

CURRENT-LIMITED LOAD SWITCH WITH LOW NOISE REGULATION CAPABILITY

Check for Samples: TPS22949, TPS22949A

FEATURES

- Integrated Current Limiter
 - Input Voltage Range: 1.62 V to 4.5 V
 - Low ON-Resistance
 - r_{ON} = 300-mΩ at V_{IN} = 4.5 V
 - r_{ON} = 350-mΩ at V_{IN} = 3.3 V
 - $r_{ON} = 400 m\Omega$ at $V_{IN} = 2.5 \text{ V}$
 - r_{ON} = 600-mΩ at V_{IN} = 1.8 V
 - Integrated 100-mA Minimum Current Limit
 - Undervoltage Lockout
 - Fast-Current Limit Response Time
 - Integrated Fault Blanking and Auto Restart
- Stable Without Current Limiter Output Capacitor (TPS22949A Only)
- Integrated Low-Noise RF LDO
 - Input Voltage Range: 1.62 V to 4.5 V
 - Low Noise: 50 μVrms (10 Hz to 100 kHz)
 - 80-dB V_{IN} PSRR (10 Hz to 10 kHz)
 - Fast Start-Up Time: 130 µs
 - Low Dropout 100 mV at I_{load} =100 mA
 - Integrated Output Discharge
 - Stable With 2.2-µF Output Capacitor
- 1.8-V Compatible Control Input Threshold
- ESD Performance Tested Per JESD 22
 - 3500-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Tiny 8-Terminal YZP Package (1.9 mm × 0.9 mm, 0.5-mm Pitch, 0.5-mm Height) and SON-8 (DRG) 3.0 mm × 3.0 mm

APPLICATIONS

- Fingerprint Module Protection
- Portable Consumer Electronics
- Smart Phone
- Notebooks
- Control Access Systems

DESCRIPTION

The TPS22949 and TPS22949A are devices that provides protection to systems and loads in high-current conditions. The device contains a 500-m Ω current-limited P-channel MOSFET that can operate over an input voltage range of 1.62 V to 4.5 V as well as a low-dropout (LDO) regulator with a fixed output voltage of 1.8 V.

The switch is controlled by an on/off input (EN1), which is capable of interfacing directly with low-voltage control signals. When the switch current maximum limit. reaches the TPS22949/TPS22949A operates constant-current mode to prohibit excessive currents from causing damage. If the constant current condition still persists after 12 ms, these devices shut off the switch and pull the fault signal pin (OC) low. The TPS22949/TPS22949A has an auto-restart feature that turns the switch on again after 70 ms if the EN1 pin is still active.

The output of the current limiter is internally connected to a RF low-dropout (LDO) regulator that offers good ac performance with very low ground current, good power-supply rejection ratio (PSRR), low noise, fast start-up, and excellent line and load transient response. The output of the regulator is stable with ceramic capacitors. This LDO uses a precision voltage reference and feedback loop to achieve overall accuracy of 2% over all load, line, process, and temperature variations.

The TPS22949A integrates additional internal circuitry that increases the current limit of the switch during the power-up sequence. This feature allows the TPS22949A to operate without a storage capacitor at the input of the LDO.

The TPS22949 and TPS22949A are available in a space-saving 8-terminal WCSP (YZP) or in a 8-pin SON package (DRG). Both are characterized for operation over the free-air temperature range of -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION(1)

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING(3)
	SON - DRG	Tape and reel	TPS22949ADRGR	ZUG
-40°C to 85°C	WCSP – YZP	Tone and real	TPS22949YZPR	4Y_
	WCSP - 12P	Tape and reel	TPS22949AYZPR	4Z_

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
- (3) YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the wafer fab/assembly site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, = Pb-free).

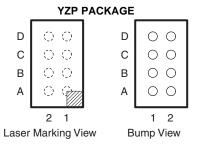
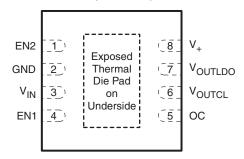



Table 1. YZP PACKAGE TERMINAL ASSIGNMENTS

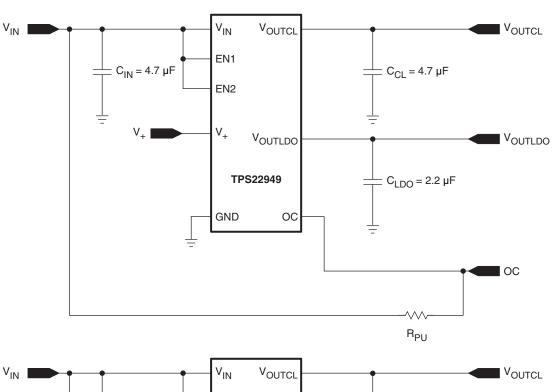
D	EN1	ОС
С	V _{IN}	V _{OUTCL}
В	GND	V _{OUTLDO}
Α	EN2	V ₊
	2	1

DRG PACKAGE (TOP VIEW)

The exposed center pad, if used, must be connected as a secondary GND or left electrically open.

TERMINAL FUNCTIONS

	TERMIN	AL	
N	NO.		DESCRIPTION
YZP	DRG	NAME	
A1	8	V_{+}	Supply voltage
A2	1	EN2	LDO control input. Active high. Do not leave floating.
B1	7	V _{OUTLDO}	LDO output. Output of the RF LDO fixed to 1.8 V ⁽¹⁾ .
B2	2	GND	Ground
C1	6	V _{OUTCL}	Switch output. Output of the power switch
C2	3	V_{IN}	Supply input. Input to the power switch; bypass this input with a ceramic capacitor to ground.
D1	5	OC	Over current output flag. Active low, open-drain output that indicates an over-current, supply undervoltage, or over-temperature state.
D2	4	EN1	Power switch control input. Active high. Do not leave floating.


(1) Output voltages from 0.9 V to 3.6 V in 50-mV increments are available through the use of innovative factory EEPROM programming; minimum order quantities may apply. Contact factory for details and availability.

FUNCTION TABLE

STATE OF THE DEVICE	EN1	EN2
Current limiter and LDO disabled	0	X
Current limiter enabled/LDO disabled	1	0
Current limiter and LDO enabled	1	1

TYPICAL APPLICATIONS

BLOCK DIAGRAMS

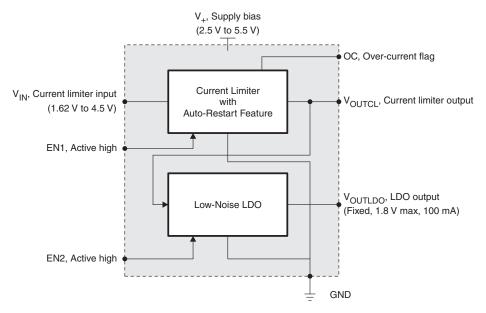


Figure 1. Simplified Block Diagram

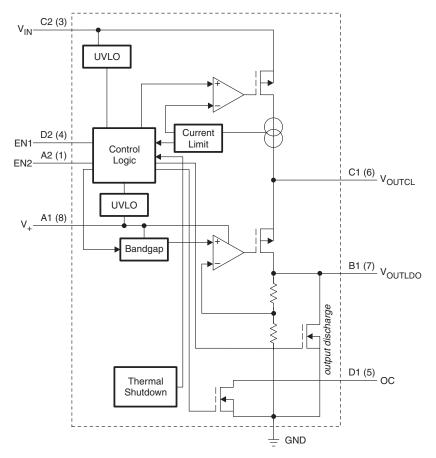


Figure 2. Detailed Block Diagram

ABSOLUTE MAXIMUM RATINGS(1)

			MIN	MAX	UNIT
VI	Input voltage V_{IN} , EN1, EN2, V_{+}		-0.3	6	V
V _{OUTCL}	UTCL Current limiter output voltage			$V_{IN} + 0.3$	V
T_J	Operating junction temperature range			105	°C
T _{stg}	Storage temperature range		-65	150	°C
		Human-Body Model		3.5	kV
	Electrostatic discharge protection (ESD)	Charged-Device Model		1	κV

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating* Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

BOARD	PACKAGE	RøJC	RθJA		DERATING FA	CTOR ABOVE	
BOARD	PACKAGE	ROJC	ROJA	T _A = 25°C	T _A < 25°C	T _A = 70°C	T _A = 85°C
High-K (JESD 51-7)	YZP	13.79°C/W	101.92°C/W	98.1 mW/°C	784 mW	343 mW	196 mW
High-K (JESD 51-5)	DRG	56.6°C/W	52.44°C/W	19 mW/°C	1525 mW	667 mW	381 mW

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
V _{IN}	Input voltage ⁽¹⁾	1.62	4.5	V
V_{OUTCL}	Current limiter output voltage		V _{IN}	V
V ₊	Supply voltage	2.6	5.5	V
C _{IN}	Input capacitor	1		μF
T _A	Ambient free-air temperature	-40	85	°C
Control I	nputs (EN1, EN2)			
V _{IH}	High-level input voltage	1.4	5.5	V
V _{IL}	Low-level input voltage		0.4	V

⁽¹⁾ See the Application Information section

ELECTRICAL CHARACTERISTICS

 $T_A = -40$ °C to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			TYP ⁽¹⁾	MAX	UNIT	
I _{GND}	Ground pin current	EN1 and EN2 = V ₊ $V_+ = V_{OUT} + 1.4 \text{ V or } 2.5$, whichever > 5.5 V, $V_{OUTCL} \ge V_{OUTLDO} + 0.5 \text{ V}$ $I_{OUT2} = 0 \text{ mA}$			85	110	μΑ	
I _{GNDCL}	Ground pin current (current limiter only)	EN1 = V ₊ and EN2 = 0			40	75	μΑ	
		EN1 and EN2 = GND,	$V_{IN} = V_{+} = 3.3 \text{ V}$			2		
I _{GND(OFF)}	OFF-state ground pin current	V _{OUTCL} = Open, V _{OUTLDO} = Open	$V_{IN} = 3.6 \text{ V}, V_{+} = 5.5 \text{ V}$			6	μA	
I _{EN2}	Enable pin 2 current, enabled	$VEN2 = V_{+} = 5.5 \text{ V}, V_{IN} = 4$	1.5 V			1	μΑ	
I _{EN1}	Enable pin 1 current, enabled	$VEN1 = V_{+} = 5.5 V, V_{IN} =$	4.5 V			1	μΑ	
	Chutdown throphold (T.)	TPS22949			122		ı	
	Shutdown threshold (T _A)	TPS22949A			135		ı	
Thermal	Datum from shutday	TPS22949			112		°C	
shutdown	Return from shutdown	TPS22949A			120		- 10	
	Lhatanaia	TPS22949			10			
	Hysteresis	TPS22949A			10			

⁽¹⁾ Typical values are at $V_{IN} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

CURRENT LIMITER ELECTRICAL CHARACTERISTICS

over operating free-air temperature range, $V_{+} = 3.3 \text{ V}$, EN1 = V_{+} , EN2 = GND (unless otherwise noted)

	ADAMETED	TEST CON	IDITIONS	-	YZP	PACKA	GE	DRG PACKAGE		GE	UNIT
P	ARAMETER	TEST CON	DITIONS	T _A	MIN	TYP	MAX	MIN	MIN TYP MAX		UNII
			\/ 4.5.\/	25°C		0.3	0.4		0.4	0.5	
r _{ON}			$V_{IN} = 4.5 \text{ V}$	Full			0.5			0.6	
			\/ = 2.2.\/	25°C		0.35	0.6		0.45	0.7	
			$V_{IN} = 3.3 \text{ V}$	Full			0.7			0.8	
	ON-state resistance	I _{OUT} = 20 mA	V _{IN} = 2.5 V	25°C		0.4	0.7		0.5	0.8	Ω
	ON-State resistance	IOUT = 20 IIIA		Full			0.8			0.9	32
			V _{IN} = 1.8 V	25°C		0.6	0.9		0.7	1	
				Full			1.0			1.1	
			V _{IN} = 1.62	25°C		0.7	1.0		0.8	1.1	
			V	Full			1.1			1.2	
I _{LIM}	Current limit	$V_{OUT} = 3 V$	$V_{IN} = 3.3 V$	Full	100	150	200	100	150	200	
I _{LIM (INRUSH)}	Power-ON inrush current limit (TPS22949A only)	V _{OUT} = 3 V	V _{IN} = 3.3 V	Full		750			750		mA
UVLO-CL	Undervoltage shutdown	V _{IN} increasing			1.39	1.49	1.59	1.39	1.49	1.59	>
	Undervoltage shutdown hysteresis					30			30		mV
	OC output logic low	I = 10 m/	$V_{IN} = 4.5 \text{ V}$	Full		0.1	0.3		0.1	0.3	V
	voltage	I _{SINK} = 10 mA	$V_{IN} = 1.8 \text{ V}$	Full		0.2	0.4		0.2	0.4	V

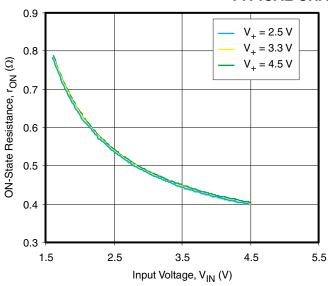
CURRENT LIMITER SWITCHING CHARACTERISTICS

 V_{IN} = 3.3 V, T_A = 25°C, R_L = 500 $\Omega,$ C_L = 0.1 μF (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{ON}	Turn-ON time	$R_L = 500 \Omega$, $C_{CL} = 0.1 \mu F$		95		μs
t _{OFF}	Turn-OFF time	$R_L = 500 \Omega$, $C_{CL} = 0.1 \mu F$		2		μs
t _r	V _{OUT} rise time	$R_L = 500 \Omega$, $C_{CL} = 0.1 \mu F$		25		μs
t _f	V _{OUT} fall time	$R_L = 500 \Omega$, $C_{CL} = 0.1 \mu F$		10		μs
t _{BLANK}	Overcurrent blanking time		6	12	18	ms
t _{RSTRT}	Auto-restart time		40	80	120	ms
t _{INRUSH}	Power-ON inrush current limit time (TPS22949A only)	$R_L = 500 \ \Omega, \ C_{CL} = 0.1 \ \mu F$		150		μs
	Chart singuit manages time	V _{IN} = V _{EN1} = 3.3 V, moderate over-current condition		11		
,	Short-circuit response time	$V_{IN} = V_{EN1} = 3.3 \text{ V, hard short}$		5		μs

Submit Documentation Feedback

LOW-NOISE LDO REGULATOR ELECTRICAL CHARACTERISTICS


over operating free-air temperature range (unless otherwise noted)

ΔV _{OUTLDO} /ΔV _{IN} V _{IN} line regulation V _{IN} = V _{OUTLDO} + 0.5 V to 4.5 V, l _{OUT} = 1 mA ±0.1 ΔV _{OUTLDO} /ΔV _{IN} V _{IN} line transient ΔV _{IN} = 400 mV, t _r = t _r = 1 μs ±2 ΔV _{OUTLDO} /ΔV _{IN} V _I line regulation V _{IN} = V _{OUTLDO} + 1.4 V or 2.5 V, whichever is > 5.5 V, louT = 1 mA ±0.1 ΔV _{OUTLDO} /ΔI _{OUT2} V _I line transient Load regulation V _{IN} = 600 mV, t _r = t _r = 1 μs ±5 ΔV _{OUTLDO} /ΔI _{OUT2} Load regulation LouT ₂ = 0 to 100 mA (no load to full load) ±0.01 ΔV _{OUTLDO} /ΔI _{OUT2} Dropout voltage (V _{DO} = V _{IN} – V _{OUTLDO}) V _{IN} = V _{OUTLDO} (NOM) – 0.1 V, V ₊ – V _{OUTLDO(NOM)} = 1.4 V, louT = 100 mA 110 20 V _{IN} PSRR Power-supply rejection ratio V _{IN} = V _{OUTLDO} > 0.5 V, V ₊ = V ₊ = V ₊	PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT	
	V _{OUTLDO}	Output voltage ⁽¹⁾				1.8	1.84	V	
V _{IN} Intertainsent ΔV _{IN} = 400 mV, V _{Ir} = I _T = 1 μs ±2	A)/ /A)/	V _{IN} line regulation	$V_{IN} = V_{OUTLDO} + 0.5 \text{ V to } 4.5 \text{ V}$, I _{OUT} = 1 mA		±0.1		%/V	
ΔV _{OUTLDO} /ΔV ₊ V ₊ line regulation I _{OUT} = 1 mA ±5.	ΔV _{OUTLDO} /ΔV _{IN}	V _{IN} line transient	$\Delta V_{IN} = 400 \text{ mV}, t_r = t_f = 1 \mu\text{s}$			±2		mV	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Delta V_{OUTLDO}/\Delta V_{+}$	V ₊ line regulation	$V_{IN} = V_{OUTLDO} + 1.4 \text{ V or } 2.5 \text{ V}$ $I_{OUT} = 1 \text{ mA}$, whichever is > 5.5 V,		±0.1		%/V	
$ \begin{array}{ c c c c c } \hline \Delta V_{OUTLDO}/\Delta I_{OUT2} \hline \\ \hline V_{DO} \hline \\ \hline V_{DO} \hline \\ \hline V_{IN} \ PSRR \hline \\ \hline \hline Power-supply rejection ratio \hline \\ \hline V_{IN} \ PSRR \hline \\ \hline \hline \hline V_{IN} \ PSRR \hline \\ \hline \hline \hline \hline Power-supply rejection ratio \hline \\ \hline \hline V_{IN} \ PSRR \hline \\ \hline \hline \hline \hline \hline V_{IN} \ PSRR \hline \\ \hline \hline$		V ₊ line transient	$\Delta V_{IN} = 600 \text{ mV}, t_r = t_f = 1 \mu \text{s}$			±5		mV	
V _{DO} Dropout voltage (V _{DO} = V _{IN} − V _{OUTLDO}) V _{IN} = V _{OUTLDO(NOM)} − 0.1 V, V ₊ − V _{OUTLDO(NOM)} = 1.4 V, 110 200	A)/ /AI	Load regulation	I _{OUT2} = 0 to 100 mA (no load to	o full load)		±0.01		%/V	
V _{IN} PSRR Power-supply rejection ratio V _{IN} PSRR Power-supply rejection ratio V _{IN} PSRR Power-supply rejection ratio V _I = V _{OUTLDO} ≥ 0.5 V, V _I = V _{OUTLDO} ≥ 1.4 V, I _{OUT} = 100 mA, V _I = V _{OUTLDO} ≥ 0.5 V, V _I = V _{OUTLDO} ≥ 0.5 V, V _I = 100 kHz 80	ΔV _{OUTLDO} /ΔI _{OUT2}	Load transient	$I_{OUT2} = 0$ to 100 mA, $t_r = t_f = 1$	μs		±35		mV	
$V_{\text{IN}} \text{PSRR} \begin{array}{c} \text{Power-supply} \\ \text{rejection ratio} \end{array} \begin{array}{c} V_{\text{OUTCL}} - V_{\text{OUTLDO}} \geq 0.5 \text{V}, \\ V_{+} = V_{\text{OUTLDO}} + 1.4 \text{V}, \\ I_{\text{OUT}} = 100 \text{mA}, \end{array} \begin{array}{c} f = 100 \text{Hz} \\ f = 1 \text{kHz} \\ \hline f = 10 \text{kHz} \\ \hline f = 10 \text{kHz} \\ \hline f = 100 $	V _{DO}		$V_{IN} = V_{OUTLDO(NOM)} - 0.1 \text{ V}, V_{+}$ $I_{OUT} = 100 \text{ mA}$	$-V_{OUTLDO(NOM)} = 1.4 \text{ V},$		110	200	mV	
$V_{\text{IN}} \text{PSRR} \begin{array}{lll} & \text{Power-supply rejection ratio} \\ & V_{\text{UUTLD}} - V_{\text{OUTLDO}} \geq 0.5 \text{V}, \\ V_{+} = V_{\text{OUTLDO}} + 1.4 \text{V}, \\ I_{\text{OUT}} = 100 \text{mA}, \\ & f = 10 \text{kHz} \\ \hline f = 10 \text{kHz} \\ \hline f = 100 \text{Hz} \\ \hline f = 100 \text{kHz} \\ \hline f =$	V 5000			f = 10 Hz		75			
$V_{1N} \text{PSRR} \qquad \begin{array}{c} V_{+} = V_{\text{OUTLDO}} + 1.4 \text{V}, \\ I_{\text{OUT}} = 100 \text{mA}, \\ \end{array} \qquad \begin{array}{c} f = 10 \text{kHz} \\ \hline f = 100 \text{kHz} \\ \hline f = 100 \text{kHz} \\ \end{array} \qquad \begin{array}{c} 80 \\ \hline f = 100 \text{kHz} \\ \hline f = 100 \text{kHz} \\ \end{array} \qquad \begin{array}{c} 85 \\ \hline f = 10 \text{Hz} \\ \hline f = 100 \text{Hz} \\ \end{array} \qquad \begin{array}{c} 80 \\ \hline f = 100 \text{Hz} \\ \hline f = 100 \text{Hz} \\ \end{array} \qquad \begin{array}{c} 80 \\ \hline f = 100 \text{Hz} \\ \hline f = 100 \text{kHz} \\ \hline f = 100 $				f = 100 Hz		75		dB	
V ₊ PSRR Power-supply rejection ratio V ₊ PSRR Power-supply rejection ratio V ₊ PSRR V ₊ PSRR V ₊ PSRR V ₊			V _{OUTCL} - V _{OUTLDO} ≥ 0.5 V,	f = 1 kHz		80			
$V_{+} \text{PSRR} \text{Power-supply rejection ratio} V_{+} \text{PSRR} Power-supply rejection ratio} V_{+} \text{PSRR} V_{-} \text{Poutlob} = 0.5 \text{V}, \\ V_{+} \text{Poutlob} + 1.4 \text{V}, \\ I_{OUT} = 100 \text{mA}, \\ V_{+} \text{Poutlob} + 1.4 \text{V}, \\ I_{OUT} = 100 \text{mA}, \\ V_{+} \text{Poutlob} + 1.4 \text{V}, \\ I_{OUT} = 100 \text{mA}, \\ V_{+} \text{Poutlob} + 1.4 \text{V}, \\ I_{OUT} = 100 \text{mA}, \\ I_{OUT} = 100 \text{mA}, \\ I_{OUT} = 100 \text{mA}, \\ I_{OUT} \text{Poutlob} + 1.4 \text{V}, \\ I_{OUT} \text{Poutlob} Poutlob$	V _{IN} PSRR			f = 10 kHz		80			
$V_{+} \text{PSRR} \text{Power-supply} \text{rejection ratio} V_{0} \text{Undervoltage lockout} V_{+} \text{PSRR} V_{0} \text{Undervoltage lockout} V_{+} \text{rising} \begin{cases} f = 10 \text{Hz} \\ f = 100 \text{Hz} \\ f = 10 \text{kHz} \\ f = 100 \text{kHz} \\ f = 1$				f = 100 kHz		85			
$V_{+} \text{PSRR} \text{Power-supply rejection ratio} V_{\text{OUTCL}} - V_{\text{OUTLDO}} \geq 0.5 \text{V}, \\ V_{+} = V_{\text{OUTLDO}} + 1.4 \text{V}, \\ I_{\text{OUT}} = 100 \text{mA}, \\ V_{+} = V_{\text{OUTLDO}} + 1.4 \text{V}, \\ I_{\text{OUT}} = 100 \text{mA}, \\ V_{\text{OUTLDO}} = 100 \text{mA}, \\ V_{\text{OUTLDO}} = V_{\text{OUTLDO}} + 0.5 \text{V} \\ V_{\text{OUTLDO}} = V_{\text{OUTLDO}} + 0.5 \text{V} \\ V_{\text{OUTLDO}} = V_{\text{OUTL}} + 0.5 \text{V} \\ V_{\text{OUTLOO}} = V_{\text{OUTLOO}} + 0.5 \text{V} \\ V_{\text{OUTLOO}} = 0.5 \text{V} \\ V_{\text{OUTLOO}} = 0.5 \text{V} \\ V_{\text{OUTLOOM}} + 0$				f = 1 MHz		85			
$ V_{+} \text{PSRR} \begin{array}{llll} & \text{Power-supply} \\ & \text{rejection ratio} \\ & & V_{+} = V_{\text{OUTLDO}} + 1.4 \text{V}, \\ & & V_{+} = V_{\text{OUTLDO}} + 1.4 \text{V}, \\ & & I_{\text{OUT}} = 100 \text{mA}, \\ & I_{\text{OUT}}$				f = 10 Hz		80			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				f = 100 Hz		80			
	V DCDD	Power-supply		f = 1 kHz		75		٦D	
	V ₊ PSRR	rejection ratio		f = 10 kHz		65		dB	
V _N Output noise voltage V ₊ ≥2.5 V, V _{OUTLDO} = V _{OUTCL} + 0.5 V BW = 10 Hz to 100 kHz 50 t _{STR} Startup time V _{OUT} = 95%, V _{OUT(NOM)} , I _{OUT} = 100 mA, C _{OUT} = 2.2 μF 130 250 UVLO-V ₊ Undervoltage lockout V ₊ rising 2.3 2.45 2.5			,	f = 100 kHz		55			
t _{STR} Startup time $V_{OUTLDO} = V_{OUTCL} + 0.5 \text{ V}$ BW = 10 Hz to 100 kHz $V_{OUT} = V_{OUT} = V_{OU$				f = 1 MHz	35				
TSTR Startup time $V_{OUT(NOM)}$, $I_{OUT} = 100$ mA, $C_{OUT} = 2.2 \mu\text{F}$ $U_{OUT(NOM)}$ V_{+} rising V_{+} rising V_{+} V_{+} rising V_{+} $V_{$	V _N	Output noise voltage		BW = 10 Hz to 100 kHz		50		μVrms	
UVLO-V.	t _{STR}	Startup time				130	250	μs	
UVLO-V ₊	11/1 0 1/	Undervoltage lockout	V ₊ rising		2.3	2.45	2.55	V	
Hysteresis V ₊ falling 150	UVLU-V ₊	Hysteresis	V ₊ falling			150		mV	

⁽¹⁾ LDO output voltage is fixed at 1.8 V. However, output voltages from 0.9 V to 3.6 V in 50 mV increments are available through the use of innovative factory EEPROM programming; minimum order quantities may apply. Contact factory for details and availability.

TYPICAL CHARACTERISTICS

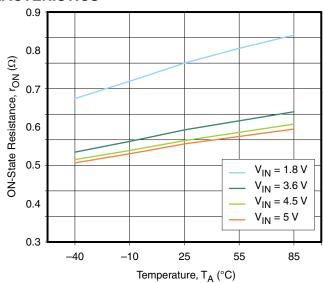
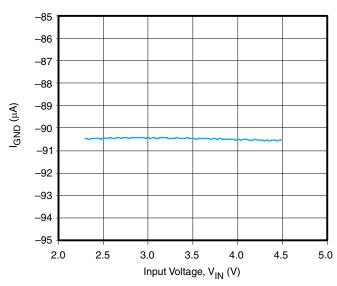



Figure 3. ON-State Resistance vs Input Voltage, T_A = 25°C

Figure 4. ON-State Resistance vs Temperature, $V_{+} = 5.5 \text{ V}$

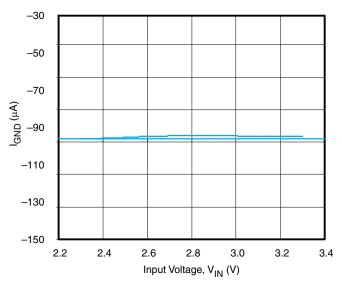


Figure 5. Ground Pin Current vs Input Voltage $V_{+} = 5.5 \text{ V}$

Figure 6. Ground Pin Current vs Input Voltage, V₊ = 3.3 V

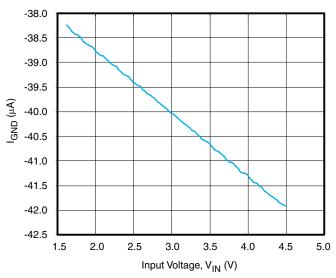
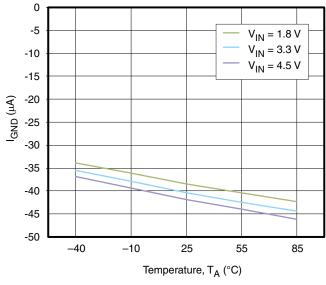



Figure 7. Ground Pin Current vs Temperature, $V_{+} = 5.5 \text{ V}$

Figure 8. Ground Pin Current vs Input Voltage (Current Limiter Only), $\rm V_{+} = 5.5~\rm V$

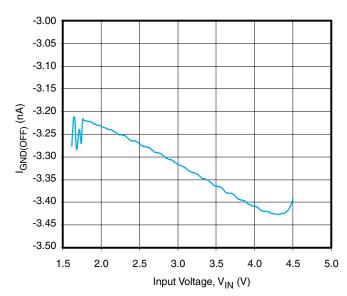
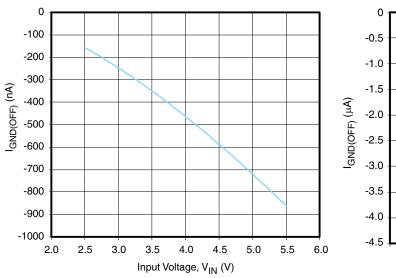



Figure 9. Ground Pin Current vs Temperature (Current Limiter Only), $\rm V_{+} = 5.5~\rm V$

Figure 10. OFF-State Ground Current vs Input Voltage, $V_{+} = 5.5$

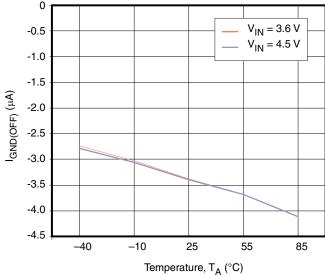
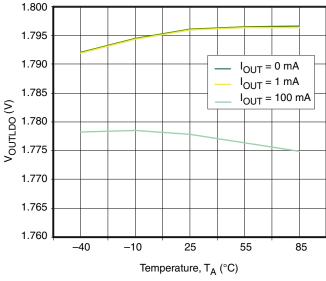
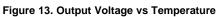




Figure 11. OFF-State Ground Current vs Input Voltage, V_{IN} = V₊

Figure 12. OFF-State Ground Current vs Temperature

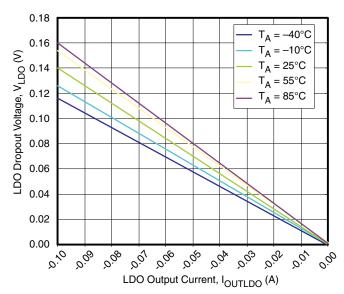
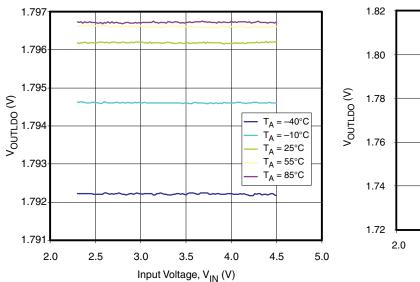



Figure 14. LDO Dropout Voltage vs Output Current

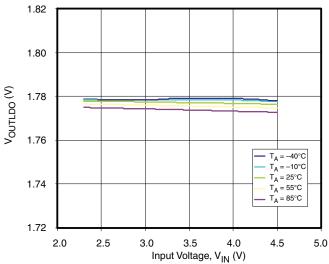
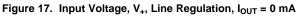



Figure 15. Input Voltage, V_{IN}, Line Regulation, I_{OUT} = 0 mA

Figure 16. Input Voltage, V_{IN} , Line Regulation, $I_{OUT} = 100 \text{ mA}$

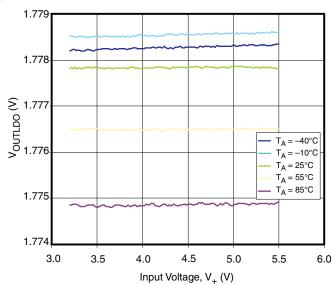
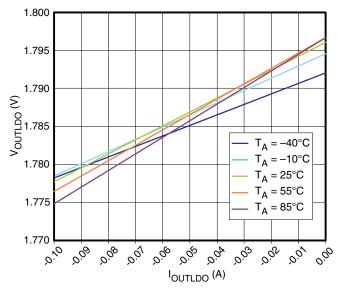



Figure 18. Input Voltage, V_{+} , Line Regulation, $I_{OUT} = 100 \text{ mA}$

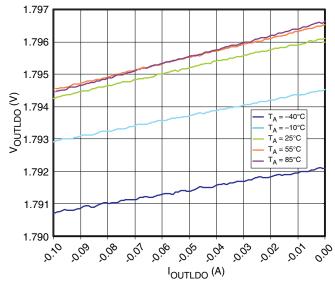
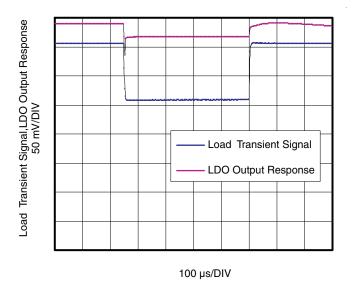



Figure 19. Load Regulation, I_{OUT} = 100 mA

Figure 20. Load Regulation Under Light Loads, $I_{OUT} = 10 \text{ mA}$

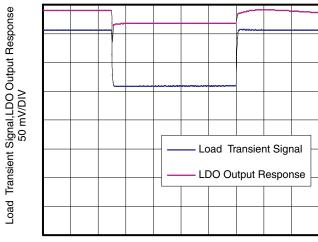


Figure 21. Load Transient

Figure 22. V_{IN} Load Transient

100 µs/DIV

100000

PSRR (dB)

TYPICAL CHARACTERISTICS (continued)

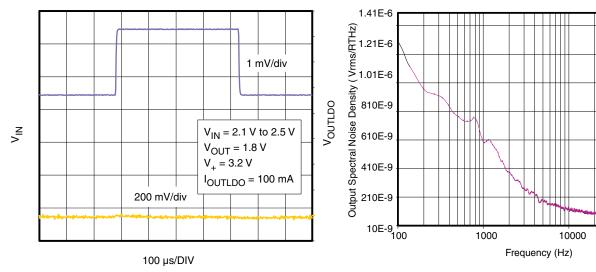


Figure 23. V₊ Load Transient

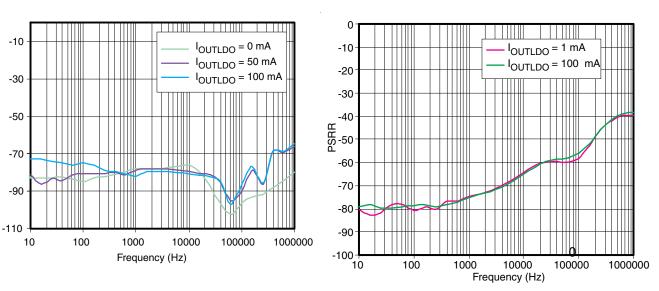
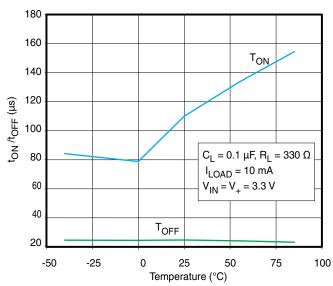
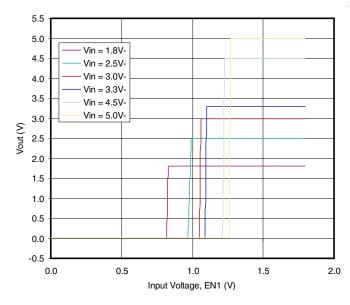



Figure 25. PSRR vs Frequency

Figure 26. V₊ PSRR vs Frequency

Figure 24. Output Spectral Noise Density vs Frequency



T_{fall} 70 60 trise /t_{all} (µs) $\begin{aligned} &C_L = 0.1 \; \mu F \\ &R_L = 330 \; \Omega \end{aligned}$ $I_{LOAD} = 10 \text{ mA}$ 30 20 T_{rise} 10 -50 -25 0 25 50 75 100 Temperature (°C)

Figure 27. t_{ON}/t_{OFF} vs Temperature

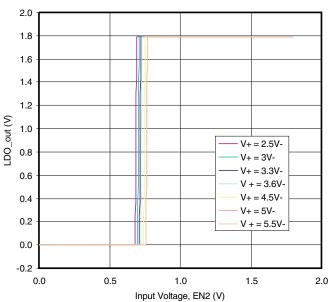


Figure 29. EN1 (Current Limiter) Input Thresholds, $V_{+} = 5.5 \text{ V}$

Figure 30. EN2 (LDO) Input Thresholds, $V_{\rm IN}$ = 3.3 V

- A. V_{DRV} signal forces the device to go into over-current mode
- B. V_{DRV} signal forces the device to go into over-current mode

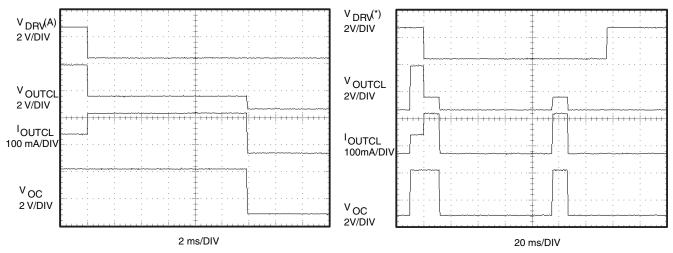
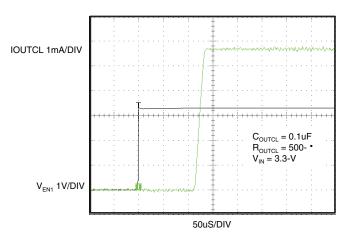
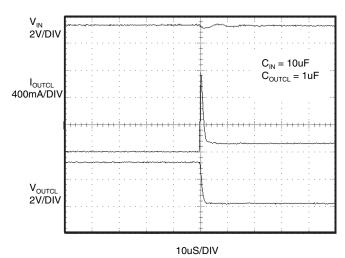



Figure 31. t_{BLANK} Response


Figure 32. t_{RESTART} Response

 $\begin{array}{c} C_{\text{OUTCL}} = 0.1 \text{uF} \\ R_{\text{OUTCL}} = 500 \cdot \Omega \\ V_{\text{IN}} = 3.3 \text{ V} \end{array}$

Figure 33. Current Limiter t_{ON} Response

Figure 34. Current Limiter t_{OFF} Response

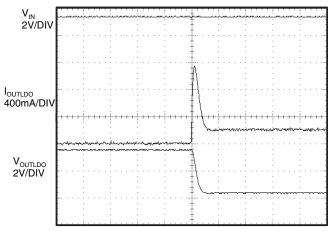
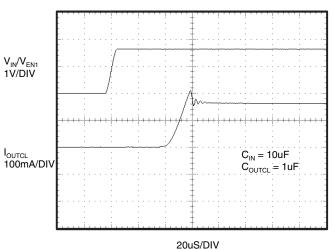



Figure 35. Short-Circuit Response Time (V_{OUTCL} Shorted to GND)

Figure 36. Short-Circuit Response Time (V_{OUTLDO} Shorted to GND)

10uS/DIV

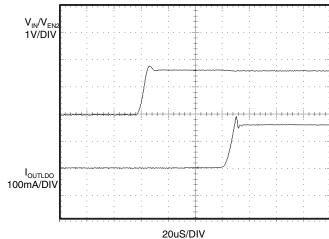
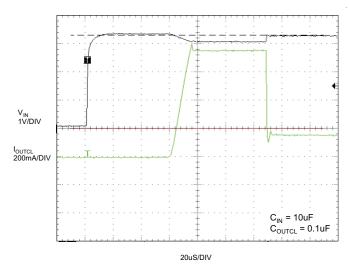



Figure 37. Short-Circuit Response Time (Switch Power-Up to Hard Short) (TPS22949)

Figure 38. Short-Circuit Response Time (LDO Power-Up to Hard Short) (TPS22949)

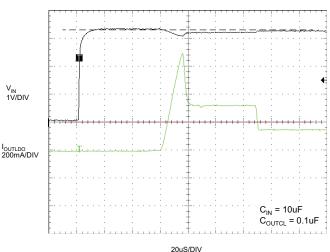


Figure 39. Short-Circuit Response Time (Switch Power-Up to Hard Short) (TPS22949A)

Figure 40. Short-Circuit Response Time (LDO Power-Up to Hard Short) (TPS22949A)

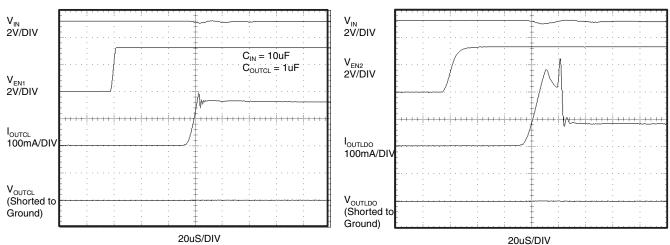


Figure 41. Current Limit Response Time (Current Limiter)

Figure 42. Current Limit Response Time (LDO)

APPLICATION INFORMATION

Undervoltage Lockout (UVLO)

The undervoltage lockout turns off the switch if the input voltage drops below the undervoltage lockout threshold. With the ON pin active, the input voltage rising above the undervoltage lockout threshold causes a controlled turn-on of the switch, which limits current over-shoots. The TPS22949/TPS22949A also has a UVLO on the V₊ bias voltage and keep the output of the LDO shut off until the internal circuitry is operating properly.

Fault Reporting

When an overcurrent, input undervoltage, or overtemperature condition is detected, OC is set active low to signal the fault mode. OC is an open-drain MOSFET and requires a pullup resistor between V_{IN} and OC. During shutdown, the pulldown on OC is disabled, reducing current draw from the supply.

Current Limiting

When the switch current reaches the maximum limit, the TPS22949/TPS22949A operates in a constant-current mode to prohibit excessive currents from causing damage. TPS22949/TPS22949A has a minimum current limit of 100 mA.

Input Voltage

The input voltage (V_{IN}) of the current limiter is set from 1.62 V to 4.5 V, however if both the current limiter and the LDO are enabled, the user must be careful to keep the input voltage (V_{IN}) greater than 1.8 V + (voltage drop through the switch) + (voltage drop through the LDO); otherwise, the LDO does not have a high enough internal input signal to operate properly.

A current limiter input voltage ramp time less than the blanking time (~10 ms typical) is recommended. If the ramp time extends beyond the blanking period, then the current limiter goes into recycle, and the system may not start or operate properly.

Input/Output Capacitors

Although an input capacitor is not required for stability of on the input pin (V_{IN}) , it is good analog design practice to connect a 0.1- μ F to 1- μ F low equivalent series resistance (ESR) capacitor across the IN pin input supply near the regulator. This capacitor counteracts reactive input sources and improves transient response, noise rejection, and ripple rejection. A higher value capacitor may be necessary if large, fast rise time load transients are anticipated, or if the device is located close to the power source. If source impedance is not sufficiently low, a 0.1- μ F input capacitor may be necessary to ensure stability. The V_+ bias pin does not require an input capacitor because it does not source high currents. However, if source impedance is not sufficiently low, a small 0.1- μ F bypass capacitor is recommended.

A 0.1- μ F capacitor C_{CL} , should be placed between V_{OUTCL} and GND. This capacitor prevents parasitic board inductances from forcing V_{OUTCL} below GND when the switch turns off. For the TPS22949, the total output capacitance must be kept below a maximum value, $C_{CL(max)}$, to prevent the part from registering an over-current condition and turning off the switch. The maximum output capacitance can be determined from the following formula:

$$C_{CL} = I_{LIM(MAX)} \times t_{BLANK(MIN)} \div V_{IN}$$

Due to the integral body diode in the PMOS switch, a C_{IN} greater than C_{CL} is highly recommended. A C_{CL} greater than C_{IN} can cause V_{OUTCL} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUTCL} to V_{IN} .

On TPS22949, a storage capacitor (C_{CL}) at the output of the current limiter is recommended to provide enough current to the LDO during the start-up sequence. The storage capacitor is needed to reduce the amount of inrush current supplied through the current-limited load switch to the LDO during the power-up sequence (see Figure 44). If the C_{CL} capacitor is too small, the inrush current needed to start the LDO and charge C_{LDO} could be interpreted by the current limiter as an over-current and, therefore, trigger the current-limiting feature of the switch. The switch would then try to limit the current to the 100-mA limit, and the user would see an undesired drop on the supply line (see Figure 45).

Submit Documentation Feedback

On TPS22949A, the storage capacitor (C_{CL}) is not required. TPS22949A integrates an additional internal circuitry that increases the current limit of the switch to approximately 750 mA (i.e $I_{LIM(INRUSH)}$) for about 250 μ s (i.e t_{INRUSH}), initiated when the internal circuitry of the LDO is operating properly (i.e., when the UVLO of the LDO bias (V_{+}) is disabled (V_{+} > 2.6 V). Because the current limit is increased during the power-up sequence, a potential inrush current through the LDO is not interpreted by the current limiter as an over-current. The current needed by the LDO is then be supplied by the input capacitor (C_{IN}) of the current limiter (see Figure 45).

The TPS22949 LDO (V_{OUTLDO}) is designed to be stable with standard ceramic capacitors with values of 2.2 µF or larger at the output. X5R- and X7R-type capacitors are best because they have minimal variation in value and ESR over temperature. Maximum ESR should be less than 250 m Ω . Figure 43, Figure 44, and Figure 45 illustrate the behavior of the TPS22949 and TPS22949A with a 100-mA sinking load and different capacitor values for a typical application where both enables are tied to the same input voltage (see Figure 43).

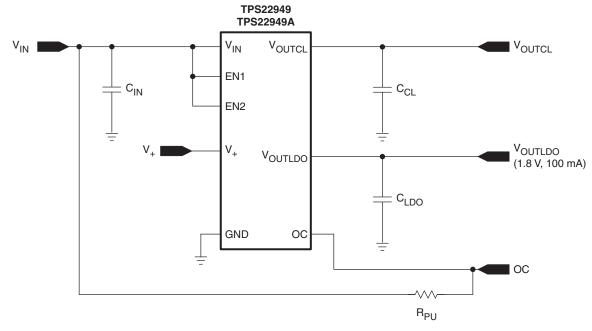


Figure 43. TPS22949/TPS22949A Typical Application With Both Enable Pins Tied to the Input Voltage

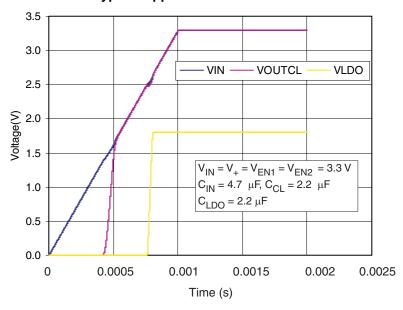


Figure 44. TPS22949 Power-Up Sequence

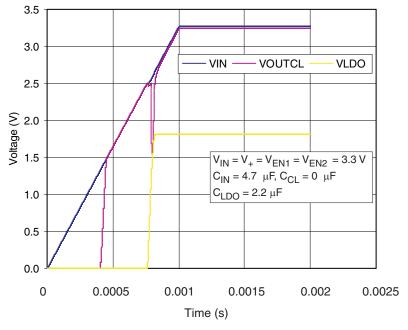


Figure 45. TPS22949 Power-Up Sequence

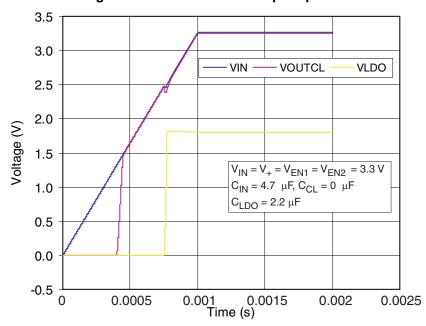


Figure 46. TPS22949A Power-Up Sequence

PACKAGE OPTION ADDENDUM

www.ti.com 5-Jan-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins F	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS22949ADRGR	ACTIVE	SON	DRG	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS22949AYZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS22949YZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

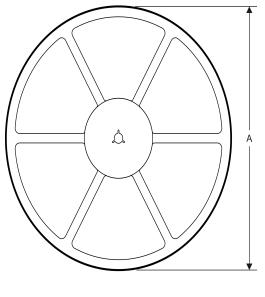
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

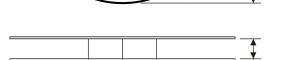
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

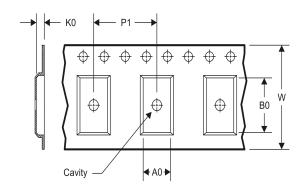
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

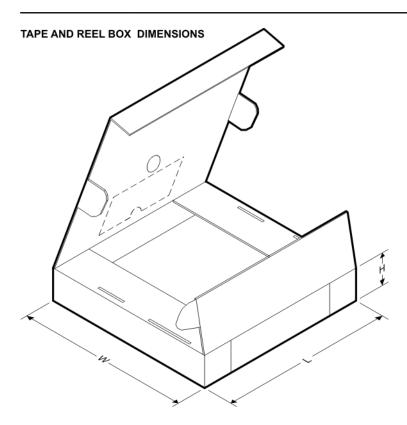
www.ti.com 14-Jul-2012


TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

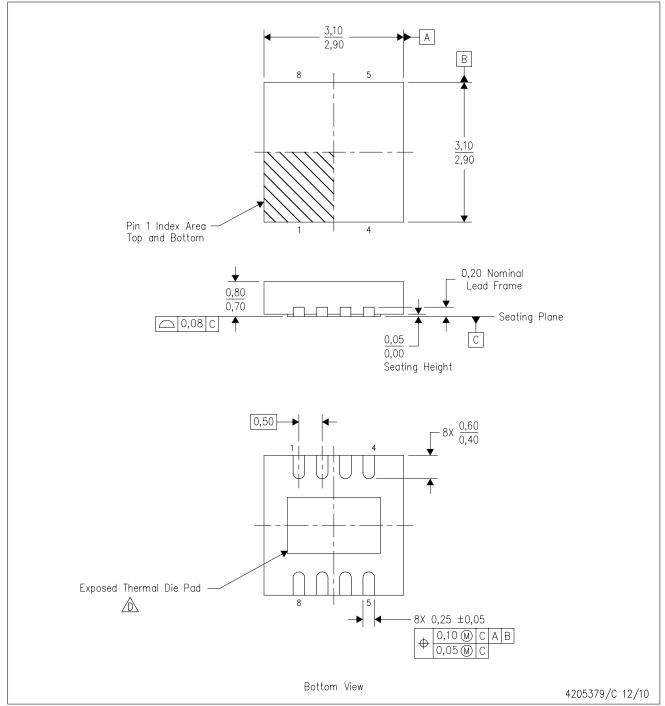

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22949ADRGR	SON	DRG	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS22949AYZPR	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1
TPS22949YZPR	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012



*All dimensions are nominal

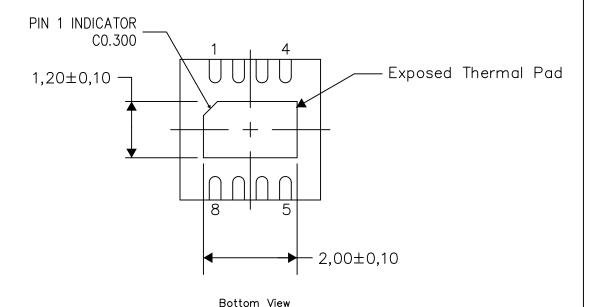
7 till difficienciale di c momina							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22949ADRGR	SON	DRG	8	3000	367.0	367.0	35.0
TPS22949AYZPR	DSBGA	YZP	8	3000	220.0	220.0	34.0
TPS22949YZPR	DSBGA	YZP	8	3000	220.0	220.0	34.0

DRG (S-PWSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
 - B. This drawing is subject to change without notice.
 - C. SON (Small Outline No-Lead) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
 - E. JEDEC MO-229 package registration pending.

DRG (S-PWSON-N8)

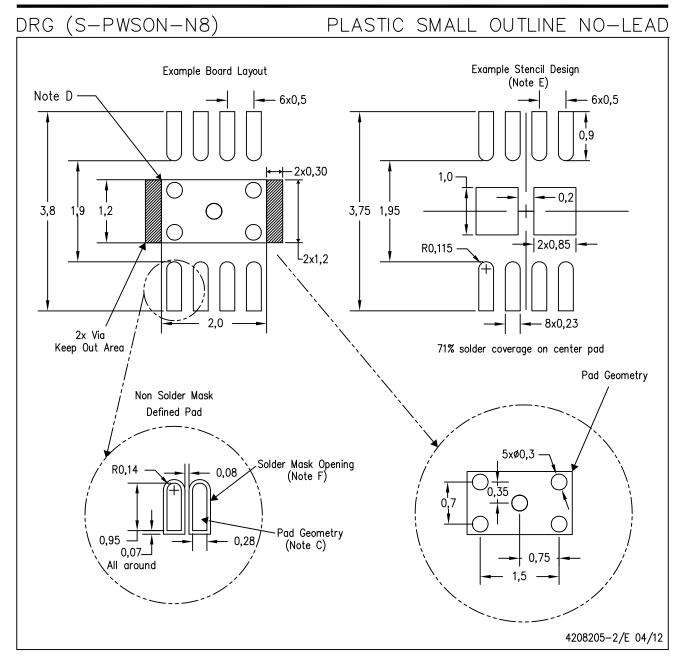

PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

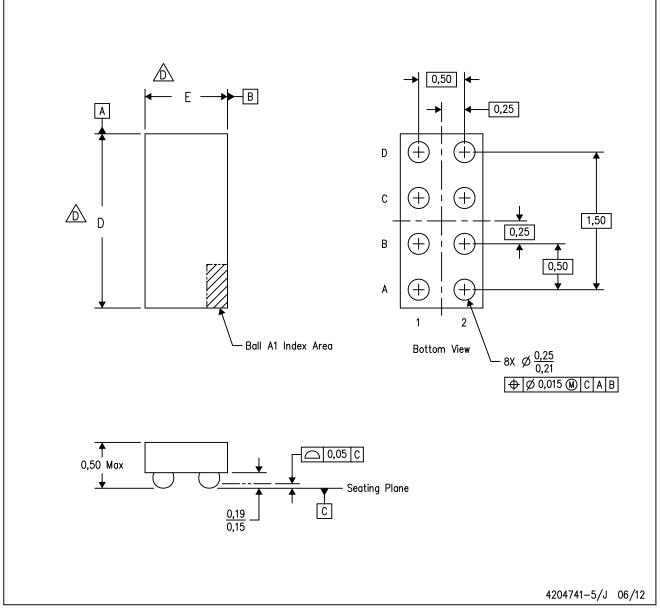
The exposed thermal pad dimensions for this package are shown in the following illustration.



Exposed Thermal Pad Dimensions

4206881-2/G 04/12

NOTE: All linear dimensions are in millimeters


NOTES: A. A

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-SM-782 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

YZP (R-XBGA-N8)

DIE-SIZE BALL GRID ARRAY

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- This drawing is subject to change without notice.
- Ç. NanoFree™ package configuration.
- ⚠ The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative. E. This package is a Pb—free solder ball design. Refer to the 8 YEP package (drawing 4204725) for tin—lead (SnPb).

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
udia	ununu ti com/ou dio	Automotive on

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti-rfid.com

Pr

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.