Discontinued Product

This device is no longer in production. The device should not be purchased for new design applications. Samples are no longer available.

Date of status change: October 31, 2011

Recommended Substitutions:

For existing customer transition, and for new customers or new applications, refer to the following parts:

- For the A1140ELHLT-T use the A1150LLHLX-T
- For the A1142ELHLT-T use the A1152LLHLX-T
- For the A1142LUA-T use the A1152LUA-T
- For the A1143EUA-T use the All53LUA-T
- For the A1143LUA-T use the All53LUA-T
- For the A1143ELHLT-T use the A1153LLHLX-T
- For the A1143LLHLT-T use the A1153LLHLX-T

NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

A1140, A1142, and A1143

Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Features and Benefits

- Chopper stabilization
- Low switchpoint drift over operating temperature range
- Low sensitivity to stress
- Factory programmed at end-of-line for optimized switchpoints
- On-chip protection
- Supply transient protection
- Reverse-battery protection
- On-board voltage regulator
- 3.5 to 24 V operation

Packages: 3 pin SOT23W (suffix LH), and 3 pin SIP (suffix UA)

Not to scale

Description

The A1140, A1142, and A1143 devices are sensitive, two-wire, unipolar, Hall effect switches that are factory-programmed at end-of-line to optimize magnetic switchpoint accuracy. These devices use a patented high frequency chopper-stabilization technique, produced using the Allegro advanced BiCMOS wafer fabrication process, to achieve magnetic stability and to eliminate offset inherent in single-element devices exposed to harsh application environments.

Commonly found in a number of automotive applications, these switches are utilized in sensing seat track position, seat belt buckle presence, hood/trunk latching, and shift selector position. Two-wire unipolar switches, such as the A1140/A1142/A1143 family, are particularly advantageous in price-sensitive applications because they require one less wire for operation than do switches with the more traditional opencollector output. Additionally, the system designer inherently gains diagnostics because there is always output current flowing, which should be in either of two narrow ranges. Any current level not within these ranges indicates a fault condition. The A1140/A1142/A1143 family of switches also features on-chip

Continued on the next page...

Functional Block Diagram

Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Description (continued)

transient protection and aZener clamp to protect against overvoltage conditions on the supply line.

The output currents of the A1143 switch HIGH in the presence of a south (+) polarity magnetic field of sufficient strength, and switch LOW otherwise, as in the presence of a weak field or a north (-) polarity field. The other two devices in the family (A1140 and A1142) have an opposite output: the currents switch LOW in the presence of a south-polarity magnetic field of sufficient strength,
and switch HIGH otherwise. The other differences in the switches are their defined low current levels and magnetic switchpoints.

All versions are offered in two package styles. The LH is a SOT23 W , miniature low-profile package for surface-mount applications. The UA is a three-lead ultramini SIP for through-hole mounting. Each package is available in a lead (Pb) free version (suffix, $-T$) with 100% matte tin plated leadframe. Field-programmable versions also available: A1180, A1182, and A1183.

Absolute Maximum Ratings

Characteristic	Symbol	Notes	Rating	Units
Supply Voltage	V_{CC}		28	V
Reverse Supply Voltage	$\mathrm{V}_{\mathrm{RCC}}$		-18	V
Magnetic Flux Density	B		Unlimited	G
Operating Ambient Temperature	T_{A}	Range E	-40 to 85	${ }^{\circ} \mathrm{C}$
		Range L	-40 to 150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}(\max)$		165	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-65 to 170	${ }^{\circ} \mathrm{C}$

Package LH, 3-pin SOT

Product Selection Guide

Part Number	Packing ${ }^{1}$	Package	Operating Ambient Temperature, T_{A} (${ }^{\circ} \mathrm{C}$)	Output Level in South (+) Field ${ }^{2}$	Supply Current at Low Output, $\mathrm{I}_{\mathrm{CC}(\mathrm{L})}$ (mA)
A1140ELHLT-T ${ }^{3,4}$	Tape and Reel, 3000 pieces/reel	Surface Mount	-40 to 85	Low	2 to 5
A1142ELHLT-T ${ }^{5}$	Tape and Reel, 3000 pieces/reel	Surface Mount	-40 to 85	Low	5 to 6.9
A1142LUA-T5	Bulk Bag, 500 pieces/bag	Through Hole	-40 to 150		
A1143ELHLT-T ${ }^{5}$	Tape and Reel, 3000 pieces/reel	Surface Mount	-40 to 85	High	
A1143EUA-T5	Bulk Bag, 500 pieces/bag	Through Hole			
A1143LLHLT-T5	Tape and Reel, 3000 pieces/reel	Surface Mount	-40 to 150		
A1143LUA-T5	Bulk Bag, 500 pieces/bag	Through Hole			

${ }^{1}$ Contact Allegro for additional packing options.
${ }^{2}$ South (+) magnetic fields must be of sufficient strength.
${ }^{3}$ This device is available only in limited distribution. Interested customers should contact the appropriate sales person or field application engineer for more information on availability.
${ }^{4}$ Variant is in production but has been determined to be NOT FOR NEW DESIGN. This classification indicates that sale of the variant is currently restricted to existing customer applications. The variant should not be purchased for new design applications because obsolescence in the near future is probable. Samples are no longer available. Status change: January 31, 2011.
${ }^{5}$ These variants are in production, however, they have been deemed Pre-End of Life. The products are approaching end of life. Within a minimum of 6 months, the devices will enter their final, Last Time Buy, order phase. Suggested replacements: for the A1142ELHLT-T use the A1152LLHLX-T, for the A1143ELHLT-T and the A1143LLHLT-T use the A1153LLHLX-T. Status change: January 31, 2011. Suggested replacements: for the A1142LUA-T use the A1152LUA-T, for the A1143EUA-T and the A1143LUA-T use the A1153LUA-T. Status change: March 8, 2011.

Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

ELECTRICAL CHARACTERISTICS over the operating voltage and temperature ranges, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Supply Voltage ${ }^{1}$	V_{CC}		3.5	-	24	V
Supply Current ${ }^{2}$	$\mathrm{I}_{\mathrm{CC}(\mathrm{L})}$	$B>B_{O P}$ for A 1140	2	-	5	mA
		$B>B_{O P}$ for A1142; $\ll B_{R P}$ for A1143	5	--	6.9	mA
	$\mathrm{I}_{\mathrm{CC}(\mathrm{H})}$	$\begin{aligned} & B>B_{O P} \text { for } A 1143 \\ & B<B_{R P} \text { for } A 1140, A 1142 \end{aligned}$	12	--	17	mA
Reverse Supply Current	$\mathrm{I}_{\mathrm{RCC}}$	$\mathrm{V}_{\mathrm{RCC}}=-18 \mathrm{~V}$	-	-	-1.6	mA
Supply Zener Clamp Voltage	$\mathrm{V}_{\text {ZSUPPLY }}$	$\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}(\mathrm{L})(\max)}+3 \mathrm{~mA} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	28	-	40	V
Supply Zener Clamp Current	İSUPPLY	$V_{\text {ZSUPPLY }}=28 \mathrm{~V}$	-	-	$\begin{aligned} & I_{\mathrm{CC}(\mathrm{~L})(\max)} \\ & +3 \mathrm{~mA} \end{aligned}$	mA
Output Slew Rate ${ }^{3}$	di/dt	Capacitance of the oscilloscope performing the measurement $=20 \mathrm{pF}$	-	36	-	$\mathrm{mA} / \mathrm{\mu s}$
Chopping Frequency	f_{C}		-	200	-	kHz
Power-On Time ${ }^{3}$	$\mathrm{t}_{\text {on }}$	$\mathrm{C}_{\text {BYPASS }}=0.01 \mu \mathrm{~F}$	-	-	25	$\mu \mathrm{s}$
Power-On State ${ }^{\text {5,6 }}$	POS	t < $\mathrm{t}_{\mathrm{on}} ; \mathrm{V}_{\text {CC }}$ slew rate $>25 \mathrm{mV} / \mu \mathrm{s}$	-	HIGH	-	-

${ }^{1} V_{C C}$ represents the generated voltage between the VCC pin and the GND pin.
${ }^{2}$ Relative values of B use the algebraic convention, where positive values indicate south magnetic polarity, and negative values indicate north magnetic polarity; therefore greater B values indicate a stronger south polarity field (or a weaker north polarity field, if present).
${ }^{3}$ Measured without bypass capacitor between VCC and GND. Use of a bypass capacitor results in slower current change.
${ }^{3}$ Measured with and without bypass capacitor of 0.01μ F. Adding a larger bypass capacitor causes longer Power-On Time.
${ }^{5}$ POS is defined as true only with a $V_{C C}$ slew rate of $25 \mathrm{mV} / \mu \mathrm{s}$ or greater. Operation with a V_{CC} slew rate less than $25 \mathrm{mV} / \mu \mathrm{s}$ can permanently harm device performance.
${ }^{6} \mathrm{POS}$ is undefined for $\mathrm{t}>\mathrm{t}_{\text {on }}$ or $\mathrm{B}_{\mathrm{RP}}<\mathrm{B}<\mathrm{B}_{\mathrm{OP}}$.

MAGNETIC CHARACTERISTICS over the operating voltage and temperature ranges, unless otherwise specified

Characteristic	Symbol	Test Conditions		Min.	Typ.*	Max.	Units
Operate Point	B_{OP}	A1140, A1142	$\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}(\mathrm{L})}$	50	80	110	G
		A1143	$\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}(\mathrm{H})}$				
Release Point	B_{RP}	A1140, A1142	$\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}(\mathrm{H})}$	45	65	105	G
		A1143	$\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CC}(\mathrm{L})}$				
Hysteresis	$\mathrm{B}_{\mathrm{HYS}}$	$\mathrm{B}_{\mathrm{HYS}}=\mathrm{B}_{\mathrm{OP}}-\mathrm{B}_{\mathrm{RP}}$		5	15	30	G

[^0]
Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Characteristic Data

Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

THERMAL CHARACTERISTICS may require derating at maximum conditions, see application information

Characteristic	Symbol	Test Conditions*	Value	Units
Package Thermal Resistance	$\mathrm{R}_{\theta \mathrm{JA}}$	Package LH, 1-layer PCB with copper limited to solder pads	228	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Package LH, 2-layer PCB with 0.463 in. ${ }^{2}$ of copper area each side connected by thermal vias	110	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		165	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

*Additional thermal information available on Allegro Web site.

Power Dissipation versus Ambient Temperature

Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Functional Description

Operation

The output, I_{CC}, of the A1140 and A1142 devices switch low after the magnetic field at the Hall element exceeds the operate point threshold, B_{OP}. When the magnetic field is reduced to below the release point threshold, B_{RP}, the device output goes high. The differences between the magnetic operate and release point is called the hysteresis of the device, $\mathrm{B}_{\mathrm{HYS}}$. This built-in
hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise. The A1143 device switches with opposite polarity for similar B_{OP} and B_{RP} values, in comparison to the A1140 and A1142 (see figure 1).

Figure 1. Alternative switching behaviors are available in the A114x device family. On the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength, and the B- direction indicates decreasing south polarity field strength (including the case of increasing north polarity).

Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Chopper Stabilization Technique

When using Hall-effect technology, a limiting factor for switchpoint accuracy is the small signal voltage developed across the Hall element. This voltage is disproportionally small relative to the offset that can be produced at the output of the Hall element. This makes it difficult to process the signal while maintaining an accurate, reliable output over the specified operating temperature and voltage ranges.

Chopper stabilization is a unique approach used to minimize Hall offset on the chip. The patented Allegro technique, namely Dynamic Quadrature Offset Cancellation, removes key sources of the output drift induced by thermal and mechanical stresses. This offset reduction technique is based on a signal modulationdemodulation process. The undesired offset signal is separated from the magnetic field-induced signal in the frequency domain, through modulation. The subsequent demodulation acts as a modulation process for the offset, causing the magnetic fieldinduced signal to recover its original spectrum at baseband, while the DC offset becomes a high-frequency signal. The magneticsourced signal then can pass through a low-pass filter, while the modulated DC offset is suppressed. This configuration is illustrated in figure 2.

Abstract

The chopper stabilization technique uses a 200 kHz high frequency clock. For demodulation process, a sample and hold technique is used, where the sampling is performed at twice the chopper frequency (400 kHz). This high-frequency operation allows a greater sampling rate, which results in higher accuracy and faster signal-processing capability. This approach desensitizes the chip to the effects of thermal and mechanical stresses, and produces devices that have extremely stable quiescent Hall output voltages and precise recoverability after temperature cycling. This technique is made possible through the use of a BiCMOS process, which allows the use of low-offset, low-noise amplifiers in combination with high-density logic integration and sample-and-hold circuits.

The repeatability of magnetic field-induced switching is affected slightly by a chopper technique. However, the Allegro highfrequency chopping approach minimizes the affect of jitter and makes it imperceptible in most applications. Applications that are more likely to be sensitive to such degradation are those requiring precise sensing of alternating magnetic fields; for example, speed sensing of ring-magnet targets. For such applications, Allegro recommends its digital device families with lower sensitivity to jitter. For more information on those devices, contact your Allegro sales representative.

Figure 2. Chopper stabilization circuit (Dynamic Quadrature Offset Cancellation)

Application Information

Typical Application Circuit

The A114x family of devices must be protected by an external bypass capacitor, $\mathrm{C}_{\mathrm{BYP}}$, connected between the supply, VCC, and the ground, GND, of the device. $\mathrm{C}_{\mathrm{BYP}}$ reduces both external noise and the noise generated by the chopper-stabilization function. As shown in figure 3, a $0.01 \mu \mathrm{~F}$ capacitor is typical.

Installation of $\mathrm{C}_{\text {BYP }}$ must ensure that the traces that connect it to the A114x pins are no greater than 5 mm in length.

All high-frequency interferences conducted along the supply lines are passed directly to the load through $\mathrm{C}_{\mathrm{BYP}}$, and it serves only to protect the A114x internal circuitry. As a result, the load ECU (electronic control unit) must have sufficient protection, other than $\mathrm{C}_{\mathrm{BYP}}$, installed in parallel with the A 114 x .
A series resistor on the supply side, RS (not shown), in combination with $\mathrm{C}_{\mathrm{BYP}}$, creates a filter for EMI pulses.
When determining the minimum V_{CC} requirement of the A 114 x device, the voltage drops across R_{S} and the ECU sense resistor, $\mathrm{R}_{\text {SENSE }}$, must be taken into consideration. The typical value for $\mathrm{R}_{\text {SENSE }}$ is approximately 100Ω.

Figure 3. Typical application circuit

Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Power Derating

The device must be operated below the maximum junction temperature of the device, $\mathrm{T}_{\mathrm{J}(\max)}$. Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating T_{J}. (Thermal data is also available on the Allegro MicroSystems Web site.)

The Package Thermal Resistance, $R_{\theta J A}$, is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the Effective Thermal Conductivity, K , of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, $\mathrm{R}_{\theta \mathrm{JC}}$, is relatively small component of $R_{\theta J A}$. Ambient air temperature, T_{A}, and air motion are significant external factors, damped by overmolding.
The effect of varying power levels (Power Dissipation, P_{D}), can be estimated. The following formulas represent the fundamental relationships used to estimate T_{J}, at P_{D}.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{D}}=\mathrm{V}_{\mathrm{IN}} \times \mathrm{I}_{\mathrm{IN}} \tag{1}
\end{equation*}
$$

$$
\Delta \mathrm{T}=\mathrm{P}_{\mathrm{D}} \times \mathrm{R}_{\theta \mathrm{JJ}}
$$

$$
\begin{equation*}
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\Delta \mathrm{T} \tag{3}
\end{equation*}
$$

For example, given common conditions such as: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=4 \mathrm{~mA}$, and $\mathrm{R}_{\theta \mathrm{JA}}=140^{\circ} \mathrm{C} / \mathrm{W}$, then:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=\mathrm{V}_{\mathrm{CC}} \times \mathrm{I}_{\mathrm{CC}}=12 \mathrm{~V} \times 4 \mathrm{~mA}=48 \mathrm{~mW} \\
& \Delta \mathrm{~T}=\mathrm{P}_{\mathrm{D}} \times \mathrm{R}_{\theta \mathrm{JA}}=48 \mathrm{~mW} \times 140^{\circ} \mathrm{C} / \mathrm{W}=7^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\Delta \mathrm{T}=25^{\circ} \mathrm{C}+7^{\circ} \mathrm{C}=32^{\circ} \mathrm{C}
\end{aligned}
$$

A worst-case estimate, $\mathrm{P}_{\mathrm{D}(\max)}$, represents the maximum allowable power level $\left(\mathrm{V}_{\mathrm{CC}(\max)}, \mathrm{I}_{\mathrm{CC}(\max)}\right)$, without exceeding $\mathrm{T}_{\mathrm{J}(\max)}$, at a selected $R_{\theta J A}$ and T_{A}.

Example: Reliability for V_{CC} at $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$, package UA, using minimum-K PCB.

Observe the worst-case ratings for the device, specifically:
$\mathrm{R}_{\theta \mathrm{JA}}=165^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{T}_{\mathrm{J}(\max)}=165^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}(\max)}=24 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{CC}(\max)}=17 \mathrm{~mA}$.
Calculate the maximum allowable power level, $\mathrm{P}_{\mathrm{D}(\max)}$. First, invert equation 3:

$$
\Delta \mathrm{T}_{\max }=\mathrm{T}_{\mathrm{J}(\max)}-\mathrm{T}_{\mathrm{A}}=165^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}=15^{\circ} \mathrm{C}
$$

This provides the allowable increase to T_{J} resulting from internal power dissipation. Then, invert equation 2 :

$$
\mathrm{P}_{\mathrm{D}(\max)}=\Delta \mathrm{T}_{\max } \div \mathrm{R}_{\theta \mathrm{JA}}=15^{\circ} \mathrm{C} \div 165^{\circ} \mathrm{C} / \mathrm{W}=91 \mathrm{~mW}
$$

Finally, invert equation 1 with respect to voltage:

$$
\mathrm{V}_{\mathrm{CC}(\mathrm{est})}=\mathrm{P}_{\mathrm{D}(\max)} \div \mathrm{I}_{\mathrm{CC}(\max)}=91 \mathrm{~mW} \div 17 \mathrm{~mA}=5 \mathrm{~V}
$$

The result indicates that, at T_{A}, the application and device can dissipate adequate amounts of heat at voltages $\leq \mathrm{V}_{\mathrm{CC}(\mathrm{est})}$.
Compare $\mathrm{V}_{\mathrm{CC}(\text { est) }}$ to $\mathrm{V}_{\mathrm{CC}(\max)}$. If $\mathrm{V}_{\mathrm{CC}(\text { (est })} \leq \mathrm{V}_{\mathrm{CC}(\max)}$, then reliable operation between $\mathrm{V}_{\mathrm{CC}(\text { est })}$ and $\mathrm{V}_{\mathrm{CC}(\max)}$ requires enhanced $R_{\text {日JA }}$. If $V_{C C(e s t)} \geq V_{C C(\max)}$, then operation between $V_{C C(e s t)}$ and $\mathrm{V}_{\mathrm{CC}(\max)}$ is reliable under these conditions.

Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Device Qualification Program
Contact Allegro for information.

EMC (Electromagnetic Compatibility) Requirements

Contact your local representative for EMC results.

Test Name	Reference Specification
ESD - Human Body Model	AEC-Q100-002
ESD - Machine Model	AEC-Q100-003
Conducted Transients	ISO 7637-2
Direct RF Injection	ISO 11452-7
Bulk Current Injection	ISO 11452-4
TEM Cell	ISO 11452-3

Package LH, 3-Pin; (SOT-23W)

B PCB Layout Reference View

For Reference Only; not for tooling use (reference dwg. 802840) Dimensions in millimeters
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown
A Active Area Depth, 0.28 mm REF
B Reference land pattern layout
All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary
to meet application process requirements and PCB layout tolerances
C. Branding scale and appearance at supplier discretion
(1) Hall lement, otto scale

Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Package UA, 3-Pin SIP

Sensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

Revision History

Revision	Revision Date	Description of Revision
Rev. 17	March 8, 2011	Change in product availability

Copyright ©2004-2010, Allegro MicroSystems, Inc.
Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.
Allegro's products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website:
www.allegromicro.com

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

[^0]: ${ }^{*}$ Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions, such as $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$. Performance may vary for individual units, within the specified maximum and minimum limits.

