

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

September 2015

MOC3061M, MOC3062M, MOC3063M, MOC3162M, MOC3163M 6-Pin DIP Zero-Cross Triac Driver Optocoupler (600 Volt Peak)

Features

- Simplifies Logic Control of 115/240 VAC Power
- Zero Voltage Crossing to Minimize Conducted and Radiated Line Noise
- 600 V Peak Blocking Voltage
- Superior Static dv/dt
 - 600 V/µs (MOC306xM)
 - 1000 V/μs (MOC316xM)
- · Safety and Regulatory Approvals
 - UL1577, 4,170 VAC_{RMS} for 1 Minute
 - DIN EN/IEC60747-5-5

Applications

- · Solenoid/Valve Controls
- · Static Power Switches
- · Temperature Controls
- · AC Motor Starters
- · Lighting Controls
- AC Motor Drives
- E.M. Contactors
- Solid State Relays

Description

The MOC306XM and MOC316XM devices consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver.

They are designed for use with a triac in the interface of logic systems to equipment powered from 115/240 VAC lines, such as solid-state relays, industrial controls, motors, solenoids and consumer appliances, etc.

Figure 2. Package Outlines

ANODE 1 CATHODE 2 *DO NOT CONNECT Package Outlines 6 MAIN TERM. 6 MAIN TERM. 6 MAIN TERM. 6 MAIN TERM. 1

(TRIAC SUBSTRATE)

Figure 1. Schematic

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–IV
Climatic Classification		40/85/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	1360	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1594	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	850	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6000	V _{peak}
	External Creepage	≥ 7	mm
	External Clearance	≥ 7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V	> 10 ⁹	Ω

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}$ C unless otherwise specified.

Symbol	Parameters	Device	Value	Unit	
TOTAL DEV	/ICE			•	
T _{STG}	Storage Temperature	All	-40 to +150	°C	
T _{OPR}	Operating Temperature	All	-40 to +85	°C	
TJ	Junction Temperature Range	All	-40 to +100	°C	
T _{SOL}	Lead Solder Temperature	All	260 for 10 seconds	°C	
D	Total Device Power Dissipation at 25°C Ambient	All	250	mW	
P _D	Derate Above 25°C	All	2.94	mW/°C	
EMITTER					
I _F	Continuous Forward Current	All	60	mA	
V _R	Reverse Voltage	All	6	V	
D	Total Power Dissipation at 25°C Ambient	All	120	mW	
P_{D}	Derate Above 25°C	All	1.41	mW/°C	
DETECTOR	R				
V_{DRM}	Off-State Output Terminal Voltage	All	600	V	
I _{TSM}	Peak Non-Repetitive Surge Current (Single Cycle 60 Hz Sine Wave)	All	1	А	
D	Total Power Dissipation at 25°C Ambient	All	150	mW	
P _D	Derate Above 25°C	All	1.76	mW/°C	

Electrical Characteristics

 $T_A = 25$ °C unless otherwise specified.

Individual Component Characteristics

Symbol	Parameters	Test Conditions	Device	Min.	Тур.	Max.	Unit
EMITTER							
V _F	Input Forward Voltage	I _F = 30 mA	All		1.3	1.5	V
I _R	Reverse Leakage Current	V _R = 6 V	All		0.005	100	μΑ
DETECTO	OR .						
	Peak Blocking Current,	$V_{DRM} = 600 \text{ V}, I_F = 0^{(1)}$	MOC306XM		10	500	nA
IDRM1	Either Direction	$v_{DRM} = 600 \text{ v, } i_F = 0.7$	MOC316XM		10	100	ΠA
dv/dt	dy/dt Critical Rate of Rise of	Critical Rate of Rise of $I_F = 0$ (Figure 11) ⁽²⁾	MOC306XM	600	1500		\//u.o
uv/ut	Off-State Voltage	IF = 0 (Figure 11)	MOC316XM	1000			V/μs

Transfer Characteristics

Symbol	DC Characteristics	Test Conditions	Device	Min.	Тур.	Max.	Unit
			MOC3061M			15	
I _{FT}	LED Trigger Current (Rated I _{FT})	Main Terminal Voltage = 3 V ⁽³⁾	MOC3062M MOC3162M			10	mA
	(Nateu IFT)	vollage = e v	MOC3063M MOC3163M			5	
V _{TM}	Peak On-State Voltage, Either Direction	I _{TM} = 100 mA peak, I _F = rated I _{FT}	All		1.8	3.0	V
I _H	Holding Current, Either Direction		All		500		μΑ

Zero Crossing Characteristics

Symbol	Characteristics	Test Conditions	Device	Min.	Тур.	Max.	Unit
			MOC3061M				
	Inhibit Voltage (MT1-MT2		MOC3062M		12	20	
V_{INH}	voltage above which	I _F = rated I _{FT}	MOC3063M				V
	device will not trigger)		MOC3162M		10	15	
			MOC3163M		12	15	/
I _{DRM2}	Leakage in Inhibited State	I_F = rated I_{FT} , DRM = 600 V, off-state	All			2	mA

Isolation Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Isolation Voltage ⁽⁴⁾	f = 60 Hz, t = 1 Minute	4170			VAC_{RMS}
R _{ISO}	Isolation Resistance	V _{I-O} = 500 V _{DC}		10 ¹¹		Ω
C _{ISO}	Isolation Capacitance	V = 0 V, f = 1 MHz		0.2		pF

Notes:

- 1. Test voltage must be applied within dv/dt rating.
- 2. This is static dv/dt. See Figure 11 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.
- 3. All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT} . Therefore, recommended operating I_F lies between max I_{FT} (15 mA for MOC3061M, 10 mA for MOC3062M and MOC3162M, 5 mA for MOC3063M and MOC3163M) and absolute maximum I_F (60 mA).
- 4. Isolation voltage, V_{ISO} , is an internal device dielectric breakdown rating. For this test, pins 1 and 2 are common, and pins 4, 5 and 6 are common.

Typical Performance Curves

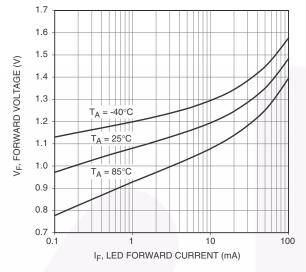


Figure 3. LED Forward Voltage vs. Forward Current

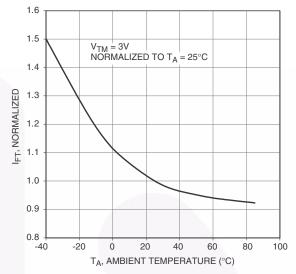


Figure 4. Trigger Current Vs. Temperature

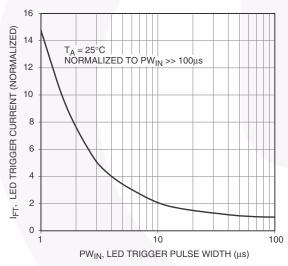


Figure 5. LED Current Required to Trigger vs. LED Pulse Width

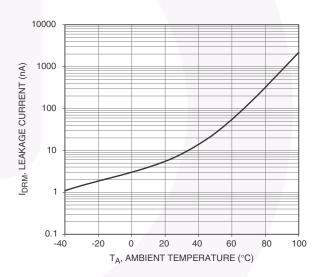


Figure 6. Leakage Current, IDRM vs. Temperature

Typical Performance Curves (Continued)

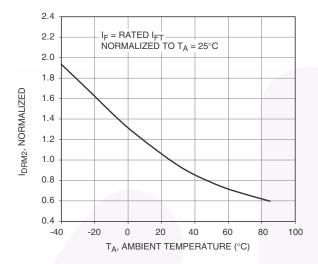


Figure 7. I_{DRM2}, Leakage in Inhibit State vs. Temperature

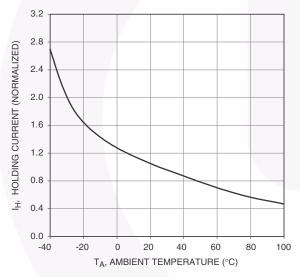


Figure 9. I_H, Holding Current vs. Temperature

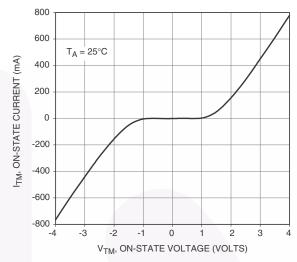


Figure 8. On-State Characteristics

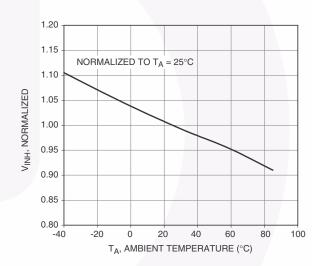


Figure 10. Inhibit Voltage vs. Temperature

- 1. 100x scope probes are used, to allow high speeds and voltages.
- 2. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable vernier resistor combined with various capacitor combinations allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. t_{RC} is measured at this point and recorded.

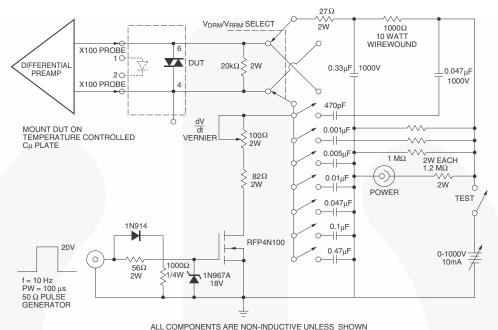


Figure 11. Circuit for Static $\frac{dV}{dt}$ Measurement of Power Thyristors

Basic Applications

Typical circuit for use when hot line switching is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line.

 R_{in} is calculated so that $I_{\textrm{F}}$ is equal to the rated $I_{\textrm{FT}}$ of the part, 15mA for the MOC3061M, 10mA for the MOC3062M, or 5mA for the MOC3063M. The 39Ω resistor and $0.01\mu\textrm{F}$ capacitor are for snubbing of the triac and is often, but not always, necessary depending upon the particular triac and load used.

Suggested method of firing two, back-to-back SCR's with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330Ω .

Note:

This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only.

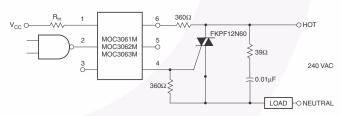


Figure 12. Hot-Line Switching Application Circuit

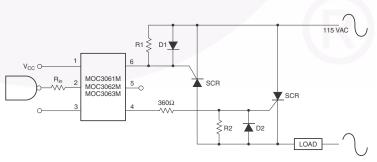
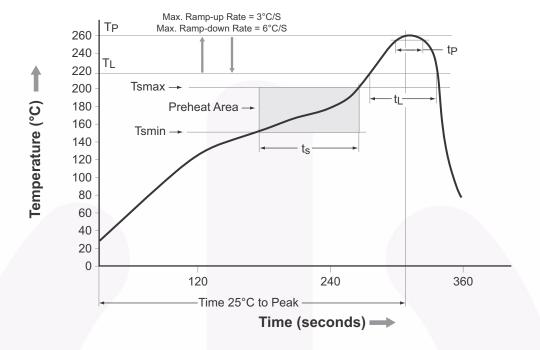



Figure 13. Inverse-Parallel SCR Driver Circuit

Reflow Profile

Profile Freature	Pb-Free Assembly Profile			
Temperature Minimum (Tsmin)	150°C			
Temperature Maximum (Tsmax)	200°C			
Time (t _S) from (Tsmin to Tsmax)	60 seconds to 120 seconds			
Ramp-up Rate (T _L to T _P)	3°C/second maximum			
Liquidous Temperature (T _L)	217°C			
Time (t _L) Maintained Above (T _L)	60 seconds to 150 seconds			
Peak Body Package Temperature	260°C +0°C / -5°C			
Time (t _P) within 5°C of 260°C	30 seconds			
Ramp-down Rate (T _P to T _L)	6°C/second maximum			
Time 25°C to Peak Temperature	8 minutes maximum			

Figure 14. Reflow Profile

Ordering Information(5)

Part Number	Package	Packing Method
MOC3061M	DIP 6-Pin	Tube (50 Units)
MOC3061SM	SMT 6-Pin (Lead Bend)	Tube (50 Units)
MOC3061SR2M	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
MOC3061VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
MOC3061SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
MOC3061SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
MOC3061TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

Note:

5. The product orderable part number system listed in this table also applies to the MOC3062M, MOC3063M, MOC3162M, and MOC3163M product families.

Marking Information

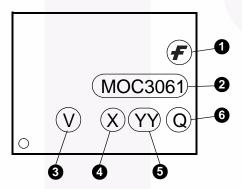
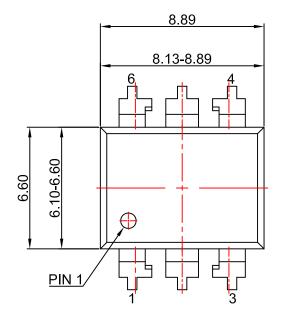
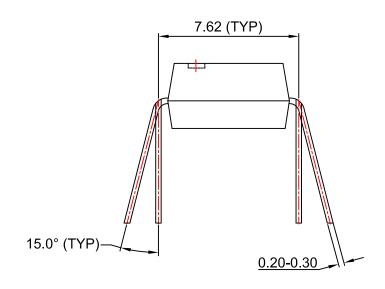
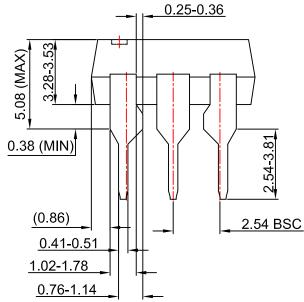
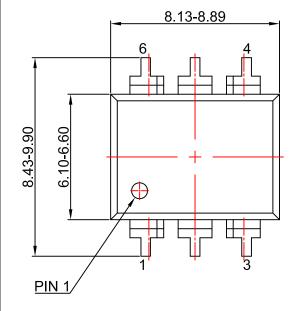
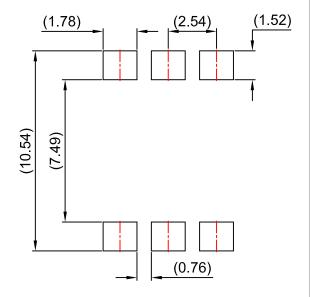





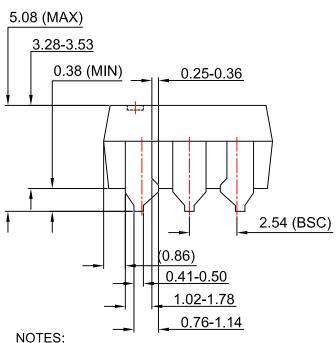
Figure 15. Top Mark

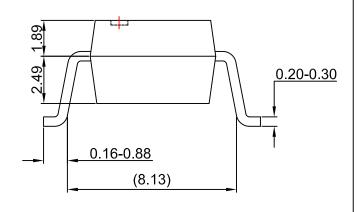
Тор Ма	Top Mark Definitions					
1	Fairchild Logo					
2	Device Number					
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)					
4	One-Digit Year Code, e.g., '5'					
5	Two-Digit Work Week, Ranging from '01' to '53'					
6	Assembly Package Code					

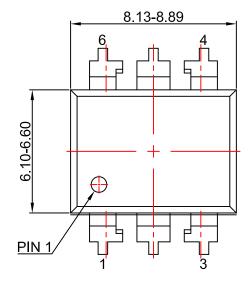


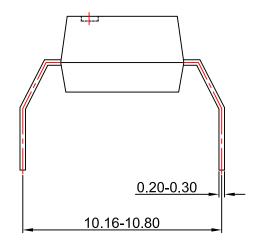


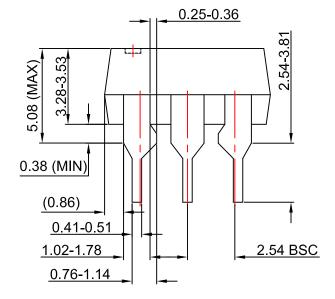
NOTES:


- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06BREV4.




LAND PATTERN RECOMMENDATION





- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06CREV4.

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06Drev4

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MOC3063SR2M MOC3063M MOC3063SR2VM MOC3063VM MOC3063SM MOC3063TVM MOC3063SVM

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.