

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

March 2015

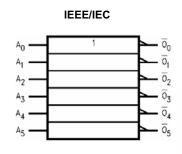
74VHC14 Hex Schmitt Inverter

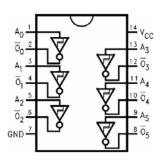
Features

- High Speed: t_{PD} = 5.5 ns (Typ.) at V_{CC} = 5 V
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max.) at $T_A = 25$ °C
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- · Power down protection is provided on all inputs
- Low Noise: V_{OLP} = 0.8 V (Max.)
- Pin and Function Compatible with 74HC14

General Description

The VHC14 is an advanced high speed CMOS Hex Schmitt Inverter fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. Pin configuration and function are the same as the VHC04 but the inputs have hysteresis between the positive-going and negative-going input thresholds, which are capable of transforming slowly changing input signals into sharply defined, jitterfree output signals, thus providing greater noise margin than conventional inverters.


An input protection circuit ensures that 0 V to 7 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.


Ordering Information

Part Number	Top Mark	Package	Packing Method		
74VHC14M	74VHC14	SOIC 14L	Rail		
74VHC14MX	74VHC14	SOIC 14L	Tape and Reel		
74VHC14SJX	VHC14	SOP 14L	Tape and Reel		
74VHC14MTC	V14	TSSOP 14L	Rail		
74VHC14MTCX	V14	TSSOP 14L	Tape and Reel		

Logic Symbol/s

Connection Diagram/s

Pin Descriptions

Pin Names	Description
A _n	Inputs
\overline{O}_{n}	Outputs

Truth Table/s

Α	0
L	Н
н	L

Absolute Maximum Ratings(1)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V_{IN}	DC Input Voltage	-0.5 to +7.0	V
V _{OUT}	DC Output Voltage	-0.5 to V _{CC} +0.5	V
I _{IK}	Input Diode Current	-20	mA
I _{OK}	Output Diode Current	±20	mA
I _{OUT}	DC Output Current	±25	mA
I _{CC}	DC V _{CC} / GND Current	±50	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (Soldering 10 seconds)	260	°C

Note:

1. Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. The data book specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

Recommended Operating Conditions(2)

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	2.0	5.5	V
V _{IN}	Input Voltage	0	5.5	V
V _{OUT}	Output Voltage	0	V _{CC}	V
T _{OPR}	Operating Temperature Range	-40	85	°C

Note:

2. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

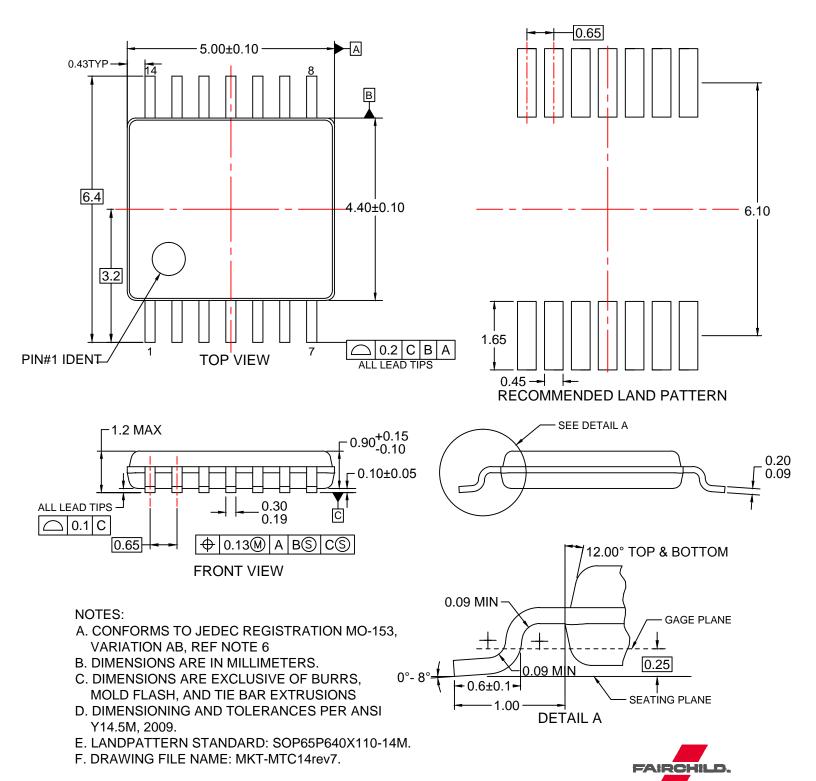
0		.,		T _A = 25°0	C	T _A = -40 to 85°C		1114	Conditions			
Symbol	Parameter	V _{CC}	Min.	Тур.	Max.	Min.	Max.	Unit	Cor	aitions		
		3.0			2.20		2.20					
V_{P}	Positive Threshold	4.5			3.15		3.15	V				
	Voltage	5.5			3.85		3.85					
	7	3.0	0.90			0.90						
V_N	Negative	4.5	1.35			1.35		V				
	Threshold Voltage	5.5	1.65			1.65						
		3.0	0.30		1.20	0.30	1.20					
V_{H}	Hysteresis Voltage	4.5	0.40		1.40	0.40	1.40	V				
		5.5	0.50		1.60	0.50	1.60					
	HIGH Level Output	2.0	1.9	2.0		1.9		V				
		3.0	2.9	3.0		2.9			l., .,	I _{OH} = -50 μA		
V_{OH}		4.5	4.4	4.5		4.4			$V_{IN} = V_{IL}$			
	Voltage	3.0	2.58			2.48						$I_{OH} = -4 \text{ mA}$
		4.5	3.94			3.80	2			$I_{OH} = -8 \text{ mA}$		
		2.0		0.0	0.1		0.1					
		3.0		0.0	0.1		0.1		., .,	I _{OL} = 50 μA		
V_{OL}	LOW Level Output	4.5		0.0	0.1		0.1	V	$V_{IN} = V_{IH}$			
	Voltage	3.0			0.36		0.44			$I_{OL} = 4 \text{ mA}$		
		4.5			0.36		0.44			$I_{OL} = 8 \text{ mA}$		
I _{IN}	Input Leakage Current	0 - 5.5			±0.1		±1.0	μА	V _{IN} = 5.5	V or GND		
I _{CC}	Quiescent Supply Current	5.5			2.0		20.0	μА	V _{IN} = V _{CC}	or GND		

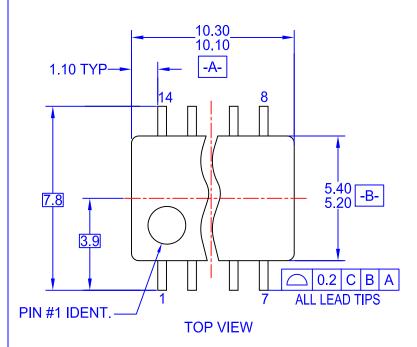
Noise Characteristics(2)

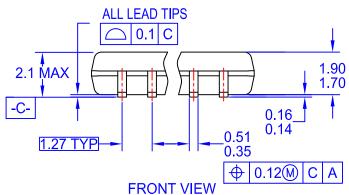
Symbol	Parameter	V _{CC}	T _A = 25°C		Unit	Conditions	
	Faiailietei		Тур.	Max.	Onne		
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	0.4	0.8	V	C _L = 50 pF	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.4	0.8	V	C _L = 50 pF	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0		3.5	V	C _L = 50 pF	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0		1.5	V	C _L = 50 pF	

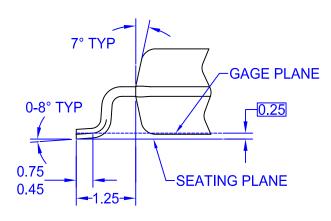
Note:

2. Parameter guaranteed by design.

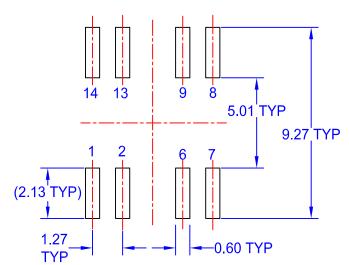

AC Electrical Characteristics

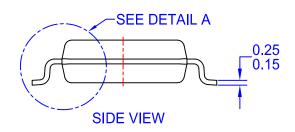

Symbol	Paramotor	Parameter $V_{CC} = T_A = 25$ Min. Typ.	Т	_A = 25°C		T _A = -40 to 85°C		Unit	Conditions
	Farailletei		Тур.	Max.	Min.	Max.	Oilit	Conditions	
//		3.3 ± 0.3		12.8	1.0	15.0		C _L = 15 pF	
t _{PLH}	Decree weller Delevi Torre	3.3 ± 0.3		10.8	16.3	1.0	18.5	no	C _L = 50 pF
t _{PHL}	Propagation Delay Time	5.0 ± 0.5		5.5	8.6	1.0	10.0	ns	C _L = 15 pF
		5.0 ± 0.5	7.0 1	10.6	1.0	12.0		C _L = 50 pF	
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Open
C _{PD}	Power Dissipation Capacitance			21				pF	(3)


Note:


3. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the opening current consumption without load.

Average operating current can be obtained by the equation: I_{CC} (Opr) = C_{PD} * V_{CC} * f_{IN} + I_{CC} /6 (per Gate)





DETAIL A

LAND PATTERN RECOMMENDATION

NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DRAWING FILENAME: MKT-M14Drev4.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

74VHC14SJX 74VHC14MX 74VHC14SJ 74VHC14MTCX 74VHC14MTC 74VHC14N 74VHC14M

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.