Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED ### Typical Applications This HMC-APH460 is ideal for: - Point-to-Point Radios - · Point-to-Multi-Point Radios - VSAT - Military & Space #### **Features** Output IP3: +37 dBm P1dB: +28 dBm Gain: 14 dB Supply Voltage: +5V 50 Ohm Matched Input/Output Die Size: 3.10 x 1.26 x 0.1 mm ### **Functional Diagram** #### **General Description** The HMC-APH460 is a two stage GaAs HEMT MMIC 0.5 Watt Power Amplifier which operates between 27 and 31.5 GHz. The HMC-APH460 provides 14 dB of gain, and an output power of +28 dBm at 1 dB compression from a +5V supply voltage. All bond pads and the die backside are Ti/Au metallized and the amplifier device is fully passivated for reliable operation. The HMC-APH460 GaAs HEMT MMIC 0.5 Watt Power Amplifier is compatible with conventional die attach methods, as well as thermocompression and thermosonic wirebonding, making it ideal for MCM and hybrid microcircuit applications. All data Shown herein is measured with RF probes. # Electrical Specifications^[1], $T_A = +25^{\circ}$ C, Vdd1 = Vdd2 = 5V, Idd1 + Idd2 = 900 mA ^[2] | Parameter | Min. | Тур. | Max. | Units | |---|-----------|------|------|-------| | Frequency Range | 27 - 31.5 | | | GHz | | Gain | 12 | 14 | | dB | | Input Return Loss | | 7 | | dB | | Output Return Loss | | 10 | | dB | | Output power for 1dB Compression (P1dB) | | 28 | | dBm | | Output Third Order Intercept (IP3) | | 37 | | dBm | | Saturated Output Power (Psat) | | 30 | | dBm | | Supply Current (Idd1+Idd2) | | 900 | | mA | ^[1] Unless otherwise indicated, all measurements are from probed die ^[2] Adjust Vgg1=Vgg2 between -1V to +0.3V (typ -0.5V) to achieve Idd1 = 300 mA, Idd2 = 600 mA #### Linear Gain vs. Frequency #### Fixtured Pout vs. Frequency ### Input Return Loss vs. Frequency #### **Output Return Loss vs. Frequency** #### Wideband Linear Gain vs. Frequency ### **Absolute Maximum Ratings** | Drain Bias Voltage | +5.5 Vdc | | |---|--------------------|--| | Gate Bias Voltage | -1 to +0.3 Vdc | | | RF Input Power | 20 dBm | | | Thermal Resistance Channel to Die Bottom | 69.7 °C/W | | | Storage Temperature | -65 °C to + 150 °C | | | Die Bottom Temperature for MTTF of 10 ⁶ Hours | 33 °C * | | | Die Bottom Temperature for
MTTF of 10 ⁵ Hours | 63 °C * | | ^{*} Maximum junction temperature for die bottom at 85 °C is simulated to be 232 °C. MTTF in this condition is estimated # ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS ### **Outline Drawing** to be 5×10^4 hrs. # Die Packaging Information [1] | Standard | Alternate | |-----------------|-----------| | GP-2 (Gel Pack) | [2] | [1] Refer to the "Packaging Information" section for die packaging dimensions. [2] For alternate packaging information contact Hittite Microwave Corporation. #### NOTES - ALL DIMENSIONS ARE IN INCHES [MM]. - 2. TYPICAL BOND PAD IS .004" SQUARE. - 3. BACKSIDE METALLIZATION: GOLD. - 4. BACKSIDE METAL IS GROUND. - 5. BOND PAD METALLIZATION: GOLD. - 6. CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS. - 7. OVERALL DIE SIZE ±.002" ## **Pad Descriptions** | Pad Number | Function | Description | Interface Schematic | | |------------|------------|---|---------------------|--| | 1 | RFIN | This pad is AC coupled and matched to 50 Ohms. | RFIN O— — | | | 2 | RFOUT | This pad is AC coupled and matched to 50 Ohms. | — | | | 3 | Vdd1 | Power Supply Voltage for the amplifier. See assembly for required external components. | Vdd10 | | | 5 | Vdd2 | Power Supply Voltage for the amplifier. See assembly for required external components. | Vdd2 0 | | | 4, 6 | Vgg1, Vgg2 | Gate control for amplifier. Please follow "MMIC Amplifier Biasing Procedure" application note. See assembly for required external components. | Vgg1, | | | Die Bottom | GND | Die bottom must be connected to RF/DC ground. | ○ GND
= | | ### **Assembly Diagram** Note 1: Bypass caps should be 100 pF (approximately) ceramic (single-layer) placed no farther than 30 mils from the amplifier. Note 2: Best performance obtained from use of <10 mil (long) by 3 by 0.5mil ribbons on input and output. ### Mounting & Bonding Techniques for Millimeterwave GaAs MMICs The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note). 50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2). Microstrip substrates should be placed as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm to 0.152 mm (3 to 6 mils). #### **Handling Precautions** Follow these precautions to avoid permanent damage. **Storage:** All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. **Cleanliness:** Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems. **Static Sensitivity:** Follow ESD precautions to protect against ESD strikes. **Transients:** Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pickup. O.150mm (0.005") Thick Moly Tab 0.254mm (0.010" Thick Alumina Thin Film Substrate Figure 2. **General Handling:** Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip may have fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers. #### Mounting The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat. Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 °C and a tool temperature of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 °C. DO NOT expose the chip to a temperature greater than 320 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment. Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule. #### Wire Bonding RF bonds made with 0.003" x 0.0005" ribbon are recommended. These bonds should be thermosonically bonded with a force of 40-60 grams. DC bonds of 0.001" (0.025 mm) diameter, thermosonically bonded, are recommended. Ball bonds should be made with a force of 40-50 grams and wedge bonds at 18-22 grams. All bonds should be made with a nominal stage temperature of 150 °C. A minimum amount of ultrasonic energy should be applied to achieve reliable bonds. All bonds should be as short as possible, less than 12 mils (0.31 mm). 0.102mm (0.004") Thick GaAs MMIC 0.076mm (0.003") Ribbon Bond Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов; - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.