

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

February 2007

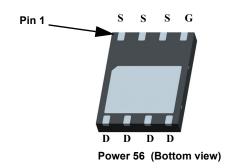
FDMS3572

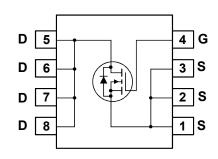
N-Channel UltraFET Trench® MOSFET

80V, **22A**, **16.5m** Ω

Features

- Max $r_{DS(on)}$ = 16.5m Ω at V_{GS} = 10V, I_D = 8.8A
- Max $r_{DS(on)}$ = 24m Ω at V_{GS} = 6V, I_D = 8.4A
- Typ Qg = 28nC at V_{GS} = 10V
- Low Miller Charge
- Optimized efficiency at high frequencies
- RoHS Compliant




General Description

UltraFET devices combine characteristics that enable benchmark efficiency in power conversion applications. Optimized for $r_{DS(on)}$, low ESR, low total and Miller gate charge, these devices are ideal for high frequency DC to DC converters.

Application

■ DC - DC Conversion

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Parameter			Units
V _{DS}	Drain to Source Voltage			80	V
V _{GS}	Gate to Source Voltage			±20	V
I _D	Drain Current -Continuous (Package limited)	T _C = 25°C		22	
	-Continuous (Silicon limited)	T _C = 25°C		48	_
	-Continuous	T _A = 25°C	(Note 1a)	8.8	Α
	-Pulsed			50	
D	Power Dissipation	T _C = 25°C		78	W
P_D	Power Dissipation	T _A = 25°C	(Note 1a)	2.5	VV
T _J , T _{STG}	Operating and Storage Junction Temperature R	lange		-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	1.6	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	50	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS3572	FDMS3572	Power 56	13"	12mm	3000 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Characteristics							
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	80			V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		76		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 64V, V_{GS} = 0V$			1	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA	

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	3.2	4	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		-11		mV/°C	
	Drain to Source On Resistance	V _{GS} = 10V, I _D = 8.8A		13.5	16.5	16.5	
r _{DS(on)}		$V_{GS} = 6V, I_D = 8.4A$		18.3	24	mΩ	
		$V_{GS} = 10V$, $I_D = 8.8A$, $T_J = 125$ °C		22.2	29		
g _{FS}	Forward Transconductance	$V_{DS} = 10V, I_{D} = 8.8A$		23		S	

Dynamic Characteristics

C _{iss}	Input Capacitance	\\ - 40\\ \\ - 0\\	1870	2490	pF
C _{oss}	Output Capacitance	V _{DS} = 40V, V _{GS} = 0V, f = 1MHz	275	365	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1141112	78	120	pF
R_g	Gate Resistance	f = 1MHz	1.3		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		11	20	ns
t _r	Rise Time	$V_{DD} = 40V, I_{D} = 8.8A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$	13	24	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} - 10V, K _{GEN} - 012	24	39	ns
t _f	Fall Time		12	22	ns
$Q_{g(TOT)}$	Total Gate Charge at 10V	$V_{GS} = 0V \text{ to } 10V$ $V_{DD} = 40V$	28	40	nC
Q_{gs}	Gate to Source Gate Charge	I _D = 8.8A	9		nC
Q_{gd}	Gate to Drain "Miller" Charge		8		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = 8.8A$ (Note 2)		8.0	1.2	V
t _{rr}	Reverse Recovery Time	1 - 9 9 A di/dt - 100 A/v.o		43	65	ns
Q _{rr}	Reverse Recovery Charge	F = 8.8A, di/dt = 100A/μs		71	107	nC

Notes

R_{θJA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.

a. 50° C/W when mounted on a 1 in² pad of 2 oz copper

b. 125°C/W when mounted on a minimum pad of 2 oz copper

2: Pulse Test: Pulse Width < 300μ s, Duty cycle < 2.0%.

Typical Characteristics T_J = 25°C unless otherwise noted

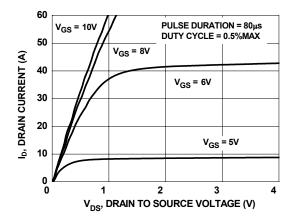


Figure 1. On Region Characteristics

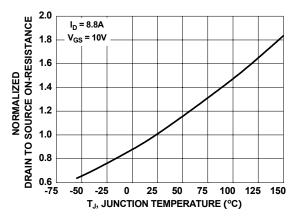


Figure 3. Normalized On Resistance vs Junction Temperature

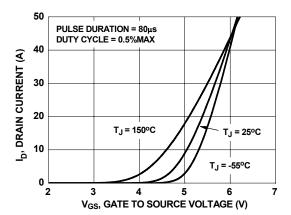


Figure 5. Transfer Characteristics

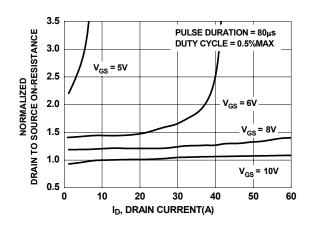


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

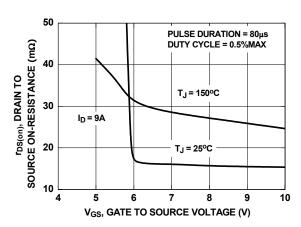


Figure 4. On-Resistance vs Gate to Source Voltage

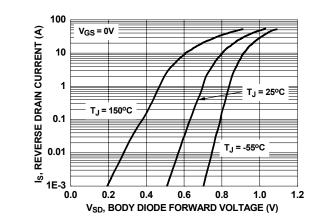


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

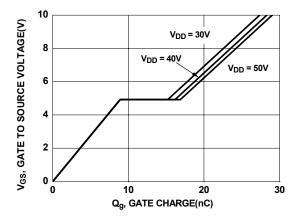


Figure 7. Gate Charge Characteristics

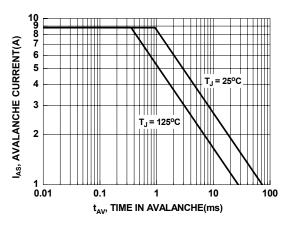


Figure 9. Unclamped Inductive Switching Capability

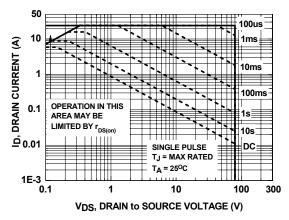


Figure 11. Forward Bias Safe Operating Area

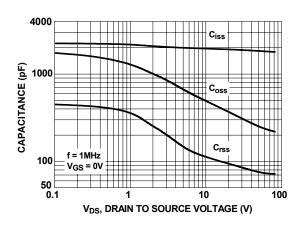


Figure 8. Capacitance vs Drain to Source Voltage

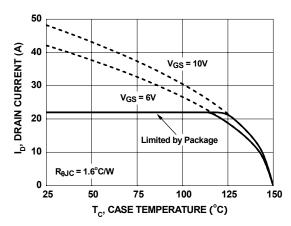


Figure 10. Maximum Continuous Drain Current vs Case Temperature

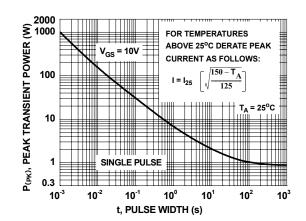


Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics T_J = 25°C unless otherwise noted

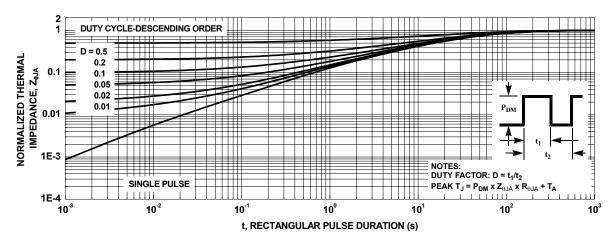
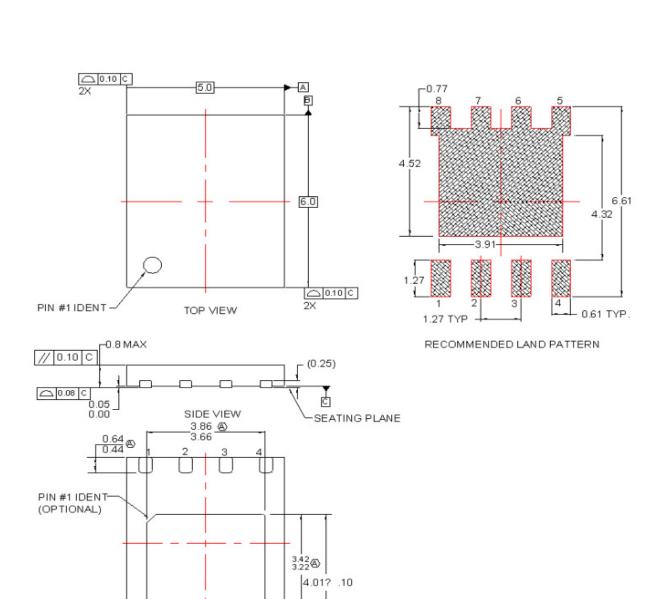



Figure 13. Transient Thermal Response Curve

NOTES:

(A) DOES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229. DATED 11/2001.

3.81

BOTTOM VIEW

1.27

- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
- D. TERMINALS 5,6,7 AND 8 ARE TIED TO THE EXPOSED PADDLE

MLP08GrevD

0.36-0.46 🖎

⊕ 0.10M C A B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx TM	FACT Quiet Series™	OCX^{TM}	SILENT SWITCHER®	UniFET™	
ActiveArray TM	GlobalOptoisolator™	OCXPro™	SMART START TM	VCXTM	
Bottomless TM	GTOTM	OPTOLOGIC [®]	SPM TM	WireTM	
Build it Now TM	HiSeCTM	OPTOPLANAR™	Stealth TM		
CoolFETTM	I^2C^{TM}	PACMAN TM	SuperFETTM		
$CROSSVOLT^{TM}$	i - Lo^{TM}	POP^{TM}	SuperSOTTM-3		
DOMETM	ImpliedDisconnect™	Power247 TM	SuperSOTTM-6		
EcoSPARK TM	IntelliMAXTM	PowerEdge TM	SuperSOTTM-8		
E^2CMOS^{TM}	ISOPLANAR™	PowerSaver TM	SyncFETTM		
EnSigna™	LittleFET TM	PowerTrench [®]	TCM^{TM}		
FACT [®]	MICROCOUPLER™	$QFET^{\circledR}$	TinyBoost TM		
FAST [®]	MicroFETTM	QS^{TM}	TinyBuck TM		
FASTr TM	MicroPak TM	QT Optoelectronics™	TinyPWM TM		
FPSTM	MICROWIRE TM	Quiet Series TM	TinyPower TM		
FRFETTM	MSX™	RapidConfigure™	TinyLogic [®]		
	MSXPro™	RapidConnect™	$TINYOPTO^{TM}$		
Across the board. Around	the world.™	μSerDes™	TruTranslation [™]		
The Power Franchise®		ScalarPump [™]	UHC [®]		

Programmable Active DroopTM

DISCLAIMER

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I22

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FDMS3572

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.