SEMICONDUCTOR

GENERAL DESCRIPTION

The ML9470 is a LCD driver which can directly drive up to 80 segments in the static display mode and up to 160 segments in the $1 / 2$ duty dynamic display mode.

FEATURES

- Operating range

Supply voltage : 3.0 to 5.5 V
Operating temperature range $:-40$ to $+105^{\circ} \mathrm{C}$

- Segment output

Static display mode : Up to 80 segments can be displayed.
1/2 duty
: Up to 160 segments can be displayed.

- Simple interface with microcomputer
- Built-in common signal generator
- One-to-one correspondence between input data and output data When input data is at " H " level
: Display goes on.
When input data is at "L" level
: Display goes off.
- Test pin for all-on (SEG_TEST) and all-off ($\overline{\text { BLANK }} /$ BLNAK)
- Can be cascade-connected
- Can be synchronized with the external common signal
- Applicable as an output expander
- LCD driving voltage can be adjusted by the combination of $\mathrm{V}_{\mathrm{LC} 1}$ and $\mathrm{V}_{\mathrm{LC} 2}$
- Package

100-pin plastic QFP (QFP100-P-1420-0.65-BK) (Product name: ML9470-11GA)
(Product name: ML9470-12GA)
-Comparison of device codes and function

Device code	Symbol	Function
ML9470-11	$\overline{\text { BLANK }}$	Active "L"
ML9470-12	BLANK	Active "H"

BLOCK DIAGRAM

ML9470-11

ML9470-12

PIN CONFIGURATION (TOP VIEW)

ML9470-11

100-Pin Plastic QFP

ML9470-12

100-Pin Plastic QFP

PIN DESCRIPTION

Symbol	Type	Description
OSC_IN	I	Pins for oscillation. The oscillator circuit is configured by externally connecting two resistors and a capacitor. Make the wiring length as short as possible, because the resistor connected to the OSC_IN pin has a higher value and the circuit is susceptible to external noise.
OSC_OUT	O OUR	

Symbol	Type	Description
DATA_OUT2	O	The $160^{\text {th }}$ stage data of the shift register is output from this pin. When two or more ML9470s are connected in series (cascade connection) in the $1 / 2$ duty dynamic display mode, this pin should be connected to the next ML9470's DATA_IN pin.

Note: Built-in schmitt circuit is used for all input pins.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage	V_{DD}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to 6.5	V
Input Voltage	V_{I}	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-	-55 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	$\mathrm{Ta}<105^{\circ} \mathrm{C}$	781	mW
Output Current	$\mathrm{I}_{\mathrm{O} 1}$	Driver Outputs	-2.0 to 2.0	mA
	$\mathrm{I}_{\mathrm{O} 2}$	Logic Outputs	-2.0 to 2.0	mA

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Supply Voltage	V_{DD}	-	3 to 5.5	V
LCD Driving Voltage	$\mathrm{V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LC} 2}$	3 to V_{DD}	V
CLOCK Frequency	f_{CP}	-	0.4 to 4	MHz
Operating Temperature	T_{a}	-	-40 to 105	${ }^{\circ} \mathrm{C}$

Oscillator Circuit

Parameter	Symbol	Applicable pin	Condition	Min.	Typ.	Max.	Unit
Oscillator Resistance	R_{0}	$\overline{\text { OSC_OUT }}$	-	56	100	220	$\mathrm{k} \Omega$
Oscillator Capacitance	C_{0}	OSC_OUT	Film capacitor	0.001	-	0.047	$\mu \mathrm{~F}$
Current Limiting Resistance	R_{1}	OSC_IN	$\mathrm{R}_{1} \geq 10 \mathrm{R}_{0}$	560	1000	2220	$\mathrm{k} \Omega$
Common Signal Frequency	$\mathrm{f}_{\text {com }}$	COM_A COM_B	-	25	-	150	Hz

Note: See Section, "Reference Data", for the resistor and capacitor values in the table.
Example of an oscillator circuit:

ELECTRICAL CHARACTERISTICS

DC Characteristics
$\left(V_{D D}=3.0\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $+105^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	($\mathrm{V}_{\mathrm{DD}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $+105^{\circ} \mathrm{C}$, unless otherwise specified)						
	Symbol	Applicable pin	Condition		Min.	Max.	Unit
"H" Input Voltage	V_{H}	SEG_TEST, $\overline{\text { BLANK or }}$ BLANK, LOAD, DATA_IN, CLOCK, D/S, EXT/INT, OSC_IN		-	0.8 VDD	V ${ }_{\text {D }}$	V
"L" Input Voltage	VIL			-	GND	$\begin{aligned} & 0.2 \\ & V_{D D} \end{aligned}$	V
" H " Input Current	I_{H}		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$		-	1	$\mu \mathrm{A}$
"L" Input Current	IIL		$\mathrm{V}_{1}=0 \mathrm{~V}$		-1	-	$\mu \mathrm{A}$
"H" Output Voltage	$\mathrm{V}_{\text {OH1 }}$	DATA_OUT1 DATA_OUT2 COM_OUT	$\mathrm{l}_{\mathrm{O}}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		4.5	-	V
	Voh2	$\frac{\text { OSC_OUT }}{\text { OSC_OUT }}$	$\mathrm{I}_{\mathrm{O}}=-200 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		4.5	-	V
"L" Output Voltage	Vol1	DATA_OUT1 DATA_OUT2 COM_OUT	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		-	0.5	V
	$\mathrm{V}_{\mathrm{OL} 2}$	$\frac{\text { OSC_OUT }}{\text { OSC_OUT }}$	$\mathrm{I}_{\mathrm{O}}=200 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		-	0.5	V
	VoL3	SYNC	$\mathrm{I}_{\mathrm{O}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		-	0.8	V
COMMON Output Voltage	$V_{\text {OCH }}$	COM_A COM_B	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LC} 1}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LC} 2}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=-150 \mu \mathrm{~A} \end{aligned}$		4.8	-	V
	Vocm	COM_A COM_B	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LC} 1}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LC} 2}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}= \pm 150 \mu \mathrm{~A} \end{aligned}$		2.3	2.7	V
	VocL	COM_A COM_B	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LC} 1}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LC} 2}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=150 \mu \mathrm{~A} \end{aligned}$		-	0.2	V
Segment Output	Vosh	$\mathrm{SEG}_{1}-\mathrm{SEG}_{80}$	$\begin{aligned} & V_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{LC} 1}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LC} 2}=0 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{0}=-30 \mu \mathrm{~A}$	4.8	-	V
Voltage	VosL			$\mathrm{l}_{0}=+30 \mu \mathrm{~A}$	-	0.2	V
Output Leakage Current	ILO	$\overline{\text { SYNC }}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$ when internal Tr is off		-	5	$\mu \mathrm{A}$
Segment Output Impedance	Rseg	SEG_{1} - SEGG0,	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{LC} 1}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LC} 2}=0 \mathrm{~V} \end{aligned}$		-	10	k Ω
Common Output Impedance	Rcom	COM_A COM_B	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{LC} 1}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LC} 2}=0 \mathrm{~V} \end{aligned}$		-	1.5	$\mathrm{k} \Omega$
Static Supply Current	IDD1	$V_{\text {DD }}$	Fix all input levels at either $V_{D D}$ or GND		-	100	$\mu \mathrm{A}$
Dynamic Supply Current	ldD2	$V_{\text {DD }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \text {, } \text { o load. } \\ & \mathrm{R}_{0}=100 \mathrm{k} \Omega, \\ & \mathrm{C}_{0}=0.01 \mu \mathrm{~F}, \mathrm{R}_{1}=1 \mathrm{M} \Omega \end{aligned}$		-	0.5	mA

AC Characteristics

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Clock "H" Time	$\mathrm{twhc}^{\text {w }}$	-	70	-	-	ns
Clock "L" Time	twLc	-	70	-	-	ns
Data Set-up Time	tos	-	50	-	-	ns
Data Hold Time	t_{DH}	-	50	-	-	ns
Load "H" Time	$\mathrm{t}_{\text {WHL }}$	-	100	-	-	ns
Clock-to-load Time	t_{CL}	-	100	-	-	ns
Load-to-Clock Time	tLC	-	100	-	-	ns
"H", "L" Propagation Delay Time	$\begin{aligned} & \text { tpHL } \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Load capacitance of DATA_OUT1, DATA_OUT2: 15 pF	-	-	0.14	$\mu \mathrm{S}$
Clock Rise time, Fall time	$\mathrm{t}_{1}, \mathrm{t}_{\text {f1 }}$	-	-	-	50	ns
SYNC Pulse "L" Time	ts	-	0.2	-	-	$\mu \mathrm{s}$
OSC_IN Input Frequency	fosc	-	-	-	5	kHz

POWER-ON/OFF TIMING

[Voltage]

${ }^{*} \mathrm{~V}_{\mathrm{LC} 1}$ and $\mathrm{V}_{\mathrm{LC} 2}$ are applied when V_{DD} is applied to external bias resistor.

INITIAL SIGNAL TIMING

ML9470-11

* After V_{DD} is applied, $\overline{\mathrm{BLANK}}$ and SEG_TEST should be applied to 'L' level to make all SEGMENTS off until first group of display data is latched.

ML9470-12

* When VDD is applied, $\overline{B L A N K}$ should be applied to 'H' level at the same time, and SEG_TEST should be applied to 'L' level to make all SEGMENTS off until first group of display data is latched.

FUNCTIONAL DESCRIPTION

Operation Description

The ML9470 consists of a 160 -stage shift register, 160 -bit data latch, and 80 pairs of LCD drivers. The display data is input from the DATA_IN pin to the 160 -stage shift register at the rising edge of the CLOCK pulse and it is latched into the 160-bit data latch when the LOAD signal is set at " H " level, then it is directly output from the 80 pairs of LCD drivers to the LCD panel. Input the display data in the order of SEG80, SEG79, SEG78, ..., SEG2, SEG1.

COM_A, COM_B

In the select mode, a signal in phase with the COM_OUT signal is output at " H " $\left(\mathrm{V}_{\mathrm{DD}}\right)$ and "L" $\left(\mathrm{V}_{\mathrm{LC} 2}\right)$.
In the non-select mode a voltage is output at " M " $\left(\mathrm{V}_{\mathrm{LC} 1}\right)$. In the select mode of COM_A (non-select mode of COM_B), signals that correspond to the $1^{\text {st }}$ - to $80^{\text {th }}$-bit data of the data latch are output to the segment outputs.
In the select mode of COM_B(non-select mode of COM_A), signals that correspond to the $81^{\text {st }}$ - to $160^{\text {th }}$-bit data of the data latch are output to the segment outputs.

SEGn Truth Table

Mode	Display data in LatchA	Display data in LatchB	COMA	COMB	SEGn
Static	1	-	"H"	"H"	0
		-	"L"	"L"	1
	0	-	"H"	"H"	1
		-	"L"	"L"	0
1/2 duty Dynamic	1	1	"H"	"M"	0
			"L"	"M"	1
			"M"	"H"	0
			"M"	"L"	1
	1	0	"H"	"M"	0
			"L"	"M"	1
			"M"	"H"	1
			"M"	"L"	0
	0	1	'H'	"M"	1
			"L"	"M"	0
			"M"	"H"	0
			"M"	"L"	1
	0	0	"H"	"M"	1
			"L"	"M"	0
			"M"	"H"	1
			"M"	"L"	0

*Note: "H" = V_{DD}; "M" = $\mathrm{V}_{\mathrm{LC} 1} ; " \mathrm{~L} "=\mathrm{V}_{\mathrm{LC} 2}$.

SEG1-SEG80

LCD segmnet driving signals are output from these pins and they should be connected to the segment side of the LCD panel.
"H" level: VDD, "L" level: VLC2
In the static display mode, the nth bit data of the data latch (A) corresponds to the SEGn. The data of the data latch (B) is invalid.

A signal out of phase with the COM_OUT signal is output to the segment outputs when the display is turned on, while a signal in phase with it is output when the display is turned off.

In the $1 / 2$ duty dynamic mode, the output of the SEGn corresponds to the nth bit data of the data latch (A) when COM_A is in select mode and corresponds to the nth bit data of the data latch (B) when COM_B is in select mode. When the display is turned on, a signal out of phase with the common signal corresponding to the data is output, while a signal in phase with the common signal is output when the display is turned off.

APPLICATION CIRCUITS

1) Single ML9470-11 operation in the static display mode

$\mathrm{R}_{\mathrm{com}} \geq 1.5 \mathrm{k} \Omega$
2) Single ML9470-11 operation in the $1 / 2$ duty dynamic display mode

3) Cascade connections for ML9470-11s in the static display mode

4) Cascade connections for ML9470-11s in the $1 / 2$ duty dynamic display mode

$\mathrm{R}_{\mathrm{com}} \geq 1.5 \mathrm{k}, \mathrm{R}_{\mathrm{com}} \geq \mathrm{RLC}$
5) Output-expander (ML9470-11)

*The output logic can be reversed with respect to the input data by setting OSC_IN to " H " level.
6) Output-expander (ML9470-12)

*The output logic can be reversed with respect to the input data by setting OSC_IN to "H" level.

REFERENCE CHARACTERISTICS

- Fosc-VDD,C0

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Package
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact ROHM's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

Document No.	Date	Page		Description
		Current Edition		
FEDL9470-11-01	Sep. 11, 2007	-	-	1st edition

NOTICE

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from LAPIS Semiconductor upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2007-2011 LAPIS Semiconductor Co., Ltd.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ROHM Semiconductor:
ML9470-12GAZOARL

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

