International

AUIRFL024N

Features

- Advanced Planar Technology
- Low On-Resistance
- Dynamic dV/dT Rating
- 150°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified*

Description

Specifically designed for Automotive applications, this cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

G	D	S
Gate	Drain	Source

Bees next number	Deckers Ture	Standard P	ack	Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
	COT 000	Tube	95	AUIRFL024N
AUIRFL024N	AUIRFL024N SOT-223		2500	AUIRFL024NTR

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ®	4.0	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V 3	2.8	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ⑤	uous Drain Current, V _{GS} @ 10V ^⑤ 2.3	
I _{DM}	Pulsed Drain Current ①	11.2	
P _D @T _A = 25°C	Power Dissipation (PCB Mount) 6	2.1	w
P _D @T _A = 25°C	Power Dissipation (PCB Mount) ^⑤	1.0	VV
	Linear Derating Factor (PCB Mount) 5	8.3	mW/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 2	214	mJ
I _{AR}	Avalanche Current ①	2.8	А
E _{AR}	Repetitive Avalanche Energy 05	0.1	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
ТJ	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		
Thermal Re	sistance		
-			6

	Parameter	Тур.	Max.	Units
R _{0JA}	Junction-to-Ambient (PCB mount, steady state) ^⑤	90	120	°C/W
R _{0JA}	Junction-to-Ambient (PCB mount, steady state) ®	50	60	

HEXFET[®] is a registered trademark of International Rectifier. *Qualification standards can be found at http://www.irf.com/

Static Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.056		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			75	mΩ	V _{GS} = 10V, I _D = 2.8A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
gfs	Forward Transconductance	3.0			S	$V_{DS} = 25V, I_D = 1.6A$
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 55V, V_{GS} = 0V$
				250		$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
D	Dynamia Electrical Oberratariatica $\otimes \mathbf{T} = 0\mathbf{E}^{\circ}\mathbf{O}$ (unloss otherwise encoding)					

Dynamic Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge			18.3		I _D = 1.68A
Q _{gs}	Gate-to-Source Charge			3.0	nC	$V_{DS} = 28V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			7.7		V_{GS} = 10V, See Fig. 6 and 9 \circledast
t _{d(on)}	Turn-On Delay Time		8.1			$V_{DD} = 28V$
t _r	Rise Time		13.4		ns	I _D = 1.68A
t _{d(off)}	Turn-Off Delay Time		22.2			$R_{G} = 24 \Omega$
t _f	Fall Time		17.7			$R_D = 17\Omega$, See Fig. 10 ④
C _{iss}	Input Capacitance		400			$V_{GS} = 0V$
C _{oss}	Output Capacitance		145		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		60			f = 1.0MHz, See Fig. 5

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			2.8		MOSFET symbol
	(Body Diode)				А	showing the
I _{SM}	Pulsed Source Current			11.2		integral reverse _G 🕌 🗍
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C, I_S = 1.68A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		35	53	ns	T _J = 25°C, I _F = 1.68A
Q _{rr}	Reverse Recovery Charge		50	75	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- \bigcirc V_{DD} = 25V, starting T_J = 25°C, L = 54.7mH R_G = 25 Ω , I_{AS} = 2.8A. (See Figure 12)
- 3 I_{SD} \leq 1.68A, di/dt \leq 155A/µs, $V_{DD} \leq V_{(BR)DSS},$ $T_{J} \leq$ 150°C .
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- S When mounted on FR-4 board using minimum recommended footprint.
- Image: When mounted on 1 inch square copper board, for comparison with other SMD devices.

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area

Fig 9a. Basic Gate Charge Waveform

Fig 9b. Gate Charge Test Circuit

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

SOT-223 (TO-261AA) Package Outline

Dimensions are shown in milimeters (inches)

SOT-223 (TO-261AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

SOT-223 (TO-261AA) Tape & Reel Information

Dimensions are shown in milimeters (inches)

4 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

			Automotive			
c		(per AEC-Q101) ^{††}				
		qualification.	This part number(s) passed Automotive IR's Industrial and Consumer qualification ed by extension of the higher Automotive			
Moisture Sensitivity Level		SOT-223	MSL1			
	Machine Model		Class M2 (+/- 150V) ^{†††}			
		AEC-Q101-002				
	Human Body Model		Class H1A (+/- 350V) ^{†††}			
ESD			AEC-Q101-001			
Charged Device Model		Class C5 (+/- 2000V) ^{†††}				
			AEC-Q101-005			
RoHS Compliant	RoHS Compliant Yes		Yes			

† Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/</u>

tt Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.

††† Highest passing voltage.

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center <u>http://www.irf.com/technical-info/</u>

WORLD HEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105

Revision History

Date	Comments	
3/26/2014	Updated part marking on page 7	
3/20/2014	 Updated data sheet with new IR corporate template 	

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.