PMN50XP

P-channel TrenchMOS extremely low level FET

Rev. 02 — 2 October 2007

Product data sheet

1. Product profile

1.1 General description

Extremely low level P-channel enhancement mode Field-Effect Transistor (FET) in a plastic package. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features

- Low on-state losses
- Low threshold voltage

1.3 Applications

- Battery management
- Load Switching

- Battery powered portable equipment
- Low power DC to DC converters

1.4 Quick reference data

Table 1.	Quick reference					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DS}	drain-source voltage	$T_j \geq 25 ~^\circ C; ~T_j \leq 150 ~^\circ C$	-	-	-20	V
I _D	drain current	V_{GS} = -4.5 V; T_{sp} = 25 °C; see <u>Figure 1</u> and <u>3</u>	-	-	-4.8	A
Dynamic	c characteristics					
Q_{GD}	gate-drain charge	V_{GS} = -4.5 V; I_D = -4.7 A; V_{DS} = -10 V; T_j = 25 °C; see <u>Figure 9</u> and <u>10</u>	-	1.3	-	nC
Static ch	naracteristics					
R _{DSon}	drain-source on-state resistance	V_{GS} = -4.5 V; I_D = -2.8 A; T_j = 25 °C; see <u>Figure 7</u> and <u>8</u>	-	48	60	mΩ

2. Pinning information

Table 2.	Pinning			
Pin	Symbol	Description	Simplified outline	Graphic Symbol
1	D	drain		D
2	D	drain		
3	G	gate	0	
4	S	source		G
5	D	drain		\bigvee_{s}
6	D	drain		003aaa671

3. Ordering information

Table 3. Ordering	g information	1	
Type number	Package		
	Name	Description	Version
PMN50XP	TSOP6	plastic surface-mounted package (TSOP6); 6 leads	SOT457

4. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage	$T_j \ge 25 \ ^\circ C; \ T_j \le 150 \ ^\circ C$	-	-20	V
V _{DGR}	drain-gate voltage	$T_{j} \geq$ 25 °C; $T_{j} \leq$ 150 °C; R_{GS} = 20 $k\Omega$	-	-20	V
V _{GS}	gate-source voltage		-12	12	V
I _D	drain current	T_{sp} = 25 °C; V_{GS} = -4.5 V; see <u>Figure 1</u> and <u>3</u>	-	-4.8	А
		T_{sp} = 100 °C; V_{GS} = -4.5 V	-	-3	А
I _{DM}	peak drain current	T_{sp} = 25 °C; t_p < 10 µs; pulsed; see <u>Figure 3</u>	-	-19.4	А
P _{tot}	total power dissipation	T _{sp} = 25 °C; see <u>Figure 2</u>	-	2.2	W
T _{stg}	storage temperature		-55	150	°C
Tj	junction temperature		-55	150	°C
Source-o	drain diode				
I _S	source current	T _{sp} = 25 °C	-	-1.9	А
I _{SM}	peak source current	T_{sp} = 25 °C; $t_p \le$ 10 µs; pulsed	-	-7.5	А

PMN50XP

5. Thermal characteristics

Table 5.	Thermal characteristics	i				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-sp)}	thermal resistance from junction to solder point	see <u>Figure 4</u>	-	-	55	K/W

Fig 4. Transient thermal impedance from junction to solder point as a function of pulse duration

6. Characteristics

Table 6.Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
V _{(BR)DSS}	drain-source breakdown voltage	$ I_D = -250 \ \mu\text{A}; \ V_{GS} = 0 \ V; $	-20	-	-	V
		I_D = -250 µA; V_{GS} = 0 V; T_j = -55 °C	-18	-	-	V
V _{GS(th)}	gate-source threshold voltage	I_D = -0.25 mA; V_{DS} = V_{GS} ; T_j = 25 °C; see <u>Figure 5</u> and <u>6</u>	-0.55	-0.75	-0.95	V
		I_D = -0.25 mA; V_{DS} = V_{GS} ; T _j = 150 °C; see <u>Figure 5</u> and <u>6</u>	-0.35	-	-	V
		I_D = -0.25 mA; V_{DS} = V_{GS} ; T_j = -55 °C; see <u>Figure 5</u> and <u>6</u>	-	-	-1.1	V
I _{DSS}	drain leakage current	V_{DS} = -20 V; V_{GS} = 0 V; T _j = 25 °C	-	-	-1	μΑ
		V_{DS} = -20 V; V_{GS} = 0 V; T _j = 70 °C	-	-	-5	μΑ

Table 6.	Characteristics continu					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
GSS	gate leakage current	$V_{GS} \leq$ 12 V; V_{DS} = 0 V; T_{j} = 25 $^{\circ}C$	-	-10	-100	nA
		$V_{GS} \geq$ 12 V; V_{DS} = 0 V; T_j = 25 $^{\circ}C$	-	-10	-100	nA
R _{DSon}	drain-source on-state resistance	V_{GS} = -4.5 V; I_D = -2.8 A; T_j = 25 °C; see <u>Figure 7</u> and <u>8</u>	-	48	60	mΩ
		V_{GS} = -4.5 V; I_D = -2.8 A; T_j = 150 °C; see <u>Figure 7</u> and <u>8</u>	-	77	96	mΩ
		V_{GS} = -2.5 V; I_D = -2.3 A; T_j = 25 °C; see Figure 7 and 8	-	65	80	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = -4.7 \text{ A}; V_{DS} = -10 \text{ V};$ $V_{GS} = -4.5 \text{ V}; T_j = 25 ^{\circ}\text{C};$ see <u>Figure 9</u> and <u>10</u>	-	10	-	nC
Q _{GS}	gate-source charge	$I_D = -4.7 \text{ A}; V_{DS} = -10 \text{ V};$ $V_{GS} = -4.5 \text{ V}; T_j = 25 \text{ °C};$ see <u>Figure 9</u> and <u>10</u>	-	2.2	-	nC
Q_{GD}	gate-drain charge	$I_D = -4.7 \text{ A}; V_{DS} = -10 \text{ V};$ $V_{GS} = -4.5 \text{ V}; T_j = 25 \text{ °C};$ see Figure 9 and 10	-	1.3	-	nC
C _{iss}	input capacitance	$V_{DS} = -20 \text{ V}; V_{GS} = 0 \text{ V};$ f = 1 MHz; T _j = 25 °C; see <u>Figure 11</u>	-	1020	-	pF
C _{oss}	output capacitance	V _{GS} = 0 V; V _{DS} = -20 V; f = 1 MHz; T _j = 25 °C; see <u>Figure 11</u>	-	140	-	pF
C _{rss}	reverse transfer capacitance	$V_{DS} = -20 \text{ V}; V_{GS} = 0 \text{ V};$ f = 1 MHz; T _j = 25 °C; see <u>Figure 11</u>	-	100	-	pF
d(on)	turn-on delay time	$ \begin{array}{l} {\sf R}_{\rm G(ext)} = 6 \; \Omega; \; {\sf R}_{\rm L} = 10 \; \Omega; \\ {\sf V}_{\rm DS} = -10 \; {\sf V}; \; {\sf V}_{\rm GS} = -4.5 \; {\sf V}; \\ {\sf T}_{\rm j} = 25 \; ^{\circ}{\rm C} \end{array} $	-	8.5	-	ns
tr	rise time		-	7.5	-	ns
d(off)	turn-off delay time		-	82	-	ns
f	fall time		-	35	-	ns
/ _{GS(pl)}	gate-source plateau voltage	$V_{DS} = -10 \text{ V}; \text{ I}_{D} = -4.7 \text{ A};$ T _j = 25 °C; see <u>Figure 9</u> and <u>10</u>	-	-1.6	-	V
Source-d	rain diode					
√ _{SD}	source-drain voltage	I_{S} = -1.7 A; V_{GS} = 0 V; T_{j} = 25 °C	-	-0.77	-1.2	V
rr	reverse recovery time	I _S = 3.5 A; dI _S /dt = -100 A/μs; V _{GS} = 0 V; V _{DS} = 20 V; T _i = 25 °C	-	-	-	ns

Table 6 Characteristics continued

PMN50XP

PMN50XP

7. Package outline

Fig 12. Package outline SOT457 (TSOP6)

8. Revision history

Table 7. Revision	history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PMN50XP_2	20071002	Product data sheet	-	PMN50XP_1
Modifications:		of this data sheet has beer of NXP Semiconductors.	n redesigned to comply v	vith the new identity
	 Legal texts 	have been adapted to the	company name where a	ppropriate.
PMN50XP_1	20060123	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

10. Contact information

For additional information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, send an email to: salesaddresses@nxp.com

PMN50XP

P-channel TrenchMOS extremely low level FET

11. Contents

1	Product profile 1
1.1	General description 1
1.2	Features
1.3	Applications 1
1.4	Quick reference data 1
2	Pinning information 2
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 4
6	Characteristics 4
7	Package outline 8
8	Revision history9
9	Legal information 10
9.1	Data sheet status 10
9.2	Definitions 10
9.3	Disclaimers
9.4	Trademarks 10
10	Contact information 10
11	Contents 11

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 2 October 2007 Document identifier: PMN50XP_2

All rights reserved.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.