

NOTE A given node is selected when it is clicked on and a dashed frame is visible around it.

The same values are shown on the sensor data pane, enabling the user to observe
how the values change over a period of time.

10 Atmel AVR2052

8200N-AVR-05/12

The sensor data pane includes a sensor selection combo-box. Use the button on the
sensor control toolbar to display the desired types of sensor data.

4.5.4 Over-the-air upgrade

Over-the-air upgrade (OTAU) can be executed on supported hardware platforms by
loading a special version of the WSNDemo application with OTA support. This
demonstration also requires an additional in-network device to perform the role of the
upgrade server, which is the device that sends new firmware images to other devices
on the network. For this purpose, a device programmed with the Runner application is
used. Such device is able to receive and process commands from a PC over the
serial link. To control the Runner device, the Bootloader PC tool included into the
Atmel Serial Bootloader package is used (see Chapter 6). Pre-built images of the
Runner application for various configurations are provided with the SDK and are
located in the \Evaluation tools\Runner directory.

The details of compiling and running WSNDemo with OTAU support differ for each
platform. Please refer to the appropriate section listed in the table below for platform-
specific instructions.

Table 4-3. Platform-specific settings for WSNDemo with OTAU support.
For platform Refer to Section

ZigBit 8.4.3

megaRF 9.4.3

XMEGA 11.4.3

After WSNDemo device(s) with OTAU support are configured, programmed and
joined to the network, follow the step-by-step instructions below to execute an over-
the-air upgrade:

1. Connect the Runner device to the PC.
2. Start the Bootloader PC tool (from the Microsoft® Windows® Start Menu, select

Atmel > Bootloader > Bootloader):
a. On the OTAU tab, select the network parameters, as shown in Figure 4-3.
b. Specify Connection settings to match the port where the Runner device

is connected.
c. Click the Init button to force the program to collect information about the

node’s configuration; for example, security settings or network
parameters.

d. Click the Set keys button to manually set keys; for example network key,
TC link key, public and private keys.

e. The utility will automatically populate the list of devices that support OTA
functionality (that is, applications that include OTA cluster). By default,
only devices programmed with WSNDemo with OTA support should be
shown in the list, as seen in Figure 4-4.

3. Start the Image Converter PC utility (from Windows Start Menu, select Atmel >
Bootloader > Converter):

a. Select the *.srec image(s) you wish to upload to a remote, OTA-capable
device over the air.

b. Fill in image metadata information in the fields below and click Convert.
4. Return to the Bootloader PC tool:

a. Click on the Update button next to the device information.
b. In the Open File dialog, select the *.zigbee file that was converted in

step 3.

 Atmel AVR2052

 11
8200N-AVR-05/12

c. Click OK, and the upload process will begin. It usually takes 5-10 minutes
to upload a single image to a router device; sleeping end device upgrade
may last considerably longer.

d. Once the image is uploaded, the progress bar indicating the upload
progress will be replaced with the button. The device will not reset and
switch to the new image, until the command for this is sent by pressing
this button.

Figure 4-3. Bootloader PC tool’s main screen.

12 Atmel AVR2052

8200N-AVR-05/12

Figure 4-4. Bootloader PC tool’s devices screen.

For complete description of OTAU implementation and usage in BitCloud, refer to
[35].

 Atmel AVR2052

 13
8200N-AVR-05/12

5 Developing custom applications with the Atmel BitCloud API

5.1 API overview
The BitCloud internal architecture follows IEEE® 802.15.4 and the ZigBee-defined
convention for splitting the networking stack into layers. Besides the core stack
containing the protocol implementation, the BitCloud stack contains additional layers
implementing shared services (for example, task manager, configuration manager,
and power manager) and hardware abstractions (for example, hardware abstraction
layer (HAL) and board support package (BSP)). The APIs contributed by these layers
are outside the scope of core stack functionality. However, these essential additions
to the BitCloud API significantly reduce application complexity and simplify the
development effort. The BitCloud Stack Documentation [1] provides detailed
information on the stack’s C API and its use.

The main structure of the BitCloud stack is presented in Figure 5-1.

Figure 5-1. BitCloud block diagram.

The topmost layer of the core stack, APS, provides the highest level of networking-
related APIs visible to an application. ZDO provides a set of fully compliant ZigBee
Device Object APIs, which enable main network management functionality (for
example, start, reset, formation, join). ZDO also implements ZigBee Device Profile
commands, including Device Discovery and Service Discovery.

There are three service "planes," including task manager, configuration manager, and
power manager. These services are available to the user application, and may also
be utilized by lower stack layers. The task manager is the stack component which

14 Atmel AVR2052

8200N-AVR-05/12

mediates the use of the MCU among internal stack components and user application.
The task manager utilizes a proprietary, priority, queue-based algorithm specifically
tuned for a multilayer stack environment and the demands of time-critical network
protocols. Power management routines are responsible for gracefully shutting down
all stack components, saving the system state when preparing to sleep, and restoring
system state when waking up. The configuration manager is used by the internal
stack components and the user application to provide a common way to store and
retrieve network parameters like the extended PAN ID and channel mask.

The hardware abstraction layer (HAL) includes a complete set of APIs for using on-
module hardware resources (for example, EEPROM, app, sleep, and watchdog
timers) as well as the reference drivers for rapid design-in and smooth integration with
a range of external peripherals (for example, IRQ, TWI, SPI, UART, 1-Wire®), where
the hardware interface is supported by the platform. The board support package
(BSP) includes a complete set of drivers for managing standard peripherals (for
example, sensors, UID chip, sliders, and buttons) placed on development boards,
such as those provided with Atmel ZigBit, Atmel ZigBit Amp, and Atmel ZigBit 900
evaluation kits.

Please refer to [1] and [2] for a more detailed description of the Atmel BitCloud API
and its features.

5.2 Development tools
A development toolchain consists of:

1. An integrated development environment (for example, Atmel AVR Studio® or IAR
Embedded Workbench®), where sample applications may be modified, compiled,
and debugged,

2. A corresponding compiler toolchain (for example, AVRGCC, IAR™ or
YAGARTO), which provides everything necessary to compile application source
code into binary images, and

3. A programming device (for example, JTAG), which may be used to program and
debug the application on a target platform.

IAR Embedded Workbench for Atmel AVR [13] can be used to develop and debug
applications for AVR-based platforms, including ZigBit, megaRF, and Atmel XMEGA.
IAR Embedded Workbench for ARM and AVR32 can be used to develop and debug
applications on ARM-based platforms and 32-bit AVR platforms, respectively. All IAR
IDEs support editing of application source code, compilation, linking object modules
with libraries, and application debugging.

Atmel AVR Studio 5.1 [3] can be used to develop and debug applications for AVR-
based platforms. AVR Studio 5.1 is equipped with the GCC toolchain and do not
require external tools to compile BitCloud applications, though some additional
utilities are needed to compile the HAL component of the BitCloud stack (see [37]).

Eclipse IDE [23] and/or IAR Embedded Workbench for ARM [22] may be used to
develop and debug applications based on the BitCloud API on Atmel SAM7X. Eclipse
IDE can be integrated with the YAGARTO compiler toolchain [24] to support
seamless application programming and debugging on SAM7X, all inside Eclipse IDE.

In AVR Studio, each application has corresponding project files identified by the
.cproj extension. A project file contains the necessary information about build
configuration. Sample applications are provided with project files for AVR Studio 5.1
located in the as5_projects subdirectory of the application’s root directory. For IAR
Embedded Workbench, each application has a corresponding .eww file, which can be

 Atmel AVR2052

 15
8200N-AVR-05/12

double-clicked to open the application’s project and located in iar_projects
directory. For detailed instructions on how to compile and debug applications using
the supported tools, refer to Section 5.2.2.

Platform-specific sections that describe development tool installation and provide
setup instructions are listed in Table 3-1.

5.2.1 Reference applications

All Atmel BitCloud SDKs are supplied with the WSNDemo reference application
provided in source code. WSNDemo is presented in detail in Chapter 4. To better
understand the application payload format between network nodes and between the
coordinator and the PC, the user can refer to Chapter 14, Appendix B-1: WSNDemo
over-the-air protocol and Chapter 15, Appendix B-2: WSNMonitor serial protocol.

Additional sample applications are available for some platforms, as indicated in Table
5-1. The user is encouraged to browse reference application source code as a
reference for the customer application being built. In many cases, reference
application source code can be used in the target application with only minor
modifications.

Table 5-1. Reference applications.

Application Brief description
Zi

gB
it

m
eg

aR
F

U
C

3

XM
EG

A

SA
M

7X

SA
M

3S

WSNDemo Featured SDK application demonstrating network functionality of
software and additional network visualization with WSNMonitor. See
Chapter 4

X X X X X X

Blink Introduces the simplest application that uses timer and LEDs. When
started, the application makes all the LEDs blink synchronously with
a certain period

X X X X X X

Lowpower Shows how to collect data from low-power, sleeping devices
employing the simplest power management strategy X

Peer2peer Shows how to organize the simplest peer-to-peer link. A simple
buffering strategy is employed to avoid byte-by-byte data transfer X X X

PingPong Shows how to process multiple, simultaneous data transmissions.
Each node is waiting for a wireless message, and then passes it to
the next node

X X

ThroughputTest Measures wireless UART bandwidth of ZigBit, ZigBit Amp, and
ZigBit 900 boards X X

For more details on sample applications available for a specific platform, refer to [1].

Once the SDK is installed, the source code for the WSNDemo application can be
found in the <SDK-Root>\Applications\WSNDemo directory. For other sample
applications (where available), the source code can be found in the appropriate <SDK-
Root>\Applications\<application-name> directory.

16 Atmel AVR2052

8200N-AVR-05/12

Network parameters and their default values are defined in the configuration.h file,
which is located in the application root directory. For example, for the WSNDemo
application, this file can be found in <SDK-Root>/Applications/WSNDemo/.

5.2.2 Supported toolchains

The following development environment options are available for each of the
supported platforms.

Table 5-2. Platform-specific compilation options.

For platform AVR Studio 5.1 Eclipse
+ YAGARTO

IAR Embedded
Workbench

ZigBit X X

megaRF X X

UC3 X

XMEGA X X

SAM7X X X

SAM3S X X

A set of ready to use makefiles for various platform configurations is available for the
reference applications. Additionally, the root directory of every application contains a
special makefile, which allows switching among different configurations by specifying
the configuration name. Custom applications should follow the same structure.

In order to compile an application in each of the available development environments,
the following steps should be taken.

5.2.2.1 Atmel AVR Studio 5.1

• Command line: Compile the application by running the make utility.
• IDE: Open an appropriate project file from the as5_projects directory with Atmel

AVR Studio 5.1, and execute Build/Rebuild All from the main menu.
Once the build process is completed, .hex, .srec, .bin, and .elf application
images will be generated.

5.2.2.2 Eclipse + YAGARTO

• Command line: Compile the application by running the make utility.
• IDE:
1. In Eclipse framework, create a new C project of makefile type with an arbitrary

name but with a location in the application directory (for example, the <SDK-
Root>\Applications\WSNDemo directory).

2. Configure project properties as follows:
a. Select C/C++ Build, Discovery Options.
b. In the “Compiler invocation command” section, browse to the compiler

(C:\Program Files\yagarto\bin\arm-elf-gcc.exe).
c. Select C/C++ Build, Settings.
d. Check GNU Elf Parser.
e. Select GNU Elf Parser.
f. Browse to the addr2line and c++filt programs (C:\Program

Files\yagarto\bin\arm-elf-addr2line.exe) (C:\Program
Files\yagarto\bin\arm-elf-c++filt.exe).

g. Apply and click OK.

 Atmel AVR2052

 17
8200N-AVR-05/12

While building, the output of the make command will appear in the console pane on
the bottom of the window. Once the build process is completed, .hex, .srec, .bin,
and .elf image files will be generated.

5.2.2.3 IAR Embedded Workbench

• Command line: Compile the application by running the make utility. Some of the
.hex, .srec, .bin, and .elf image files will then be generated, depending on
the platform configuration that has been chosen.

• IDE: Open the .eww file in the iar_projects subdirectory of the appropriate
application directory (for WSNDemo, the WSNDemo.eww file from the <SDK-Root>\
Applications\WSNDemo\iar_projects subdirectory) with IAR Embedded
Workbench, and execute the Rebuild All item from the Project menu. By
default, the .a90 file (for WSNDemo, WSNDemo.a90) will be generated in the
iar_projects/Debug/exe subdirectory (for WSNDemo, in the
./Applications/WSNDemo/iar_projects/Debug/exe directory) with format as
specified in Linker Output Options of the IAR project.

5.3 Reserved hardware resources
Hardware resources provided by the supported hardware include microcontroller
peripherals, buses, timers, IRQ lines, I/O registers, etc. Many of these interfaces have
corresponding APIs in the hardware abstraction layer (HAL) of the Atmel BitCloud
stack. When building custom applications on top of the BitCloud API, the user is
strongly encouraged to use the high-level APIs instead of the low-level register
interfaces to ensure that its resource use does not overlap with that of the stack.

The hardware resources in BitCloud reserved for internal use by the stack are listed
in the platform-specific sections specified in Table 5-3. These resources must not be
accessed by the application code. Please note that the lists of the reserved hardware
resources differ for each device.

Table 5-3. Platform-specific reserved resources.
For platform Refer to Section

ZigBit / ZigBit Amp / ZigBit 900 8.5

ATmega128RFA1 9.5

UC3 10.5

XMEGA 11.5

SAM7X 12.5

SAM3S 13.5

18 Atmel AVR2052

8200N-AVR-05/12

6 Serial Bootloader and OTAU
For some platforms devices may be programmed using Atmel Serial Bootloader,
which comes as a separate software package. The package can be downloaded from
the Atmel website. It includes pre-built firmware images of the embedded bootloader,
which shall be loaded to the device’s flash via JTAG, the source code of the
embedded bootloader application, and the installation file for the Bootloader PC tool.
The package is also necessary for Over-the-air upgrade, because all participating
devices shall be programmed with a special version of the embedded bootloader, with
extended functionality, and the whole process is initiated from the Bootloader PC tool.

Using Serial Bootloader as well as OTAU requires different fuse settings (see Setting
fuse bits sections in the corresponding appendices). Once a device is programmed
with the embedded bootloader image (for some platforms the embedded bootloader
is already present in the device’s flash memory), the application firmware is loaded to
the device, using the Bootloader PC tool. The device shall be connected to the PC via
a serial link. The Bootloader PC tool may be used as both a command line tool and a
GUI application. Both versions have the same options and take an application image
in the Motorola SREC format. Such images are generated along with other types of
binaries for all reference applications.

Some hardware-specific details are given in the corresponding sections in the
appendices. For detailed description of the Serial Bootloader package, the list of
supported platforms, instructions on generating SREC images etc., please refer to
AVR2054: Serial Bootloader User Guide [11]. OTAU is fully described in AVR2058:
OTAU User Guide [35].

7 Basic troubleshooting
In case of any operational problem with your setup, please check the following:

1. Check the power first, and make sure that all of your equipment is properly
connected.

2. Verify that the PC conforms to the minimum system requirements (see the
System Requirements subsection of the appropriate Appendix’s part; references
are given in Table 3-1).

3. Verify that the PC USB or UART interface is working and that the correct drivers
are installed.

4. Check the hardware kit documentation, and that you have set up the hardware
according to specific kit instructions (see the Hardware Setup subsection of the
appropriate Appendix’s part; references are given in Table 3-1).

5. Make sure you have programmed the right images and set the correct fuse
values (see the Programming subsection of the appropriate Appendix’s part;
references are given in Table 4-1). Resetting the node may be required.

Table 7-1 presents some typical problems you may encounter while working with the
development kit and their possible solutions.

Table 7-1. Typical problems and solutions.
Problem Solution

WSNMonitor fails to start Make sure the Java® machine is properly installed on the
PC

No node is shown on the
topology pane in WSNMonitor

Check that WSNMonitor is using the proper COM port,
and if not, change it and restart the program

 Atmel AVR2052

 19
8200N-AVR-05/12

Problem Solution

WSNMonitor shows NO DATA
in the sensor data graph pane

No node is selected. Select the required node by clicking
on it

Node titles displayed on the
topology pane do not show
node destinations

The displayed titles do not necessarily relate to the node
functions, but they can be redefined by the user at any
time. These names are stored in the node title file (see
Section 4.5) along with MAC addresses mapped to the
nodes

20 Atmel AVR2052

8200N-AVR-05/12

8 Appendix A-1: ZigBit specifics

8.1 Getting started
The Atmel BitCloud SDK supports Atmel ZigBit modules, which include Atmega1281
MCU, and Atmel ATZB-EVB-24-A2 MeshBean and ATZB-EVB-A24-SMA MeshBean
Amp evaluation boards as evaluation and development platforms. The SDK also
supports Atmega1281 with RCB212/230/231 as evaluation platform.

8.1.1 Required hardware

Before installing and using the Atmel BitCloud SDK, make sure that all necessary
hardware is available:

• Two or more Atmel ZigBit modules, operating in the same frequency band,
mounted on PCBs with a UART RS-232 controller for serial communication

• Optionally:
o Atmel AVR JTAGICE mkII or Atmel JTAGICE 3 when using the JTAG

interface for programming and debugging
o ISP programmer if the ISP interface is used for programming and

debugging

8.1.2 Hardware setup

No special pre-usage assembly is required for MeshBean boards. Please note that
the boards can be powered in one of the three ways:

• By a pair of AA-size batteries;
• Via the USB port (once connected for data transfer, see also Section 8.1.4);
• Via an AC/DC adaptor.
The nominal voltage is 3V for MeshBean and 3.3V for MeshBean Amp. Using an
AC/DC adaptor automatically disconnects the AA batteries. Using the USB port
disconnects the AC/DC adaptor.

8.1.2.1 Configuring jumpers on MeshBean boards

This section defines settings for some of the jumpers used on the MeshBean board.
For more information on jumper settings and interface pin-outs, refer to [9].

Table 8-1. Jumper settings for P4 port: ZigBit power source.
Jumper position Description

Pins 1 and 2 (USB)
connected The board is powered by USB

Pins 1 and 3 (BAT/EXT)
connected

The board is powered by external source or
battery

http://www.dresden-elektronik.de/shop/prod70.html

 Atmel AVR2052

 21
8200N-AVR-05/12

Table 8-2. Jumper settings for P4 port: disable VDD.
Jumper position Description

Pins 5 and 6 (DISABLE
VDD) connected VDD is disabled

Pins 5 and 6 (DISABLE
VDD) are not connected VDD is not disabled

Table 8-3. Jumper settings for P4 port: current measurement.
Jumper position Description

Pins 9 and 10 (FOR CM)
connected This position is used for normal operation.

Pins 9 and 10 (FOR CM)
are not connected

In this position, the ZigBit module is not
powered while remaining parts of the board are
powered. This position is used to measure
current consumption of the ZigBit module

WARNING Any other position of jumpers for P4 port their omission may cause
permanent damage of the MeshBean board.

8.1.2.2 OTAU hardware setup

If you wish to demonstrate over-the-air upgrade functionality, an external flash
memory device supported by the Atmel BitCloud SDK and OTAU embedded
bootloader (for example, AT25F2048 or AT45DB041) must be attached to the Atmel
ZigBit board, as shown in Table 8-4.

For details on OTAU demonstration, see Section 8.4.3.

Table 8-4. External flash and ZigBit/MCU pin assignment.
DataFlash® pin ATZB-XX pin Internal ATmega1281 MCU pin

MISO USART0_RXD (38) PE0

MOSI USART0_TXD (39) PE1

CLOCK USART0_EXTCLK (40) PE2

CS ADC_INPUT3 (30) PE3

8.1.3 System requirements

Before using the SDK, please ensure that the following system requirements are met
by your PC and development environment.

Table 8-5. System requirements for ZigBit, ZigBit Amp, and ZigBit 900.
Parameter Value Note

CPU Intel Pentium III, or higher,
800MHz

RAM 128MB

Free space on hard
disk

50MB

JTAG emulator Atmel AVR JTAGICE mkII or
Atmel JTAGICE 3 emulator with
cable

Required to upload firmware onto
the boards and debug through
JTAG (see Section 8.2.4)

22 Atmel AVR2052

8200N-AVR-05/12

Parameter Value Note

Operating system Windows 2000/XP

IDE Atmel AVR Studio 5.1.208

OR

IAR Embedded Workbench
AVR 6.11

(with IAR C/C++ Compiler for
AVR v6.11.1.50453 (1))

Required to upload firmware
images through JTAG (see
Section 8.2.4) and develop
applications using the API (see
Section 5.2)

Java virtual machine Java Runtime Environment
(JRE) 6, or later

Required to run the WSNMonitor
application

Note: 1. Users are strongly recommended to use the specified version of AVR Studio and
IAR C/C++ Compiler for AVR. Other versions are not supported, and may not
work.

8.1.4 Installing the SDK

Proceed with the following installation instructions.

1. Download the archive to your PC, and unpack it into an empty folder. The
following SDK folders and files will be created with <SDK-Root> as the top-level
SDK folder.

Table 8-6. The SDK file structure.
Directory/file Description

<SDK-Root>\Documentation Documentation for Atmel BitCloud software

<SDK-Root>\Evaluation
Tools\WSNDemo (Embedded)

Ready-to-use image files for evaluating
WSNDemo. Refer to Section 8.3 for the
description of the images

<SDK-Root>\Evaluation
Tools\WSNDemo (WSN
Monitor)\WSNMonitorSetup.exe

WSNMonitor installer

<SDK-Root>\Evaluation
Tools\SerialNet

Ready-to-use image files for the SerialNet
application. Refer to [10] for more
information on SerialNet

<SDK-Root>\BitCloud\Components Header files for the BitCloud stack

<SDK-
Root>\BitCloud\Components\BSP

Source, header, and library files for the
BitCloud BSP

<SDK-Root>\BitCloud\lib Library files for the BitCloud stack

<SDK-Root>\Applications Source files for the sample applications

2. Install the desired IDE:
a. For IAR Embedded Workbench AVR:

i. Install IAR Embedded Workbench for Atmel AVR [13], if not
already installed on your PC.

ii. Add a Windows environment variable named
IAR_AVR_HOME, and set its value to the IAR Embedded
Workbench installation directory (for a default installation, it is
C:\Program Files\IAR Systems\Embedded
Workbench 6.11). To do this, go to Control Panel >
System > Advanced > Environment Variables, click New
below the System variables list, and enter Variable Name

 Atmel AVR2052

 23
8200N-AVR-05/12

and Variable Value. This step is required if you plan to build
embedded images using IAR Embedded Workbench from
the command line.

b. For Atmel AVR Studio:
i. Install AVR Studio [3], if not already installed on your PC.
ii. Add paths to the folder containing the AVRGCC compiler to

the Path Windows environment variable. The compiler is
located in the
\extensions\Atmel\AVRGCC\3.3.1.27\AVRToolchain\bin
directory of the AVR Studio installation directory.

3. The board can be connected to the host PC via the USB port using a USB 2.0
A/Mini-B cable. USB is a familiar connection option. Furthermore, it provides a
convenient way to link multiple boards to a single PC, and no battery is required
once a board is powered via USB.

4. Alternatively, the board can be connected to the host PC via the serial port using a
serial cable. Please note that the logical USB and serial (RS-232) ports share the
same physical port on the board, and, thus, cannot be used at the same time.
Keep in mind that the connection mode is controlled by setting a jumper on a
MeshBean board. Refer to Section 8.1.2 for the description of connectors and
jumpers on MeshBean boards.

5. If you plan to use a USB connection, install the USB-to-UART Bridge VCP driver.
To install the driver, please do the following:

a. Download the driver from
https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCP
Drivers.aspx.

b. Attach the MeshBean board to the USB port of your PC. Windows
should detect the new hardware. Follow the instructions provided by
the driver installation wizard.

c. Make sure that the driver is installed successfully and the new COM
port is present in the device list. Check that the device is correctly
shown in the Device Manager window, as in Figure 8-1.

https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx
https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

24 Atmel AVR2052

8200N-AVR-05/12

Figure 8-1. Correctly installed COM port for MeshBean device.

6. Download and install Java Runtime Environment [12], if not already installed on
your PC.

7. Demonstration of OTAU functionality and programming devices with Serial
Bootloader require the Serial Bootloader package, which should be downloaded
from the Atmel website.

8.2 Programming the boards
A firmware image file can be uploaded into Atmel ZigBit devices in one of the
following ways: using the Serial Bootloader package, using the JTAG interface, or
using the ISP programmer interface.

8.2.1 Setting fuse bits

Table 8-7 provides default fuse bit configurations loaded into all ZigBit modules during
production. It also describes some use cases when certain fuse bits require values
different from the default ones. Based on their own application-specific requirements,
users can change the fuse bits as well. See [31] for detailed fuse bit descriptions.

NOTE Modifying fuse bit settings is possible only using the JTAG or ISP programming
interfaces, and cannot be done with Serial Bootloader.

Table 8-7. Fuse bit settings for ZigBit, ZigBit Amp, and ZigBit 900.
Option Default value in ATZB-XX

devices
Comments

BODLEVEL Brownout detection
disabled

Can be changed according to application-
specific requirements

 Atmel AVR2052

 25
8200N-AVR-05/12

Option Default value in ATZB-XX
devices

Comments

OCDEN Disabled Can be changed during application
development. Must be disabled for final
products

JTAGEN Enabled Must always be enabled

SPIEN Enabled Must always be enabled

WDTON Disabled Can be changed according to application
requirements

EESAVE Disabled Can be changed according to application
requirements

BOOTSZ Boot Flash size=1024
words start
address=$FC00

Specifies section size, in words (2 bytes),
reserved in flash memory for the embedded
bootloader

Applied only if BOOTRST is enabled

Shall be changed to Boot Flash
size=2048 words start
address=$F800 if OTAU support is
needed on the device

BOOTRST Enabled Shall be enabled if device needs to be
programmed with Serial Bootloader, or if
OTAU support is required. Can be disabled
in other cases

CKDIV8 Enabled

CKOUT Disabled

SUT_CKSEL Int. RC Osc.;
Startup time: 6 CK +
65ms

Can be changed according to application-
specific requirements, but external clock
source shall not be used by sleeping devices

Default fuse bit configuration allows use of Serial Bootloader, and results in the
following fuse bytes (extended fuse byte, high fuse byte, low fuse byte):

0xFF, 0x9C, 0x62

To work with OTAU functionality, special embedded bootloader firmware with OTAU
support shall be loaded to the device via the JTAG interface. Due to its large size,
BOOTSZ fuse shall be changed to Boot Flash size=2048 words start
address=$F800.

If embedded bootloader support is not needed and devices are programmed only with
JTAG or ISP, then BOOTRST can be disabled, leading to the following fuse bytes:

0xFF, 0x9D, 0x62

8.2.2 Extended (MAC) address assignment

For proper operation, all nodes in a ZigBee network shall have unique, 64-bit MAC
address values. At startup, the Atmel BitCloud software assigns the MAC address to
an Atmel ZigBit device as follows. If at compile time the CS_UID parameter is set to 0,
the BitCloud stack attempts to load a MAC address from a dedicated UID chip
available on the MeshBean board via the 1-Wire interface. If there is no such UID,
then a zero MAC address will be assigned to the device. Note that for proper
operation, all nodes in the network shall have unique MAC address values. Hence, if

26 Atmel AVR2052

8200N-AVR-05/12

an address cannot be obtained automatically from an external source, separate
firmware images shall be created for each device with a unique CS_UID parameter
specified in the application configuration every time an image is compiled.

8.2.3 Programming with Serial Bootloader

All ZigBit modules are shipped preprogrammed with the embedded bootloader image
needed to use Serial Bootloader. Firmware images for the embedded bootloader as
well as the Bootloader PC tool, which is needed to load the application image from a
PC to the device, are included in the Atmel Serial Bootloader software package
available for downloading from the Atmel website.

To program a board using Serial Bootloader, proceed as follows:

1. Connect the serial port on the PC to the ATZB module pins, as specified in Table
8-8. The MeshBean evaluation board shall be connected using USB or the
extension slot, depending on the position of jumper J3 (see Section 8.1.2.1).

Table 8-8. Host UART and ZigBit/MCU pin connection.
UART pin on host device ATZB-XX pin ATmega1281 MCU pin

RXD UART1_RXD (14) PD3

TXD UART1_TXD (13) PD2

GND DGND (any) D_GND

2. Install and run the Bootloader PC tool from the command line or use the GUI.
Specify the target image file in .srec format and the COM port, and launch the
firmware upload.

3. If requested, reset the board, using the reset button.
4. The Bootloader PC tool indicates the programming progress. Once an upload is

successfully completed, the board should restart automatically. If an upload fails,
the embedded bootloader should indicate the reason. In rare cases, the booting
process can fail due to communication errors between the board and the PC. If
this happens, attempt booting again, or try using the conventional serial port
instead of USB. If booting fails, the program recently written to the board will be
corrupted, but the board can be reprogrammed, as the embedded bootloader
remains intact.

See [11] for additional details about the Serial Bootloader package.

WARNING Using JTAG to program the microcontroller will erase the embedded
bootloader, making the loading of application images with Serial
Bootloader impossible until the embedded bootloader firmware is
reprogrammed to the device.

8.2.4 Programming with JTAG

Refer to Atmel AVR Studio [3] or IAR Embedded Workbench [13] documentation for a
description of how the images can be programmed to the devices using JTAG.

8.2.5 Programming with ISP

Refer to AVR Studio [3] documentation for a description of how firmware images can
be programmed to a device using the in-system programming (ISP) interface. For
Atmel ZigBit devices, the ISP frequency shall be set to 6.478kHz, and the ISP
programmer shall be connected to the module as specified in Table 8-9.

 Atmel AVR2052

 27
8200N-AVR-05/12

Table 8-9. ISP programmer and ZigBit/MCU pin connections.
ISP programmer pin ATZB-XX pin ATmega1281 MCU pin

MOSI USART0_RXD (38) PE0

MISO USART0_TXD (39) PE1

SCK SPI_SCLK (1) PB1

RESET RESET (8) RSTn_In

VCC D_VCC (any) D_VCC

GND DGND (any) D_GND

8.3 Pre-built images
The SDK comes with a set of ready-to-use binary images of the WSNDemo
application. It includes a set of images for different roles, which are preconfigured with
distinct MAC addresses so they can be used for creating a small ZigBee network right
away. The image name is formed according to the following scheme:

<App_name>_<rf_chip>_<region>_<MCU>.<extension>

App_name stands for the name of the application. For ZigBit devices, the WSNDemo,
Runner, and SerialNet applications are available. To specify the node role, put Coord,
Router, or EndDev for coordinator, router, and end device, respectively. To program
with JTAG, use files with a .hex extension. .srec files are loaded with the serial
bootloader. Region is an optional parameter that specifies the radio frequency used
by the image according to the frequency band of the specified region. Possible
options are US, EU, and China. For example, to use JTAG to program a device based
on an RF212 radio with an image of the WSNDemo application for use in the US, use
the file with the name

WSNDemo_Rf212_US.hex
The ready-to-use binary images retrieve MAC address automatically from the UID
chip, ensuring that unique MAC addresses are assigned to all network nodes. Also
note that the default WSNDemo application images are configured to use Extended
PAN ID 0xAAAAAAAAAAAAAAAA and channel mask with:

• Channel 0x0F enabled for ZigBit and Atmel ZigBit Amp (WSNDemoApp.hex),
• Channel 0x00 and channel page 0 (WSNDemoApp_EU.hex) or channel 0x01 and

channel page 0 (WSNDemoApp_RF212US.hex) for Atmel ZigBit 900,
• Channel 0x01 and channel page 5 (WSNDemoApp_China.hex) for ZigBit 900.

8.4 Running WSNDemo

8.4.1 Starting WSNDemo

To start WSNDemo, proceed as follows:
1. Set up the hardware, as described in Section 8.1.2.
2. Install the Atmel BitCloud SDK, as described in Section 8.1.4.
3. Program one device with the coordinator image file and other with either the

router or end device images using one of the methods described in Section 8.2.
4. Connect the coordinator node to the PC using the USB port on the coordinator

board.
5. Power on the coordinator node.
6. Run WSNMonitor (see Section 4.5).
7. Power on and reset the rest of the nodes.

28 Atmel AVR2052

8200N-AVR-05/12

8.4.2 Monitoring WSNDemo activity

Network activity can be monitored in two ways:
• Observing color LEDs on MeshBean boards (see Table 8-10)
• Monitoring network topology and configuration through WSNMonitor installed on a

PC
Table 8-10. LED indication for MeshBean boards used in WSNDemo.

Node state LED1 (red) LED2 (yellow) LED3 (green)

Searching for network Blinking OFF OFF

Joined to network ON

+ receiving data Blinking

+ sending data to UART
(coordinator only) Blinking

Sleeping (end device only) OFF OFF OFF

NOTE When WSNDemo runs on a board other than a MeshBean, special care must be
taken to reconfigure the application to output the networking state to available user
interfaces (for example, LEDs).

8.4.3 Over-the-air upgrade configuration

Over-the-air upgrade functionality of the Atmel BitCloud SDK can be demonstrated
using the Atmel ZigBit platform. This demonstration requires additional hardware,
namely:

• A dedicated device running the Runner application and performing the function of
an over-the-air upgrade client

• One of the supported external Atmel DataFlash devices is connected to the ZigBit
module, as described in Section 8.1.2, and used to store uploaded application
images

NOTE Only those modules that have a DataFlash device connected to them should be
programmed with the OTAU-capable WSNDemo application. The rest can run the
stock WSNDemo firmware.

Once the external DataFlash device is connected to the board, the user should
configure and install devices as follows:

1. Load the WSNDemo application configured and compiled with APP_USE_OTAU
defined as 1 in the configuration.h file:

a. Program the embedded bootloader
bootloaderOTAU_ATmega1281.hex image file from the Serial
Bootloader package, according to platform-specific instructions.

b. The application image should be converted to *.srec format and
installed using the Bootloader PC tool from the same package, as
described in Section 4.5.3.The device is now able to perform as an
OTA client, as defined in [30]. The above process should be
repeated for every node that the user intends to upgrade over the
air.

2. Program another device with the Runner application available in the <SDK-
Root>\Evaluation Tools\Runner\ directory of the SDK. The device is now able
to perform as an OTA server, as defined in [30]. Once the images are
programmed and WSNDemo devices are joined to the network, follow
instructions given in Section 4.5.3 to update the firmware over the air.

 Atmel AVR2052

 29
8200N-AVR-05/12

8.5 Reserved hardware resources
Table 8-11. Hardware resources reserved by the stack on ZigBit, ZigBit Amp, and
ZigBit 900 modules.

Resource Description
Processor main clock 8MHz from internal RC oscillator or external radio frequency
SPI Radio interface
ATmega ports PB0, PB1,
PB2, PB3, PB4, PA7, PE5

Radio interface

ATmega port PC1 Interface for amplifier (if present)
ATmega ports PG3, PG4 Asynchronous timer interface
Timer/Counter 2 Asynchronous timer
Timer/Counter 4 System timer
External IRQ4 Wake up on DTR
External IRQ5 Radio interface
EEPROM Storage for user settings accessible via persistent data server
PE0, PE1, PE2, PF3 External Atmel DataFlash, when OTAU functionality is used

30 Atmel AVR2052

8200N-AVR-05/12

9 Appendix A-2: ATmega128RFA1 specifics

9.1 Getting started
The Atmel BitCloud SDK supports two different development platforms with Atmel
ATmega128RFA1: ATRF4CE-EK [14] and Atmel ATAVR128RFA1-EK1 [15] with
Atmel ATSTK600 boards [16]. The instructions below highlight the differences
between the two platform configurations, where present.

9.1.1 Required hardware

Before installing and using the BitCloud SDK for ATmega128RFA1, make sure that all
necessary hardware is available:

• For ATRF4CE-EK:
o Two or more RCB128RFA1 boards with 2.4GHz antennas and AAA

batteries
o One or more RCB breakout boards (other boards from the kit may be

used, too)
o One RS-232 interface cable for the RCB breakout board
o Atmel AVR JTAGICE mkII or Atmel JTAGICE 3

• For ATAVR128RFA1-EK1:
o Two or more ATSTK600 boards, each with an Atmega128RFA1 top

card and 2.4GHz antenna
o AVR JTAGICE mkII or Atmel JTAGICE 3

9.1.2 Hardware setup

For the RCB128RFA1, please refer to [14] for hardware setup instructions.

Figure 9-1. Jumper setting for STK600-ATmega128RFA1 top card.

ATAVR128RFA1-EK1 requires the following setup:

 Atmel AVR2052

 31
8200N-AVR-05/12

1. Make sure a jumper is present at the pins indicated by the red arrow in Figure
9-1.

2. Assemble the Atmel ATAVR128RFA1-EK1 on top of an Atmel STK600 board.
3. To communicate over the RS-232 port, connect pins PD2 and PD3 to pins RXD

and TXD, respectively, of the RS-232 SPARE port on the board. This is required
by the sample applications provided with the Atmel BitCloud SDK and Serial
Bootloader. Custom applications are free to choose other pins.

Before continuing any further operations, perform the steps required to get started
with the Atmel ATSTK600 [16]. Refer to AVR Studio Help [3] for details on that
subject. At the very least, make sure that the Atmel STK600 firmware is up to date,
and configure the voltage provided by the STK600 for the Atmel ATmega128RFA1
top card. For that, perform the following steps:

1. Attach the STK600 to a PC using a USB cable.
2. In Atmel AVR Studio, open the Tools > Program AVR > Connect… dialogue.
3. Choose the correct Platform = STK600, and press Connect.
4. Update the STK600 firmware, if suggested.
5. Go to the HW Settings tab.
6. Specify 3.3V in the VTarget field, and press Write.

The actions above must be performed only once for each ATSTK600 board.

9.1.2.1 OTAU hardware setup

If you wish to demonstrate OTA upgrade functionality, a serial Atmel DataFlash
device (AT45DB041) should be connected to the ATmega128RFA1 pins, as specified
in Table 9-1.

The STK600 board already has built-in DataFlash, and so to use OTAU on an
STK600 it is sufficient to connect the SI, SO, SCK, and /CS pins under the DataFlash
pin heading to the corresponding MCU pins noted in Table 9-1.

Table 9-1. External flash and MCU pin assignment.
DataFlash (STK600) pin ATmega128RFA1 MCU pin

MOSI (SI) PE1

MISO (SO) PE0

CLOCK (SCK) PE2

CS (CS) PG5

9.1.3 System requirements

Before using the SDK, please ensure that the following system requirements are met
by your PC and development environment.

Table 9-2. System requirements for ATmega128RFA1.
Parameter Value Note

CPU Intel Pentium III, or higher, 1GHz

RAM 512MB

Free space on hard disk 200MB

JTAG emulator Atmel AVR JTAGICE mkII or Atmel
JTAGICE 3 emulator with cable

Required to upload
firmware onto the
boards and debug
through JTAG

Operating system Windows 2000/XP

32 Atmel AVR2052

8200N-AVR-05/12

Parameter Value Note

IDE Atmel AVR Studio 5.1.208

OR

IAR Embedded Workbench AVR 6.11

(with IAR C/C++ Compiler for AVR
v6.11.1.50453 (1))

Required to upload
firmware images
through JTAG (see
Section 9.2.4) and
develop applications
using the API (see
Section 5.2)

Java virtual machine Java Runtime Environment (JRE) 6,
or later

Required to run
WSNMonitor application

Note: 1. Users are strongly recommended to use the specified version of AVR Studio and
IAR Compiler. Other versions are not supported, and may not work.

9.1.4 Installing the SDK

Proceed with the following installation instructions:

1. Download the archive to your PC and unpack it into an empty folder with no blank
spaces present in the directory path. The following SDK folders and files will be
created.

Table 9-3. The SDK file structure.
Directory/file Description

<SDK-Root>\Documentation Documentation for the Atmel BitCloud software

<SDK-Root>\Evaluation
Tools\WSNDemo (Embedded)

Ready-to-use image files for evaluating
WSNDemo. Refer to Section 9.3 for a
description of the images.

<SDK-Root>\Evaluation
Tools\WSNDemo (WSN
Monitor)\WSNMonitorSetup.exe

WSNMonitor installer

<SDK-Root>\BitCloud\Components\ Header files for the BitCloud stack

<SDK-
Root>\BitCloud\Components\BSP\

Source, header, and library files for the BitCloud
BSP

<SDK-Root>\BitCloud\lib Library files for the BitCloud stack

<SDK-Root>\Applications Source files for the sample applications

2. Install desired IDE:
a. For IAR Embedded Workbench AVR:

i. Install IAR Embedded Workbench for Atmel AVR [13], if not
already installed on your PC.

ii. Add a Windows environment variable named
IAR_AVR_HOME, and set its value to the IAR Embedded
Workbench installation directory (for a default installation, it is
C:\Program Files\IAR Systems\Embedded
Workbench 6.11). To do this, go to Control Panel >
System > Advanced > Environment Variables, click New
below the System variables list, and enter Variable Name
and Variable Value. This step is required if you plan to build
embedded images using IAR Embedded Workbench from
the command line.

b. For Atmel AVR Studio:

 Atmel AVR2052

 33
8200N-AVR-05/12

i. Install AVR Studio [3], if not already installed on your PC.
ii. Add paths to the folder containing the AVRGCC compiler to

the Path Windows environment variable. The compiler is
located in the
\extensions\Atmel\AVRGCC\3.3.1.27\AVRToolchain\bin
directory of the AVR Studio installation directory.

3. Download and install Java Runtime Environment [12], if not already installed on
your PC.

4. Demonstration of OTAU functionality and programming devices with Serial
Bootloader require the Serial Bootloader package, which should be downloaded
from the Atmel website.

9.2 Programming the boards
A firmware image file can be uploaded into the Atmel ATmega128RFA1 device in one
of the following ways: using the Serial Bootloader package or using the JTAG
interface.

9.2.1 Setting fuse bits

Table 9-4 provides the default fuse bit configuration loaded into ATmega128RFA1
devices during production. It also describes some use cases when certain fuse bits
require values different from the default ones. Based on their own application-specific
requirements, users can change the fuse bits as well. See [32] for detailed fuse bit
descriptions.

NOTE Modifying fuse bit settings is possible only using the JTAG programming interface,
and cannot be done using the Serial Bootloader package tools.

Table 9-4. Fuse bit settings for ATmega128RFA1 devices.

Option
Deafult value in
ATmega128RFA1 devices Comments

BODLEVEL Brownout detection
disabled

Can be changed according to application-
specific requirements

OCDEN Disabled Can be changed during application
development. Must be disabled for final
products

JTAGEN Enabled Must be always enabled

SPIEN Enabled Must be always enabled

WDTON Disabled Can be changed according to application
requirements

EESAVE Disabled Can be changed according to application
requirements

34 Atmel AVR2052

8200N-AVR-05/12

Option
Deafult value in
ATmega128RFA1 devices Comments

BOOTSZ Boot Flash size=4096
words start
address=$F000

Specifies section size, in words (2 bytes),
reserved in flash memory for the embedded
bootloader.

Applied only if BOOTRST is enabled.

Shall be changed to Boot Flash
size=1024 words start
address=$FC00 if it is to work with the
serial bootloader without OTAU support.

Shall be changed to Boot Flash
size=2048 words start
address=$F800 if OTAU support is
required on the device.

BOOTRST Disabled Shall be enabled if the device needs to be
programmed with the serial bootloader or if
OTAU support is required. Can be disabled
in other cases

CKDIV8 Enabled

CKOUT Disabled

SUT_CKSEL Int. RC osc.; Start-
up time: 6 CK + 65ms

Can be changed according to application-
specific requirements, but external clock
source shall not be used by sleeping devices

By default, programming with Serial Bootloader is not allowed, and so firmware can
be uploaded only over the JTAG interface. Default fuse bytes equal (in this order:
extended fuse byte, high fuse byte, low fuse byte):

0xFF, 0x99, 0x62

To turn on bootloader support, first, the BOOTRST fuse must be enabled and BOOTSZ
must be set to Boot Flash size=1024 words start address=$FC00, which
leads to the following fuse bytes:

0xFF, 0x9C, 0x62

Second, a firmware image of the embedded bootloader (without OTAU support) shall
be programmed to the Atmel ATmega128RFA1 using JTAG. After that, application
images can be loaded to the device using the Bootloader PC tool from the Serial
Bootloader package, as described in Section 9.2.3.

Enabling OTAU bootloader support requires the BOOTSZ fuse to be set to Boot
Flash size=2048 words start address=$F800, and, hence, the following
fuse bytes values:

0xFF, 0x9A, 0x62

9.2.2 Extended (MAC) address assignment

For proper operation, all nodes in a ZigBee network shall have unique, 64-bit MAC
address values. At startup, the Atmel BitCloud software assigns the MAC address to
the ATmega128RFA1 device as follows:

 Atmel AVR2052

 35
8200N-AVR-05/12

• If at compile time the CS_UID parameter is set to 0, BitCloud attempts to load the
MAC address from the dedicated external EEPROM chip available on the
RCB128RFA1 as well as on the Atmel ATAVR128RFA1-EK1 board via the SPI
interface.

• If there is no such chip present, then a zero MAC address will be assigned to the
device.

Note that for proper operation, all nodes in the network shall have unique MAC
address values. Hence, if an address cannot be obtained automatically from an
external source, separate firmware images shall be created for each device with a
unique CS_UID parameter specified in the application configuration.

9.2.3 Programming with Serial Bootloader

Programming using Serial Bootloader requires that the embedded bootloader code is
loaded to the device via JTAG. Firmware images for the embedded bootloader as
well as the Bootloader PC tool, which is needed to load the application image from a
PC to the device, are included in the Atmel Serial Bootloader software package
available for downloading from the Atmel website.

Images that shall be loaded to ATmega128RFA1 via JTAG may be found under the
\Embedded_Bootloader_images\Atmega128rfa1 directory in the package:

• The Bootloader_ATmega128RFA1_RCB_BB_RS232.hex file for RCB128RFA1
• The Bootloader_ATmega128RFA1.hex file for ATAVR128RFA1-EK1
In both cases, the fuse bits should be configured properly; namely, the BOOTRST fuse
should be enabled.

If the embedded bootloader is loaded, the following steps should be executed to
upload the application image file to the board:

1. Assemble the board and connect it to a PC:
a. For the ATRF4CE-EK:

a. Assemble the RCB128RFA1 and RCB breakout boards (RCB-
BB) together.
Connect the RS-232 interface cable to the J1 extender on the
RCB-BB and to the COM1 port on the PC.

b. For the Atmel ATAVR128RFA1-EK1:
b. Assemble the Atmel STK600 board and the ATAVR128RFA1-

EK1 card, as described in Section 9.1.2.
c. Connect PC COM1 port to the RS-232 SPARE port on the

board. The RS-232 SPARE pins should be connected to the
MCU pins, as specified in Table 9-5.

Table 9-5. Host UART and MCU pin connections.
UART pin on host device ATmega128RFA1 MCU pin

RXD PD3

TXD PD2

GND D_GND

2. Install and run the Bootloader PC tool from the command line or use the GUI.
Specify the target image file in .srec format and the COM port, and launch the
firmware upload.

3. Reset the board using the reset button, if requested.
4. The Bootloader PC tool indicates the programming progress. Once an upload is

successfully completed, the board should restart automatically. If an upload fails,

36 Atmel AVR2052

8200N-AVR-05/12

the Bootloader PC tool should indicate the reason. In rare cases, the booting
process can fail due to communication errors between the board and the PC. If
this happens, attempt booting again or try using the conventional serial port
instead of USB. If booting fails, the program recently written to the board will be
corrupted, but the board can be reprogrammed, as the embedded bootloader
remains intact.

See [11] for additional details about the Serial Bootloader package.

WARNING Using JTAG to program the microcontroller will erase the embedded
bootloader, making the loading of application images with Serial
Bootloader impossible until the embedded bootloader firmware is
reprogrammed to the device.

9.2.4 Programming with JTAG

Refer to [14] and [16] for a description of how the images can be programmed to
corresponding development boards using JTAG.

9.3 Pre-built images
The SDK comes with a set of ready-to-use binary images of the WSNDemo
application. It includes a set of images for different roles, which are preconfigured with
distinct MAC addresses so they can be used for creating a small ZigBee network right
away. The image name is formed according to the following scheme:

WSNDemo_<board>_<MCU>_<role>.<extension>

To specify the node role, put Coord, Router, or EndDev for coordinator, router and
end device, respectively. To program with JTAG, use files with a .hex extension.
.srec files are loaded with the serial bootloader. For example, to use JTAG to
program a device with the Atmel ATmega128RFA1 MCU on the Atmel STK600 board
acting as coordinator, use the file with the name

WSNDemo_Stk600_Atmega128rfa1_Coord.hex

9.4 Running WSNDemo

9.4.1 Starting WSNDemo

To start WSNDemo, proceed as follows:

1. Set up the hardware, as described in Section 9.1.2.
2. Install the Atmel BitCloud SDK, as described in Section 9.1.4.
3. Program one device with the coordinator image file and other with either the

router or end device images, as described in Section 9.2.
4. Connect the coordinator node to the PC using the serial interface.
5. Power on the coordinator node.
6. Run WSNMonitor (see Section 4.5).
7. Power on and reset the rest of the nodes.

9.4.2 Monitoring WSNDemo activity

Network activity can be monitored in two ways:

• Observing LEDs on the development boards, as described in Table 9-6. LED Dx
labels correspond to the RCB128RFA1 board, while labels naming colors belong
to the Atmel ATAVR128RFA1-EK1 board.

 Atmel AVR2052

 37
8200N-AVR-05/12

• Monitoring the network topology through WSNMonitor installed on a PC (see
Section 4.5).

Table 9-6. LED indication for RCB128A1 (and ATAVR128RFA1-EK1) boards used in
WSNDemo.

Node state LED D2 (red) LED D3 (yellow) LED D4 (green)

Searching for network Blinking OFF OFF

Joined to network ON

+ receiving data Blinking

+ sending data to UART
(coordinator only) Blinking

Sleeping (end device only) OFF OFF OFF

9.4.3 Demonstrating OTA upgrade functionality

OTA upgrade functionality of the BitCloud SDK can be demonstrated using the
megaRF platform by using the serial Atmel DataFlash device found on the STK600
board. Once the DataFlash device is connected to the Atmel ATmega128RFA1, as
defined in Section 9.1.2, the user should configure and install devices as follows:

1. Load the WSNDemo application configured and compiled with APP_USE_OTAU
defined as 1 in the configuration.h file:

a. Program the embedded bootloader
bootloaderOTAU_ATmega128RFA1.hex file from the Serial
Bootloader package.

b. The application image should be converted to *.srec format and
installed using the Bootloader PC tool from the same package, as
described in Section 4.5.3.

c. The device is able to act as an OTA client, as defined in [30].
2. Program another device with the Runner application, which is available in the

<SDK-Root>\Evaluation Tools\Runner\ directory of the SDK. The Runner
node acts as OTA server, as defined in [30].

Once the images are programmed and WSNDemo devices are joined to the network,
follow the instructions given in Section 4.5.3 to update firmware over the air.

9.5 Reserved hardware resources
Table 9-7. Hardware resources reserved by the stack on ATmega128RFA1.

Resource Description

Processor main clock 8MHz from internal RC oscillator

TRX24 Radio

ATmega ports PG3, PG4 Asynchronous timer interface

Timer/Counter 2 Asynchronous timer

Timer/Counter 4 System timer

External IRQ4 Wake up on DTR

EEPROM Storage for user settings accessible via persistent data server

PE0..PE2, PG5 External DataFlash, when OTAU functionality is used

38 Atmel AVR2052

8200N-AVR-05/12

10 Appendix A-3: UC3 specifics

10.1 Getting started

10.1.1 Required hardware

Before installing and using the Atmel BitCloud SDK for the Atmel 32-bit AVR UC3,
make sure that all necessary hardware is available:

1. Two or more Atmel EVK1105 boards [18]
2. Two or more radio extender boards [17]
3. Connectors for each EVK1105 board:

a. Five two-wire cables
b. One USB 2.0 A/Mini-B cable

4. Atmel AVR JTAGICE mkII or Atmel JTAGICE 3

10.1.2 Hardware setup

To prepare the hardware:

1. Install the J12 and J16 extension headers on the board (if not already installed).
2. Install the JTAG pin header on the board (if not already installed).
3. Use several two-wire cables to connect J16 pins to the corresponding pins on the

REB231 boards, as indicated in Table 10-1.

Table 10-1. EVK1105 to radio extender board REB231 pin mapping.
EVK1105 J16 pin REB231 pin

1 30

2 29

3 28

4 27

5 38

6 26

8 25

9 22

10 20

10.1.3 System requirements

Before using the SDK, please ensure that the following system requirements are met
by your PC and development environment.

Table 10-2. System requirements for UC3.
Parameter Value Note

CPU Intel Pentium III, or
higher, 1GHz

RAM 512MB

Free space on hard disk 200MB

 Atmel AVR2052

 39
8200N-AVR-05/12

Parameter Value Note

JTAG emulator AVR JTAGICE mkII or
Atmel JTAGICE 3
emulator with cable

Required to upload firmware onto
the boards and debug through
JTAG (see Section 10.2.3)

Operating system Windows 2000/XP

IDE IAR Embedded
Workbench 32-bit AVR

(with IAR C/C++ Compiler
for 32-bit AVR
3.30.1.40051/W32 (1))
and
Atmel AVR32 GNU
Toolchain v2.4.2

Required to upload firmware
images through and develop
applications using the API (see
Section 5.2).
AVR32 GNU Toolchain is needed
only to install the USB VCP driver.

Java Virtual Machine Java Runtime
Environment (JRE) 6, or
later

Required to run the WSNMonitor
application

Note: 1. Users are strongly encouraged to use the specified versions of IAR C/C++
Compiler for 32-bit AVR. Other versions are not supported, and may not work.

10.1.4 Installing the SDK

Proceed with the following installation instructions:

1. Download the archive to your PC and unpack it into an empty folder with no blank
spaces present in the directory path. The following SDK folders and files will be
created.

Table 10-3. The SDK file structure.
Directory/file Description

<SDK-Root>\Documentation Documentation for the Atmel BitCloud software

<SDK-Root>\Evaluation
Tools\WSNDemo (Embedded)

Ready-to-use image files for evaluating
WSNDemo. Refer to Section 10.3 for the
description of the images

<SDK-Root>\Evaluation
Tools\WSNDemo (WSN Monitor)\

Contains the WSNMonitor installer

<SDK-Root>\BitCloud\Components\ Header files for the BitCloud stack

<SDK-
Root>\BitCloud\Components\BSP\

Source, header, and library files for the BitCloud
BSP

<SDK-Root>\BitCloud\lib Library files for the BitCloud stack

<SDK-Root>\Applications\ Source files for the sample applications

2. Install IAR Embedded Workbench for Atmel AVR32 [21], if not already installed
on your PC. Be sure to install only the supported version of IAR Embedded
Workbench, as specified in Table 10-2.

a. Add a Windows environment variable named IAR_AVR32_HOME, and
set its value to the IAR Embedded Workbench installation directory (for
a default installation, it is C:\Program Files\IAR
Systems\Embedded Workbench 5.4_0). To do this, go to Control
Panel > System > Advanced > Environment Variables, click New
below the System variables list, and enter Variable Name and Variable
Value. This step is required if you plan to build embedded images using
IAR Embedded Workbench from the command line.

40 Atmel AVR2052

8200N-AVR-05/12

3. Install AVR32 GNU Toolchain [20], if not already installed on your PC.
4. Download and install Java Runtime Environment [12], if not already installed on

your PC.
5. Install the USB VCP driver on the Atmel EVK1105 to allow it to communicate with

your PC.
a. Connect JTAG to the UC3B JTAG header, and power on the board.
b. From ThirdPartySoftware\EVK1105_UC3B_VCP, run the

program_evk1105_at32uc3b-isp-cdc-1.0.1.cmd Windows
command script.

c. The USB VCP driver should now be installed on the board.
6. Attach the EVK1105 board to the USB port of your PC using the USB 2.0 A/Mini-

B cable. Windows should detect the new hardware. Follow the instructions
provided by the driver installation wizard. When prompted, choose to install the
driver from the specific location, and select the driver located in the
ThirdPartySoftware folder of the SDK.

10.2 Programming the boards
A firmware image file can be uploaded into the Atmel UC3 device using JTAG.
Programming the device using the serial bootloader is not supported.

10.2.1 Setting fuse bits

Table 10-4 provides the fuse bit configuration that should be loaded into Atmel
AT32UC3A0512 devices before programming the application image with JTAG.

NOTE Modifying fuse bit settings is possible only using the JTAG programming interface,
and cannot be done with the Serial Bootloader package tools.

Table 10-4. Fuse bit settings for AT32UC3A0512.
Option Default value on AT32UC3A Values to program

BODLEVEL 000000b (0) Brownout detection at VCC=1.92V
(63)

BODHYST Enabled Enabled (1)

BODEN Disabled Disabled (3)

LOCK0 – LOCK15 Unlocked (1) Unlocked (1)

EPFL Enabled (1) External instruction fetch enabled
(1)

BOOTPROT 011b (4) No bootloader (7)

GF29 Enabled (1) Enabled (1)

GF30 Enabled (1) Enabled (1)

GF31 Enabled (1) Enabled (1)

10.2.2 Extended (MAC) address assignment

For proper operation, all nodes in a ZigBee network shall have unique MAC address
values. For UC3 devices, a unique CS_UID parameter must be specified for each
node in the application configuration, and then the application image must be built
separately for each board.

 Atmel AVR2052

 41
8200N-AVR-05/12

10.2.3 Programming with JTAG

An image file from an existing project for IAR Embedded Workbench for Atmel AVR32
can be uploaded into the boards using a JTAG emulator as follows:

1. Assemble the board and connect it to the PC.
2. Connect the JTAG to the UC3A JTAG header. Power on the board and AVR

JTAGICE mkII or Atmel JTAGICE 3.
3. Start IAR Embedded Workbench for Atmel AVR32.
4. From File > Open > Workspace, navigate to and open the desired IAR project

(for example, the WSNDemoApp.eww file in the Sample
Applications\WSNDemo\iar\avr32 folder).

5. Select Project > Download and Debug.
6. Once the firmware is loaded, select Debug > Stop Debugging.
7. Unplug the JTAG from the UC3A JTAG header.
8. Reset the Atmel EVK1105.

Alternatively, it is possible to load a ready-to-use image file in .elf format using Atmel
AVR32 GNU Toolchain [20] by running following command in the console:

avr32program program -finternal@0x80000000,256Kb -cxtal -e -v -
O0x80000000 <filename.elf>

Make sure the proper fuse options in the JTAGICE mkII -> Fuse (JTAGICE 3 ->
Fuse) handler menu of IAR Embedded Workbench for Atmel AVR32 are set, as
described in Table 10-4.

10.3 Pre-built images
The SDK comes with a set of ready-to-use binary images of the WSNDemo
application. It includes a set of images for different roles preconfigured with distinct
MAC addresses so they can be used for creating a small ZigBee network right away.
The image name is formed according to the following scheme:

WSNDemo_<role>_<rf_chip>.<extension>

To specify node role put Coord, Router, or EndDev for coordinator, router, and end
device respectively. For example, to program a device acting as coordinator, use the
file with the name

WSNDemo_Coord_Rf231.elf

NOTE Default images are preconfigured to use Extended PAN ID 0xAAAAAAAAAAAAAAAA and
operate on channel 0x0F (for RF231 and RF230 radios) or channel 0x01 and channel
page 0 (for RF212 radio).

42 Atmel AVR2052

8200N-AVR-05/12

10.4 Running WSNDemo

10.4.1 Starting WSNDemo

To start WSNDemo, do the following:

1. Set up the hardware, as described in Section 10.1.2.
2. Install the Atmel BitCloud SDK, as described in Section 10.1.4.
3. Program one device with the coordinator image file and the other with either the

router or end device images, as described in Section 10.2.
4. Connect the coordinator node to the PC using the serial interface.
5. Power on the coordinator node.
6. Run WSNMonitor (see Section 4.5).
7. Power on and reset the rest of the nodes.

10.4.2 Monitoring WSNDemo activity

Network activity can be monitored in two ways:

• Observing LEDs on the development boards, as described in Table 10-5. The
LEDx label corresponds to the EVK1105 board.

• Monitoring network topology information through WSNMonitor installed on a PC
(see Section 4.5).

Table 10-5. LED indication for WSNDemo on an Atmel EVK1105 board.
Node state LED0 LED1 LED2

Searching for network Blinking OFF OFF

Joined to network ON

+ receiving data Blinking

+ sending data to UART
(coordinator only) Blinking

Sleeping (end device only) OFF OFF OFF

10.5 Reserved hardware resources
Table 10-6. Hardware resources used by the stack on an Atmel AT32UC3A0512.

Resource Description

Processor main clock 48MHz from external quartz

32-bit AVR ports A9, A20, A11, A12, A13 Radio interface

Timer Channel 0 Timer

32-bit AVR ports B30, B31 Sleep / reset

 Atmel AVR2052

 43
8200N-AVR-05/12

11 Appendix A-4: ATxmega specifics

11.1 Getting started
The Atmel BitCloud SDK supports two different hardware platforms with Atmel
XMEGA microcontrollers: ATxmega card hosted on Atmel STK600 and RZ600
boards, and Atmel REB2xxED-EK – with REB-CBB boards. The instructions below
highlight the differences between the two platform configurations, where present.

11.1.1 Required hardware

Before installing and using the Atmel BitCloud SDK, make sure that all necessary
hardware is available for the kit you would like to use:

• For Atmel STK600:
o Two or more Atmel ATSTK600s. For each, additionally:

 Routing card for the Atmel AVR ATxmega256A3 and
ATxmega256D3 microcontrollers

 Selected MCU (either ATxmega256A3 or ATxmega256D3)
 Atmel RZ600 radio board

o Atmel AVR JTAGICE mkII (an XMEGA PDI adapter for AVR
JTAGICE mkII is required for the ATxmega256D3 device) or Atmel
JTAGICE 3

• For REB212ED-EK/REB231ED-ED/REB232ED-EK:
o Two or more REB-CBBs with ATxmega256A3
o Radio extender board REB212/REB231/REB232/REB233 or

REB231FE2 for each REB-CBB board
o Atmel AVR JTAGICE mkII or Atmel JTAGICE 3

11.1.2 Hardware setup

For REB2xxED-EK, please refer to [34] for hardware setup instructions.

Atmel STK600 boards require the following setup to use with ATxmega:

1. Attach the ATxmega socket card and routing card to the STK600.
2. If RZ600 radio boards are used, attach the board to PORTC on the STK600. Be

sure to note the type of radio stick connected (RF231, RF230, or RF212) to
ensure compatible firmware is chosen in the later steps.

3. Connect LEDs to the ATxmega expansion board. By default, applications
provided with the SDK assume that the LEDs are connected through PORTE
(defined in <SDK-Root>\BitCloud\Components\BSP\ATML_STK600\include\
bspLeds.h). Connect PORTE on the ATxmega board to the LEDS connector on
the STK600 using a 10-wire cable.

4. Route the ATxmega UART to the RS-232 port on the STK600 board. The current
revision of the SDK uses asynchronous mode without hardware flow control (RXD
and TXD pins only) on PORTD USART 0. Use two-wire cable to connect PORTD pins
2 and 3 with the RS-232 SPARE connector: PD2 to RXD and PD3 to TXD.

5. Before performing any further operations, perform the steps required to get
started with the ATSTK600 [16]. Refer to AVR Studio Help for details on that
subject. At the least, make sure that the STK600 firmware is up to date, and

44 Atmel AVR2052

8200N-AVR-05/12

configure the voltage provided by the STK600 for the ATxmega socket card. For
that, perform the following steps:

a. Attach the STK600 to a PC using a USB cable.
b. In Atmel AVR Studio, open Tools > Program AVR > Connect…

dialogue.
c. Choose the correct Platform = STK600, and press Connect.
d. Update the STK600 firmware, if suggested.
e. Go to the HW Settings tab.
f. Specify the required voltage in the VTarget field, and press Write.

Please note that the voltage should be less than 3.6V (for example,
3.0V).

You need to perform this procedure once for each ATSTK600 board.

11.1.2.1 OTAU hardware setup

If you wish to demonstrate OTA upgrade functionality, a serial Atmel DataFlash
device (AT45DB041) shall be connected to the Atmel ATxmega256A3/Atmel
ATxmega256D3 pins specified in Table 11-1.

The Atmel STK600 board already has built-in DataFlash, and so to use OTAU on an
STK600, it is sufficient to connect the SI, SO, SCK, and /CS pins under the DataFlash
pin heading to the corresponding MCU pins noted in Table 11-1.

Table 11-1. External flash and MCU pin assignment.
DataFlash pin ATxmega256A3/D3 MCU pin

MOSI PD5

MISO PD6

CLOCK PD7

CS PD4

11.1.3 System requirements

Before using the SDK, please ensure that the following system requirements are met
by your PC and development environment.

Table 11-2. System requirements for ATxmega256A3/D3.
Parameter Value Note

CPU Intel Pentium III, or higher,
800MHz

RAM 128MB

Free space on hard disk 50MB

JTAG emulator Atmel AVR JTAGICE mkII
or Atmel JTAGICE 3
emulator with cable

Required to upload firmware onto
the boards and debug through
JTAG (see Section 11.2.4)

Operating system Windows 2000/XP

IDE Atmel AVR Studio 5.1.208
OR
IAR Embedded Workbench
AVR 6.11
(with IAR C/C++ Compiler
for AVR v6.11.1.50453 (1))

Required to upload firmware
images through JTAG and
develop applications using the
API (see Section 5.2)

 Atmel AVR2052

 45
8200N-AVR-05/12

Parameter Value Note

Java virtual machine Java Runtime Environment
(JRE) 6, or later

Required to run the WSNMonitor
application

Note: 1. Users are strongly encouraged to use the specified versions of AVR Studio and
IAR C/C++ Compiler for AVR. Other versions are not supported, and may not
work.

11.1.4 Installing the SDK

Proceed with the following installation instructions.

1. Download the archive to your PC and unpack it into an empty folder. The following
SDK folders and files will be created.

Table 11-3. The SDK file structure.
Directory/file Description

<SDK-Root>\Documentation Documentation for the Atmel BitCloud software

<SDK-Root>\Evaluation
Tools\WSNDemo (Embedded)

Ready-to-use image files for evaluating
WSNDemo. Refer to Section 11.3 for a
description of the images

<SDK-Root>\Evaluation
Tools\WSNDemo (WSN
Monitor)\WSNMonitorSetup.exe

WSNMonitor installer

<SDK-Root>\BitCloud\Components Header files for the BitCloud stack

<SDK-
Root>\BitCloud\Components\BSP\

Source, header, and library files for the BitCloud
BSP

<SDK-Root>\BitCloud\lib Library files for the BitCloud stack

<SDK-Root>\Applications\ Source files for the sample applications

2. Install the selected IDE.
a. For IAR Embedded Workbench AVR:

i. Install IAR Embedded Workbench for Atmel AVR [13], if not
already installed on your PC.

ii. Add a Windows environment variable named
IAR_AVR_HOME, and set its value to the IAR Embedded
Workbench installation directory (for a default installation, it is
C:\Program Files\IAR Systems\Embedded
Workbench 6.11). To do this, go to Control Panel >
System > Advanced > Environment Variables, click New
below the System variables list, and enter Variable Name
and Variable Value. This step is required if you plan to build
embedded images using IAR Embedded Workbench from
the command line.

b. For Atmel AVR Studio:
i. Install AVR Studio [3], if not already installed on your PC.
ii. Add paths to the folder containing the AVRGCC compiler to

the Path Windows environment variable. The compiler is
located in the

46 Atmel AVR2052

8200N-AVR-05/12

\extensions\Atmel\AVRGCC\3.3.1.27\AVRToolchain\bin
directory of the AVR Studio installation directory.

3. Download and install Java Runtime Environment [12], if not already installed on
your PC.

4. Demonstration of OTAU functionality and programming devices with Serial
Bootloader require the Serial Bootloader package, which should be downloaded
from the Atmel website.

11.2 Programming the boards
A firmware image file can be uploaded into the ATxmega device in one of the
following ways: using the Serial Bootloader package or using the JTAG interface.

11.2.1 Setting fuse bits

Table 11-4 provides the default fuse bit configuration loaded into Atmel
ATxmega256A3/Atmel ATxmega256D3 devices during production. It also describes
some use cases when certain fuse bits require values different from the default ones.
Based on their own application-specific requirements, users can change the fuse bits
as well. See [33] for detailed fuse bit descriptions.

NOTE Modifying fuse bit settings is possible only using the JTAG programming interface,
and cannot be done with the Serial Bootloader package tools.

Table 11-4. Fuse bit settings for ATxmega256A3/D3 device.

Option

Deafult value in
ATxmega256A3/D3
devices Comments

JTAGUSERID 0xFF Can be changed according to application-
specific requirements

WDWP 8 cycles (8ms @ 3.3V) Can be changed during application
development. Must be disabled for final
products

WDP 8 cycles (8ms @ 3.3V) Must be always enabled

DVSDON OFF Must be always enabled

BOOTRST Application reset Must be set to BOOTLDR if device needs to
be programmed with Serial Bootloader or if
OTAU support is required

BODACT BOD Disabled Can be changed according to application
requirements

BODPD BOD Disabled

SUT 0ms

WDLOCK OFF

JTAGEN ON

EESAVE OFF Can be changed according to application-
specific requirements, but external clock
source shall not be used by sleeping devices.

BODLVL 1.6V

Resulting bytes:

FUSEBYTE0 0xFF

 Atmel AVR2052

 47
8200N-AVR-05/12

Option

Deafult value in
ATxmega256A3/D3
devices Comments

FUSEBYTE1 0x00

FUSEBYTE2 0xFF

FUSEBYTE4 0xFE

FUSEBYTE5 0xFF

By default, programming with Serial Bootloader is not allowed, and so firmware can
be uploaded only over the JTAG interface. To turn on bootloader support, the
BOOTRST fuse must be set to BOOTLDR which results in the following fuse bytes:

0xFF, 0x00, 0xBF, 0xFE, 0xFF

Second, a firmware image of the embedded bootloader (without OTAU support) shall
be programmed to the Atmel ATxmega256A3/Atmel ATxmega256D3 using JTAG.
After that, application images can be loaded to the device using the Bootloader PC
tool from the Serial Bootloader package, as described in Section 11.2.3.

11.2.2 Extended (MAC) address assignment

For proper operation all nodes in ZigBee network shall have unique MAC address
values. On the Atmel XMEGA platform, a unique CS_UID parameter must be specified
for each node in the application configuration, and then the application image must be
built separately for each board.

11.2.3 Programming with Serial Bootloader

Programming using Serial Bootloader requires that the embedded bootloader code is
loaded to the device via JTAG. Firmware images for the embedded bootloader as
well as the Bootloader PC tool, which is needed to load the application image from a
PC to the device, are included in the Atmel Serial Bootloader software package
available for downloading from the Atmel website.

Images that shall be loaded to the MCU via JTAG may be found under
\Embedded_Bootloader_images\ in the Atxmega256a3/Atxmega256d3 directory in
the package:

• The Bootloader_ATXmega256A3.hex file for ATxmega256A3
• The Bootloader_ATXmega256D3.hex file for ATxmega256D3
In both cases, the fuse bits should be configured properly (see Table 11-4).

If the embedded bootloader is loaded, the following steps should be executed to
upload the application image file to the board:

1. Assemble the board and connect it to the PC:
a. For STK600:

a. Assemble the Atmel STK600 board and ATxmega routing
card, as described in Section 11.1.2.

b. Connect PC COM1 port to the RS-232 SPARE port of the
board. RS-232 SPARE pins should be connected to the MCU
pins specified in Table 11-5.

b. For REB-CBB:
a. Attach the radio extender board to the REB-CBB and connect

a power cable to the PWR port on the REB-CBB.

48 Atmel AVR2052

8200N-AVR-05/12

b. Connect the RS-232 interface cable to the USARTD0 port on
the REB-CBB and to the COM1 port on the PC.

Table 11-5. Host UART and MCU pin connections.
UART pin on host device ATxmega256A3/D3 MCU pin

RXD PD2

TXD PD3

2. Install and run the Bootloader PC tool from the command line or use the GUI.
Specify the target image file in .srec format and the COM port, and launch the
firmware upload.

3. Reset the board using the reset button, if requested.
4. The Bootloader PC tool indicates the programming progress. Once an upload is

successfully completed, the board should restart automatically. If an upload fails,
the Bootloader PC tool should indicate the reason. In rare cases, the booting
process can fail due to communication errors between the board and the PC. If
this happens, attempt booting again or try using the conventional serial port
instead of USB. If booting fails, the program recently written to the board will be
corrupted, but the board can be reprogrammed, as the embedded bootloader
remains intact.

See [11] for additional details about the Serial Bootloader package.

WARNING Using JTAG to program the microcontroller will erase the embedded
bootloader, making the loading of application images with Serial
Bootloader impossible until the embedded bootloader firmware is
reprogrammed to the device.

11.2.4 Programming with JTAG

Refer to Atmel AVR Studio [3] and IAR Embedded Workbench [13] documentation for
the description of how the images can be programmed to the boards using JTAG.

• For STK600: the JTAGICE device must be connected to a particular JTAG
connector on the STK600 board. This connector is not marked with any label, and
is situated next to the connector marked as JTAG (in the blue background area),
but closer to the ATxmega expansion board.
Note that the Atmel ATxmega256D3 devices support only PDI programming. The
PDI connector can be found next to the JTAG connector on the STK600 board. A
special XMEGA PDI adapter must be used with JTAG for programming
ATxmega256D3 devices.

• For REB-CBB: connect the JTAGICE device to the DBG port on a REB-CBB
board.

Make sure that the board and ATxmega socket card are powered on (refer to Section
11.1.2 for the description of additional steps required for that) and the right options set
in the Fuses tab (see Table 11-4) before uploading the image through JTAG. Don’t
forget to select the correct device (the Atmel ATxmega256A3 or ATxmega256D3) in
the Device and Signature Bytes field on the Main tab of the programming dialogue.
After programming the image, reset the board.

11.3 Pre-built images
The SDK comes with a set of ready-to-use binary images of the WSNDemo
application. It includes a set of images for different roles, which are preconfigured with

 Atmel AVR2052

 49
8200N-AVR-05/12

distinct MAC addresses so they can be used for creating a small ZigBee network right
away. The image name is formed according to the following scheme:

WSNDemo_<role>_<board>_<rf_chip>_<region>_<MCU>.<extension>

To specify the node role, put Coord, Router, or EndDev for coordinator, router, and
end device, respectively. To program with JTAG, use files with a .hex extension.
.srec files are loaded with the serial bootloader. Region is an optional parameter that
specifies the radio frequency used by the image according to the frequency band of
the specified region. Possible options are US, EU, and China. For example, to use
JTAG to program a device with an ATxmega256A3 MCU on an STK600 board and an
RF212 radio acting as coordinator for use in the US, use the file with name

WSNDemo_Coord_Stk600_Rf212_US_Atxmega256a3.hex

NOTE Default images are preconfigured to use Extended PAN ID 0xAAAAAAAAAAAAAAAA and
operate on channel 0x01 and channel page 0 for RF212 radio and on channel 0x0F
for other radio types.

11.4 Running WSNDemo

11.4.1 Starting WSNDemo

To run the WSN Demo application, proceed as follows:

1. Set up the hardware, as described in Section 11.1.2. Make sure to connect the
LEDs and UART as described.

2. Install the Atmel BitCloud SDK, as described in Section 11.1.4.
3. Program one device with the coordinator image file and other with either the

router or end device images, as described in, as described in Section 11.2.
4. Attach the Atmel STK600 #1 (coordinator) RS-232 connector to a PC COM port.
5. Run WSNMonitor (see Section 4.5).
6. Power on and reset the rest of the nodes.

11.4.2 Monitoring WSNDemo activity

Network activity can be monitored in two ways:

• Observing the STK600 boards’ color LEDs (see Table 11-6)
• Monitoring the network topology through the WSNMonitor installed on a PC
Table 11-6. LED indication for the STK600 boards used in WSNDemo.

Node state LED0 state LED1 state LED2 state

Searching for network Blinking OFF OFF

Joined to network ON

+ receiving data Blinking

+ sending data to UART
(coordinator only) Blinking

Sleeping (end device only) OFF OFF OFF

11.4.3 Demonstrating OTA upgrade functionality

OTA upgrade functionality of the BitCloud SDK can be demonstrated using the Atmel
XMEGA platform by using the serial Atmel DataFlash device found on the STK600
board. Once the DataFlash device is connected to the Atmel ATxmega256A3, as
defined in Section 11.1.2, the user should configure and install devices as follows:

50 Atmel AVR2052

8200N-AVR-05/12

1. Load the WSNDemo application configured and compiled with APP_USE_OTAU
defined as 1 in the configuration.h file.

a. Program the embedded bootloader image:
bootloaderOTAU_ATXmega256A3.hex or
bootloaderOTAU_ATXmega256D3.hex from the Serial Bootloader
package.

b. The application image should be converted to *.srec format and
installed using the Bootloader PC tool from the same package, as
described in Section 4.5.3.

c. The device is able to act as an OTA client, as defined in [30].
2. Program another device with the Runner application available in the <SDK-

Root>\Evaluation Tools\Runner\ directory in the SDK. The Runner node acts
as an OTA server, as defined in [30].

Once the images are programmed and WSNDemo devices are joined to the network,
follow the instructions given in Section 4.5.3 to update firmware over the air.

11.5 Reserved hardware resources
Table 11-7. Hardware resources reserved by the stack on ATxmega256A3.

Resource Description

Processor main clock 16MHz from internal 32MHz RC oscillator

Asynchronous clock 1kHz from 32kHz ultra-low-power internal oscillator

SPIC (Port C) Radio interface

ATxmega ports PC0, PC2,
PC3, PC4, PC5, PC6, PC7

Radio interface

RTC Asynchronous timer

Timer/Counter C1 System timer

PORTC INT0 Radio interface

EEPROM Storage for user settings accessible via persistent data
server

PD4..PD7 External DataFlash, when OTAU functionality is used

 Atmel AVR2052

 51
8200N-AVR-05/12

12 Appendix A-5: AT91SAM7X-EK specifics

12.1 Getting started

12.1.1 Required hardware

Before installing and using the Atmel BitCloud SDK, make sure that all necessary
hardware is available for the kit you would like to use:

• Two or more Atmel AT91SAM7X-EK kits. For each, additionally:
o Atmel RZ600 radio board with 10-pin squid cable

• Atmel AT91SAM-ICE™ JTAG emulator

12.1.2 Hardware setup

Please refer to [25] for setup instructions.

Table 12-1. SAM7X-EK to RZ600 radio board pin mapping.
SAM7X-EK J16 pin Radio board pin Pin name

A10 1 Reset

N/A 2 Misc

A31 3 Interrupt

A9 4 Sleep transmit

A15 5 Chip select

A18 6 MOSI

A17 7 MISO

A19 8 SCK

C32 9 GND

C31 10 VCC

12.1.3 System requirements

Before using the SDK, please ensure that the following system requirements are met
by your PC and development environment.

Table 12-2. System requirements for AT91SAM7X-EK.
Parameter Value Note

CPU Intel Pentium III, or higher,
800MHz

RAM 128MB

Free space on hard disk 50MB

JTAG emulator AT91SAM-ICE emulator with
cable

Required to upload firmware
onto the boards and debug
through JTAG

Operating system Windows 2000/XP

52 Atmel AVR2052

8200N-AVR-05/12

Parameter Value Note

IDE Eclipse IDE for C/C++ ,
YAGARTO toolchain (GCC 4.6.2
(1)) and AT91-ISP v1.12

OR

IAR Embedded Workbench for
ARM 6.30 (with IAR C/C++
Compiler for ARM
v6.30.6.53336/W32 (1))

Required to develop
applications using the API
(see Section 5.2) and upload
firmware images through
JTAG

Java virtual machine Java Runtime Environment
(JRE) 6, or later

Required to run
WSNMonitor application

Note: 1. Users are strongly encouraged to use the specified version of the YAGARTO
and/or IAR toolchains. Other versions are not supported, and may not work.

12.1.4 Installing the SDK

Proceed with the following installation instructions.

1. Download the archive to your PC and unpack it into an empty folder. The
following SDK folders and files will be created.

Table 12-3. The SDK file structure.
Directory/file Description

<SDK-Root>\Documentation Documentation for the Atmel BitCloud software

<SDK-Root>\Evaluation
Tools\WSNDemo (Embedded)

Ready-to-use image files for evaluating
WSNDemo. Refer to Section 12.3 for a
description of the images

<SDK-Root>\Evaluation
Tools\WSNDemo (WSN
Monitor)\WSNMonitorSetup.exe

WSNMonitor installer

<SDK-Root>\BitCloud\Components Header files for the BitCloud stack

<SDK-
Root>\BitCloud\Components\BSP\

Source, header, and library files for the
BitCloud BSP

<SDK-Root>\BitCloud\lib Library files for the BitCloud stack

<SDK-Root>\Applications\ Source codes for the sample applications

<SDK-Root>\Third Party
Software\6119.inf

USB-to-serial converter driver

2. Install the selected IDE
a. For Eclipse IDE and YAGARTO:

a. Install Eclipse IDE for C/C++ [23], if not already installed on
your PC.

b. Install YAGARTO ARM cross-compiler toolchain [24], if not
already installed on your PC. Be sure to install only the
supported version of the YAGARTO toolchain, as specified in
Table 12-2.

b. For IAR Embedded Workbench ARM:
a. Install IAR Embedded Workbench for ARM [22], if not already

installed on your PC.

 Atmel AVR2052

 53
8200N-AVR-05/12

b. Add a Windows environment variable named
IAR_ARM_HOME, and set its value to the IAR Embedded
Workbench installation directory (for a default installation, it is
C:\Program Files\IAR Systems\Embedded Workbench
6.30). To do this, go to Control Panel > System >
Advanced > Environment Variables, click New below the
System variables list, and enter Variable Name and Variable
Value. This step is required if you plan to build embedded
images using IAR Embedded Workbench from the command
line.

3. Install AT91-ISP [26], if not already installed on your PC.
4. To install the USB-to-serial converter driver, attach the Atmel AT91SAM7X-EK

device to your PC and wait for Windows’ request for a specific driver for the
device. If the device already has an assigned driver, or if Windows assigns driver
to it automatically, go to Start/Control Panel/System/Hardware/Device Manager,
double-click the device, and select “Update Driver….” In any case, choose the
“Install from a list or specific location” option and point to the 6119.inf file provided
with this SDK. Please refer to Section 4.9.1 of [8] for further details and basic
troubleshooting options.

• Download and install Java Runtime Environment [12], if not already installed on
your PC.

12.2 Programming the boards
A firmware image file can be uploaded into AT91SAM7X-EK device using the JTAG
interface. Programming device using the serial bootloader is not supported.

12.2.1 Extended (MAC) address assignment

For proper operation, all nodes in a ZigBee network shall have unique MAC address
values. On the SAM7X platform, a unique CS_UID parameter must be specified for
each device in the application configuration, and then the application image must be
built separately for each board.

12.2.2 Programming with JTAG

Atmel AT91SAM-ICE JTAG emulator and SAM Boot Assistant [27] (available in
AT91-ISP package) shall be used for programming.

Connect the AT91SAM7X-EK board via the SAM-ICE JTAG emulator to a PC. After
that, run Atmel SAM-BA® on the PC and choose \jlink\ARMX as the connection type
and AT91SAM7X-EK as the target board. In the opened window select the flash
memory tab and in the “Send File Name” field, provide the path to the application
firmware image in .bin format. Keep the default memory settings and press the
“Send file” button. After programming the image, reset the AT91SAM7X-EK board.
For details about SAM-BA configuration and usage, please refer to SAM-BA User
Guide [27].

NOTE The Atmel BitCloud stack and applications can be configured to store stack and
application parameters in nonvolatile memory (typically, EEPROM). This functionality
cannot be demonstrated with the stock SAM7X-EK kit, as there is no external
EEPROM on these boards. It is also not enabled in the reference applications and
pre-built binaries provided with the SDK.

54 Atmel AVR2052

8200N-AVR-05/12

12.3 Pre-built images
The SDK comes with a set of ready-to-use binary images of the WSNDemo
application. It includes a set of images for different roles, which are preconfigured with
distinct MAC addresses so they can be used for creating a small ZigBee network right
away. The iImage name is formed according to the following scheme:

WSNDemo_<role>_<rf_chip>_<region>.<extension>

To specify node role, put Coord, Router, or EndDev for coordinator, router, and end
device, respectively. Region is an optional parameter that specifies the radio
frequency used by the image according to the frequency band of the specified region.
Possible options are US, EU, and China. For example, to use JTAG to program an
Atmel AT91SAM7X-EK device with an RF212 radio acting as coordinator for use in
the US, use the file with the name

WSNDemo_Coord_Rf212_US.bin

NOTE Default images are preconfigured to use Extended PAN ID 0xAAAAAAAAAAAAAAAA and
operate on channel 0x0F (for RF231 and RF230 radios) or channel 0x01 and channel
page 0 (for RF212 radio).

12.4 Running WSNDemo

12.4.1 Starting WSNDemo

To run WSN Demo application, proceed as follows:

1. Set up the hardware, as described in Section 12.1.2.
2. Install the Atmel BitCloud SDK, as described in Section 12.1.4.
3. Program one device with the coordinator image file and other with either the

router or end device images, as described in Section 12.2.
4. Connect the AT91SAM7X-EK #1 (coordinator) to the PC USB port.
5. Run WSNMonitor (see Section 4.5).
6. Power on and reset the rest of the nodes.

12.4.2 Monitoring WSNDemo activity

Network activity can be monitored in two ways:

• Observing the AT91SAM7X-EK board’s color LEDs (see Table 12-4);
• Monitoring network topology through WSNMonitor installed on a PC.
Table 12-4. LED indication for AT91SAM7X-EK boards used in WSNDemo.

Node state LED1 (red) LED2 (yellow) LED3 (green)

Searching for network Blinking OFF OFF

Joined to network ON

+ receiving data Blinking

+ sending data to UART
(coordinator only) Blinking

 Atmel AVR2052

 55
8200N-AVR-05/12

12.5 Reserved hardware resources
Table 12-5. Hardware resources reserved by the stack on AT91SAM7X256.

Resource Description

SPI0 Radio interface

ARM ports PA8, PA9, PA14, PA16, PA17, PA18, PA30 Radio interface

Timer2 Microsecond timer

Timer0 System timer

External IRQ0 Radio interface

SPI1, PA21, PA22, PA23, PA24 For external EEPROM

56 Atmel AVR2052

8200N-AVR-05/12

13 Appendix A-6: SAM3S specifics

13.1 Getting started
The Atmel BitCloud SDK supports two different hardware platforms with SAM3S
microcontrollers: Atmel SAM3S-EK with radio boards from the RZ600 kit, and Atmel
RF231USB-RD. The instructions below highlight the differences between the two
platform configurations, where present.

13.1.1 Required hardware

Before installing and using the Atmel BitCloud SDK, make sure that all necessary
hardware is available for the kit you would like to use:

• For SAM3S-EK:
o Two or more SAM3S-EK boards
o Atmel RZ600 radio board with AT86RF230, AT86RF231 or

AT86RF212 transceiver – for each SAM3S-EK board
o Atmel AT91SAM-ICE JTAG emulator

• For RF231USB-RD:
o Two or more RF231USB boards
o Atmel AT91SAM-ICE JTAG emulator

13.1.2 Hardware setup

• For SAM3S-EK, connect the RZ600 radio board transceiver to the J16/ZigBee
connector present on the SAM3S-EK board.
For other hardware setup instructions, please refer to [29].

• For RF231USB-RD hardware instructions, please refer to [36].

13.1.3 System requirements

Before using the SDK, please ensure that the following system requirements are met
by your PC and development environment.

Table 13-1. System requirements for SAM3S-EK.
Parameter Value Note

CPU Intel Pentium III, or higher,
800MHz

RAM 128MB

Free space on hard disk 50MB

JTAG emulator AT91SAM-ICE emulator with
cable

Required to upload firmware
onto the boards and debug
through JTAG

Operating system Windows 2000/XP

 Atmel AVR2052

 57
8200N-AVR-05/12

Parameter Value Note

IDE Eclipse IDE for C/C++ ,
YAGARTO toolchain (GCC
4.6.2 (1)) and AT91-ISP
v1.12

OR

IAR Embedded Workbench
for ARM 6.30 (with IAR
C/C++ Compiler for ARM
v6.30.6.53336/W32 (1))

Required to develop
applications using API (see
Section 5.2) and upload
firmware images through
JTAG

Java virtual machine Java Runtime Environment
(JRE) 6, or later

Required to run the
WSNMonitor application

Note: 1. Users are strongly encouraged to use the specified version of IAR toolchain.
Other versions are not supported, and may not work.

13.1.4 Installing the SDK

Proceed with the following installation instructions.

1. Download the archive to your PC and unpack it into an empty folder. The
following SDK folders and files will be created.

Table 13-2. The SDK file structure.
Directory/file Description

<SDK-Root>\Documentation Documentation for the Atmel BitCloud software

<SDK-Root>\Evaluation
Tools\WSNDemo (Embedded)

Ready-to-use image files for evaluating
WSNDemo. Refer to Section 13.3 for the
description of the images

<SDK-Root>\Evaluation
Tools\WSNDemo (WSN
Monitor)\WSNMonitorSetup.exe

WSNMonitor installer

<SDK-Root>\BitCloud\Components Header files for the BitCloud stack

<SDK-
Root>\BitCloud\Components\BSP\

Source, header, and library files for the
BitCloud BSP

<SDK-Root>\BitCloud\lib Library files for the BitCloud stack

<SDK-Root>\Applications\ Source codes for the sample applications

2. Install the selected IDE
a. For Eclipse IDE and YAGARTO:

a. Install Eclipse IDE for C/C++ [23], if not already installed on
your PC.

b. Install YAGARTO ARM cross-compiler toolchain [24], if not
already installed on your PC. Be sure to install only the
supported version of the YAGARTO toolchain, as specified in
Table 13-2.

b. For IAR Embedded Workbench ARM:
a. Install IAR Embedded Workbench for ARM [22], if not already

installed on your PC.
b. Add a Windows environment variable called

IAR_ARM_HOME, and set its value to the IAR Embedded

58 Atmel AVR2052

8200N-AVR-05/12

Workbench installation directory (for a default installation, it is
C:\Program Files\IAR Systems\Embedded Workbench
6.30). To do this, go to Control Panel > System >
Advanced > Environment Variables, click New below
System variables list and enter Variable Name and
Variable Value. This step is required if you plan to build
embedded images using IAR Embedded Workbench from the
command line.

3. Install AT91-ISP [26], if not already installed on your PC.
4. Download and install Java Runtime Environment [12], if not already installed on

your PC.

13.2 Programming the boards
A firmware image file can be uploaded into the Atmel SAM3S-EK device using the
JTAG interface and using the Serial Bootloader package tools.

13.2.1 Extended (MAC) address assignment

For proper operation, all nodes in a ZigBee network shall have unique MAC address
values. On the SAM3S platform, a unique CS_UID parameter must be specified for
each device in the application configuration, and then the application image must be
built separately for each board.

NOTE The BitCloud stack and applications can be configured to store stack and application
parameters in nonvolatile memory (typically, EEPROM). This functionality cannot be
demonstrated with a stock SAM3S-EK kit, as there is no external EEPROM on these
boards. It is also not enabled in reference applications and pre-built binaries provided
with the SDK.

13.2.2 Programming with JTAG

Atmel AT91SAM-ICE JTAG emulator and SAM Boot Assistant [27] (available in
AT91-ISP package) shall be used for programming.

• Connect a SAM3S-EK board or a RF231USB board via the Atmel SAM-ICE JTAG
emulator to a PC (a RF231USB board is connected to SAM-ICE JTAG emulator
via SAM-ICE adapter)

• Run SAM-BA on the PC, and choose \jlink\ARMX as the connection type,
SAM3S4-EK as the target board, and use the default JLink speed

• In the opened window, select the flash memory tab, and in the “Send File
Name” field provide the path to application firmware image in .bin format

• Keep the default memory settings and press the “Send file” button
• After programming the image reset the board
For details about Atmel SAM-BA configuration and usage, please refer to SAM-BA
User Guide [27].

13.2.3 Programming with Serial Bootloader

Programming using Serial Bootloader requires that the embedded bootloader code is
loaded to the device via JTAG. Firmware images for the embedded bootloader as
well as the Bootloader PC tool, which is needed to load the application image from a
PC to the device, are included in the Atmel Serial Bootloader software package
available for downloading from the Atmel website.

 Atmel AVR2052

 59
8200N-AVR-05/12

The images that shall be loaded to the MCU via JTAG may be found under
\Embedded_Bootloader_images\ in the At91sam3s4c directory in the package.

If the embedded bootloader is loaded, the following steps should be executed to
upload the application image file to the board:

1. Assemble the board and connect it to the PC (a USB stick is just attached to a
PC’s USB port).

2. Install and run the Bootloader PC tool from the command line or use the GUI.
Specify the target image file in .srec format and the COM port, and launch the
firmware upload.

3. The Bootloader PC tool indicates the programming progress. Once an upload is
successfully completed, the board should restart automatically. If an upload fails,
the Bootloader PC tool should indicate the reason. In rare cases, the booting
process can fail due to communication errors between the board and the PC. If
this happens, attempt booting again or try using the conventional serial port
instead of USB. If booting fails, the program recently written to the board will be
corrupted, but the board can be reprogrammed, as the embedded bootloader
remains intact.

See [11] for additional details about the Serial Bootloader package.

IMPORTANT Since the embedded bootloader for SAM3S uses the DFU standard, the
application should enable the DFU support (turned on in the application’s
configuration.h file). Otherwise after loading the application via Serial
Bootloader tools loading another image will not be possible.

WARNING Using JTAG to program the microcontroller will erase the embedded
bootloader, making the loading of application images with Serial
Bootloader impossible until the embedded bootloader firmware is
reprogrammed to the device.

13.3 Pre-built images
The SDK comes with a set of ready-to-use binary images of the WSNDemo
application. It includes a set of images for different roles, which are preconfigured with
distinct MAC addresses so they can be used for creating a small ZigBee network right
away. The image name is formed according to the following scheme:

WSNDemo_<role>_<board>_<rf_chip>_<region>_<MCU>.<extension>

To specify node role, put Coord, Router, or EndDev for coordinator, router, and end
device, respectively. Region is an optional parameter that specifies the radio
frequency used by the image according to the frequency band of the specified region.
Possible options are US, EU, and China. For example, to use JTAG to program a
SAM3S-EK device with an RF212 radio acting as coordinator for use in the US, use
the file with the name

WSNDemo_Coord_Rf212_US.bin

NOTE Default images are preconfigured to use Extended PAN ID 0xAAAAAAAAAAAAAAAA and
operate on channel 0x0F (for RF231 and RF230 radios) or channel 0x01 and channel
page 0 (for RF212 radio).

60 Atmel AVR2052

8200N-AVR-05/12

13.4 Running WSNDemo

13.4.1 Starting WSNDemo

To run WSN Demo application, proceed as follows:

1. Set up the hardware, as described in Section 13.1.2.
2. Install the Atmel BitCloud SDK, as described in Section 13.1.4.
3. Program one device with the coordinator image file and other with either the

router or end device images, as described in Section 13.2.
4. Connect the SAM3S-EK programmed as coordinator to a PC COM port.
5. Run WSNMonitor (see Section 4.5).
6. Power on and reset the rest of the nodes.

13.4.2 Monitoring WSNDemo activity

Network activity can be monitored in two ways:

• Observing the SAM3S-EK board’s color LEDs (see Table 13-3);
• Monitoring network topology information through WSNMonitor installed on a PC.
Table 13-3. LED indication for SAM3S-EK boards used in WSNDemo.

Node state LED D2 (blue) LED D3 (yellow) LED D4 (red)

Searching for network Blinking OFF OFF

Joined to network ON

+ receiving data Blinking

+ sending data to UART
(coordinator only)

 Blinking

13.5 Reserved hardware resources
Table 13-4. Hardware resources reserved by the stack on Atmel ATSAM3S4C.

Resource Description

SPI Radio interface

MCU ports PB3, PA15, PA17, PA18, PA12,
PA13, PA14

Radio interface

Timer0, channel0 System timer

Port A interrupt Radio interface

 Atmel AVR2052

 61
8200N-AVR-05/12

14 Appendix B-1: WSNDemo over-the-air protocol
This appendix describes the protocol used by the WSNDemo sample application. The
description includes the format of the messages exchanged over the air between the
connected nodes. The protocol description allows non-standard nodes (for example,
those using third-party sensors not available on the standard evaluation boards and
kits) to transfer sensor readings and have them visualized in the same WSNMonitor
application.

14.1 Message format
End devices and routers send messages to the coordinator using the following
format.

Table 14-1. WSNDemo message format.
Field name Length Description

Message type 1 byte Type of the messages. Must be 0x01 (0x01 is the only
supported message type for the current revision of
WSNDemo)

Node type 1 byte Type of the sending node:
0 – coordinator
1 – router
2 – end device

IEEE address 8 bytes IEEE address of the sending node

Short address 2 bytes Short address of the sending node

Version 4 bytes Version of the WSNDemo application protocol used by
the sending node. Currently set to 0x01010100

Channel mask 4 bytes Channel mask set on the sending node

PANID 2 bytes PAN ID of the network to which the sending node is
attached

Channel 1 byte The channel on which the sending node operates

Parent address 2 bytes Short address of the parent node

LQI 1 byte LQI observed by the node that sends this message

RSSI 1 byte RSSI observed by the node that sends this message

<Additional fields> <Variable> Optional additional fields; see description in Section
14.2, below

14.2 Additional fields
The message may contain zero, one, or more additional fields that follow the
mandatory fixed-width fields described in Table 14-1. The order of the additional fields
is not fixed. The size of the additional fields may vary – each field contains a sub-field
defining its size. Below is the description of the general format of an additional field.

62 Atmel AVR2052

8200N-AVR-05/12

Table 14-2. Additional field format.
Sub-field name Length Description

Field type 1 byte Type of the additional field. The possible values are
listed below

Field size 1 byte Size of the field data in bytes. Note: this size does not
include the field type and field size sub-fields

Field data <Variable> The data depend on the field type, the size of the data
is provided by the field size

The following types of additional fields are defined:

Table 14-3. Additional field types.
Field type Description

0x01 Sensor data for board type 1. Used for MeshBean boards

0x20 Node name

Please note that in the current version of WSNDemo, devices send additional fields of
type 0x01 (sensor readings for boards of type 1) only. Unrecognized additional fields
are discarded by the WSNMonitor application. The field data format for different field
types are described in Table 14-4 and Table 14-5.

Table 14-4. Field data for type 0x01: Sensor data for boards of type 1.
Offset Length Data type Description

0 4 bytes Unsigned int Battery status reading

4 4 bytes Unsigned int Temperature sensor reading

8 4 bytes Unsigned int Light sensor reading

Table 14-5. Field data for type 0x20: Node name.
Offset Length Description

0 <Variable> Zero-terminated ASCII string

 Atmel AVR2052

 63
8200N-AVR-05/12

15 Appendix B-2: WSNMonitor serial protocol
This appendix describes the protocol and message format used over the serial
connection between the network coordinator and the WSNMonitor application running
on the PC. The messages sent on the serial connection are basically the messages
wrapped as defined below:

Table 15-1. Serial message format.
Offset Length Description

0 2 bytes Start sequence: 0x10 0x02

2 N bytes Variable-length payload: the message received from the
end device or router, or generated by the coordinator, in
the format described in Section 14.1.
All 0x10 bytes in this payload are duplicated to avoid
confusion with a start sequence or end sequence

N+2 2 bytes End sequence: 0x10 0x03

N+4 1 byte Checksum: Sum of the bytes [0..N+3] mod 256

64 Atmel AVR2052

8200N-AVR-05/12

16 References
[1] BitCloud Stack API Reference

[2] AVR2050: BitCloud Developer’s Guide; User Guide

[3] Studio Archive (AVR Studio installer downloads)

[4] WinAVR User Manual – 20100110

[5] Using the GNU Compiler Collection

[8] AT91 USB CDC Driver Implementation

[9] ZigBit Development Kit User’s Guide

[10] AVR2051: SerialNet User Guide

[11] AVR2054: Serial Bootloader User Guide

[12] Java Runtime Environment

[13] IAR Embedded Workbench for Atmel AVR

[14] AVR2044: RCB128RFA1 – Hardware User Manual

[15] ATAVR128RFA1-EK1 description

[16] ATSTK600 board description

[17] Radio Extender Board REB231 V4.0.2

[18] ATEVK1105 description

[19] 32-bit AVR UC3 Software Framework 1.5.0

[20] AVR32 GNU Toolchain

[21] IAR Embedded Workbench for Atmel 32-bit AVR

[22] IAR Embedded Workbench for Atmel ARM

[23] Eclipse IDE for C/C++ Developers

[24] YAGARTO compiler tool chain

[25] AT91SAM7X-EK Evaluation Board for AT91SAM7X and AT91SAM7XC.

[26] AT91 In-system Programmer (ISP)

[27] SAM Boot Assistant (SAM-BA) User Guide

[28] AVR600: RZ600 HW Manual

[29] SAM3S-EK Development Board User Guide

[30] 095264r12 ZigBee Over-the-Air Upgrading Cluster Specification

[31] ATmega1281 description

[32] ATmega128RFA1 description

[33] ATxmega256A3 and ATxmega256D3 descriptions

[34] AVR2042: REB Controller Base Board - Hardware User Guide

[35] AVR2058: BitCloud OTAU User Guide

http://www.atmel.com/tools/STUDIOARCHIVE.aspx
http://www.atmel.com/dyn/resources/prod_documents/doc6269.pdf
http://www.meshnetics.com/downloads/docs/
http://atmel.com/dyn/resources/prod_documents/doc8389.pdf
http://atmel.com/dyn/resources/prod_documents/doc8390.pdf
http://java.sun.com/javase/downloads/index.jsp
http://www.iar.com/website1/1.0.1.0/107/1/
http://www.atmel.com/dyn/resources/prod_documents/doc8339.pdf
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4677
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4254
http://www.dresden-elektronik.de/shop/prod73.html
http://www.atmel.com/evk1105
http://www.atmel.com/dyn/resources/prod_documents/AVR32-SoftwareFramework-AT32UC3-1.5.0.zip
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118
http://www.iar.com/website1/1.0.1.0/124/1/
http://www.iar.com/website1/1.0.1.0/68/1/
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/ganymede/SR2/eclipse-cpp-ganymede-SR2-win32.zip
http://www.yagarto.de/index.html
http://www.atmel.com/dyn/resources/prod_documents/doc6195.pdf
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3883
http://www.atmel.com/dyn/resources/prod_documents/doc6132.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8293.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc11031.pdf
http://www.zigbee.org/en/spec_download/download_request.asp
http://www.zigbee.org/en/spec_download/download_request.asp
http://www.atmel.com/dyn/products/product_card.asp?category_id=163&family_id=607&subfamily_id=760&part_id=3630
http://www.atmel.com/dyn/products/product_card.asp?part_id=4692
http://www.atmel.com/dyn/products/product_card.asp?part_id=4304&category_id=163&family_id=607&subfamily_id=1965
http://www.atmel.com/dyn/products/product_card.asp?part_id=4683&category_id=163&family_id=607&subfamily_id=1965
http://www.atmel.com/dyn/resources/prod_documents/doc8334.pdf
http://atmel.com/dyn/resources/prod_documents/doc8426.pdf

 Atmel AVR2052

 65
8200N-AVR-05/12

[36] RF231USB – User Guide

[37] AVR2059: BitCloud Porting Guide

http://www.atmel.com/Images/doc8430.pdf

66 Atmel AVR2052

8200N-AVR-05/12

17 Table of contents
Features ... 1

1 Introduction .. 1

2 Overview ... 2

2.1 Supported platforms .. 2

3 Getting started ... 4

4 WSNDemo application ... 5

4.1 Overview .. 5

4.2 Programming the boards ... 6

4.3 Running WSNDemo .. 6

4.4 Network startup ... 7

4.5 WSNMonitor .. 7
4.5.1 Identifying nodes ... 8
4.5.2 Node timeouts ... 9
4.5.3 Sensor data visualization ... 9
4.5.4 Over-the-air upgrade ... 10

5 Developing custom applications with the Atmel BitCloud API .. 13

5.1 API overview .. 13

5.2 Development tools ... 14
5.2.1 Reference applications .. 15
5.2.2 Supported toolchains ... 16

5.3 Reserved hardware resources .. 17

6 Serial Bootloader and OTAU ... 18

7 Basic troubleshooting ... 18

8 Appendix A-1: ZigBit specifics ... 20

8.1 Getting started ... 20
8.1.1 Required hardware .. 20
8.1.2 Hardware setup ... 20
8.1.3 System requirements ... 21
8.1.4 Installing the SDK .. 22

8.2 Programming the boards ... 24
8.2.1 Setting fuse bits ... 24
8.2.2 Extended (MAC) address assignment ... 25
8.2.3 Programming with Serial Bootloader ... 26
8.2.4 Programming with JTAG ... 26
8.2.5 Programming with ISP ... 26

8.3 Pre-built images... 27

8.4 Running WSNDemo .. 27
8.4.1 Starting WSNDemo ... 27
8.4.2 Monitoring WSNDemo activity ... 28

 Atmel AVR2052

 67
8200N-AVR-05/12

8.4.3 Over-the-air upgrade configuration .. 28

8.5 Reserved hardware resources .. 29

9 Appendix A-2: ATmega128RFA1 specifics 30

9.1 Getting started ... 30
9.1.1 Required hardware .. 30
9.1.2 Hardware setup ... 30
9.1.3 System requirements ... 31
9.1.4 Installing the SDK .. 32

9.2 Programming the boards ... 33
9.2.1 Setting fuse bits ... 33
9.2.2 Extended (MAC) address assignment ... 34
9.2.3 Programming with Serial Bootloader ... 35
9.2.4 Programming with JTAG ... 36

9.3 Pre-built images... 36

9.4 Running WSNDemo .. 36
9.4.1 Starting WSNDemo ... 36
9.4.2 Monitoring WSNDemo activity ... 36
9.4.3 Demonstrating OTA upgrade functionality ... 37

9.5 Reserved hardware resources .. 37

10 Appendix A-3: UC3 specifics .. 38

10.1 Getting started ... 38
10.1.1 Required hardware .. 38
10.1.2 Hardware setup ... 38
10.1.3 System requirements ... 38
10.1.4 Installing the SDK .. 39

10.2 Programming the boards ... 40
10.2.1 Setting fuse bits ... 40
10.2.2 Extended (MAC) address assignment ... 40
10.2.3 Programming with JTAG ... 41

10.3 Pre-built images .. 41

10.4 Running WSNDemo .. 42
10.4.1 Starting WSNDemo ... 42
10.4.2 Monitoring WSNDemo activity ... 42

10.5 Reserved hardware resources .. 42

11 Appendix A-4: ATxmega specifics ... 43

11.1 Getting started ... 43
11.1.1 Required hardware .. 43
11.1.2 Hardware setup ... 43
11.1.3 System requirements ... 44
11.1.4 Installing the SDK .. 45

11.2 Programming the boards ... 46
11.2.1 Setting fuse bits ... 46
11.2.2 Extended (MAC) address assignment ... 47
11.2.3 Programming with Serial Bootloader ... 47
11.2.4 Programming with JTAG ... 48

68 Atmel AVR2052

8200N-AVR-05/12

11.3 Pre-built images .. 48

11.4 Running WSNDemo .. 49
11.4.1 Starting WSNDemo ... 49
11.4.2 Monitoring WSNDemo activity ... 49
11.4.3 Demonstrating OTA upgrade functionality ... 49

11.5 Reserved hardware resources .. 50

12 Appendix A-5: AT91SAM7X-EK specifics 51

12.1 Getting started ... 51
12.1.1 Required hardware .. 51
12.1.2 Hardware setup ... 51
12.1.3 System requirements ... 51
12.1.4 Installing the SDK .. 52

12.2 Programming the boards ... 53
12.2.1 Extended (MAC) address assignment ... 53
12.2.2 Programming with JTAG ... 53

12.3 Pre-built images .. 54

12.4 Running WSNDemo .. 54
12.4.1 Starting WSNDemo ... 54
12.4.2 Monitoring WSNDemo activity ... 54

12.5 Reserved hardware resources .. 55

13 Appendix A-6: SAM3S specifics ... 56

13.1 Getting started ... 56
13.1.1 Required hardware .. 56
13.1.2 Hardware setup ... 56
13.1.3 System requirements ... 56
13.1.4 Installing the SDK .. 57

13.2 Programming the boards ... 58
13.2.1 Extended (MAC) address assignment ... 58
13.2.2 Programming with JTAG ... 58
13.2.3 Programming with Serial Bootloader ... 58

13.3 Pre-built images .. 59

13.4 Running WSNDemo .. 60
13.4.1 Starting WSNDemo ... 60
13.4.2 Monitoring WSNDemo activity ... 60

13.5 Reserved hardware resources .. 60

14 Appendix B-1: WSNDemo over-the-air protocol 61

14.1 Message format ... 61

14.2 Additional fields ... 61

15 Appendix B-2: WSNMonitor serial protocol 63

16 References .. 64

17 Table of contents ... 66

 Atmel AVR2052

 69
8200N-AVR-05/12

8200N-AVR-05/12

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chou-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3523-3551
Fax: (+81) 3523-7581

 © 2011 Atmel Corporation. All rights reserved. / Rev.: CORP072610

Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, AVR Studio®, BitCloud®, DataFlash®, SAM-BA®, STK®, XMEGA®,
ZigBit®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are
registered trademarks or trademarks of Microsoft Corporation in U.S. and or other countries. Other terms and product names may be
trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

http://www2.atmel.com/

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при
поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

 Оперативные поставки широкого спектра электронных компонентов отечественного и
импортного производства напрямую от производителей и с крупнейших мировых
складов;

 Поставка более 17-ти миллионов наименований электронных компонентов;

 Поставка сложных, дефицитных, либо снятых с производства позиций;

 Оперативные сроки поставки под заказ (от 5 рабочих дней);

 Экспресс доставка в любую точку России;

 Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;

 Система менеджмента качества сертифицирована по Международному стандарту ISO
9001;

 Лицензия ФСБ на осуществление работ с использованием сведений, составляющих
государственную тайну;

 Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление
«Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

 Подбор оптимального решения, техническое обоснование при выборе компонента;

 Подбор аналогов;

 Консультации по применению компонента;

 Поставка образцов и прототипов;

 Техническая поддержка проекта;

 Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)
Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.

mailto:org@eplast1.ru

