
SLRS048A - MAY 1998 - REVISED APRIL 2000

- SN75LBC031 Meets Standard ISO/DIS 11898 (up to 500 k Baud)
- Driver Output Capability at 50 mA
- Wide Positive and Negative Input/output **Bus Voltage Range**
- **Bus Outputs Short-Circuit-Protected to Battery Voltage and Ground**
- **Thermal Shutdown**
- **Available in Q-Temp Automotive**
 - HighRel Automotive Applications
 - Configuration Control/Print Support
 - Qualification to Automotive Standards

description

The SN75LBC031 is a CAN transceiver used as an interface between a CAN controller and the physical bus for high speed applications of up to 500 kBaud. The device provides transmit capability to the differential bus and differential receive capability to the controller. The transmitter outputs (CANH and CANL), feature internal transition regulation to provide controlled symmetry resulting in low EMI emissions. Both

TERMINAL FUNCTIONS

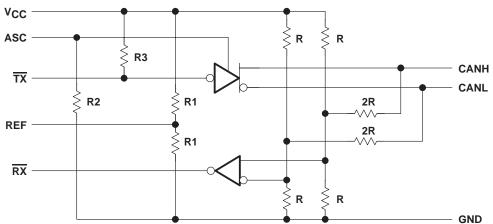
TERMINAL	DESCRIPTION
TX	Transmitter input
GND	Ground
VCC	Supply voltage
RX	Receiver output
REF	Reference output
CANL	Low side bus output driver
CANH	High side bus output driver
ASC	Adjustable slope control

FUNCTION TABLE

TX	CANH	CANL	BUS STATE	RX
L	Н	L	Dominant	L
High or floating	Floating	Floating	Recessive	Н

transmitter outputs are fully protected against battery short circuits and electrical transients that can occur on the bus lines. In the event of excessive device power dissipation the output drivers are disabled by the thermal shutdown circuitry at a junction temperature of approximately 160°C. The inclusion of an internal pullup resistor on the transmitter input ensures a defined output during power up and protocol controller reset. For normal operation at 500 kBaud the ASC terminal is open or tied to GND. For slower speed operation at 125 kBaud the bus output transition times can be increased to reduce EMI by connecting the ASC terminal to V_{CC}. The receiver includes an integrated filter that suppresses the signal into pulses less than 30 ns wide.

The SN75LBC031 is characterized for operation from -40°C to 85°C. The SN65LBC031 is characterized for operation from -40°C to 125°C. The SN65LBC031Q is characterized for operation over the automotive temperature range of -40°C to 125°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLRS048A - MAY 1998 - REVISED APRIL 2000

logic diagram

SLRS048A - MAY 1998 - REVISED APRIL 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Logic supply voltage, V _{CC} (see Note 1)	7 V
Bus terminal voltage	
Input current at TX and ASC terminal, I ₁	±10 mA
Input voltage at TX and ASC terminal, V _I	2 × V _{CC}
Operating free-air temperature range, T _A : SN65LBC031, SN65LBC031Q	–40°C to125°C
SN75LBC031	–40°C to 85°C
Operating juncation range, T _J	–40°C to 150°C
Continuous total power dissipation at (or below) 25°C free-air temperature So	ee Dissipation Rating Table
Storage temperature range, T _{stq}	–65°C to 150°C
Case temperature for 10 sec T _C , D package	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential bus voltage, are measured with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	OPERATING FACTOR ABOVE T _C = 25°C	T _C = 125°C POWER RATING
D	725 mW	5.8 mW/°C	145 mW

DISSIPATION DERATING CURVE

vs

FREE-AIR TEMPERATURE

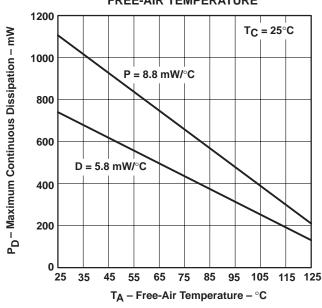


Figure 1

SLRS048A - MAY 1998 - REVISED APRIL 2000

recommended operating conditions

		MIN	NOM	MAX	UNIT
Logic supply voltage, V _{CC}	voltage, VCC 4.5 5 5.5 ny bus terminal (separately or common mode), V _I or V _{IC} (see Note 3) -2 7 put voltage, V _{IH} TX 2 V _{CC} out voltage, V _{IL} TX 0 0.8 utput current, I _{OH} Receiver -400				
Voltage at any bus terminal (separately or common mode), V _I or V _{IC} (see Note 3)				7	V
High-level input voltage, VIH	TX	2		VCC	V
Low-level input voltage, V _{IL}	TX	0		0.8	V
High level output current leve	Transmitter			-50	mA
nigri-iever output current, IOH	Receiver			-400	μΑ
Low lovel output ourrent lov	Transmitter			50	A
Low-level output current, IOL	Receiver			1	mA
Operating free air temperature T.	SN75LBC031	-40		85	°C
Operating free-air temperature, T _A	SN65LBC031, SN65LBC031Q	-40		125	-0

NOTES: 2. All voltage values, except differential bus voltage, are measured with respect to the ground terminal.

3. For bus voltages from -5 V to -2 V and 7 V to 20 V the receiver output is stable.

SYMBOL DEFINITION

DATA SHEET PARAMETER	DEFINITION
VO(CANHR)	CANH bus output voltage (recessive state)
VO(CANLR)	CANL bus output voltage (recessive state)
VO(CANHD)	CANH bus output voltage (dominant state)
VO(CANLD)	CANL bus output voltage (dominant state)
VO(DIFFR)	Bus differential output voltage (recessive state)
V _{O(DIFFD)}	Bus differential output voltage (dominant state)
V _I (ASC)	Adjustable slope control input voltage

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VO(REF)	Reference source output voltage	I _{REF} = ±20 μA	0.45 V _{CC}		0.55 V _{CC}	V
R _{O(REF)}	Reference source output resistance		5		10	kΩ
ICC(REC)	Logic supply current, recessive state	See Figure 2, S1 closed		12	20	mA
ICC(DOM)	Logic supply current, dominant state	See Figure 2, ST Closed		55	80	IIIA

SLRS048A - MAY 1998 - REVISED APRIL 2000

transmitter electrical characteristics over recommended ranges of supply and operating free-air temperature (unless otherwise noted)

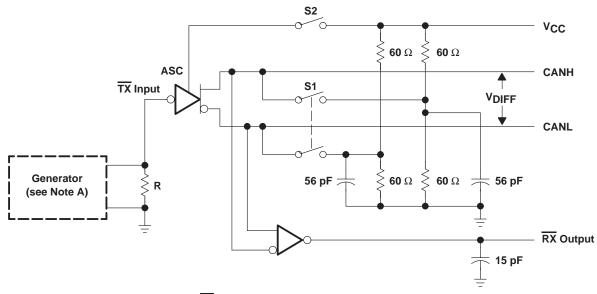
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VO(CANHR) VO(CANLR)	Output voltage (recessive state)	See Figure 2, S1 open	2	0.5V _{CC}	3	V
V _{O(DIFFR)}	Differential output voltage (recessive state)		-500	0	50	mV
VO(CANHD)	Output voltage (dominant state)		2.75	3.5	4.5	
VO(CANLD)	Output voltage (dominant state)	See Figure 2, S1 closed	0.5	1.5	2.25	V
VO(DIFFD)	Differential output voltage (dominant state)		1.5	2	3	
lu com o	High-level input current (TX)	V _{IH} = 2.4 V		-100	-185	^
I _{IH} (TX)	righ-lever input current (1%)	VIH = VCC			±2	μΑ
lu va oo'	High-level input current (ASC)	V _{IH} = 2.4 V		100	165	μΑ
IH(ASC)	riigh-leverinput current (ASC)	V _{IH} = V _{CC}		200	340	μΑ
I _{IL(TX)}	Low-level input current (\overline{TX})	V _{IL} = 0.4 V		-180	-400	μΑ
IL(ASC)	Low-level input current (ASC)	V _{IL} = 0.4 V		15	25	μΑ
C _{I(TX)}	TX input capacitance			8		pF
I _{O(ssH)}	CANH short circuit output current	$V_{O(CANH)} = -2 \text{ V to } 20 \text{ V}$		-95	-200	mA
I _{O(ssL)}	CANL short circuit output current	$V_{O(CANL)} = 20 \text{ V to } -2 \text{ V}$		140	250	mA

NOTE 2: All voltage values, except differential bus voltage, are measured with respect to the ground terminal.

transceiver dynamic characteristics over recommended operating free-air temperature range and V_{CC} = 5 V

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
	Loop time	See Figures 2 and 3, S1 closed,	VI(ASC) = 0 V or open circuit, S2 open			280	ns
^t (loop)	Loop time	See Figures 2 and 3, S1 closed,	V _I (ASC) = V _{CC} , S2 closed			400	ns
SR _(RD)	Differential-output slew rate	See Figures 2 and 4, S1 closed,	V _I (ASC) = 0 or open circuit, S2 open		35		V/μs
	(recessive to dominant)	See Figures 2 and 4, S1 closed,	VI(ASC) = VCC, S2 closed		10		V/μs
CD	Differential-output slew rate	See Figures 2 and 4, S1 closed,	V _I (ASC) = 0 or open circuit, S2 open		10		V/μs
SR _(DR)	(dominant to recessive)	See Figures 2 and 4, S1 closed,	VI(ASC) = VCC, S2 closed		10		V/μs
t _d (RD)	Differential output delay time	San Figure 2	S1 closed		55		ns
td(DR)	Differential-output delay time	See Figure 2,	ST Closed		160		ns
tpd(RECRD)	Receiver propagation delay	See Figures 2 and 5	Can Figure 2 and 5		90		ns
tpd(RECDR)	time	Gee i igules 2 aliu 5	See Figures 2 and 5				ns

NOTE 4: Receiver input pulse width should be >50 ns. Input pulses of <30 ns are suppressed.


SLRS048A - MAY 1998 - REVISED APRIL 2000

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIT(REC)	Differential input threshold voltage for recessive state	V _{IC} = -2 V to 7 V			500	mV
VIT(DOM)	Differential input threshold voltage for dominant state	VIC = -2 V 10 7 V	900			IIIV
V _{hys}	Recessive-dominant input hysteresis		100	180		mV
VOH(RX)	High-level output voltage	$V_{O(DIFF)} = 500 \text{ mV},$ $I_{OH} = -400 \mu\text{A}$	V _{CC} -0.5 V		VCC	V
V _{OL(RX)}	Low-level output voltage	$V_{O(DIFF)} = 900 \text{ mV},$ $I_{OL} = 1 \text{ mA}$	0		0.5	V
rI(REC)	CANH and CANL input resistance in recessive state	dc, no load	5		50	kΩ
rI(DIFF)	Differential CANH and CANL input resistance in recessive state	dc, no load	10		100	kΩ
Ci	CANH and CANL input capacitance			20		pF
C _{i(DHL)}	Differential CANH and CANL input capacitance			10	, and the second	pF

NOTE 2: All voltage values, except differential bus voltage, are measured with respect to the ground terminal.

PARAMETER MEASUREMENT INFORMATION

NOTE A: The input pulse is supplied to \overline{TX} by a generator having a t_f and $t_f = 5$ ns.

Figure 2. Test Circuit

PARAMETER MEASUREMENT INFORMATION

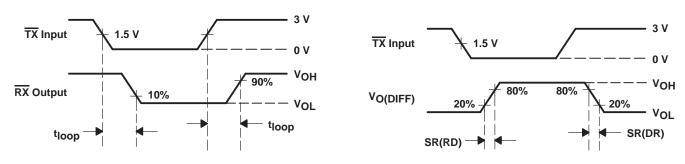
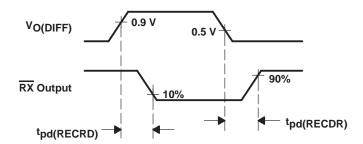



Figure 3. Loop Time

Figure 4. Slew Rate

NOTE A: The input pulse is supplied to \overline{TX} by a generator having a t_{Γ} and $t_{f} = 5$ ns.

NOTE A: The input pulse is supplied as V_{DIFF} using CANH and CANL respectively by a generator having a t_r and $t_f = 5$ ns.

Figure 5. Receiver Delay Times

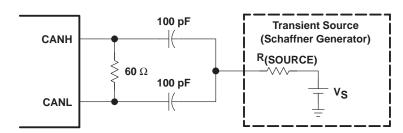


Figure 6. Transient Stress Capability Test Circuit

PARAMETER MEASUREMENT INFORMATION

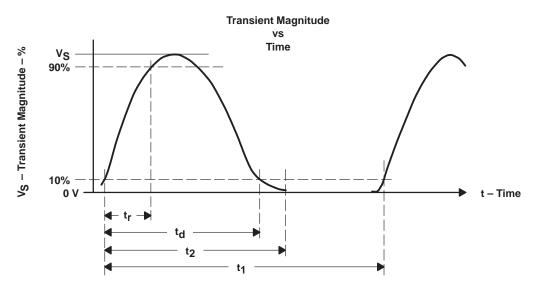


Figure 7. Transient Stress Capability Waveform

Table 1. Test Circuit Results According to DIN 40839

TEST PULSE	TRANSIENT MAGNITUDE VS	SOURCE IMPEDANCE RSOURCE	PULSE WIDTH t _d (see Note 5)	PULSE RISE TIME, t _r (see Note 6)	PULSE TIME, t ₂ (see Figure 7)	REPETITION PERIOD, t ₁ (see Figure 7)	NUMBER OF PULSES
1	–100 V	10 Ω	2 ms	1 μs	200 ms	5 s	5000
2	100 V	10 Ω	50 μs	1 μs	200 ms	5 s	5000
3a	−150 V	50 Ω	0.1 μs	5 ns	100 μs	100 μs	See Note 7
3b	100 V	50 Ω	0.1 μs	5 ns	100 μs	100 μs	See Note 7
5	60 V	1 Ω	400 ms	5 ms	_	_	1

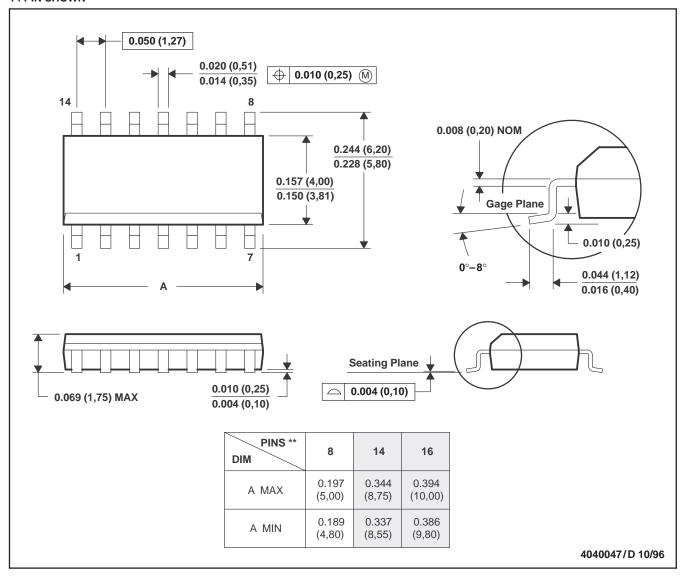
NOTES: 5. Measured from 10% on rising edge to 10% on falling edge

- 6. Measured from 10% to 90% of pulse
- 7. Pulse package for a period of 3600 s, 10 ms pulse time, 90 ms stop time

SLRS048A - MAY 1998 - REVISED APRIL 2000

APPLICATION INFORMATION 5 V 💳 100 nF 3 120 Ω \lesssim 10 k Ω 10 kΩ § 8 **VCC VCC** 8 **ASC** TL7705B **CANH** 7 SENSE SN75LBC031 RESIN RESET GND CANL REF **GND** c_{in} TX REF RX 120 Ω 5 $\textbf{0.1}~\mu\textbf{F}$ 4 **CAN Microcontroller**

Figure 8. Typical SN75LBC031 Application


SLRS048A - MAY 1998 - REVISED APRIL 2000

MECHANICAL DATA

D (R-PDSO-G**)

14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN65LBC031D	ACTIVE	SOIC	D	8	75	TBD	CU NIPDAU	Level-1-220C-UNLIM	-40 to 85	6LB031	Samples
SN65LBC031DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	6LB031	Samples
SN65LBC031DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		6LB031	Samples
SN65LBC031QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	6LB031Q	Samples
SN65LBC031QDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	6LB031Q	Samples
SN65LBC031QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LB031Q	Samples
SN65LBC031QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LB031Q	Samples
SN75LBC031D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	7LB031	Samples
SN75LBC031DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	7LB031	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

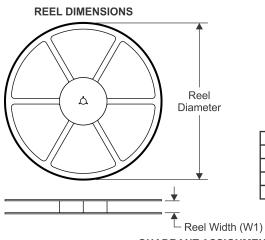
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

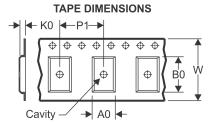
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

17-Mar-2017

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

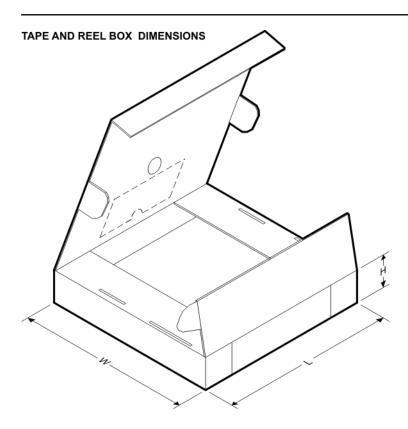

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Aug-2016

TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LBC031QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65LBC031QDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75LBC031DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 24-Aug-2016

*All dimensions are nominal

7 iii dimonolono dio nomina									
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)		
SN65LBC031QDR	SOIC	D	8	2500	367.0	367.0	38.0		
SN65LBC031QDRG4	SOIC	D	8	2500	367.0	367.0	38.0		
SN75LBC031DR	SOIC	D	8	2500	367.0	367.0	38.0		

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.