

GaAs MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Typical Applications

The HMC966LP4E is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- Military Radar, EW & ELINT
- Satellite Communications

Features

Conversion Gain: 14 dB Image Rejection: 40 dBc 2 LO to RF Isolation: 40 dB

Noise Figure: 2.5 dB Input IP3: 0 dBm

24 Lead 4X4 mm SMT Package: 16mm²

General Description

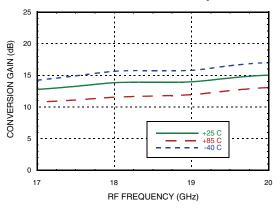
The HMC966LP4E is a compact GaAs MMIC I/Q downconverter in a leadless RoHS compliant SMT package. This device provides a small signal conversion gain of 14 dB with a noise figure of 2.5 dB and 40 dBc of image rejection across the frequency band. The HMC966LP4E utilizes an LNA followed by an image reject mixer which is driven by an active x2 multiplier. The image reject mixer eliminates the need for a filter following the LNA, and removes thermal noise at the image frequency. I and Q mixer outputs are provided and an external 90° hybrid is needed to select the required sideband. The HMC966LP4E is a much smaller alternative to hybrid style image reject mixer downconverter assemblies, and is compatible with surface mount manufacturing techniques.

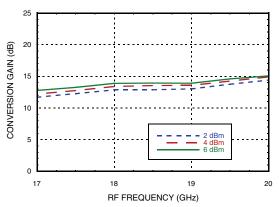
Electrical Specifications, $T_A = +25$ °C, IF = 1000 MHz, LO = +6 dBm, Vdd = 3.5 Vdc LSB [1]

Parameter	Min.	Тур.	Max.	Units
Frequency Range, RF	17 - 20			GHz
Frequency Range, LO	7.5 - 11.75			GHz
Frequency Range, IF	DC - 3.5			GHz
Conversion Gain (As IRM)	10	14		dB
Noise Figure		2.5	3.5	dB
Image Rejection	15	40		dBc
1 dB Compression (Input)		-9		dBm
2 LO to RF Isolation	38	47		dB
2 LO to IF Isolation	9	14		dB
IP3 (Input)	-2	0		dBm
Amplitude Balance [2]		0.5		dB
Phase Balance [2]		17		deg
Total Supply Current		160	200	mA

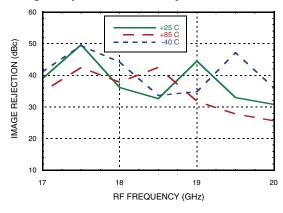
^[1] Data taken as IRM with external IF 90° Hybrid

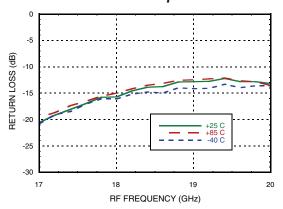
^[2] Data taken without external 90° hybrid, IF = 1000 MHz

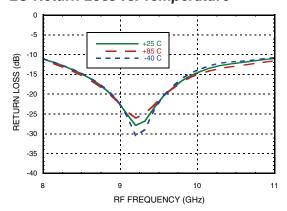


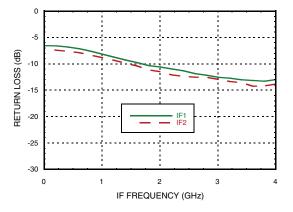

GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Data Taken As IRM With External IF 90° Hybrid, IF = 1000 MHz


Conversion Gain LSB vs. Temperature


Conversion Gain LSB vs. LO Drive

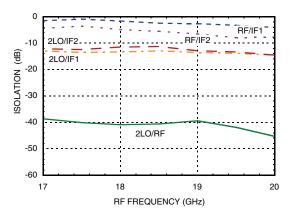

Image Rejection vs. Temperature


RF Return Loss vs. Temperature

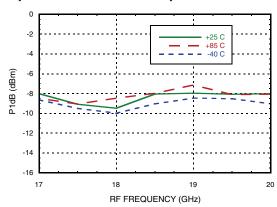
LO Return Loss vs. Temperature

IF Return Loss [1]

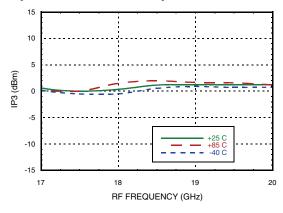
[1] Data taken without external 90° hybrid.

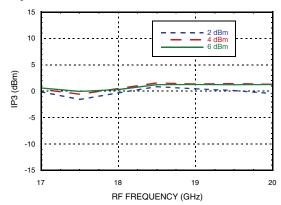

DEVICES

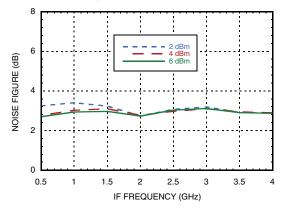
v04.0817

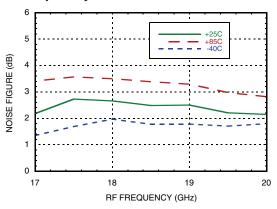

GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 1000 MHz


Isolations


Input P1dB LSB vs. Temperature

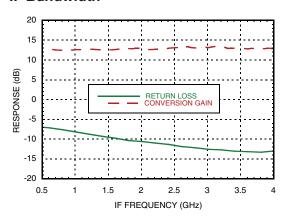

Input IP3, LSB vs. Temperature

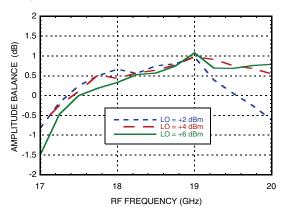

Input IP3, LSB vs. LO Drive

Noise Figure vs. LO Drive, LO Frequency = 8.25 GHz

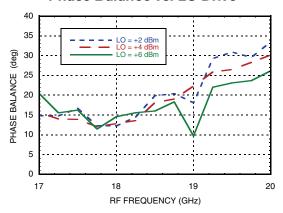
Noise Figure vs. Temperature, IF Frequency = 1000 MHz

MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMI




GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Quadrature Channel Data Taken Without IF 90° Hybrid, IF = 1000 MHz

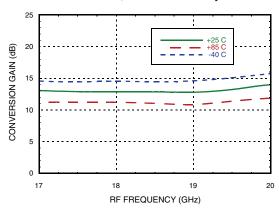

IF Bandwidth [1]

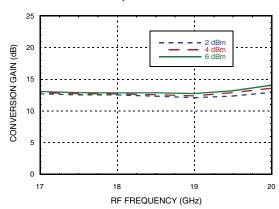
Amplitude Balance vs. LO Drive [2]

Phase Balance vs. LO Drive [2]

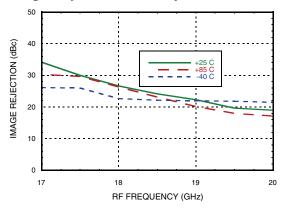
^[1] Data taken with LO frequency fixed at 6.5 GHz and RF varied.

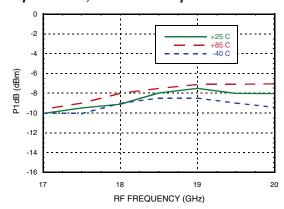
^[2] Data taken with IF = 1000 MHz

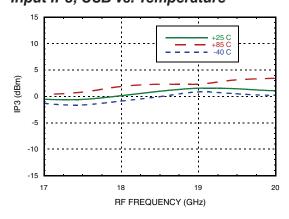


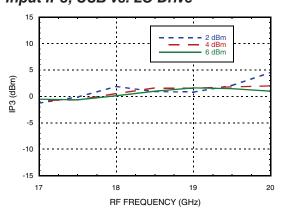

GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 1000 MHz


Conversion Gain, USB vs. Temperature

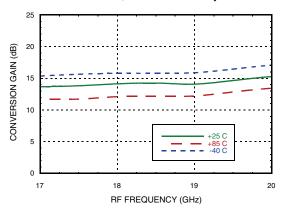

Conversion Gain, USB vs. LO Drive

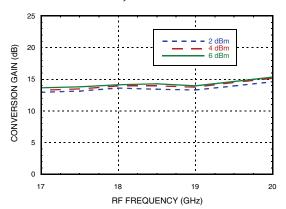

Image Rejection vs. Temperature


Input P1dB, USB vs. Temperature

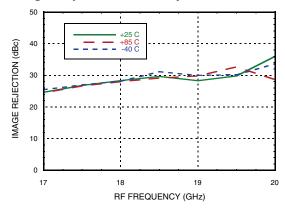
Input IP3, USB vs. Temperature

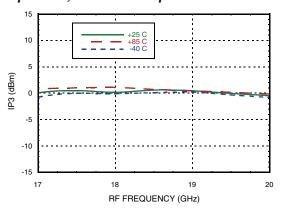
Input IP3, USB vs. LO Drive

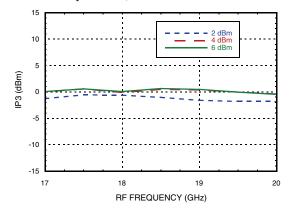



GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 2000 MHz

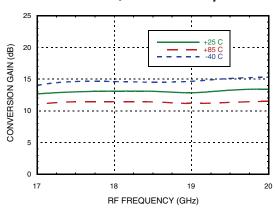

Conversion Gain, LSB vs. Temperature

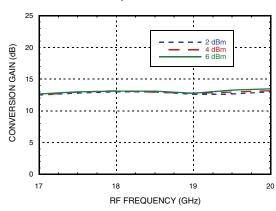

Conversion Gain, LSB vs. LO Drive


Image Rejection vs. Temperature

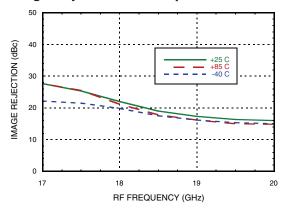
Input IP3, LSB vs. Temperature

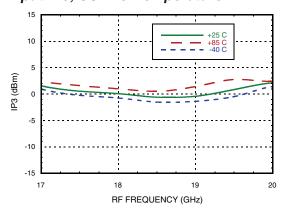
Input IP3, LSB vs. LO Drive

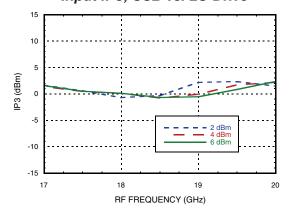



GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 2000 MHz

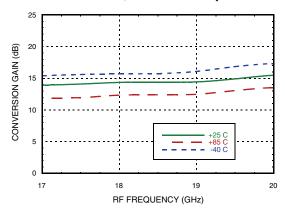

Conversion Gain, USB vs. Temperature

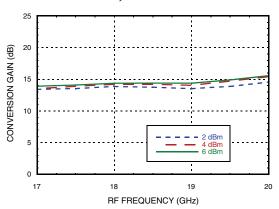

Conversion Gain, USB vs. LO Drive


Image Rejection vs. Temperature

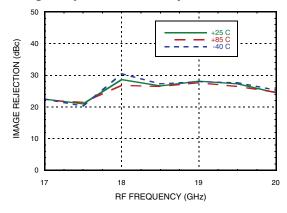
Input IP3, USB vs. Temperature

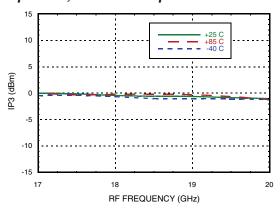
Input IP3, USB vs. LO Drive

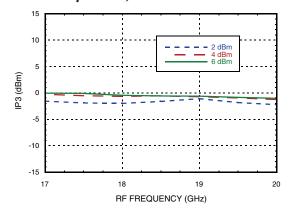



GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 3300 MHz

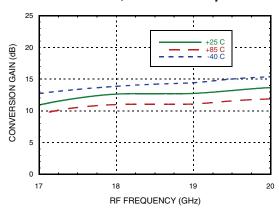

Conversion Gain, LSB vs. Temperature

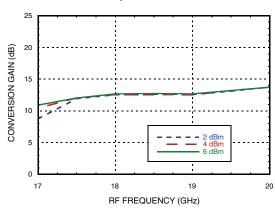

Conversion Gain, LSB vs. LO Drive


Image Rejection vs. Temperature

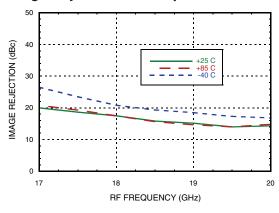
Input IP3, LSB vs. Temperature

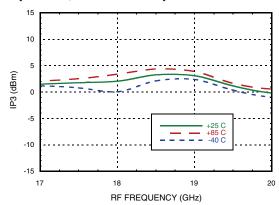
Input IP3, LSB vs. LO Drive

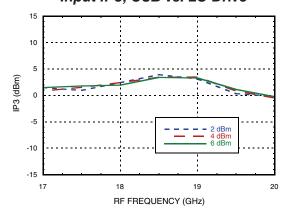



GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 3300 MHz


Conversion Gain, USB vs. Temperature


Conversion Gain, USB vs. LO Drive


Image Rejection vs. Temperature

Input IP3, USB vs. Temperature

Input IP3, USB vs. LO Drive

GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	х	-12.5	4.6	-18.7	-26.0
1	-10.7	-16.3	0	-16.7	-16
2	-53.4	-67.7	-42.1	-41.5	-39.9
3	х	-99.2	-82.9	-81.8	-73
4	х	х	х	-104.5	-99.1

RF = 18 GHz @ -20 dBm

LO = 8.5 GHz @ +4 dBm

Data taken without IF hybrid

All values in dBc below IF power level (1RF -2LO = 1 GHz)

Absolute Maximum Ratings

RF	+10 dBm
LO Drive	+10 dBm
Vdd	4V
Channel Temperature	175 °C
Continuous Pdiss (T=85°C) (derate 16.4 mW/°C above 85°C)	1.48 W
Thermal Resistance (R _{TH}) (channel to package bottom)	60.7 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
ESD Sensitivity (HBM)	Class 0

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Outline Drawing

BOTTOM VIEW .016 [0.40] REF .012 [0.30] .007 [0.18] .008 [0.20] MIN PIN 1 H966 XXXX 6 13 EXPOSED LOT NUMBER **GROUND PADDLE** SQUARE

SEATING

PLANE

-C-

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15 mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05 mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

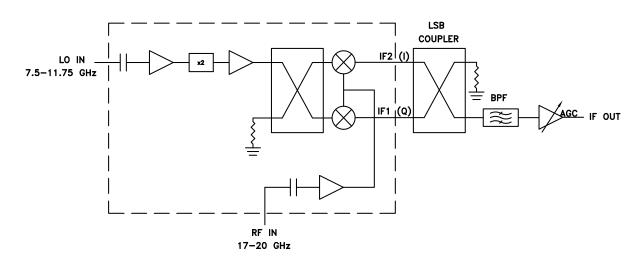
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC966LP4E RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 ^[2]	<u>H966</u> XXXX

^{[1] 4-}Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

☐ [.003[0.08] | C

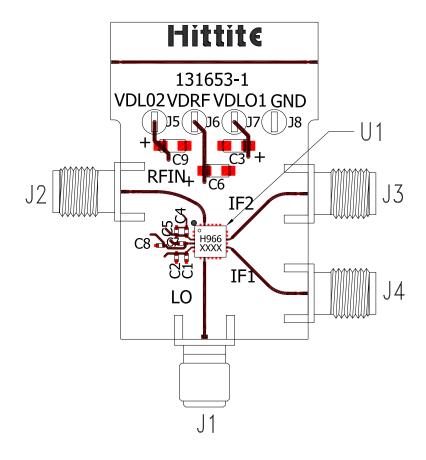


GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 6, 7, 10 - 12, 15, 18 - 22	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
3	VDRF	Power supply for RF LNA.	
4	VDLO2	Power supply for second stage of LO amplifier.	VDLO2 ○ =
5	VDLO1	Power supply for first stage of LO amplifier.	VDL010
8	LO	This pin is AC coupled and matched to 50 Ohms.	LO 0
9, 13, 17, 24	GND	These pins and the exposed ground paddle must be connected to RF/DC ground.	○ GND —
16	IF2	This pin is DC coupled. For applications not requiring operation to DC this port should be DC blocked externally using a series capacitor whose value has	IF1,IF2 O
14	IF1	been chosen to pass the necessary frequency range. For operation to DC, this pin must not sink / source more than 3 mA of current or part non-function and possible failure will result.	
23	RF	This pin is AC coupled and matched to 50 Ohms	RF ○──

Typical Application Circuit



GAAS MMIC I/Q DOWNCONVERTER 17 - 20 GHz

Evaluation PCB

List of Materials for Evaluation PCB 131656 [1]

Item	Description
J1	PCB Mount SMA RF Connector, SRI
J2, J3	PCB Mount K Connector, SRI
J5 - J8	DC Pin
C1, C4, C7	100 pF Capacitor, 0402 Pkg.
C2, C5, C8	10 nF Capacitor, 0402 Pkg.
C3, C6, C9	4.7 μF Capacitor, Case A Pkg.
U1	HMC966LP4E
PCB [2]	161653 Evaluation Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.