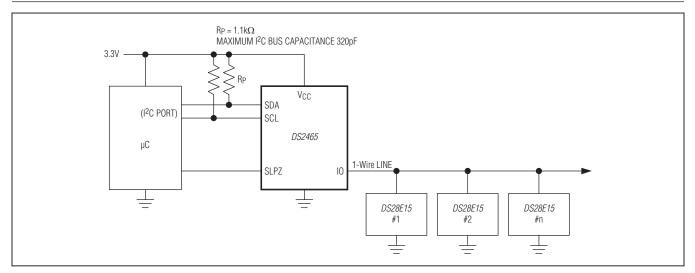


DS28E15

1-Wire SHA-256 Secure Authenticator with 512-Bit User EEPROM

General Description

The DS28E15 combines crypto-strong bidirectional secure challenge-and-response authentication functionality with an implementation based on the FIPS 180-3-specified Secure Hash Algorithm (SHA-256). A 512-bit user-programmable EEPROM array provides nonvolatile storage of application data. Additional protected memory holds a read-protected secret for SHA-256 operations and settings for memory protection control. Each device has its own guaranteed unique 64-bit ROM identification number (ROM ID) that is factory programmed into the chip. This unique ROM ID is used as a fundamental input parameter for cryptographic operations and also serves as an electronic serial number within the application. A bidirectional security model enables two-way authentication between a host system and slave-embedded DS28E15. Slave-to-host authentication is used by a host system to securely validate that an attached or embedded DS28E15 is authentic. Hostto-slave authentication is used to protect DS28E15 user memory from being modified by a nonauthentic host. The DS28E15 communicates over the single-contact 1-Wire® bus at overdrive speed. The communication follows the 1-Wire protocol with the ROM ID acting as node address in the case of a multidevice 1-Wire network.


Features

- Symmetric-Key-Based Bidirectional Secure Authentication Model Based on SHA-256
- Strong Authentication with a High-Bit-Count User-Programmable Secret and Input Challenge
- 512 Bits of User EEPROM Partitioned Into Two Pages of 256 Bits
- User-Programmable and Irreversible EEPROM Protection Modes Including Authentication, Write and Read Protect, and OTP/EPROM Emulation
- Unique Factory-Programmed, 64-Bit Identification Number
- Single-Contact 1-Wire Interface
- ♦ Operating Range: 3.3V ±10%, -40°C to +85°C
- ±8kV HBM ESD Protection (typ)
- 2-Pin SFN, 6-Pin TDFN-EP, and 6-Pin TSOC Packages

Applications

Authentication of Consumables Secure Feature Control

Ordering Information appears at end of data sheet.

Typical Application Circuit

1-Wire is a registered trademark of Maxim Integrated Products, Inc.

For related parts and recommended products to use with this part, refer to: www.maxim-ic.com/DS28E15.related

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

DS28E15

1-Wire SHA-256 Secure Authenticator with 512-Bit User EEPROM

ABSOLUTE MAXIMUM RATINGS

IO Voltage Range to GND	0.5V to +4.0V
IO Sink Current	
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C

Note: The SFN package is qualified for electro-mechanical contact applications only, not for soldering. For more information, refer to Application Note 4132: *Attachment Methods for the Electro-Mechanical SFN Package*.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
IO PIN: GENERAL DATA			·			
1-Wire Pullup Voltage	V _{PUP}	(Note 2)	2.97		3.63	V
1-Wire Pullup Resistance	R _{PUP}	V _{PUP} = 3.3V ±10% (Note 3)	300		1500	Ω
Input Capacitance	C _{IO}	(Notes 4, 5)		1500		рF
Input Load Current	١L	IO pin at V _{PUP}		5	19.5	μA
High-to-Low Switching Threshold	V _{TL}	(Notes 6, 7)		0.65 x V _{PUP}		V
Input Low Voltage	VIL	(Notes 2, 8)			0.3	V
Low-to-High Switching Threshold	V _{TH}	(Notes 6, 9)		0.75 x V _{PUP}		V
Switching Hysteresis	V _{HY}	(Notes 6, 10)		0.3		V
Output Low Voltage	V _{OL}	I _{OL} = 4mA (Note 11)			0.4	V
Recovery Time	t _{REC}	$R_{PUP} = 1500\Omega$ (Notes 2, 12)	5			μs
Time Slot Duration	t _{SLOT}	(Notes 2, 13)	13			μs
IO PIN: 1-Wire RESET, PRESEN	CE-DETECT	CYCLE				
Reset Low Time	t _{RSTL}	(Note 2)	48		80	μs
Reset High Time	t _{RSTH}	(Note 14)	48			μs
Presence-Detect Sample Time	t _{MSP}	(Notes 2, 15)	8		10	μs
IO PIN: 1-Wire WRITE						
Write-Zero Low Time	t _{WOL}	(Notes 2, 16)	8		16	μs
Write-One Low Time	t _{W1L}	(Notes 2, 16)	1		2	μs
IO PIN: 1-Wire READ						
Read Low Time	t _{RL}	(Notes 2, 17)	1		2 - δ	μs
Read Sample Time	t _{MSR}	(Notes 2, 17)	t _{RL} + δ		2	μs

DS28E15

1-Wire SHA-256 Secure Authenticator with 512-Bit User EEPROM

ELECTRICAL CHARACTERISTICS (continued)

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
EEPROM		•				
Programming Current	I _{PROG}	V _{PUP} = 3.63V (Notes 5, 18)			1	mA
Programming Time for a 32-Bit Segment	t _{PROG}	(Note 19)			10	ms
Write/Erase Cycling Endurance	N _{CY}	T _A = +125°C (Notes 20, 21)	100k			
Data Retention	t _{DR}	T _A = +125°C (storage) (Notes 22, 23, 24)	10			Years
SHA-256 ENGINE		1	1			1
Computation Current	I _{CSHA}					mA
Computation Time	t _{CSHA}	Refer to the full data sheet.				ms
Note 2: System requirement. Note 3: Maximum allowable pullup times. The specified value	resistance i here applies	ranteed by design and characterization. Typic is a function of the number of 1-Wire devices i s to systems with only one device and with the arasite capacitance when V _{PUP} is first applied	n the sys e minimun	tem and ⁻ n 1-Wire r	-Wire rec ecovery t	overy imes.
 Note 2: System requirement. Note 3: Maximum allowable pullup times. The specified value Note 4: Typical value represents the charged, it does not affect Note 5: Guaranteed by design and Vare 6: Vare vare a fue 	o resistance i here applies ne internal pa t normal com d/or characte unction of the Lower V _{PUP} ,	is a function of the number of 1-Wire devices is to systems with only one device and with the arasite capacitance when V_{PUP} is first applied munication. erization only. Not production tested. the internal supply voltage, which is a function of higher R _{PUP} , shorter t _{REC} , and heavier capac	n the sys e minimun I. Once th f V _{PUP} , R	tem and ⁻ n 1-Wire r ne parasite PUP, 1-W	-Wire rec ecovery t e capacita	covery imes. ance is , and

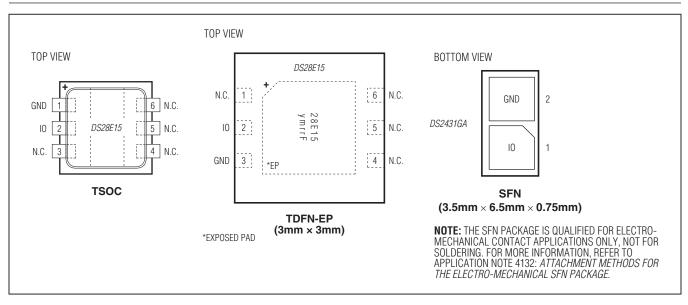
maximum duration for the master to pull the line low is $t_{W1L}(MAX) + t_F - \epsilon$ and $t_{W0L}(MAX) + t_F - \epsilon$, respectively.

Note 17: δ in Figure 11 represents the time required for the pullup circuitry to pull the voltage on IO up from V_{IL} to the input-high threshold of the bus master. The actual maximum duration for the master to pull the line low is t_{RL(MAX)} + t_F.

Note 18: Current drawn from IO during the EEPROM programming interval or SHA-256 computation. The pullup circuit on IO during the programming and computation interval should be such that the voltage at IO is greater than or equal to V_{PUP(MIN)}. A low-impedance bypass of R_{PUP} activated during programming and computation is the recommended way to meet this requirement.

Note 19: Refer to the full data sheet.

- Note 20: Write-cycle endurance is tested in compliance with JESD47G.
- Note 21: Not 100% production tested; guaranteed by reliability monitor sampling.
- Note 22: Data retention is tested in compliance with JESD47G.
- **Note 23:** Guaranteed by 100% production test at elevated temperature for a shorter time; equivalence of this production test to the data sheet limit at operating temperature range is established by reliability testing.


DS28E15 1-Wire SHA-256 Secure Authenticator with 512-Bit User EEPROM

ELECTRICAL CHARACTERISTICS (continued)

(T_A = -40°C to +85°C, unless otherwise noted.) (Note 1)

Note 24: EEPROM writes can become nonfunctional after the data-retention time is exceeded. Long-term storage at elevated temperatures is not recommended.

Note 25: Refer to the full data sheet.

Pin Configurations

Pin Descriptions

	PIN			FUNCTION		
SFN	TDFN-EP	TSOC	NAME	FUNCTION		
_	1, 4, 5, 6	3– 6	N.C.	Not Connected		
1	2	2	IO	1-Wire Bus Interface. Open-drain signal that requires an external pullup resistor.		
2	3	1	GND	Ground Reference		
	_		EP	Exposed Pad (TDFN Only). Solder evenly to the board's ground plane for proper operation. Refer to Application Note 3273: <i>Exposed Pads: A Brief Introduction</i> for additional information.		

DS28E15 1-Wire SHA-256 Secure Authenticator with 512-Bit User EEPROM

Note to readers: This document is an abridged version of the full data sheet. Additional device information is available only in the full version of the data sheet. To request the full data sheet, go to <u>www.maxim-ic.com/</u> <u>DS28E15</u> and click on **Request Full Data Sheet**.

Ordering Information

TEMP RANGE	PIN-PACKAGE
-40°C to +85°C	2 SFN
-40°C to +85°C	2 SFN (2.5k pcs)
-40°C to +85°C	6 TDFN-EP* (2.5k pcs)
-40°C to +85°C	6 TSOC
-40°C to +85°C	6 TSOC (4k pcs)
	-40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

*EP = Exposed pad.

Package Information

For the latest package outline information and land patterns (footprints), go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
2 SFN	T23A6N+1	<u>21-0575</u>	—
6 TDFN-EP	T633+2	<u>21-0137</u>	<u>90-0058</u>
6 TSOC	D6+1	<u>21-0382</u>	<u>90-0321</u>

DS28E15

1-Wire SHA-256 Secure Authenticator with 512-Bit User EEPROM

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	6/12	Initial release	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated Products, Inc. 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 _

© 2012 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

43

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.