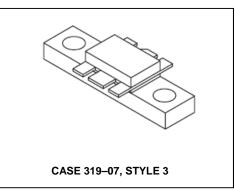
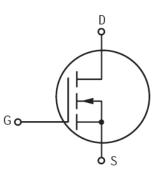
The RF MOSFET Line 20W, 500MHz, 28V


M/A-COM Products Released - Rev. 07.07


Designed primarily for wideband large-signal output and driver from 30-500MHz.

N-Channel enhancement mode MOSFET

- MRF166C Guaranteed performance at 500 MHz, 28 Vdc Output power = 20 W Gain = 13.5 dB Efficiency = 50%
- Replacement for industry standards such as MRF136, V2820, BLF244, SD1902, and ST1001
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Facilitates manual gain control, ALC and modulation techniques
- Excellent thermal stability, ideally suited for Class A operation
- Low Crss 4.0 pF @ VDS = 28 V

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Drain–Gate Voltage	V _{DSS}	65	Vdc	
Drain–Gate Voltage (R _{GS} = 1.0 MΩ)	VDGR	65	Vdc	
Gate-Source Voltage	V _{GS}	±20	Adc	
Drain Current — Continuous	۱D	4.0	Adc	
Total Device Dissipation @ T _C = 25°C Derate Above 25°C	PD	70 0.4	Watts W/∘C	
Storage Temperature Range	T _{stg}	-65 to 150	°C	
Operating Junction Temperature	TJ	200	°C	

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case	R _{θJC}	2.5	°C/W

NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

- 1
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 ٠
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

The RF MOSFET Line 20W, 500MHz, 28V

MACCM Technology Solutions

M/A-COM Products

Released - Rev. 07.07

ELECTRICAL CHARACTERISTICS	(T _C = 25°C unless otherwise noted)
----------------------------	--

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•		•
Drain–Source Breakdown Voltage (V _{GS} = 0 V, I _D = 5.0 mA)	V(BR)DSS	65	-	_	V
Zero Gate Voltage Drain Current (V _{DS} = 28 V, V _{GS} = 0 V)	IDSS	_	-	0.5	mA
Gate–Source Leakage Current (V _{GS} = 20 V, V _{DS} = 0 V)	IGSS	_	-	1.0	μА
ON CHARACTERISTICS			•		•
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 25 mA)	VGS(th)	1.5	3.0	4.5	V
Forward Transconductance (V _{DS} = 10 V, I _D = 1.5 A)	9fs	0.8	1.1	—	mhos
DYNAMIC CHARACTERISTICS			•		•
Input Capacitance (V _{DS} = 28 V, V _{GS} = 0 V, f = 1.0 MHz)	C _{iss}	—	28	_	pF
Output Capacitance (V _{DS} = 28 V, V _{GS} = 0 V, f = 1.0 MHz)	C _{oss}	—	30	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0 V, f = 1.0 MHz)	C _{rss}	_	4.0	—	pF
FUNCTIONAL CHARACTERISTICS			•		•
Common Source Power Gain (V _{DD} = 28 V, P _{out} = 20 W, f = 500 MHz, I _{DQ} = 25 mA)	G _{ps}	13.5	16	_	dB
Drain Efficiency (V _{DD} = 28 V, P _{out} = 20 W, f = 500 MHz, I _{DQ} = 25 mA)	η	50	55	—	%
Electrical Ruggedness (V _{DD} = 28 V, P _{out} = 20 W, f = 500 MHz, I _{DQ} = 25 mA, Load VSWR 30:1 at All Phase Angles)	Ψ		No Degradation i	n Output Powe	er

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

The RF MOSFET Line 20W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

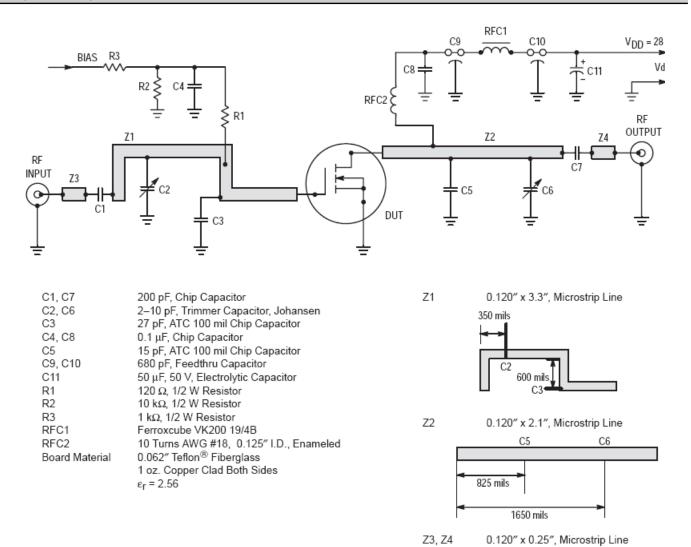


Figure 1. MRF166C 500 MHz Test Circuit

3

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

The RF MOSFET Line 20W, 500MHz, 28V

M/A-COM Products

Technology Solution

Tc = 25°

100

Released - Rev. 07.07

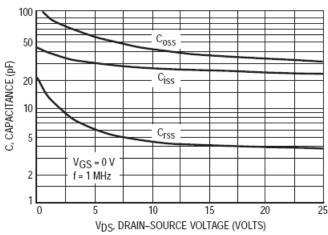


Figure 2. Capacitance versus Drain-Source Voltage

ID, DRAIN CURRENT (AMPS)

0.1

0

V_{DS}, DRAIN-SOURCE VOLTAGE (VOLTS) Figure 3. DC Safe Operating Area

10

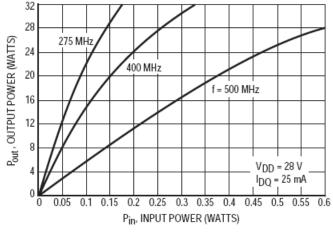
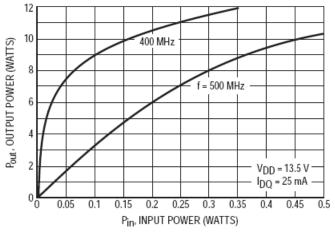
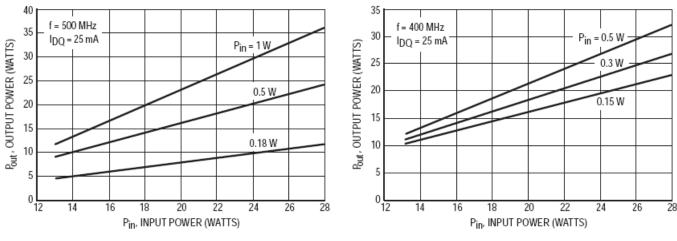


Figure 4. Output Power versus Input Power




Figure 5. Output Power versus Input Power

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

The RF MOSFET Line 20W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

TYPICAL CHARACTERISTICS

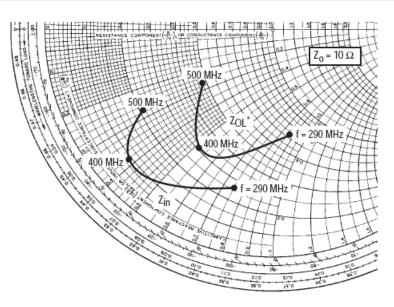
Figure 6. Output Power versus Supply Voltage

Figure 7. Output Power versus Supply Voltage

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

5

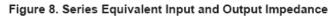
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

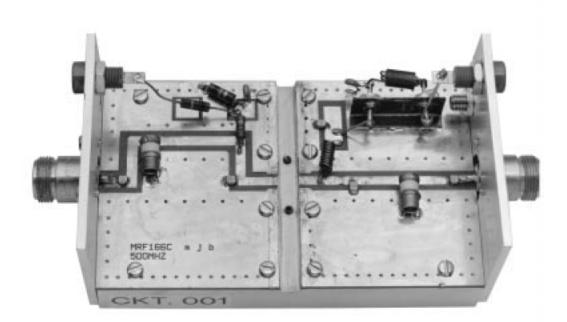

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

7.35 - j8.67

The RF MOSFET Line 20W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07




VDE) = 28 V, I _{DQ} = 25 mA, P	out = 20 Watts
f MHz	Z _{in} Ohms	Z _{OL} * Ohms
500	2.09 – j2.77	4.87 – j2.63
400	0.93 – j3.80	3.09 – j5.24

2.63 - j7.58

290

Z_{OL}* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 9. MRF166C Test Fixture

6

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are trained Mechanical Quitons have been fixed. For the propagation of the provided that the provided the provided that the provided the provided that the provided the provided that the provided the provided that the provided the provided that the provided the provided the provided the provided that the provided the
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.
- Visit Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
 - M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

The RF MOSFET Line 20W, 500MHz, 28V

M/A-COM Products

Released - Rev. 07.07

	т	Table 1. Comn	10n Source S	–Parameters	(VDS = 12.5 V	/, I _D = 1.25 A)		
f	\$ ₁₁		\$ ₂₁		\$ ₁₂		\$ ₂₂	
MHz	\$ ₁₁	φ	\$ ₂₁	ф	\$ ₁₂	φ	\$ ₂₂	φ
30	0.840	-142	22.59	105	0.025	20	0.727	-155
40	0.836	-151	17.4	100	0.025	17	0.743	-161
50	0.832	-156	14.1	97	0.026	15	0.751	-164
60	0.829	-159	12.0	94	0.026	14	0.764	-166
70	0.826	-162	10.4	91	0.026	14	0.763	-168
80	0.822	-164	9.09	90	0.026	14	0.763	-169
90	0.818	-165	8.07	89	0.027	14	0.765	-170
100	0.819	-167	7.28	87	0.027	14	0.774	-171
110	0.821	-168	6.61	85	0.027	14	0.773	-172
120	0.821	-169	6.00	83	0.026	15	0.771	-172
130	0.820	-169	5.56	83	0.027	16	0.778	-172
140	0.818	-170	5.22	82	0.027	17	0.785	-172
150	0.820	-170	4.86	80	0.027	17	0.786	-173
160	0.821	-171	4.52	79	0.027	17	0.781	-173
170	0.820	-171	4.23	79	0.027	20	0.774	-172
180	0.820	-171	4.03	78	0.027	20	0.799	-173
190	0.820	-172	3.86	76	0.027	20	0.799	-174
200	0.821	-172	3.62	75	0.027	20	0.784	-175
210	0.822	-173	3.39	75	0.027	22	0.780	-174
220	0.823	-173	3.25	74	0.027	24	0.795	-173
230	0.825	-173	3.12	72	0.028	23	0.823	-175
240	0.827	-173	2.96	71	0.026	24	0.791	-175
250	0.827	-174	2.83	70	0.027	26	0.789	-174
260	0.827	-174	2.71	70	0.026	27	0.791	-174
270	0.829	-174	2.62	69	0.027	28	0.801	-174
280	0.831	-174	2.52	68	0.027	29	0.807	-175
290	0.832	-174	2.42	66	0.027	30	0.788	-175
300	0.832	-174	2.32	66	0.027	32	0.792	-175
310	0.831	-174	2.25	66	0.027	33	0.797	-174
320	0.833	-175	2.18	65	0.027	34	0.810	-174
330	0.836	-175	2.10	63	0.028	35	0.812	-175
340	0.837	-175	2.00	62	0.027	35	0.789	-176
350	0.838	-175	1.95	62	0.028	39	0.806	-173
360	0.839	-175	1.90	61	0.028	39	0.817	-174
370	0.840	-176	1.84	60	0.028	40	0.817	-175
380	0.843	-176	1.77	59	0.028	41	0.811	-175
390	0.845	-176	1.71	59	0.028	42	0.805	-175
400	0.846	-176	1.66	58	0.029	46	0.801	-172
410	0.846	-176	1.64	57	0.030	46	0.845	-174
420	0.847	-176	1.59	56	0.030	46	0.836	-176
430	0.848	-176	1.52	56	0.030	47	0.823	-176
440	0.850	-176	1.48	56	0.030	49	0.816	-174

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology. • North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product W/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

The RF MOSFET Line 20W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

f MHz S ₁₁	S-	\$ ₁₁		\$ ₂₁		\$ ₁₂		\$ ₂₂	
	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ	
450	0.851	-176	1.47	54	0.032	51	0.851	-174	
460	0.853	-177	1.42	53	0.032	48	0.849	-178	
470	0.853	-177	1.37	53	0.031	51	0.830	-176	
480	0.856	-177	1.34	53	0.032	53	0.834	-176	
490	0.857	-177	1.32	52	0.033	54	0.841	-175	
500	0.859	-177	1.28	51	0.034	54	0.847	-175	
600	0.857	178	0.988	41	0.032	73	0.877	180	
700	0.884	176	0.789	34	0.047	65	0.881	179	
800	0.881	173	0.684	30	0.031	83	0.890	174	
900	0.890	172	0.580	26	0.069	71	0.885	176	
1000	0.897	170	0.503	24	0.090	60	0.931	173	

Table 1. Common Source S-Parameters (VDS = 12.5 V, ID = 1.25 A) (continued)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product W/A-COM Technology

8

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product W/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

The RF MOSFET Line 20W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

|--|--|--|--|--|--|--|

f	S	11	\$ ₂₁		S ₁	12	\$ ₂₂		
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ	
30	0.842	-125	29.6	113	0.024	28	0.586	-136	
40	0.831	-136	23.2	106	0.025	22	0.607	-145	
50	0.822	-143	19.0	101	0.026	19	0.613	-151	
60	0.816	-148	16.2	98	0.026	17	0.626	-155	
70	0.812	-152	14.1	95	0.027	16	0.635	-157	
80	0.806	-155	12.4	92	0.026	15	0.643	-159	
90	0.801	-157	11.1	90	0.027	14	0.650	-160	
100	0.802	-159	9.97	88	0.027	13	0.656	-161	
110	0.805	-161	9.04	86	0.027	13	0.654	-163	
120	0.805	-162	8.22	84	0.026	13	0.654	-163	
130	0.803	-163	7.59	83	0.026	14	0.663	-163	
140	0.801	-164	7.09	82	0.026	14	0.673	-164	
150	0.803	-165	6.61	80	0.026	14	0.675	-164	
160	0.804	-165	6.16	79	0.026	14	0.674	-164	
170	0.803	-166	5.77	78	0.026	16	0.672	-164	
180	0.804	-166	5.49	77	0.026	17	0.697	-164	
190	0.806	-166	5.25	75	0.026	16	0.700	-165	
200	0.806	-167	4.92	73	0.025	16	0.688	-166	
210	0.807	-168	4.60	73	0.025	17	0.680	-165	
220	0.809	-168	4.40	72	0.025	19	0.689	-165	
230	0.812	-168	4.21	70	0.025	19	0.713	-167	
240	0.814	-169	3.99	69	0.024	20	0.701	-167	
250	0.815	-169	3.83	68	0.024	21	0.707	-166	
260	0.816	-169	3.66	67	0.024	22	0.711	-166	
270	0.818	-169	3.52	66	0.024	23	0.715	-166	
280	0.821	-169	3.39	65	0.025	24	0.718	-167	
290	0.822	-170	3.25	63	0.024	26	0.708	-168	
300	0.823	-170	3.11	62	0.023	28	0.715	-167	

Table 2. Common Source S-Parameters (VDS = 28 V, ID = 1.25 A)

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

The RF MOSFET Line 20W, 500MHz, 28V

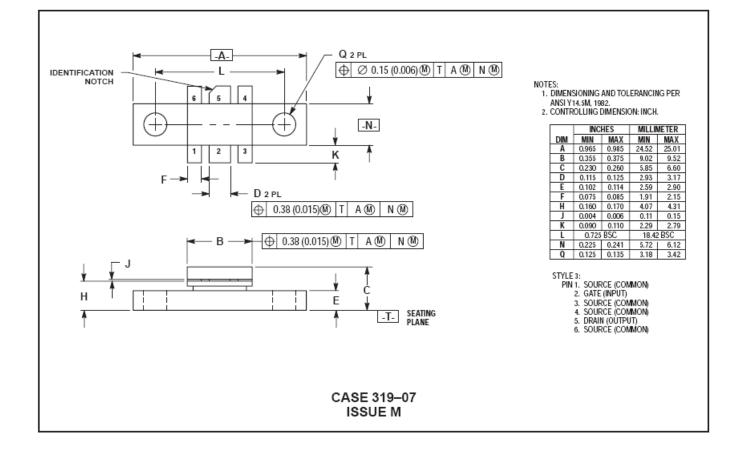
M/A-COM Products Released - Rev. 07.07

Table 2. Common Source S–Parameters (V_{DS} = 28 V, I_{D} = 1.25 A) (continued)								
f	S	11	S ₂	21	\$ ₁	2	S	22
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ
310	0.822	-170	2.99	62	0.023	29	0.725	-166
320	0.825	-170	2.89	61	0.024	31	0.734	-166
330	0.828	-171	2.78	60	0.024	33	0.736	-167
340	0.830	-171	2.66	59	0.024	33	0.724	-168
350	0.832	-171	2.59	58	0.024	37	0.739	-166
360	0.834	-171	2.52	57	0.024	39	0.757	-166
370	0.836	-171	2.44	56	0.023	39	0.755	-167
380	0.839	-172	2.34	55	0.023	38	0.745	-167
390	0.840	-172	2.26	54	0.024	40	0.738	-168
400	0.841	-172	2.19	54	0.024	46	0.735	-166
410	0.842	-172	2.14	53	0.025	46	0.787	-167
420	0.844	-172	2.09	51	0.026	46	0.790	-168
430	0.845	-173	1.99	51	0.027	49	0.777	-168
440	0.846	-173	1.93	51	0.026	52	0.770	-167
450	0.849	-173	1.91	49	0.027	53	0.794	-167
460	0.853	-173	1.84	48	0.027	51	0.803	-171
470	0.855	-173	1.77	47	0.027	54	0.787	-170
480	0.857	-174	1.72	47	0.027	57	0.789	-169
490	0.857	-174	1.68	47	0.027	56	0.796	-168
500	0.859	-174	1.64	46	0.029	57	0.802	-169
600	0.862	-179	1.18	33	0.036	77	0.851	-173
700	0.893	178	0.921	26	0.043	75	0.856	-175
800	0.890	175	0.771	22	0.043	78	0.880	-178
900	0.895	173	0.635	17	0.065	74	0.882	-178
1000	0.905	171	0.544	14	0.086	69	0.931	178

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product W/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

10

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.



M/A-COM Products

Released - Rev. 07.07

The RF MOSFET Line 20W, 500MHz, 28V

PACKAGE DIMENSIONS

11

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.