
Feature Summary
• 32-bit load/store RISC architecture
• Up to 15 general-purpose 32-bit registers
• 32-bit Stack Pointer, Program Counter, and Link Register reside in register file
• Fully orthogonal instruction set
• Pipelined architecture allows one instruction per clock cycle for most instructions
• Byte, half-word, word and double word memory access
• Fast interrupts and multiple interrupt priority levels
• Optional branch prediction for minimum delay branches
• Privileged and unprivileged modes enabling efficient and secure Operating Systems
• Innovative instruction set together with variable instruction length ensuring industry

leading code density
• Optional DSP extention with saturated arithmetic, and a wide variety of multiply

instructions
• Optional extensions for Java, SIMD, Read-Modify-Write to memory, and Coprocessors
• Architectural support for efficient On-Chip Debug solutions
• Optional MPU or MMU allows for advanced operating systems
• FlashVault™ support through Secure State for executing trusted code alongside

nontrusted code on the same CPU

32000D–04/2011

AVR32

Architecture
Document

2
32000D–04/2011

AVR32

1. Introduction
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive
embedded applications, with particular emphasis on low power consumption and high code den-
sity. In addition, the instruction set architecture has been tuned to allow for a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid- or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

1.1 The AVR family
The AVR family was launched by Atmel in 1996 and has had remarkable success in the 8-and
16-bit flash microcontroller market. AVR32 is complements the current AVR microcontrollers.
Through the AVR32 family, the AVR is extended into a new range of higher performance appli-
cations that is currently served by 32- and 64-bit processors

To truly exploit the power of a 32-bit architecture, the new AVR32 architecture is not binary com-
patible with earlier AVR architectures. In order to achieve high code density, the instruction
format is flexible providing both compact instructions with 16 bits length and extended 32-bit
instructions. While the instruction length is only 16 bits for most instructions, powerful 32-bit
instructions are implemented to further increase performance. Compact and extended instruc-
tions can be freely mixed in the instruction stream.

1.2 The AVR32 Microprocessor Architecture
The AVR32 is a new innovative microprocessor architecture. It is a fully synchronous synthesis-
able RTL design with industry standard interfaces, ensuring easy integration into SoC designs
with legacy intellectual property (IP). Through a quantitative approach, a large set of industry
recognized benchmarks has been compiled and analyzed to achieve the best code density in its
class of microprocessor architectures. In addition to lowering the memory requirements, a com-
pact code size also contributes to the core’s low power characteristics. The processor supports
byte and half-word data types without penalty in code size and performance.

Memory load and store operations are provided for byte, half-word, word and double word data
with automatic sign- or zero extension of half-word and byte data. The C-compiler is closely
linked to the architecture and is able to exploit code optimization features, both for size and
speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle.

Load and store instructions have several different formats in order to reduce code size and
speed up execution:

• Load/store to an address specified by a pointer register

• Load/store to an address specified by a pointer register with postincrement

3
32000D–04/2011

AVR32

• Load/store to an address specified by a pointer register with predecrement

• Load/store to an address specified by a pointer register with displacement

• Load/store to an address specified by a small immediate (direct addressing within a small
page)

• Load/store to an address specified by a pointer register and an index register.

The register file is organized as 16 32-bit registers and includes the Program Counter, the Link
Register, and the Stack Pointer. In addition, one register is designed to hold return values from
function calls and is used implicitly by some instructions.

The AVR32 core defines several micro architectures in order to capture the entire range of appli-
cations. The microarchitectures are named AVR32A, AVR32B and so on. Different
microarchitectures are suited to different end applications, allowing the designer to select a
microarchitecture with the optimum set of parameters for a specific application.

1.2.1 Exceptions and Interrupts
The AVR32 incorporates a powerful exception handling scheme. The different exception
sources, like Illegal Op-code and external interrupt requests, have different priority levels, ensur-
ing a well-defined behavior when multiple exceptions are received simultaneously. Additionally,
pending exceptions of a higher priority class may preempt handling of ongoing exceptions of a
lower priority class. Each priority class has dedicated registers to keep the return address and
status register thereby removing the need to perform time-consuming memory operations to
save this information.

There are four levels of external interrupt requests, all executing in their own context. The con-
texts can provide a number of dedicated registers for the interrupts to use directly ensuring low
latency. High priority interrupts may have a larger number of shadow registers available than low
priority interrupts. An interrupt controller does the priority handling of the external interrupts and
provides the prioritized interrupt vector to the processor core.

1.2.2 Java Support
Java hardware acceleration is available as an option, in the form of a Java Card or Java Virtual
Machine hardware implementation.

1.2.3 FlashVault
Revision 3 of the AVR32 architecture introduced a new CPU state called Secure State. This
state is instrumental in the new security technology named FlashVault. This innovation allows
the on-chip flash and other memories to be partially programmed and locked, creating a safe on-
chip storage for secret code and valuable software intellectual property. Code stored in the
FlashVault will execute as normal, but reading, copying or debugging the code is not possible.
This allows a device with FlashVault code protection to carry a piece of valuable software such
as a math library or an encryption algorithm from a trusted location to a potentially untrustworthy
partner where the rest of the source code can be developed, debugged and programmed.

4
32000D–04/2011

AVR32

1.3 Microarchitectures
The AVR32 architecture defines different microarchitectures. This enables implementations that
are tailored to specific needs and applications. The microarchitectures provide different perfor-
mance levels at the expense of area and power consumption. The following microarchitectures
are defined:

1.3.1 AVR32A
The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller
microcontrollers. This microarchitecture does not provide dedicated hardware registers for shad-
owing of register file registers in interrupt contexts. Additionally, it does not provide hardware
registers for the return address registers and return status registers. Instead, all this information
is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

1.3.2 AVR32B
The AVR32B microarchitecture is targeted at applications where interrupt latency is important.
The AVR32B therefore implements dedicated registers to hold the status register and return
address for interrupts, exceptions and supervisor calls. This information does not need to be
written to the stack, and latency is therefore reduced. Additionally, AVR32B allows hardware
shadowing of the registers in the register file. The INT0 to INT3 contexts may have dedicated
versions of the registers in the register file, allowing the interrupt routine to start executing
immediately.

The scall, rete and rets instructions use the dedicated status register and return address regis-
ters in their operation. No stack accesses are performed.

5
32000D–04/2011

AVR32

2. Programming Model
This chapter describes the programming model and the set of registers accessible to the user.

2.1 Data Formats
The AVR32 processor supports the data types shown in Table 2-1 on page 5:

When any of these types are described as unsigned, the N bit data value represents a non-neg-
ative integer in the range 0 to + 2N-1.

When any of these types are described as signed, the N bit data value represents an integer in
the range of -2N-1 to +2N-1-1, using two’s complement format.

Some instructions operate on fractional numbers. For these numbers, the data value represents
a fraction in the range of -1 to +1-2-(N-1), using two’s complement format.

2.2 Data Organization
Data is usually stored in a big-endian way, see Figure 2-1 on page 5. This means that when
multi-byte data is stored in memory, the most significant byte is stored at the lowest address. All
instructions are interpreted as being big-endian. However, in order to support data transfers that
are little-endian, special endian-translating load and store instructions are defined.

The register file can hold data of different formats. Both byte, halfword (16-bit) and word (32-bit)
formats can be represented, and byte and halfword formats are supported in both unsigned and
signed 2’s complement formats. Some instructions also use doubleword operands. Doubleword
data are placed in two consecutive registers. The most significant word is in the uppermost reg-
ister. Valid register pairs are R1:R0, R3:R2, R5:R4, R7:R6, R9:R8, R11:R10 and R13:R12.

Load and store operations that transfer bytes or halfwords, automatically zero-extends or sign-
extends the bytes or half-words as they are loaded.

Figure 2-1. Data representation in the register file

Table 2-1. Overview of execution modes, their priorities and privilege levels.

Type Data Width

Byte 8 bits

Halfword 16 bits

Word 32 bits

Double Word 64 bits

S B y teS
7 083 1

0 B y te
7 083 1

S S S S S S S S S S S S S S S S
1 5 01 63 1

H a lfw o rdS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 01 63 1

H a lfw o rd

to p u p p e r lo w e r b o tto m
3 1 0

S ig n e x te n d e d b y te

U n s ig n e d b y te

S ig n e x te n d e d h a lfw o rd

U n s ig n e d h a lfw o rd

W o rd

6
32000D–04/2011

AVR32

AVR32 can access data of size byte, halfword, word and doubleword using dedicated instruc-
tions. The memory system can support unaligned accesses for selected load/store instructions
in some implementations. Any other unaligned access will cause an address exception.

For performance reasons, the user should make sure that the stack always is word aligned. This
means that only word instructions can be used to access the stack. When manipulating the
stack pointer, the user has to ensure that the result is word aligned before trying to load and
store data on the stack. Failing to do so will result in performance penalties. Code will execute
correctly if the stack is unaligned but with a significant performance penalty.

2.3 Instruction Organization
The AVR32 instruction set has both compact and extended instructions. Compact instructions
denotes the instructions which have a length of 16 bits while extended instructions have a length
of 32 bits.

All instructions must be placed on halfword boundaries, see Table 2-2 on page 6. Extended
instructions can be both aligned and unaligned to halfword boundaries. In normal instruction
flow, the instruction buffer will always contain enough entries to ensure that compact, aligned
extended and unaligned extended instructions can be issued in a single cycle.

Change-of-flow operations such as branches, jumps, calls and returns may in some implemen-
tations require the instruction buffer to be flushed. The user should consult the Technical
Reference Manual for the specific implementation in order to determine how alignment of the
branch target address affects performance.

Table 2-2. Instructions are stored in memory in a big endian fashion and must be aligned on
half word boundaries

Word Address

I J N+24

H1 H2 N+20

F2 G N+16

E2 F1 N+12

D E1 N+8

C1 C2 N+4

A B N

Byte Address 0 1 2 3

Byte Address 0 1 2 3

7
32000D–04/2011

AVR32

2.4 Processor States

2.4.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 2-3 on
page 7.

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

2.4.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the Technical Reference Manual.

Debug state is exited by the retd instruction.

2.4.3 Java State
Some versions of the AVR32 processor core comes with a Java Extension Module (JEM). The
processor can be set in a Java State where normal RISC operations are suspended. The Java
state is described in chapter 3.

2.4.4 Secure State
The secure state added in the AVR32 Architecture revision 3 allows executing secure or trusted
software in alongside nonsecure or untrusted software on the same processor. Hardware mech-

Table 2-3. Overview of execution modes, their priorities and privilege levels.

Priority Mode Security Description

1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode

2 Exception Privileged Execute exceptions

3 Interrupt 3 Privileged General purpose interrupt mode

4 Interrupt 2 Privileged General purpose interrupt mode

5 Interrupt 1 Privileged General purpose interrupt mode

6 Interrupt 0 Privileged General purpose interrupt mode

N/A Supervisor Privileged Runs supervisor calls

N/A Application Unprivileged Normal program execution mode

8
32000D–04/2011

AVR32

anisms are in place to make sure the nonsecure software can not read or modify instruction or
data belonging to the secure software. The secure state is described in chapter 4.

2.5 Entry and Exit Mechanism
Table 2-4 on page 8 illustrates how the different states and modes are entered and exited.

2.6 Register File
Each of AVR32’s normal operation modes described in Section 2.4.1 “Normal RISC State” on
page 7 has a dedicated context. Note that the Stack Pointer (SP), Program Counter (PC) and
the Link Register (LR) are mapped into the register file, making the effective register count for
each context 13 general purpose registers. The mapping of SP, PC and LR allows ordinary
instructions, like additions or subtractions, to use these registers. This results in efficient
addressing of memory.

Register R12 is designed to hold return values from function calls, and the conditional return
with move and test instruction use this register as an implicit return value operand. The load mul-
tiple and pop multiple instructions have the same functionality, which enables them to be used
as return instructions.

The AVR32 core’s orthogonal instruction set allows all registers in the register file to be used as
pointers.

2.6.1 Register file in AVR32A
The AVR32A is targeted for cost-sensitive applications. Therefore, no hardware-shadowing of
registers is provided, see Figure 2-2 on page 9. All data that must be saved between execution
states are placed on the system stack, not in dedicated registers as done in AVR32B. A shad-
owed stack pointer is still provided for the privileged modes, facilitating a dedicated system
stack.

When an exception occurs in an AVR32A-compliant implementation, the status register and
return address are pushed by hardware onto the system stack. When an INT0, INT1, INT2 or
INT3 occurs, the status register, return address, R8-R12 and LR are pushed on the system
stack. The corresponding registers are popped from stack by the rete instruction. The scall and
rets instructions also use the system stack to store the return address and status register.

Table 2-4. Entry and exit from states, modes and functions

Entry method Exit method

Non-maskable Interrupt Signal on NMI line rete

Exception Mode Internal error signal generated rete

Interrupt3 Signal on INT3 line rete

Interrupt2 Signal on INT2 line rete

Interrupt1 Signal on INT1 line rete

Interrupt0 Signal on INT0 line rete

Supervisor Mode scall instruction rets

Application Mode Returned to from any of the above modes Can not be exited from

Subprogram Function call
ret{cond}, ldm, popm,
mov PC, LR

Secure state sscall retss

9
32000D–04/2011

AVR32

Figure 2-2. Register File in AVR32A

2.6.2 Register File in AVR32B
The AVR32B allows separate register files for the interrupt and exception modes, see Figure 2-3
on page 9. These modes have a number of implementation defined shadowed registers in order
to speed up interrupt handling. The shadowed registers are automatically mapped in depending
on the current execution mode.

All contexts, except Application, have a dedicated Return Status Register (RSR) and Return
Address Register (RAR). The RSR registers are used for storing the Status Register value in the
context to return to. The RAR registers are used for storing the address in the context to return
to. The RSR and RAR registers eliminates the need to temporarily store the Status Register and
return address to stack when entering a new context.

Figure 2-3. Register File in AVR32B

The register file is designed with an implementation specific part and an architectural defined
part. Depending on the implementation, each of the interrupt modes can have different configu-

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

INT0

SP_APP SP_SYS
R12
R11

R9
R10

R8

Exception NMIINT1 INT2 INT3

LRLR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

INT0

Bit 0Bit 31

PC

RSR_INT0
SR

SP_APP SP_SYS SP_SYS
R12
R11

R9
R10

R8
banked

registers
(implementation

defined)

Bit 0Bit 31

PC
LR / LR_INT2

SP_SYS

banked
registers

(implementation
defined)

RSR_INT2
SR

Bit 0Bit 31

PC

RSR_INT3

LR / LR_INT3

SR

SP_SYS

banked
registers

(implementation
defined)

Bit 0Bit 31

PC

SR

SP_SYS

banked
registers

(implementation
defined)

RSR_INT1

Exception

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

RSR_EX

NMI

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

RSR_NMI

INT1 INT2 INT3

LRLR

RSR_SUP

LR / LR_INT0 LR / LR_INT1

RAR_INT0 RAR_INT2 RAR_INT3RAR_INT1 RAR_EX RAR_NMIRAR_SUP

10
32000D–04/2011

AVR32

rations of shadowed registers. This allows for maximum flexibility in targeting the processor for
different application, see Figure 2-4 on page 10.

Figure 2-4. A typical AVR32B register file implementation

Three different shadowing schemes are offered, small, half and full, ranging from no general
registers shadowed to all general registers shadowed, see Figure 2-5 on page 10.

Figure 2-5. AVR32 offers three different models for shadowed registers.

2.7 The Stack Pointer
Since the Stack Pointer (SP) is located in the register file, it can be addressed as an ordinary
register. This simplifies allocation and access of local variables and parameters. The Stack
Pointer is also used implicitly by several instructions.

The system modes have a shadowed stack pointer different from the application mode stack
pointer. This allows having a separate system stack.

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

RSR_INT0
SR

RSR_EX
SR

SP_APP SP_SYS

RSR_NMI
SR

R12
R11

R9
R10

R8

Bit 0Bit 31

PC
LR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC
LR_INT2

FINTPC
SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC
LR_INT3

R12_INT3

INT0PC

FINTPC
INT1PC

SMPC

R7_INT3

R5_INT3
R6_INT3

R4_INT3

R11_INT3

R9_INT3
R10_INT3

R8_INT3

R3_INT3

R1_INT3
R2_INT3

R0_INT3

SP_SYS SP_SYS SP_SYS
R12
R11

R9
R10

R8

R12_INT2
R11_INT2

R9_INT2
R10_INT2

R8_INT2

Bit 0Bit 31

PC
LR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

SP_SYS
R12
R11

R9
R10

R8

Bit 0Bit 31

PC
LR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

SP_SYS
R12
R11

R9
R10

R8

Bit 0Bit 31

PC
LR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

SP_SYS
R12
R11

R9
R10

R8

RSR_INT1
SR

RSR_INT2
SR

RSR_INT3
SR

INT0 INT1 INT2 INT3 Exception NMI

RSR_SUP

LRLR

RAR_INT0 RAR_EX RAR_NMIRAR_INT1 RAR_INT2 RAR_INT3RAR_SUP

Small

Bit 0Bit 31

PC
LR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Half

Bit 0Bit 31

PC
LR_INTx

FINTPC
SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Full

Bit 0Bit 31

PC
LR_INTx

R12_INTx

INT0PC

FINTPC
INT1PC

SMPC

R7_INTx

R5_INTx
R6_INTx

R4_INTx

R11_INTx

R9_INTx
R10_INTx

R8_INTx

R3_INTx

R1_INTx
R2_INTx

R0_INTx

SP_SYS SP_SYS SP_SYS
R12
R11

R9
R10

R8

R12_INTx
R11_INTx

R9_INTx
R10_INTx

R8_INTx

11
32000D–04/2011

AVR32

2.8 The Program Counter
The Program Counter (PC) contains the address of the instruction being executed. The memory
space is byte addressed. With the exception of Java state, the instruction size is a multiple of 2
bytes and the LSB of the Program Counter is fixed to zero. The PC is automatically incremented
in normal program flow, depending on the size of the current instruction.

The PC is mapped into the register file and it can be used as a source or destination operand in
all instructions using register operands. This includes arithmetical or logical instructions and
load/store instructions. Instructions using PC as destination register are treated the same way
as jump instructions. This implies that the pipeline is flushed, and execution resumed at the
address specified by the new PC value.

2.9 The Link Register
The general purpose register R14 is used as a Link Register in all modes. The Link Register
holds subroutine return addresses. When a subroutine call is performed by a variant of the call
instruction, LR is set to hold the subroutine return address. The subroutine return is performed
by copying LR back to the program counter, either explicitly by a mov instruction, by using a ldm
or popm instruction or a ret instruction.

The Link Register R14 can be used as a general-purpose register at all other times.

2.10 The Status Register
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 2-6 on
page 11 and Figure 2-7 on page 12. The lower halfword contains the C, Z, N, V and Q flags,
while the upper halfword contains information about the mode and state the processor executes
in. The upper halfword can only be accessed from a privileged mode.

Figure 2-6. The Status Register high halfword
B it 3 1

0 0 0

B it 1 6

In te rru p t L e v e l 0 M a s k
In te rru p t L e v e l 1 M a s k

In te rru p t L e v e l 3 M a s k
In te rru p t L e v e l 2 M a s k

10 0 0 0 1 1 0 0 0 00 0

S e c u re S ta te

F E I0 M G MM 1J D M 0 E M I2 MD M - M 2L C
1S S

In it ia l v a lu e

B it n a m eI1 M

M o d e B it 0
M o d e B it 1

H

M o d e B it 2
R e s e rv e d
D e b u g S ta te

- I3 M

J a v a S ta te

E x c e p tio n M a s k

G lo b a l In te rru p t M a s k

D e b u g S ta te M a s k

J a v a H a n d le
R e s e rv e d

12
32000D–04/2011

AVR32

Figure 2-7. The Status Register low halfword

SS - Secure State
This bit is indicates if the processor is executing in the secure state. For more details, see chap-
ter 4. The bit is initialized in an IMPLEMENTATION DEFINED way at reset.

H - Java Handle
This bit is included to support different heap types in the Java Virtual Machine. For more details,
see chapter 3. The bit is cleared at reset.

J - Java State
The processor is in Java state when this bit is set. The incoming instruction stream will be
decoded as a stream of Java bytecodes, not RISC opcodes. The bit is cleared at reset. This bit
should not be modified by the user as undefined behaviour may result.

DM - Debug State Mask
If this bit is set, the Debug State is masked and cannot be entered. The bit is cleared at reset,
and can both be read and written by software.

D - Debug State
The processor is in debug state when this bit is set. The bit is cleared at reset and should only be
modified by debug hardware, the breakpoint instruction or the retd instruction. Undefined behav-
iour may result if the user tries to modify this bit manually.

M2, M1, M0 - Execution Mode
These bits show the active execution mode. The settings for the different modes are shown in
Table 2-5 on page 13. M2 and M1 are cleared by reset while M0 is set so that the processor is in
supervisor mode after reset. These bits are modified by hardware, or execution of certain
instructions like scall, rets and rete. Undefined behaviour may result if the user tries to modify
these bits manually.

B it 1 5 B it 0

R e s e rv e d

C a rry
Z e ro
S ig n

0 0 0 00000000000

- - --TR B it n a m e

In it ia l v a lu e0 0

L Q V N Z C-

O v e r f lo w
S a tu ra t io n

- - -

L o c k

R e g is te r R e m a p E n a b le
S c ra tc h

13
32000D–04/2011

AVR32

EM - Exception mask
When this bit is set, exceptions are masked. Exceptions are enabled otherwise. The bit is auto-
matically set when exception processing is initiated or Debug Mode is entered. Software may
clear this bit after performing the necessary measures if nested exceptions should be supported.
This bit is set at reset.

I3M - Interrupt level 3 mask
When this bit is set, level 3 interrupts are masked. If I3M and GM are cleared, INT3 interrupts
are enabled. The bit is automatically set when INT3 processing is initiated. Software may clear
this bit after performing the necessary measures if nested INT3s should be supported. This bit is
cleared at reset.

I2M - Interrupt level 2 mask
When this bit is set, level 2 interrupts are masked. If I2M and GM are cleared, INT2 interrupts
are enabled. The bit is automatically set when INT3 or INT2 processing is initiated. Software
may clear this bit after performing the necessary measures if nested INT2s should be supported.
This bit is cleared at reset.

I1M - Interrupt level 1 mask
When this bit is set, level 1 interrupts are masked. If I1M and GM are cleared, INT1 interrupts
are enabled. The bit is automatically set when INT3, INT2 or INT1 processing is initiated. Soft-
ware may clear this bit after performing the necessary measures if nested INT1s should be
supported. This bit is cleared at reset.

I0M - Interrupt level 0 mask
When this bit is set, level 0 interrupts are masked. If I0M and GM are cleared, INT0 interrupts
are enabled. The bit is automatically set when INT3, INT2, INT1 or INT0 processing is initiated.
Software may clear this bit after performing the necessary measures if nested INT0s should be
supported. This bit is cleared at reset.

GM - Global Interrupt Mask
When this bit is set, all interrupts are disabled. This bit overrides I0M, I1M, I2M and I3M. The bit
is automatically set when exception processing is initiated, Debug Mode is entered, or a Java
trap is taken. This bit is automatically cleared when returning from a Java trap. This bit is set
after reset.

Table 2-5. Mode bit settings

M2 M1 M0 Mode

1 1 1 Non Maskable Interrupt

1 1 0 Exception

1 0 1 Interrupt level 3

1 0 0 Interrupt level 2

0 1 1 Interrupt level 1

0 1 0 Interrupt level 0

0 0 1 Supervisor

0 0 0 Application

14
32000D–04/2011

AVR32

R - Java register remap
When this bit is set, the addresses of the registers in the register file is dynamically changed.
This allows efficient use of the register file registers as a stack. For more details, see chapter 3..
The R bit is cleared at reset. Undefined behaviour may result if this bit is modified by the user.

T - Scratch bit
This bit is not set or cleared implicit by any instruction and the programmer can therefore use
this bit as a custom flag to for example signal events in the program. This bit is cleared at reset.

L - Lock flag
Used by the conditional store instruction. Used to support atomical memory access. Automati-
cally cleared by rete. This bit is cleared after reset.

Q - Saturation flag
The saturation flag indicates that a saturating arithmetic operation overflowed. The flag is sticky
and once set it has to be manually cleared by a csrf instruction after the desired action has been
taken. See the Instruction set description for details.

V - Overflow flag
The overflow flag indicates that an arithmetic operation overflowed. See the Instruction set
description for details.

N - Negative flag
The negative flag is modified by arithmetical and logical operations. See the Instruction set
description for details.

Z - Zero flag
The zero flag indicates a zero result after an arithmetic or logic operation. See the Instruction set
description for details.

C - Carry flag
The carry flag indicates a carry after an arithmetic or logic operation. See the Instruction set
description for details.

2.11 System registers
The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions, see Table 2-7 on page 15. The number of physi-
cal locations is IMPLEMENTATION DEFINED, but a maximum of 256 locations can be
addressed with the dedicated instructions. Some of the System Registers are altered automati-
cally by hardware.

The reset value of the System Registers are IMPLEMENTATION DEFINED.

15
32000D–04/2011

AVR32

The Compliance column describes if the register is Required, Optional or Unused in AVR32A
and AVR32B, see Table 2-6 on page 15 for legend.

Table 2-6. Legend for the Compliance column

Abbreviation Meaning

RA Required in AVR32A

OA Optional in AVR32A

UA Unused in AVR32A

RB Required in AVR32B

OB Optional in AVR32B

UB Unused in AVR32B

Table 2-7. System Registers

Reg # Address Name Function Compliance

0 0 SR Status Register RA RB

1 4 EVBA Exception Vector Base Address RA RB

2 8 ACBA Application Call Base Address RA RB

3 12 CPUCR CPU Control Register RA RB

4 16 ECR Exception Cause Register OA OB

5 20 RSR_SUP Return Status Register for Supervisor context UA RB

6 24 RSR_INT0 Return Status Register for INT 0 context UA RB

7 28 RSR_INT1 Return Status Register for INT 1 context UA RB

8 32 RSR_INT2 Return Status Register for INT 2 context UA RB

9 36 RSR_INT3 Return Status Register for INT 3 context UA RB

10 40 RSR_EX Return Status Register for Exception context UA RB

11 44 RSR_NMI Return Status Register for NMI context UA RB

12 48 RSR_DBG Return Status Register for Debug Mode OA OB

13 52 RAR_SUP Return Address Register for Supervisor context UA RB

14 56 RAR_INT0 Return Address Register for INT 0 context UA RB

15 60 RAR_INT1 Return Address Register for INT 1 context UA RB

16 64 RAR_INT2 Return Address Register for INT 2 context UA RB

17 68 RAR_INT3 Return Address Register for INT 3 context UA RB

18 72 RAR_EX Return Address Register for Exception context UA RB

19 76 RAR_NMI Return Address Register for NMI context UA RB

20 80 RAR_DBG Return Address Register for Debug Mode OA OB

21 84 JECR Java Exception Cause Register OA OB

22 88 JOSP Java Operand Stack Pointer OA OB

23 92 JAVA_LV0 Java Local Variable 0 OA OB

16
32000D–04/2011

AVR32

24 96 JAVA_LV1 Java Local Variable 1 OA OB

25 100 JAVA_LV2 Java Local Variable 2 OA OB

26 104 JAVA_LV3 Java Local Variable 3 OA OB

27 108 JAVA_LV4 Java Local Variable 4 OA OB

28 112 JAVA_LV5 Java Local Variable 5 OA OB

29 116 JAVA_LV6 Java Local Variable 6 OA OB

30 120 JAVA_LV7 Java Local Variable 7 OA OB

31 124 JTBA Java Trap Base Address OA OB

32 128 JBCR Java Write Barrier Control Register OA OB

33-63 132-252 Reserved Reserved for future use - -

64 256 CONFIG0 Configuration register 0 RA RB

65 260 CONFIG1 Configuration register 1 RA RB

66 264 COUNT Cycle Counter register RA RB

67 268 COMPARE Compare register RA RB

68 272 TLBEHI MMU TLB Entry High OA OB

69 276 TLBELO MMU TLB Entry Low OA OB

70 280 PTBR MMU Page Table Base Register OA OB

71 284 TLBEAR MMU TLB Exception Address Register OA OB

72 288 MMUCR MMU Control Register OA OB

73 292 TLBARLO MMU TLB Accessed Register Low OA OB

74 296 TLBARHI MMU TLB Accessed Register High OA OB

75 300 PCCNT Performance Clock Counter OA OB

76 304 PCNT0 Performance Counter 0 OA OB

77 308 PCNT1 Performance Counter 1 OA OB

78 312 PCCR Performance Counter Control Register OA OB

79 316 BEAR Bus Error Address Register OA OB

80 320 MPUAR0 MPU Address Register region 0 OA OB

81 324 MPUAR1 MPU Address Register region 1 OA OB

82 328 MPUAR2 MPU Address Register region 2 OA OB

83 332 MPUAR3 MPU Address Register region 3 OA OB

84 336 MPUAR4 MPU Address Register region 4 OA OB

85 340 MPUAR5 MPU Address Register region 5 OA OB

86 344 MPUAR6 MPU Address Register region 6 OA OB

87 348 MPUAR7 MPU Address Register region 7 OA OB

88 352 MPUPSR0 MPU Privilege Select Register region 0 OA OB

89 356 MPUPSR1 MPU Privilege Select Register region 1 OA OB

Table 2-7. System Registers (Continued)

Reg # Address Name Function Compliance

17
32000D–04/2011

AVR32

SR- Status Register
The Status Register is mapped into the system register space. This allows it to be loaded into
the register file to be modified, or to be stored to memory. The Status Register is described in
detail in Section 2.10 “The Status Register” on page 11.

EVBA - Exception Vector Base Address
This register contains a pointer to the exception routines. All exception routines start at this
address, or at a defined offset relative to the address. Special alignment requirements may
apply for EVBA, depending on the implementation of the interrupt controller. Exceptions are
described in detail in Section 8. “Event Processing” on page 63.

ACBA - Application Call Base Address
Pointer to the start of a table of function pointers. Subroutines can thereby be called by the com-
pact acall instruction. This facilitates efficient reuse of code. Keeping this pointer as a register
facilitates multiple function pointer tables. ACBA is a full 32 bit register, but the lowest two bits

90 360 MPUPSR2 MPU Privilege Select Register region 2 OA OB

91 364 MPUPSR3 MPU Privilege Select Register region 3 OA OB

92 368 MPUPSR4 MPU Privilege Select Register region 4 OA OB

93 372 MPUPSR5 MPU Privilege Select Register region 5 OA OB

94 376 MPUPSR6 MPU Privilege Select Register region 6 OA OB

95 380 MPUPSR7 MPU Privilege Select Register region 7 OA OB

96 384 MPUCRA MPU Cacheable Register A OA OB

97 388 MPUCRB MPU Cacheable Register B OA OB

98 392 MPUBRA MPU Bufferable Register A OA OB

99 396 MPUBRB MPU Bufferable Register B OA OB

100 400 MPUAPRA MPU Access Permission Register A OA OB

101 404 MPUAPRB MPU Access Permission Register B OA OB

102 408 MPUCR MPU Control Register OA OB

103 412 SS_STATUS Secure State Status Register OA OB

104 416 SS_ADRF Secure State Address Flash Register OA OB

105 420 SS_ADRR Secure State Address RAM Register OA OB

106 424 SS_ADR0 Secure State Address 0 Register OA OB

107 428 SS_ADR1 Secure State Address 1 Register OA OB

108 432 SS_SP_SYS Secure State Stack Pointer System Register OA OB

109 436 SS_SP_APP Secure State Stack Pointer Application Register OA OB

110 440 SS_RAR Secure State Return Address Register OA OB

111 444 SS_RSR Secure State Return Status Register OA OB

112-191 448-764 Reserved Reserved for future use - -

192-255 768-1020 IMPL IMPLEMENTATION DEFINED - -

Table 2-7. System Registers (Continued)

Reg # Address Name Function Compliance

18
32000D–04/2011

AVR32

should be written to zero, making ACBA word aligned. Failing to do so may result in erroneous
behaviour.

CPUCR - CPU Control Register
Register controlling the configuration and behaviour of the CPU. The behaviour of this register is
IMPLEMENTATION DEFINED. An example of a typical control bit in the CPUCR is an enable bit
for branch prediction.

ECR - Exception Cause Register
This register identifies the cause of the most recently executed exception. This information may
be used to handle exceptions more efficiently in certain operating systems. The register is
updated with a value equal to the EVBA offset of the exception, shifted 2 bit positions to the
right. Only the 9 lowest bits of the EVBA offset are considered. As an example, an ITLB miss
jumps to EVBA+0x50. The ECR will then be loaded with 0x50>>2 == 0x14. The ECR register is
not loaded when an scall, Breakpoint or OCD Stop CPU exception is taken. Note that for inter-
rupts, the offset is given by the autovector provided by the interrupt controller. The resulting ECR
value may therefore overlap with an ECR value used by a regular exception. This can be
avoided by choosing the autovector offsets so that no such overlaps occur.

RSR_SUP, RSR_INT0, RSR_INT1, RSR_INT2, RSR_INT3, RSR_EX, RSR_NMI - Return Status Registers
If a request for a mode change, for instance an interrupt request, is accepted when executing in
a context C, the Status Register values in context C are automatically stored in the Return Sta-
tus Register (RSR) associated with the interrupt context I. When the execution in the interrupt
state I is finished and the rets / rete instruction is encountered, the RSR associated with I is cop-
ied to SR, and the execution continues in the original context C.

RSR_DBG - Return Status Register for Debug Mode
When Debug mode is entered, the status register contents of the original mode is automatically
saved in this register. When the debug routine is finished, the retd instruction copies the con-
tents of RSR_DBG into SR.

RAR_SUP, RAR_INT0, RAR_INT1, RAR_INT2, RAR_INT3, RAR_EX, RAR_NMI - Return Address Registers
If a request for a mode change, for instance an interrupt request, is accepted when executing in
a context C, the re-entry address of context C is automatically stored in the Return Address Reg-
ister (RAR) associated with the interrupt context I. When the execution in the interrupt state I is
finished and the rets / rete instruction is encountered, a change-of-flow to the address in the
RAR associated with I, and the execution continues in the original context C. The calculation of
the re-entry addresses is described in Section 8. “Event Processing” on page 63.

RAR_DBG - Return Address Register for Debug Mode
When Debug mode is entered, the Program Counter contents of the original mode is automati-
cally saved in this register. When the debug routine is finished, the retd instruction copies the
contents of RAR_DBG into PC.

JECR - Java Exception Cause Register
This register contains information needed for Java traps, see AVR32 Java Technical Reference
Manual for details.

JOSP - Java Operand Stack Pointer
This register holds the Java Operand Stack Pointer. The register is initialized to 0 at reset.

19
32000D–04/2011

AVR32

JAVA_LVx - Java Local Variable Registers
The Java Extension Module uses these registers to store local variables temporary.

JTBA - Java Trap Base Address
This register contains the base address to the program code for the trapped Java instructions.

JBCR - Java Write Barrier Control Register
This register is used by the garbage collector in the Java Virtual Machine.

CONFIG0 / 1 - Configuration Register 0 / 1
Used to describe the processor, its configuration and capabilities. The contents and functionality
of these registers is described in detail in Section 2.11.1 “Configuration Registers” on page 21.

COUNT - Cycle Counter Register
The COUNT register increments once every clock cycle, regardless of pipeline stalls and
flushes. The COUNT register can both be read and written. The count register can be used
together with the COMPARE register to create a timer with interrupt functionality. The COUNT
register is written to zero upon reset and compare match. Revision 3 of the AVR32 Architecture
allows some implementations to disable this automatic clearing of COUNT upon COMPARE
match, usually by programming a bit in CPUCR. Refer to the Technical Reference Manual for
the device for details. Incrementation of the COUNT register can not be disabled. The COUNT
register will increment even though a compare interrupt is pending.

COMPARE - Cycle Counter Compare Register
The COMPARE register holds a value that the COUNT register is compared against. The COM-
PARE register can both be read and written. When the COMPARE and COUNT registers match,
a compare interrupt request is generated and COUNT is reset to 0. This interrupt request is
routed out to the interrupt controller, which may forward the request back to the processor as a
normal interrupt request at a priority level determined by the interrupt controller. Writing a value
to the COMPARE register clears any pending compare interrupt requests. The compare and
exception generation feature is disabled if the COMPARE register contains the value zero. The
COMPARE register is written to zero upon reset.

TLBEHI - MMU TLB Entry Register High Part
Used to interface the CPU to the TLB. The contents and functionality of the register is described
in detail in Section 5. “Memory Management Unit” on page 35.

TLBELO - MMU TLB Entry Register Low Part
Used to interface the CPU to the TLB. The contents and functionality of the register is described
in detail in Section 5. “Memory Management Unit” on page 35.

PTBR - MMU Page Table Base Register
Contains a pointer to the start of the Page Table. The contents and functionality of the register is
described in detail in Section 5. “Memory Management Unit” on page 35.

TLBEAR - MMU TLB Exception Address Register
Contains the virtual address that caused the most recent MMU error. The contents and function-
ality of the register is described in detail in Section 5. “Memory Management Unit” on page 35.

20
32000D–04/2011

AVR32

MMUCR - MMU Control Register
Used to control the MMU and the TLB. The contents and functionality of the register is described
in detail in Section 5. “Memory Management Unit” on page 35.

TLBARLO / TLBARHI - MMU TLB Accessed Register Low / High
Contains the Accessed bits for the TLB. The contents and functionality of the register is
described in detail in Section 5. “Memory Management Unit” on page 35.

PCCNT - Performance Clock Counter
Clock cycle counter for performance counters. The contents and functionality of the register is
described in detail in Section 7. “Performance counters” on page 57.

PCNT0 / PCNT1 - Performance Counter 0 / 1
Counts the events specified by the Performance Counter Control Register. The contents and
functionality of the register is described in detail in Section 7. “Performance counters” on page
57.

PCCR - Performance Counter Control Register
Controls and configures the setup of the performance counters. The contents and functionality
of the register is described in detail in Section 7. “Performance counters” on page 57.

BEAR - Bus Error Address Register
Physical address that caused a Data Bus Error. This register is Read Only. Writes are allowed,
but are ignored.

MPUARn - MPU Address Register n
Registers that define the base address and size of the protection regions. Refer to Section 6.
“Memory Protection Unit” on page 51 for details.

MPUPSRn - MPU Privilege Select Register n
Registers that define which privilege register set to use for the different subregions in each pro-
tection region. Refer to Section 6. “Memory Protection Unit” on page 51 for details.

MPUCRA / MPUCRB - MPU Cacheable Register A / B
Registers that define if the different protection regions are cacheable. Refer to Section 6. “Mem-
ory Protection Unit” on page 51 for details.

MPUBRA / MPUBRB - MPU Bufferable Register A / B
Registers that define if the different protection regions are bufferable. Refer to Section 6. “Mem-
ory Protection Unit” on page 51 for details.

MPUAPRA / MPUAPRB - MPU Access Permission Register A / B
Registers that define the access permissions for the different protection regions. Refer to Sec-
tion 6. “Memory Protection Unit” on page 51 for details.

MPUCR - MPU Control Register
Register that control the operation of the MPU. Refer to Section 6. “Memory Protection Unit” on
page 51 for details.

21
32000D–04/2011

AVR32

SS_STATUS - Secure State Status Register
Register that can be used to pass status or other information from the secure state to the nonse-
cure state. Refer to Section 4. “Secure state” on page 31 for details.

SS_ADRF, SS_ADRR, SS_ADR0, SS_ADR1 - Secure State Address Registers
Registers used to partition memories into a secure and a nonsecure section. Refer to Section 4.
“Secure state” on page 31 for details.

SS_SP_SYS, SS_SP_APP - Secure State SP_SYS and SP_APP Registers
Read-only registers containing the SP_SYS and SP_APP values. Refer to Section 4. “Secure
state” on page 31 for details.

SS_RAR, SS_RSR - Secure State Return Address and Return Status Registers
Contains the address and status register of the sscall instruction that called secure state. Also
used when returning to nonsecure state with the retss instruction. Refer to Section 4. “Secure
state” on page 31 for details.

2.11.1 Configuration Registers
Configuration registers are used to inform applications and operating systems about the setup
and configuration of the processor on which it is running, see Figure 2-8 on page 21. The AVR32
implements the following read-only configuration registers.

Figure 2-8. Configuration Registers

Table 2-8 on page 21 shows the CONFIG0 fields.

Table 2-8. CONFIG0 Fields

Name Bit Description

Processor ID 31:24
Specifies the type of processor. This allows the application to
distinguish between different processor implementations.

RESERVED 23:20 Reserved for future use.

Processor revision 19:16 Specifies the revision of the processor implementation.

Processor ID AT

092431

CONFIG0

7 6
Processor
Revision AR MMUT

23 16 15 13 12 10

S

IMMU SZ ISET

2631

CONFIG1

ILSZ

25 20 19 1516 12

DMMU SZ IASS

13

DSET DLSZ

10 9 6 5

DASS

3

P OF

5

0

J

4

2

3 2

D R

1

-

1920

22
32000D–04/2011

AVR32

AT 15:13

Architecture type

Value Semantic

0 AVR32A

1 AVR32B

Other Reserved

AR 12:10
Architecture Revision. Specifies which revision of the AVR32
architecture the processor implements.

Value Semantic

0 Revision 0

1 Revision 1

2 Revision 2

3 Revision 3

Other Reserved

MMUT 9:7

MMU type

Value Semantic

0 None, using direct mapping and no segmentation

1 ITLB and DTLB

2 Shared TLB

3 Memory Protection Unit

Other Reserved

F 6

Floating-point unit implemented

Value Semantic

0 No FPU implemented

1 FPU implemented

J 5

Java extension implemented

Value Semantic

0 No Java extension implemented

1 Java extension implemented

P 4

Performance counters implemented

Value Semantic

0 No Performance Counters implemented

1 Performance Counters implemented

O 3

On-Chip Debug implemented

Value Semantic

0 No OCD implemented

1 OCD implemented

Table 2-8. CONFIG0 Fields (Continued)

Name Bit Description

23
32000D–04/2011

AVR32

Table 2-9 on page 23 shows the CONFIG1 fields.

S 2

SIMD instructions implemented

Value Semantic

0 No SIMD instructions

1 SIMD instructions implemented

D 1

DSP instructions implemented

Value Semantic

0 No DSP instructions

1 DSP instructions implemented

R 0

Memory Read-Modify-Write instructions implemented

Value Semantic

0 No RMW instructions

1 RMW instructions implemented

Table 2-9. CONFIG1 Fields

Name Bit Description

IMMU SZ 31:26
The number of entries in the IMMU equals (IMMU SZ) + 1. Not used
in single-MMU or MPU systems.

DMMU SZ 25:20

Specifies the number of entries in the DMMU or in the shared MMU in
single-MMU systems. The number of entries in the DMMU or shared
MMU equals (DMMU SZ + 1). In systems with MPU, DMMU SZ
equals the number of MPUAR entries.

Table 2-8. CONFIG0 Fields (Continued)

Name Bit Description

24
32000D–04/2011

AVR32

ISET 19:16

Number of sets in ICACHE

Value Semantic

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

ILSZ 15:13

Line size in ICACHE

Value Semantic

0 No ICACHE present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 256 bytes

Table 2-9. CONFIG1 Fields (Continued)

Name Bit Description

25
32000D–04/2011

AVR32

IASS 12:10

Associativity of ICACHE

Value Semantic

0 Direct mapped

1 2-way

2 4-way

3 8-way

4 16-way

5 32-way

6 64-way

7 128-way

DSET 9:6

Number of sets in DCACHE

Value Semantic

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

Table 2-9. CONFIG1 Fields (Continued)

Name Bit Description

26
32000D–04/2011

AVR32

2.12 Recommended Call Convention
The compiler vendor is free to define a call convention, but seen from a hardware point of view,
there are some recommendations on how the call convention should be defined.

Register R12 is intended as return value register in connection with function calls. Some instruc-
tions will use this register implicitly. For instance, the conditional ret instruction will move its
argument into R12.

DLSZ 5:3

Line size in DCACHE

Value Semantic

0 No DCACHE present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 256 bytes

DASS 2:0

Associativity of DCACHE

Value Semantic

0 Direct mapped

1 2-way

2 4-way

3 8-way

4 16-way

5 32-way

6 64-way

7 128-way

Table 2-9. CONFIG1 Fields (Continued)

Name Bit Description

27
32000D–04/2011

AVR32

3. Java Extension Module
The AVR32 architecture can optionally support execution of Java bytecodes by including a Java
Extension Module (JEM). This support is included with minimal hardware overhead.

Comparing Java bytecode instructions with native AVR32 instructions, we see that a large part
of the instructions overlap as illustrated in Figure 3-1 on page 27. The idea is thus to reuse the
hardware resources by adding a separate Java instruction decoder and control module that exe-
cutes in Java state. The processor keeps track of its execution state through the status register
and changes execution mode seamlessly.

In a larger runtime system, an operating system keeps track of and dispatches different pro-
cesses. A Java program will typically be one, or several, of these processes.

The Java state is not to be confused with the security modes “system” and “application”, as the
JEM can execute in both modes. When the processor switches instruction decoder and enters
Java state, it does not affect the security level set by the system. A Java program could also be
executed from the different interrupt levels without interfering with the mode settings of the pro-
cessor, although it is not recommended that interrupt routines are written in Java due to latency.

The Java binary instructions are called bytecodes. These bytecodes are one or more bytes long.
A bytecode consists of an opcode and optional arguments. The bytecodes include some instruc-
tions with a high semantic content. In order to reduce the hardware overhead, these instructions
are trapped and executed as small RISC programs. These programs are stored in the program
memory and can be changed by the programmer (part of the Java VM implementation). This
gives full flexibility with regards to future extensions of the Java instruction set. Performance is
ensured through an efficient trapping mechanism and “Java tailored” RISC instructions.

Figure 3-1. A large part of the instruction set is shared between the AVR RISC and the Java
Virtual Machine. The Java instruction set includes instructions with high semantic
contents while the AVR RISC instruction set complements Java’s set with tradi-
tional hardware near RISC instructions

3.1 The AVR32 Java Virtual Machine
The AVR32 Java Virtual machine consists of two parts, the Java Extension Module in hardware
and the AVR32 specific Java Virtual Machine software, see Figure 3-2 on page 28. Together,
the two modules comply with the Java Virtual Machine specification.

High level instructions Low level instructions

� Java
 additions

 AVR RISC
 additions

Java AVR

Common

28
32000D–04/2011

AVR32

The AVR32 Java Virtual Machine software loads and controls the execution of the Java classes.
The bytecodes are executed in hardware, except for some instructions, for example the instruc-
tions that create or manipulate objects. These are trapped and executed in software within the
Java Virtual Machine.

Figure 3-2. Overview of the AVR32 Java Virtual Machine and the Java Extension Module.
The grey area represent the software parts of the virtual machine, while the white
box to the right represents the hardware module.

Figure 3-3 on page 29 shows one example on how a Java program is executed. The processor
boots in AVR32 (RISC) state and it executes applications as a normal RISC processor. To
invoke a Java program, the Java Virtual Machine is called like any other application. The Java
Virtual Machine will execute an init routine followed by a class loader that parses the class and
initializes all registers necessary to start executing the Java program. The last instruction in the

Header Data

Class Variables Attributes

Methods Meta Data

Constant Pool

Garbage
Collector

Stack PC, SP

Local Variables Const. Pool
Pointer

Trapped
Object

Bytecodes

Scheduler

AVR32 Java
Extension

Module

Other
Trapped

Bytecodes

AVR32 Java Virtual Machine

Heap

Objects

Method Area

Classes

Threads

Frames

29
32000D–04/2011

AVR32

class loader is the “RETJ” instruction that sets the processor in the Java state. This means that
the instruction decoder now decodes Java opcodes instead of the normal AVR32 opcodes.

Figure 3-3. Example of running a Java program

void ajvm() {
 init();
 classloader();
 retj;

iconst_1
istore_0
iconst_2
getfield

iconst_1
istore_0
iconst_2

return

void cleanup() {

}

 ret
}

Java Extension Module

AVR32 Java Virtual Machine

mfsr R12, JECR
cp R12, 0x8

cleanup()

application

mfsr R12, JECR
cp R12, 0x8

retj

Trap routines

void main() {

function1 ();
application ();

ajvm(arguments)

30
32000D–04/2011

AVR32

During execution of the Java program, the Java Extension Module will encounter some byte-
codes that are not supported in hardware. The instruction decoder will automatically recognize
these bytecodes and switch the processor back into RISC state and at the same time jump to a
predefined location where it will execute a software routine that performs the semantic of the
trapped bytecode. When finished, the routine ends with a “RETJ” instruction. This instruction will
make the AVR32 core return to Java state and the Java program will continue at the correct
location.

Detailed technical information about the Java Extension module is available in a separate Java
Technical Reference document.

31
32000D–04/2011

AVR32

4. Secure state
Revision 3 of the AVR32 architecture introduces a secure execution state. This state is intended
to allow execution of a proprietary secret code alongside code of unknown origin and intent on
the same processor. For example, a company with a proprietary algorithm can program this
algorithm into the secure memory sections of the device, and resell the device with the pro-
grammed algorithm to an end customer. The end customer will not be able to read or modify the
preprogrammed code in any way. Examples of such preprogrammed code can be multimedia
codecs, digital signal processing algorithms or telecom software stacks. Whereas previous
approaches to this problem required the proprietary code and the end user application to exe-
cute on separate devices, the secure state allows integration of the two codes on the same
device, saving cost and increasing performance since inter-IC communication is no longer
required.

In order to keep the proprietary code secret, this code will execute in a “secure world”. The end
user application will execute in a “nonsecure world”. Code in the nonsecure world can request
services from the secure world by executing a special instruction, sscall. This instruction is exe-
cuted in the context of an API specified by the provider of the proprietary code. The sscall
instruction can be associated with arguments passed in registers or memory, and after execu-
tion of the requested algorithm, the secure world returns results to the requesting nonsecure
application in registers or in memory.

Hardware is implemented to divide the memory resources into two sections, one secure and one
non-secure section. The secure section of the memories can only be accessed (read, written or
executed) from code running in the secure world. The nonsecure section of the memories can
be read, written or executed from the nonsecure world, and read or written from the secure
world.

The customer can choose if his application will enable the secure state support or not. An
IMPLEMENTATION DEFINED mechanism, usually a Flash fuse, is used to enable or disable
secure state support. If this mechanism is programmed so as to disable the secure state, the
system will boot in nonsecure world, and its behavior will be identical to previous devices imple-
menting older revisions of the AVR32 architecture. If the system is set up to enable secure state
support, the system will boot in the secure state. This allows configuration and startup of the
secure world application before execution is passed to the nonsecure world.

4.1 Mechanisms implementing the Secure State
The following architectural mechanisms are used to implement the secure state:

• The sscall and retss instructions are used for passing between the secure and nonsecure
worlds.

• The secure world has a dedicated stack pointer, SP_SEC, which is automatically banked into
the register file whenever executing in the secure world.

• The SS bit is set in the status register whenever the system is in the secure state. Only sscall
and retss can alter this bit.

• Interrupts and exceptions have special handler addresses used when receiving interrupts or
exceptions in the secure world. This allows executing the interrupt or exception handler in the
secure world, or jumping back into the nonsecure world to execute the handler there.

• A set of secure system registers are used to configure the secure world behavior, and to aid
in communication between the secure and nonsecure worlds. These registers can be written
when in the secure world, but only read when in the nonsecure world.

32
32000D–04/2011

AVR32

• When trying to access secure world memories from the nonsecure world, a bus error
exception will be raised, and the access will be aborted. Writes to secure system registers
from within the nonsecure world will simply be disregarded without any error indication.

• The On-Chip Debug (OCD) system is modified to prevent any leak of proprietary code or
data to the nonsecure world. This prevents hacking through the use of the OCD system.

4.2 Secure state programming model
The programming model in the secure state is similar to in normal RISC state, except that
SP_SEC has been banked in, and the secure system registers are available in all privileged
modes.

Figure 4-1. Register File in AVR32A with secure context
Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

INT0

SP_APP SP_SYS
R12
R11

R9
R10

R8

Exception NMIINT1 INT2 INT3

LRLR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Secure

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SEC
LR

SS_STATUS
SS_ADRF
SS_ADRR
SS_ADR0
SS_ADR1

SS_SP_SYS
SS_SP_APP

SS_RAR
SS_RSR

33
32000D–04/2011

AVR32

Figure 4-2. Register File in AVR32B with secure context

4.3 Details on Secure State implementation
Refer to the Technical Reference manual for the CPU core you are using for details on the
Secure State implementation.

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

INT0

Bit 0Bit 31

PC

RSR_INT0
SR

SP_APP SP_SYS SP_SYS
R12
R11

R9
R10

R8
banked

registers
(implementation

defined)

Bit 0Bit 31

PC
LR / LR_INT2

SP_SYS

banked
registers

(implementation
defined)

RSR_INT2
SR

Bit 0Bit 31

PC

RSR_INT3

LR / LR_INT3

SR

SP_SYS

banked
registers

(implementation
defined)

Bit 0Bit 31

PC

SR

SP_SYS

banked
registers

(implementation
defined)

RSR_INT1

Exception

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

RSR_EX

NMI

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

RSR_NMI

INT1 INT2 INT3

LRLR

RSR_SUP

LR / LR_INT0 LR / LR_INT1

RAR_INT0 RAR_INT2 RAR_INT3RAR_INT1 RAR_EX RAR_NMIRAR_SUP

SS_STATUS
SS_ADRF
SS_ADRR
SS_ADR0
SS_ADR1

SS_SP_SYS
SS_SP_APP

SS_RAR
SS_RSR

Secure

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SEC
LR

SS_RAR
SS_RSR

34
32000D–04/2011

AVR32

35
32000D–04/2011

AVR32

5. Memory Management Unit
The AVR32 architecture defines an optional Memory Management Unit (MMU). This allows effi-
cient implementation of virtual memory and large memory spaces. Virtual memory simplifies
execution of multiple processes and allows allocation of privileges to different sections of the
memory space.

5.1 Memory map in systems with MMU
The AVR32 architecture specifies a 32-bit virtual memory space. This virtual space is mapped
into a 32-bit physical space by a MMU. It should also be noted that not all implementations will
use caches. The cacheability information specified in the figure will therefore not apply for all
implementations. Refer to the implementation-specific Hardware Manual for details.

The virtual memory map is specified in Figure 5-1.

Figure 5-1. The AVR32 virtual memory space

The memory map has six different segments, named P0 through P4, and U0. The P-segments
are accessible in the privileged modes, while the U-segment is accessible in the unprivileged
mode.

Both the P1 and P2 segments are default segment translated to the physical address range
0x00000000 to 0x1FFFFFFF. The mapping between virtual addresses and physical addresses
is therefore implemented by clearing of MSBs in the virtual address. The difference between P1
and P2 is that P1 may be cached, depending on the cache configuration, while P2 is always
uncached. Because P1 and P2 are segment translated and not page translated, code for initial-
ization of MMUs and exception vectors are located in these segments. P1, being cacheable,
may offer higher performance than P2.

2GB translated space
Cacheable

512MB system space,
non-cacheable

512MB translated space,
cacheable

512MB non-translated
space, non-cacheable

512MB non-translated
space, cacheable

Unaccessible space
Access error

2GB translated space
Cacheable

0x00000000

0x80000000

0xA0000000

0xC0000000

0xE0000000

0xFFFFFFFF

Privileged Modes Unprivileged Mode

0x00000000

0x80000000

0xFFFFFFFF

P0

P1

P2

P3

P4

U0

36
32000D–04/2011

AVR32

The P3 space is also by default segment translated to the physical address range 0x00000000
to 0x1FFFFFFF. By enabling and setting up the MMU, the P3 space becomes page translated.
Page translation will override segment translation.

The P4 space is intended for memory mapping special system resources like the memory arrays
in caches. This segment is non-cacheable, non-translated.

The U0 segment is accessible in the unprivileged user mode. This segment is cacheable and
translated, depending upon the configuration of the cache and the memory management unit. If
accesses to other memory addresses than the ones within U0 is made in application mode, an
access error exception is issued.

The virtual address map is summarized in Table 5-1 on page 36.

The segment translation can be disabled by clearing the S bit in the MMUCR. This will place all
the virtual memory space into a single 4 GB mapped memory space. Doing this will give all
access permission control to the AP bits in the TLB entry matching the virtual address, and allow
all virtual addresses to be translated. Segment translation is enabled by default.

The AVR32 architecture has two translations of addresses.

1. Segment translation (enabled by the MMUCR[S] bit)

2. Page translation (enabled by the MMUCR[E] bit)

Both these translations are performed by the MMU and they can be applied independent of each
other. This means that you can enable:

1. No translation. Virtual and physical addresses are the same.

2. Segment translation only. The virtual and physical addresses are the same for
addresses residing in the P0, P4 and U0 segments. P1, P2 and P3 are mapped to the
physical address range 0x00000000 to 0x1FFFFFFF.

3. Page translation only. All addresses are mapped as described by the TLB entries.

4. Both segment and page translations. P1 and P2 are mapped to the physical address
range 0x00000000 to 0x1FFFFFFF. U0, P0 and P3 are mapped as described by the
TLB entries. The virtual and physical addresses are the same for addresses residing in
the P4 segment.

The segment translation is by default turned on and the page translation is by default turned off
after reset. The segment translation is summarized in Figure 5-2 on page 37.

Table 5-1. The virtual address map

Virtual
address
[31:29]

Segment
name

Virtual
Address Range

Segment
size

Accessible
from

Default
segment
translated Characteristics

111 P4
0xFFFF_FFFF to
0xE000_0000

512 MB Privileged No
System space
Unmapped, Uncacheable

110 P3
0xDFFF_FFFF to
0xC000_0000

512 MB Privileged Yes
Mapped,
Cacheable

101 P2
0xBFFF_FFFF to
0xA000_0000

512 MB Privileged Yes Unmapped, Uncacheable

100 P1
0x9FFF_FFFF to
0x8000_0000

512 MB Privileged Yes Unmapped, Cacheable

0xx P0 / U0
0x7FFF_FFFF to
0x0000_0000

2 Gb
Unprivileged

Privileged
No Mapped, Cacheable

37
32000D–04/2011

AVR32

Figure 5-2. The AVR32 segment translation map

5.2 Understanding the MMU
The AVR32 Memory Management Unit (MMU) is responsible for mapping virtual to physical
addresses. When a memory access is performed, the MMU translates the virtual address speci-
fied into a physical address, while checking the access permissions. If an error occurs in the
translation process, or Operating System intervention is needed for some reason, the MMU will
issue an exception, allowing the problem to be resolved by software.

The MMU architecture uses paging to map memory pages from the 32-bit virtual address space
to a 32-bit physical address space. Page sizes of 1, 4, 64 kilobytes and 1 megabyte are sup-
ported. Each page has individual access rights, providing fine protection granularity.

The information needed in order to perform the virtual-to-physical mapping resides in a page
table. Each page has its own entry in the page table. The page table also contains protection
information and other data needed in the translation process. Conceptually, the page table is
accessed for every memory access, in order to read the mapping information for each page.

In order to speed up the translation process, a special page table cache is used. This cache is
called a Translation Lookaside Buffer (TLB). The TLB contains the n most recently used page
table entries. The number n of entries in the TLB is IMPLEMENTATION DEFINED. It is also
IMPLEMENTATION DEFINED whether a single unified TLB should be used for both instruction
and memory accesses, or if two separate TLBs are implemented. The architecture supports one
or two TLBs with up to 64 entries in each. TLB entries can also be locked in the TLB, guarantee-
ing high-speed memory accesses.

2GB translated space
cacheable

512MB system space,
non-cacheable

512MB translated space,
cacheable

512MB non-translated
space, non-cacheable

512MB non-translated
space, cacheable

0x00000000

0x80000000

0xA0000000

0xC0000000

0xE0000000

0xFFFFFFFF

P0 / U0

P1

P2

P3

P4

2GB physical address
space

Virtual address space

512MB physical address
space

0x00000000

0x80000000

0xE0000000

0xFFFFFFFF

0x20000000

Physical address space
Segment

translation

38
32000D–04/2011

AVR32

5.2.1 Virtual Memory Models
The MMU provides two different virtual memory models, selected by the Mode (M) bit in the
MMU Control Register:

• Shared virtual memory, where the same virtual address space is shared between all
processes

• Private virtual memory, where each process has its own virtual address space

In shared virtual memory, the virtual address uniquely identifies which physical address it should
be mapped to. Two different processes addressing the same virtual address will always access
the same physical address. In other words, the Virtual Page Number (VPN) section of the virtual
address uniquely specifies the Physical Frame Number (PFN) section in the physical address.

In private virtual memory, each process has its own virtual memory space. This is implemented
by using both the VPN and the Application Space Identifier (ASID) of the current process when
searching the TLB for a match. Each process has a unique ASID. Therefore, two different pro-
cesses accessing the same VPN won’t hit the same TLB entry, since their ASID is different.
Pages can be shared between processes in private virtual mode by setting the Global (G) bit in
the page table entry. This will disable the ASID check in the TLB search, causing the VPN sec-
tion uniquely to identify the PFN for the particular page.

5.2.2 MMU interface registers
The following registers are used to control the MMU, and provide the interface between the
MMU and the operating system. Most registers can be altered both by the application software
(by writing to them) and by hardware when an exception occurs. All the registers are mapped
into the System Register space, their addresses are presented in Section 2.11 “System regis-
ters” on page 14. The MMU interface registers are shown in Figure 5-3.

Figure 5-3. The MMU interface registers

V P N A S ID

G D

071031

TLB E H I

P F N C B

091031

TLB E LO

V

S ZA P W

I

8 7 6 4 3 2 1

P T B R

031

P T B R

T LB E A R

031

TLB E A R

D LA EM

07831

M M U C R

ILA D R PIR P

1

-

213142026 1925

I

3

9 8

N

45

S

T LB A R LO / T LB A R H I

031

TLB A R LO / T LB A R H I

39
32000D–04/2011

AVR32

5.2.2.1 TLB Entry Register High Part - TLBEHI
The contents of the TLBEHI and TLBELO registers is loaded into the TLB when the tlbw instruc-
tion is executed. The TLBEHI register consists of the following fields:

• VPN - Virtual Page Number in the TLB entry. This field contains 22 bits, but the number of
bits used depends on the page size. A page size of 1 kB requires 22 bits, while larger page
sizes require fewer bits. When preparing to write an entry into the TLB, the virtual page
number of the entry to write should be written into VPN. When an MMU-related exception
has occurred, the virtual page number of the failing address is written to VPN by hardware.

• V - Valid. Set if the TLB entry is valid, cleared otherwise. This bit is written to 0 by a reset. If
an access to a page which is marked as invalid is attempted, an TLB Miss exception is
raised. Valid is set automatically by hardware whenever an MMU exception occurs.

• I - Instruction TLB. If set, the current TLBEHI and TLBELO entries should be written into the
Instruction TLB. If cleared, the Data or Unified TLB should be addressed. The I bit is set by
hardware when an MMU-related exception occurs, indicating whether the error occurred in
the ITLB or the UTLB/DTLB.

• ASID - Application Space Identifier. The operating system allocates a unique ASID to each
process. This ASID is written into TLBEHI by the OS, and used in the TLB address match if
the MMU is running in Private Virtual Memory mode and the G bit of the TLB entry is cleared.
ASID is never changed by hardware.

5.2.2.2 TLB Entry Register Low Part - TLBELO
The contents of the TLBEHI and TLBELO registers is loaded into the TLB when the tlbw instruc-
tion is executed. None of the fields in TLBELO are altered by hardware. The TLBELO register
consists of the following fields:

• PFN - Physical Frame Number to which the VPN is mapped. This field contains 22 bits, but
the number of bits used depends on the page size. A page size of 1 kB requires 22 bits, while
larger page sizes require fewer bits. When preparing to write an entry into the TLB, the
physical frame number of the entry to write should be written into PFN.

• C - Cacheable. Set if the page is cacheable, cleared otherwise.

• G - Global bit used in the address comparison in the TLB lookup. If the MMU is operating in
the Private Virtual Memory mode and the G bit is set, the ASID won’t be used in the TLB
lookup.

• B - Bufferable. Set if the page is bufferable, cleared otherwise.

• AP - Access permissions specifying the privilege requirements to access the page. The
following permissions can be set, see Table 5-2 on page 40.

40
32000D–04/2011

AVR32

• SZ - Size of the page. The following page sizes are provided, see Table 5-3:

• D - Dirty bit. Set if the page has been written to, cleared otherwise. If the memory access is a
store and the D bit is cleared, an Initial Page Write exception is raised.

• W - Write through. If set, a write-through cache update policy should be used. Write-back
should be used otherwise. The bit is ignored if the cache only supports write-through or write-
back.

5.2.2.3 Page Table Base Register - PTBR
This register points to the start of the page table structure. The register is not used by hardware,
and can only be modified by software. The register is meant to be used by the MMU-related
exception routines.

5.2.2.4 TLB Exception Address Register - TLBEAR
This register contains the virtual address that caused the most recent MMU-related exception.
The register is updated by hardware when such an exception occurs.

5.2.2.5 MMU Control Register - MMUCR
The MMUCR controls the operation of the MMU. The MMUCR has the following fields:

• IRP - Instruction TLB Replacement Pointer. Points to the ITLB entry to overwrite when a new
entry is loaded by the tlbw instruction. The IRP field may be updated automatically in an
IMPLEMENTATION DEFINED manner in order to optimize the replacement algorithm. The
IRP field can also be written by software, allowing the exception routine to implement a
replacement algorithm in software. The IRP field is 6 bits wide, allowing a maximum of 64

Table 5-2. Access permissions implied by the AP bits

AP Privileged mode Unprivileged mode

000 Read None

001 Read / Execute None

010 Read / Write None

011 Read / Write / Execute None

100 Read Read

101 Read / Execute Read / Execute

110 Read / Write Read / Write

111 Read / Write / Execute Read / Write / Execute

Table 5-3. Page sizes implied by the SZ bits

SZ Page size Bits used in VPN Bits used in PFN

00 1 kB TLBEHI[31:10] TLBELO[31:10]

01 4 kB TLBEHI[31:12] TLBELO[31:12]

10 64 kB TLBEHI[31:16] TLBELO[31:16]

11 1 MB TLBEHI[31:20] TLBELO[31:20]

41
32000D–04/2011

AVR32

entries in the ITLB. It is IMPLEMENTATION DEFINED whether to use fewer entries.
Impementations with a single unified TLB does not use the IRP field.

• ILA - Instruction TLB Lockdown Amount. Specified the number of locked down ITLB entries.
All ITLB entries from entry 0 to entry (ILA-1) are locked down. If ILA equals zero, no entries
are locked down. Implementations with a single unified TLB does not use the ILA field.

• DRP - Data TLB Replacement Pointer. Points to the DTLB entry to overwrite when a new
entry is loaded by the tlbw instruction. The DRP field may be updated automatically in an
IMPLEMENTATION DEFINED manner in order to optimize the replacement algorithm. The
DRP field can also be written by software, allowing the exception routine to implement a
replacement algorithm in software. The DRP field is 6 bits wide, allowing a maximum of 64
entries in the DTLB. It is IMPLEMENTATION DEFINED whether to use fewer entries.
Implementations with a single unified TLB use the DRP field to point into the unified TLB.

• DLA - Data TLB Lockdown Amount. Specified the number of locked down DTLB or UTLB
entries. All DTLB entries from entry 0 to entry (DLA-1) are locked down. If DLA equals zero,
no entries are locked down.

• S - Segmentation Enable. If set, the segmented memory model is used in the translation
process. If cleared, the memory is regarded as unsegmented. The S bit is set after reset.

• N - Not Found. Set if the entry searched for by the TLB Search instruction (tlbs) was not
found in the TLB.

• I - Invalidate. Writing this bit to one invalidates all TLB entries. The bit is automatically cleared
by the MMU when the invalidate operation is finished.

• M - Mode. Selects whether the shared virtual memory mode or the private virtual memory
mode should be used. The M bit determines how the TLB address comparison should be
performed, see Table 5-4 on page 41.

• E - Enable. If set, the MMU translation is enabled. If cleared, the MMU translation is disabled
and the physical address is identical to the virtual address. Access permissions are not
checked and no MMU-related exceptions are issued if the MMU is disabled. If the MMU is
disabled, the segmented memory model is used.

5.2.2.6 TLB Accessed Register HI / LO - TLBARHI / TLBARLO
The TLBARHI and TLBARLO register form one 64-bit register with 64 1-bit fields. Each of these
fields contain the Accessed bit for the corresponding TLB entry. The I bit in TLBEHI determines
whether the ITLB or DTLB Accessed bits are read. The Accessed bit is 0 if the page has been
accessed, and 1 if it has not been accessed. Bit 31-0 in TLBARLO correspond to TLB entry 0-
31, bit 31-0 in TLBARHI correspond to TLB entry 32-63. If the TLB implementation contains less
than 64 entries then nonimplemented entries are read as 0.

Note: The contents of TLBARHI/TLBARLO are reversed to let the Count Leading Zero (CLZ)
instruction be used directly on the contents of the registers. E.g. if CLZ returns the value four on
the contents of TLBARLO, then item four is the first unused item in the TLB.

Table 5-4. MMU mode implied by the M bit

M Mode

0 Private Virtual Memory

1 Shared Virtual Memory

42
32000D–04/2011

AVR32

5.2.3 Page Table Organization
The MMU leaves the page table organization up to the OS software. Since the page table han-
dling and TLB handling is done in software, the OS is free to implement different page table
organizations. It is recommended, however, that the page table entries (PTEs) are of the format
shown in Figure 5-4. This allows the loaded PTE to be written directly into TLBELO, without the
need for reformatting. How the PTEs are indexed and organized in memory is left to the OS.

Figure 5-4. Recommended Page Table Entry format

5.2.4 TLB organization
The TLB is used as a cache for the page table, in order to speed up the virtual memory transla-
tion process. Up to two TLBs can be implemented, each with up to 64 entries. Each TLB is
configured as shown in Figure 5-5 on page 42.

Figure 5-5. TLB organization

The D, W and AP[1] bits are not implemented in ITLBs, since they have no meaning there.

The AP[0] bits are not implemented in DTLBs, since they have no meaning there.

The A bit is the Accessed bit. This bit is set when the TLB entry is loaded with a new value using
the tlbw instruction. It is cleared whenever the TLB matching process finds a match in the spe-
cific TLB entry. The A bit is used to implement pseudo-LRU replacement algorithms.

When an address look-up is performed by the TLB, the address section is searched for an entry
matching the virtual address to be accessed. The matching process is described in chapter
5.2.5.

G DPFN C B

091031

SZAP W

8 7 6 4 3 2 1

VPN[21:0] ASID[7:0] G DPFN[21:0] C BV AP[2:0] WEntry 0

VPN[21:0] ASID[7:0] G DPFN[21:0] C BV AP[2:0] WEntry 1

VPN[21:0] ASID[7:0] G WPFN[21:0] C BV AP[2:0] DEntry 2

VPN[21:0] ASID[7:0] G WPFN[21:0] C BV AP[2:0] DEntry 3

VPN[21:0] ASID[7:0] G WPFN[21:0] C BV AP[2:0] DEntry 63

Address section Data section

SZ[1:0]

SZ[1:0]

SZ[1:0]

SZ[1:0]

SZ[1:0]

A

A

A

A

A

43
32000D–04/2011

AVR32

5.2.5 Translation process
The translation process maps addresses from the virtual address space to the physical address
space. The addresses are generated as shown in Table 5-5, depending on the page size
chosen:

A data memory access can be described as shown in Table 5-6.

Table 5-5. Physical address generation

Page size Physical address

1 kB PFN[31:10], VA[9:0]

4 kB PFN[31:12], VA[11:0]

64 kB PFN[31:16], VA[15:0]

1 MB PFN[31:20], VA[19:0]

Table 5-6. Data memory access pseudo-code example

If (Segmentation disabled)

If (! PagingEnabled)

PerformAccess(cached, write-back);

else

PerformPagedAccess(VA);

else

if (VA in Privileged space)

if (InApplicationMode)

SignalException(DTLB Protection, accesstype);

endif;

if (VA in P4 space)

PerformAccess(non-cached);

else if (VA in P2 space)

PerformAccess(non-cached);

else if (VA in P1 space)

PerformAccess(cached, writeback);

else

// VA in P0, U0 or P3 space

if (! PagingEnabled)

PerformAccess(cached, writeback);

else

PerformPagedAccess(VA);

endif;

endif;

endif;

44
32000D–04/2011

AVR32

The translation process performed by PerformTranslatedAccess() can be described as shown
in Table 5-7.
Table 5-7. PerformTranslatedAccess() pseudo-code example

match ← 0;
for (i=0; i<TLBentries; i++)

if (Compare(TLB[i]VPN, VA, TLB[i]SZ, TLB[i]V))

// VPN and VA matches for the given page size and entry valid

if (SharedVirtualMemoryMode or

(PrivateVirtualMemoryMode and (TLB[i]G or (TLB[i]ASID==TLBEHIASID))))

if (match == 1)

SignalException(TLBmultipleHit);

else

match ← 1;
TLB[i]A ← 1;
ptr ← i;
// pointer points to the matching TLB entry

endif;

endif;

endfor;

if (match == 0)

SignalException(DTLBmiss, accesstype);

endif;

if (InApplicationMode)

if (TLB[ptr]AP[2] == 0)

SignalException(DTLBprotection, accesstype);

endif;

endif;

if (accesstype == write)

if (TLB[ptr]AP[1] == 0)

SignalException(DTLBprotection, accesstype);

endif;

if (TLB[ptr]D == 0)

// Initial page write

SignalException(DTLBmodified);

endif;

endif;

if (TLB[ptr]C == 1)

if (TLB[ptr]W == 1)

PerformAccess(cached, write-through);

else

PerformAccess(cached, write-back);

endif;

else

PerformAccess(non-cached);

endif;

45
32000D–04/2011

AVR32

An instruction memory access can be described as shown in Table 5-8.

Table 5-8. Instruction memory access pseudo-code example

If (Segmentation disabled)

If (! PagingEnabled)

PerformAccess(cached, write-back);

else

PerformPagedAccess(VA);

else

if (VA in Privileged space)

if (InApplicationMode)

SignalException(ITLB Protection, accesstype);

endif;

if (VA in P4 space)

PerformAccess(non-cached);

else if (VA in P2 space)

PerformAccess(non-cached);

else if (VA in P1 space)

PerformAccess(cached, writeback);

else

// VA in P0, U0 or P3 space

if (! PagingEnabled)

PerformAccess(cached, writeback);

else

PerformPagedAccess(VA);

endif;

endif;

endif;

46
32000D–04/2011

AVR32

The translation process performed by PerformTranslatedAccess() can be described as as
shown in Table 5-9.

Table 5-9. PerformTranslatedAccess() pseudo-code example

match ← 0;
for (i=0; i<TLBentries; i++)

if (Compare(TLB[i]VPN, VA, TLB[i]SZ, TLB[i]V))

// VPN and VA matches for the given page size and entry valid

if (SharedVirtualMemoryMode or

(PrivateVirtualMemoryMode and (TLB[i]G or (TLB[i]ASID==TLBEHIASID))))

if (match == 1)

SignalException(TLBmultipleHit);

else

match ← 1;
TLB[i]A ← 1;
ptr ← i;
// pointer points to the matching TLB entry

endif;

endif;

endfor;

if (match == 0)

SignalException(ITLBmiss);

endif;

if (InApplicationMode)

if (TLB[ptr]AP[2] == 0)

SignalException(ITLBprotection);

endif;

endif;

if (TLB[ptr]AP[0] == 0)

SignalException(ITLBprotection);

endif;

if (TLB[ptr]C == 1)

PerformAccess(cached);

else

PerformAccess(non-cached);

endif;

47
32000D–04/2011

AVR32

5.3 Operation of the MMU and MMU exceptions
The MMU uses both hardware and software mechanisms in order to perform its memory remap-
ping operations. The following tasks are performed by hardware:

1. The MMU decodes the virtual address and tries to find a matching entry in the TLB.
This entry is used to generate a physical address. If no matching entry is found, a TLB
miss exception is issued.

2. The matching entry is used to determine whether the access has the appropriate
access rights, cacheability, bufferability and so on. If the access is not permitted, a TLB
Protection Violation exception is issued.

3. If any other event arises that requires software intervention, an appropriate exception is
issued.

4. If the correct entry was found in the TLB, and the access permissions were not violated,
the memory access is performed without any further software intervention.

The following tasks must be performed by software:

1. Setup of the MMU hardware by initializing the MMU-related registers and data struc-
tures if needed.

2. Maintenance of the TLB structure. TLB entries are written, invalidated and replaced by
means of software. A tlbw instruction is included in the instruction set to support this.

3. The MMU may generate several exceptions. Software exception handlers must be writ-
ten in order to service these exceptions.

5.3.1 The tlbw instruction
The tlbw instruction is implemented in order to aid in performing TLB maintenance. The instruc-
tion copies the contents of TLBEHI and TLBELO into the TLB entry pointed to by the ITLB or
DTLB Replacement Pointers (IRP/DRP) in the MMU Control Register. The TLBEHI[I] bit decides
if the ITLB or the DTLB should be addressed. IRP and DRP may in some implementations be
automatically updated by hardware in order to implement a TLB replacement algorithm in hard-
ware. Software may update them before executing tlbw in order to implement a software
replacement algorithm.

In some implementations, the TLB data structures may be mapped into the P4 space. In such
implementations, the TLB data structures may be updated with regular memory access
instructions.

5.3.2 TLB synonyms
Implementations using virtually indexed caches may be subject to cache inconsistencies,
depending on the page size used and number of lines in the cache. These inconsistencies may
occur when multiple virtual addresses are mapped to the same physical address, since a trans-
lated part of VPN may be used to index the cache. This implies that the same physical address
may be mapped to different cache lines, causing cache inconsistency.

Synonym problems can only appear when addressing data residing in a virtually indexed cache.
Addressing uncached memory or accessing untranslated memory will never cause synonym
problems.

It is the responsability of the OS to define a policy ensuring that no synonym problems may
arise. No hardware support is provided to avoid TLB synonyms.

48
32000D–04/2011

AVR32

5.3.3 MMU exception handling
This chapter describes the software actions that must be performed for MMU-related excep-
tions. The hardware actions performed by the exceptions are described in detail in Section 8.3.1
“Description of events in AVR32A” on page 68.

5.3.3.1 ITLB / DTLB Multiple Hit
If multiple matching entries are found when searching the ITLB or DTLB, this exception is
issued. This situation is a critical error, since memory consistency can no longer be guaranteed.
The exception hardware therefore jumps to the reset vector, where software should execute the
required reset code. This exception is a sign of erroneous code and is not normally generated.

The software handler should perform a normal system restart. However, debugging code may
be inserted in the handler.

5.3.3.2 ITLB / DTLB Miss
This exception is issued if no matching entries are found in the TLBs, or when a matching entry
is found with the Valid bit cleared. The same actions must be performed for both exceptions, but
DTLB entries contains more control bits than the ITLB entries.

1. Examine the TLBEAR and TLBEHI registers in order to identify the page that caused
the fault. Use this to index the page table pointed to by PTBR and fetch the desired
page table entry.

2. Use the fetched page table entry to update the necessary bits in PTEHI and PTELO.
The following bits must be updated, not all bits apply to ITLB entries: V, PFN, C, G, B,
AP[2:0], SZ[1:0], W, D.

3. The TLBEHI[I] register is updated by hardware to indicate if it was a ITLB or a DTLB
miss. The MMUCR[IRP] and MMUCR[DRP] pointers may be updated in an IMPLE-
MENTATION DEFINED way in order to select which TLB entry to replace. The software
may override this value by writing a value directly to MMUCR[IRP] or MMUCR[DRP],
depending on which TLB to update.

4. Execute the tlbw instruction in order to update the TLB entry.

5. Finish the exception handling and return to the application by executing the rete
instruction.

5.3.3.3 ITLB / DTLB Protection Violation
This exception is issued if the access permision bits in the matching TLB entry does not match
the privilege level the CPU is currently executing in. The exception is also issued if the MMU is
disabled or absent and non-translated areas are accessed with illegal access rights. The same
actions must be performed for both exceptions, but DTLB entries contains more control bits than
the ITLB entries.

Software must examine the TLBEAR and TLBEHI registers in order to identify the instruction
and process that caused the error. Corrective measures like terminating the process must then
be performed before returning to normal execution with rete.

49
32000D–04/2011

AVR32

5.3.3.4 DTLB Modified
This exception is issued if a valid memory write operation is performed to a page that has never
been written before. This is detected by the Dirty-bit in the matching TLB entry reading zero.

1. Examine the TLBEAR and TLBEHI registers in order to identify the page that caused
the fault. Use this to index the page table pointed to by PTBR and fetch the desired
page table entry.

2. Set the Dirty bit in the read page table entry and write this entry back to the page table

3. Use the fetched page table entry to update the necessary bits in PTEHI and PTELO.
The following bits must be updated: V, PFN, C, G, B, AP[2:0], SZ[1:0], W, D.

4. The TLBEHI[I] register is updated by hardware to indicate that it was a DTLB miss.
Ensure that MMUCR[DRP] points to the TLB entry to replace. An entry for the faulting
page must already exist in the DTLB, and MMUCR[DRP] must point to this entry, other-
wise multiple DTLB hits may occur.

5. Execute the tlbw instruction in order to update the TLB entry.

6. Finish the exception handling and return to the application by executing the rete
instruction.

50
32000D–04/2011

AVR32

51
32000D–04/2011

AVR32

6. Memory Protection Unit
The AVR32 architecture defines an optional Memory Protection Unit (MPU). This is a simpler
alternative to a full MMU, while at the same time allowing memory protection. The MPU allows
the user to divide the memory space into different protection regions. These protection regions
have a user-defined size, and starts at a user-defined address. The different regions can have
different cacheability attributes and bufferability attributes. Each region is divided into 16 subre-
gions, each of these subregions can have one of two possible sets of access permissions.

The MPU does not perform any address translation.

6.1 Memory map in systems with MPU
An AVR32 implemetation with a MPU has a flat, unsegmented memory space. Access permis-
sions are given only by the different protection regions.

6.2 Understanding the MPU
The AVR32 Memory Protection Unit (MPU) is responsible for checking that memory transfers
have the correct permissions to complete. If a memory access with unsatisfactory privileges is
attempted, an exception is generated and the access is aborted. If an access to a memory
address that does not reside in any protection region is attempted, an exception is generated
and the access is aborted.

The user is able to allow different privilege levels to different blocks of memory by configuring a
set of registers. Each such block is called a protection region. Each region has a user-program-
mable start address and size. The MPU allows the user to program 8 different protection
regions. Each of these regions have 16 sub-regions, which can have different access permis-
sions, cacheability and bufferability.

The “DMMU SZ” fields in the CONFIG1 system register identifies the number of implemented
protection regions, and therefore also the number of MPU registers. A system with caches also
have MPU cacheability and bufferability registers.

A protection region can be from 4 KB to 4 GB in size, and the size must be a power of two. All
regions must have a start address that is aligned to an address corresponding to the size of the
region. If the region has a size of 8 KB, the 13 lowest bits in the start address must be 0. Failing
to do so will result in UNDEFINED behaviour. Since each region is divided into 16 sub-regions,
each sub-region is 256 B to 256 MB in size.

When an access hits into a memory region set up by the MPU, hardware proceeds to determine
which subregion the access hits into. This information is used to determine whether the access
permissions for the subregion are given in MPUAPRA/MPUBRA/MPUCRA or in
MPUAPRB/MPUBRB/MPUCRB.

If an access does not hit in any region, the transfer is aborted and an exception is generated.

The MPU is enabled by writing setting the E bit in the MPUCR register. The E bit is cleared after
reset. If the MPU is disabled, all accesses are treated as uncacheable, unbufferable and will not
generate any access violations. Before setting the E bit, at least one valid protection region must
be defined.

6.2.1 MPU interface registers
The following registers are used to control the MPU, and provide the interface between the MPU
and the operating system, see Figure 6-1 on page 52. All the registers are mapped into the Sys-

52
32000D–04/2011

AVR32

tem Register space, their addresses are presented in “System registers” on page 14. They are
accessed with the mtsr and mfsr instructions.

The MPU interface registers are shown below. The suffix n can have the range 0-7, indicating
which region the register is associated with.

Figure 6-1. The MPU interface registers

6.2.1.1 MPU Address Register - MPUARn
A MPU Address register is implemented for each of the 8 protection regions. The MPUAR regis-
ters specify the start address and size of the regions. The start address must be aligned so that
its alignment corresponds to the size of the region. The minimum allowable size of a region is 4
KB, so only bits 31:12 in the base address needs to be specified. The other bits are always 0.
Each MPUAR also has a valid bit that specifies if the protection region is valid. Only valid regions
are considered in the protection testing.

The MPUAR register consists of the following fields:

• Base address - The start address of the region. The minimum size of a region is 4KB, so only
the 20 most significant bits in the base address needs to be specified. The 12 lowermost
base address bits are implicitly set to 0. If protection regions larger than 4 KB is used, the
user must write the appropriate bits in Base address to 0, so that the base address is aligned
to the size of the region. Otherwise, the result is UNDEFINED.

Base Address Size

051231
MPUARn

-

031

-

8 7 6 4 3 2 1

031

031

E

031
MPUCR

-

1

11 6

V

1

MPUCRA / MPUCRB
5

MPUBRA / MPUBRB

-

8 7 6 4 3 2 15

MPUAPRA / MPUAPRB

AP0AP1AP2AP3AP4AP5AP6AP7

347811121516192023242728

-

31
MPUPSRn

P
10

P
11

P
12

P
13

P
14

P
15 P
4

P
5

P
6

P
7

P
8

P
9

P
0

P
1

P
2

P
3

08 7 6 4 3 2 15916 15 13 12 11 1014

C
4

C
5

C
6

C
7

C
0

C
1

C
2

C
3

B
4

B
5

B
6

B
7

B
0

B
1

B
2

B
3

53
32000D–04/2011

AVR32

• Size - Size of the protection region. The possible sizes are shown in Table 6-1 on page 53.

• V - Valid. Set if the protection region is valid, cleared otherwise. This bit is written to 0 by a
reset. The region is not considered in the protection testing if the V bit is cleared.

6.2.1.2 MPU Permission Select Register - MPUPSRn
A MPU Permission Select register is implemented for each of the 8 protection regions. Each
MPUPSR register divides the protection region into 16 subregions. The bitfields in MPUPSR
specifies whether each subregion has access permissions as specified by the region entry in
either MPUAPRA or MPUAPRB.

Table 6-1. Protection region sizes implied by the Size field

Size Region size Constraints on Base address

B’00000 to B’01010 UNDEFINED -

B’01011 4 KB None

B’01100 8 KB Bit [12] in Size must be 0

B’01101 16 KB Bit [13:12] in Size must be 0

B’01110 32 KB Bit [14:12] in Size must be 0

B’01111 64 KB Bit [15:12] in Size must be 0

B’10000 128 KB Bit [16:12] in Size must be 0

B’10001 256 KB Bit [17:12] in Size must be 0

B’10010 512 KB Bit [18:12] in Size must be 0

B’10011 1 Mb Bit [19:12] in Size must be 0

B’10100 2 MB Bit [20:12] in Size must be 0

B’10101 4 MB Bit [21:12] in Size must be 0

B’10110 8 MB Bit [22:12] in Size must be 0

B’10111 16 MB Bit [23:12] in Size must be 0

B’11000 32 MB Bit [24:12] in Size must be 0

B’11001 64 MB Bit [25:12] in Size must be 0

B’11010 128 MB Bit [26:12] in Size must be 0

B’11011 256 MB Bit [27:12] in Size must be 0

B’11100 512 MB Bit [28:12] in Size must be 0

B’11101 1 GB Bit [29:12] in Size must be 0

B’11110 2 GB Bit [30:12] in Size must be 0

B’11111 4 GB Bit [31:12] in Size must be 0

Table 6-2. Subregion access permission implied by MPUPSR bitfields

MPUPSRn[P] Access permission

0 MPUAPRA[APn]

1 MPUAPRB[APn]

54
32000D–04/2011

AVR32

6.2.1.3 MPU Cacheable Register A / B- MPUCRA / MPUCRB
The MPUCR registers have one bit per region, indicating if the region is cacheable. If the corre-
sponding bit is set, the region is cacheable. The register is written to 0 upon reset.

AVR32UC implementations may optionally choose not to implement the MPUCR registers.

6.2.1.4 MPU Bufferable Register A / B- MPUBRA / MPUBRB
The MPUBR registers have one bit per region, indicating if the region is bufferable. If the corre-
sponding bit is set, the region is bufferable. The register is written to 0 upon reset.

AVR32UC implementations may optionally choose not to implement the MPUBR registers.

6.2.1.5 MPU Access Permission Register A / B - MPUAPRA / MPUAPRB
The MPUAPR registers indicate the access permissions for each region. The MPUAPR is writ-
ten to 0 upon reset. The possible access permissions are shown in Table 6-3 on page 54.

6.2.1.6 MPU Control Register - MPUCR
The MPUCR controls the operation of the MPU. The MPUCR has only one field:

• E - Enable. If set, the MPU address checking is enabled. If cleared, the MPU address
checking is disabled and no exceptions will be generated by the MPU.

6.2.2 MPU exception handling
This chapter describes the exceptions that can be signalled by the MPU.

6.2.2.1 ITLB Protection Violation
An ITLB protection violation is issued if an instruction fetch violates access permissions. The vio-
lating instruction is not executed. The address of the failing instruction is placed on the system
stack.

Table 6-3. Access permissions implied by the APn bits

AP Privileged mode Unprivileged mode

B’0000 Read None

B’0001 Read / Execute None

B’0010 Read / Write None

B’0011 Read / Write / Execute None

B’0100 Read Read

B’0101 Read / Execute Read / Execute

B’0110 Read / Write Read / Write

B’0111 Read / Write / Execute Read / Write / Execute

B’1000 Read / Write Read

B’1001 Read / Write Read / Execute

B’1010 None None

Other UNDEFINED UNDEFINED

55
32000D–04/2011

AVR32

6.2.2.2 DTLB Protection Violation
An DTLB protection violation is issued if a data access violates access permissions. The violat-
ing access is not executed. The address of the failing instruction is placed on the system stack.

6.2.2.3 ITLB Miss Violation
An ITLB miss violation is issued if an instruction fetch does not hit in any region. The violating
instruction is not executed. The address of the failing instruction is placed on the system stack.

6.2.2.4 DTLB Miss Violation
An DTLB miss violation is issued if a data access does not hit in any region. The violating access
is not executed. The address of the failing instruction is placed on the system stack.

6.2.2.5 TLB Multiple Hit Violation
An access hit in multiple protection regions. The address of the failing instruction is placed on
the system stack. This is a critical system error that should not occur.

6.3 Example of MPU functionality
As an example, consider region 0. Let region 0 be of size 16 KB, thus each subregion is 1KB.
Subregion 0 has offset 0-1KB from the base address, subregion 1 has offset 1KB-2KB and so
on.

MPUAPRA and MPUAPRB each has one field per region. Each subregion in region 0 can get its
access permissions from either MPUAPRA[AP0] or MPUAPRB[AP0], this is selected by the sub-
region’s bitfield in MPUPSR0.

Let:

MPUPSR0 = {0b0000_0000_0000_0000, 0b1010_0000_1111_0101}

MPUAPRA = {A, B, C, D, E, F, G, H}

MPUAPRB = {a, b, c, d, e, f, g, h}

where {A-H, a-h} have legal values as defined in Table 6-3.

Thus for region 0:

Table 6-4. Example of access rights for subregions

Subregion
Access
permission Subregion

Access
permission

0 h 8 H

1 H 9 H

2 h 10 H

3 H 11 H

4 h 12 H

5 h 13 h

6 h 14 H

7 h 15 h

56
32000D–04/2011

AVR32

57
32000D–04/2011

AVR32

7. Performance counters

7.1 Overview
A set of performance counters let users evaluate the performance of the system. This is useful
when scheduling code and performing optimizations. Two configurable event counters are pro-
vided in addition to a clock cycle counter. These three counters can be used to collect
information about for example cache miss rates, branch prediction hit rate and data hazard stall
cycles.

The three counters are implemented as 32-bit registers accessible through the system register
interface. They can be configured to issue an interrupt request in case of overflow, allowing a
software overflow counter to be implemented.

A performance counter control register is implemented in addition to the three counter registers.
This register controls which events to record in the counter, counter overflow interrupt enable
and other configuration data.

7.2 Registers

7.2.1 Performance clock counter - PCCNT
This register counts CPU clock cycles. When it reaches 0xFFFF_FFFF, it rolls over. The over-
flow flag is set and an exception is generated if configured by PCCR. The register can be reset
by writing to the C bit in PCCR. PCCNT can be preset to a value by writing directly to it. PCCNT
is written to zero upon reset.

7.2.2 Performance counter 0,1 - PCNT0, PCNT1
These counters monitor events as configured by PCCR. When they reach 0xFFFF_FFFF, they
roll over. The overflow flag is set and an exception is generated if configured by PCCR. The reg-
isters can be reset by writing the R bit in PCCR. The registers can be preset to a value by writing
directly to them. PCNT0 and PCNT1 are written to zero upon reset.

7.2.3 Performance counter control register - PCCR
This register controls the behaviour of the entire performance counter system, see Figure 7-1 on
page 57. This register is read and written by the mtsr and mfsr instructions. PCCR is written to
zero upon reset.

Figure 7-1. Performance counter control register

ERCSIE-F-CONF0CONF1-

012346810121718232431

58
32000D–04/2011

AVR32

The following fields exist in PCCR, see Table 7-1 on page 58.

Table 7-1. Performance counter control register

Bit Access Name Description

23:18 Read/write CONF1
Configures which events to count with PCNT1. See Table 7-2 for a
legend.

17:12 Read/write CONF0
Configures which events to count with PCNT0. See Table 7-2 for a
legend.

10:8 Read/write F

Interrupt flag. If read as 1, the corresponding overflow has
occurred. Bit 8 corresponds to PCCNT.
Bit 9 corresponds to PCNT0.

Bit 10 corresponds to PCNT1.

Flags are cleared by writing a 1 to the flag.

6:4 Read/write IE

Interrupt enable. If set, an overflow of the corresponding counter
will cause an interrupt request.

Bit 4 corresponds to PCCNT.

Bit 5 corresponds to PCNT0.
Bit 6 corresponds to PCNT1.

3 Read/write S
Clock counter scaler. If set, the clock counter increments once
every 64’th clock cycle. This expands the period-to-overflow to 238
cycles.

2 Read-0/write C Clock counter reset. If written to 1, the clock counter will be reset.

1 Read-0/write R
Performance counter reset. If written to 1, all three counters will be
reset.

0 Read/write E
Clock counter enable. If set, all three counters will count their
configured events. If cleared, the counters are disabled and will
not count.

Other
Read-0/write-
0

- Unused. Read as 0. Should be written as 0.

59
32000D–04/2011

AVR32

7.3 Monitorable events
The following events can be monitored by the performance counters, depending on the setting
of CONF0 and CONF1, see Table 7-2 on page 59.

Table 7-2. Monitorable events

Configure field setting Event monitored and counted

0x0
Instruction cache miss. Incremented once for each instruction fetch from a cacheable memory area that did
not hit in the cache.

0x1
Instruction fetch stage stall. Incremented every cycle the memory system is unable to deliver an instruction
to the CPU.

0x2 Data hazard stall. Incremented every cycle the condition is true.

0x3 ITLB miss.

0x4 DTLB miss.

0x5 Branch instruction executed. May or may not be taken.

0x6 Branch mispredicted.

0x7 Instruction executed. Incremented once each time an instruction is completed.

0x8 Stall due to data cache write buffers full. Incremented once for each occurrence.

0x9 Stall due to data cache write buffers full. Incremented every cycle the condition is true.

0xA
Stall due to data cache read miss. Incremented once for each data access to a cacheable memory area
that did not hit in the cache.

0xB
Stall due to data cache read miss. Incremented every cycle the pipeline is stalled due to a data access to a
cacheable memory area that did not hit in the cache.

0xC Write access counter. Incremented once for each write access.

0xD Write access counter. Incremented every cycle a write access is ongoing.

0xE Read access counter. Incremented once for each read access.

0xF Read access counter. Incremented every cycle a read access is ongoing.

0x10 Cache stall counter. Incremented once for each read or write access that stalls.

0x11
Cache stall counter. Incremented every cycle a read or write access stalls. Write accesses are counted
only until the write is put in the write buffer.

0x12 Cache access counter. Incremented once for each read or write access.

0x13
Cache access counter. Incremented every cycle a read or write access is ongoing. Write accesses are
counted only until the write is put in the write buffer.

0x14 Data cache line writeback. Incremented once when a line containing dirty data is replaced in the cache.

0x15 Accumulator cache hit

0x16 Accumulator cache miss

0x17 BTB hit. Incremented once per hit occurrence.

0x18 Micro-ITLB miss. Incremented once per miss occurrence.

0x19 Micro-DTLB miss. Incremented once per miss occurrence.

Other Reserved.

60
32000D–04/2011

AVR32

7.4 Usage
The performance counters can be used to monitor several different events and perform different
measurements. Some of the most useful are explained below.

7.4.1 Cycles per instruction
CONF0: 0x7 (Instruction executed)

CPI = CCNT / PCNT0

Cycles-per-instruction (CPI) measures the average time it took to execute an instruction.

7.4.2 Icache miss rate
CONF0: 0x7 (Instruction executed)

CONF1: 0x0 (Icache miss)

ICMR = PCNT1 / PCNT0

The instruction cache miss rate (ICMR) mesures the fraction of instruction cache misses per
executed instruction.

7.4.3 Dcache read miss rate
CONF0: 0xE (Dcache read access)

CONF1: 0xA (Dcache read miss)

DCMR = PCNT1 / PCNT0

The data cache read miss rate (DCRMR) mesures the fraction of data cache read misses per
data cache read access.

7.4.4 Average instruction fetch miss latency
CONF0: 0x1 (Instruction fetch stall)

CONF1: 0x0 (Icache miss)

AIFML = PCNT0 / PCNT1

The average instruction fetch miss latency (AIFML) mesures the average number of clock cycles
spent per instruction cache miss. This measure does not consider cycles spent due to ITLB
misses.

7.4.5 Fraction of execution time spent stalling due to instruction fetch misses
CONF0: 0x1 (Instruction fetch stall)

AIFML = PCNT0 / PCCNT

The fraction of execution time spent stalling due to instruction fetch misses mesures the ratio of
clock cycles spent waiting for an instruction to be fetched to the total number of execution
cycles.

7.4.6 Average writeback stall duration
CONF0: 0x8 (Write buffer full occurrences)

CONF1: 0x9 (Write buffer full cycles)

61
32000D–04/2011

AVR32

AWSD = PCNT0 / PCNT1

The average writeback stall duration (AWSD) mesures the average number of clock cycles
spent stalling due to a full writebuffer.

7.4.7 Fraction of execution time spent stalling due to writeback
CONF0: 0x9 (Write buffer full cycles)

FETW=CONF0/PCCNT

The fraction of execution time spent stalling due to writeback (FETW) is the ratio of writebuffer
full stall cycles to the total number of cycles.

7.4.8 ITLB miss rate
CONF0: 0x3 (ITLB miss)

CONF1: 0x7 (Instruction count)

IMR = PCNT0 / PCNT1

The ITLB miss rate (IMR) is the ratio of ITLB misses to the number of instructions executed.

7.4.9 DTLB miss rate
CONF0: 0x4 (DTLB miss)

CONF1: 0x7 (Instruction count)

IMR = PCNT0 / PCNT1

The DTLB miss rate (DMR) is the ratio of DTLB misses to the number of instructions executed.

7.4.10 Branch prediction hit rate
CONF0: 0x17 (BTB hit)

CONF1: 0x5 (Branch executed)

BPHR = PCNT0 / PCNT1

The branch prediction hit rate (BPHR) is the ratio of BTB hits to the number of branches
executed.

7.4.11 Branch prediction correct rate
CONF0: 0x5 (Branch executed)

CONF1: 0x6 (Branch mispredicted)

BPCR = PCNT1 / PCNT0

The branch prediction correct rate (BPCR) is the ratio of branch mispredictions to the total num-
ber of executed branches.

62
32000D–04/2011

AVR32

63
32000D–04/2011

AVR32

8. Event Processing
Due to various reasons, the CPU may be required to abort normal program execution in order to
handle special, high-priority events. When handling of these events is complete, normal program
execution can be resumed. Traditionally, events that are generated internally in the CPU are
called exceptions, while events generated by sources external to the CPU are called interrupts.
The possible sources of events are listed in Table 8-1 on page 67.

The AVR32 has a powerful event handling scheme. The different event sources, like Illegal
Opcode and external interrupt requests, have different priority levels, ensuring a well-defined
behaviour when multiple events are received simultaneously. Additionally, pending events of a
higher priority class may preempt handling of ongoing events of a lower priority class.

When an event occurs, the execution of the instruction stream is halted, and execution control is
passed to an event handler at an address specified in Table 8-1 on page 67. Most of the han-
dlers are placed sequentially in the code space starting at the address specified by EVBA, with
four bytes between each handler. This gives ample space for a jump instruction to be placed
there, jumping to the event routine itself. A few critical handlers have larger spacing between
them, allowing the entire event routine to be placed directly at the address specified by the
EVBA-relative offset generated by hardware. All external interrupt sources have autovectored
interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify
the ISR address as an address relative to EVBA. The address range reachable by this autovec-
tor offset is IMPLEMENTATION DEFINED. Implementations may require EVBA to be aligned in
an IMPLEMENTATION DEFINED way in order to support autovectoring.

The same mechanisms are used to service all different types of events, including external inter-
rupt requests, yielding a uniform event handling scheme.

If the application is executing in the secure state, the event handling is modified as explained in
“Event handling in secure state” on page 92. This is to protect from hacking secure code using
the event system.

8.1 Event handling in AVR32A

8.1.1 Exceptions and interrupt requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit and Bus
Error) can not be masked. When an event is accepted, hardware automatically sets the
mask bits corresponding to all sources with equal or lower priority. This inhibits accep-
tance of other events of the same or lower priority, except for the critical events listed
above. Software may choose to clear some or all of these bits after saving the neces-
sary state if other priority schemes are desired. It is the event source’s responsability to
ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INT0, INT1, INT2 or INT3, regis-
ters R8 to R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-

64
32000D–04/2011

AVR32

ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 8-1, is
loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2 or INT3,
registers R8 to R12 and LR are also popped from the system stack. The restored Status Regis-
ter contains information allowing the core to resume operation in the previous execution mode.
This concludes the event handling.

8.1.2 Supervisor calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32A
microarchitecture, scall and rets uses the system stack to store the return address and the sta-
tus register.

8.1.3 Debug requests
The AVR32 architecture defines a dedicated debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the
status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the
Debug Exception handler. By default, debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
mode bits in the status register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

8.2 Event handling in AVR32B

8.2.1 Exceptions and interrupt requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit and Bus
Error) can not be masked. When an event is accepted, hardware automatically sets the
mask bits corresponding to all sources with equal or lower priority. This inhibits accep-
tance of other events of the same or lower priority, except for the critical events listed
above. Software may choose to clear some or all of these bits after saving the neces-

65
32000D–04/2011

AVR32

sary state if other priority schemes are desired. It is the event source’s responsability to
ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored in the Return Status Register and Return Address Register corre-
sponding to the new context. Saving the Status Register ensures that the core is
returned to the previous execution mode when the current event handling is completed.
When exceptions occur, both the EM and GM bits are set, and the application may
manually enable nested exceptions if desired by clearing the appropriate bit. Each
exception handler has a dedicated handler address, and this address uniquely identi-
fies the exception source.

3. The Mode bits are set correctly to reflect the priority of the accepted event, and the cor-
rect register file banks are selected. The address of the event handler, as shown in
Table 8-1, is loaded into the Program Counter.

The execution of the event routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the values in the Return
Status Register and Return Address Register corresponding to the event context are restored to
the Status Register and Program Counter. The restored Status Register contains information
allowing the core to resume operation in the previous execution mode. This concludes the event
handling.

8.2.2 Supervisor calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented.

8.2.3 Debug requests
The AVR32 architecture defines a dedicated debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the
status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the
Debug Exception handler. By default, debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
mode bits in the status register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

66
32000D–04/2011

AVR32

8.3 Entry points for events
Several different event handler entry points exists. For AVR32A, the reset routine is placed at
address 0x8000_0000. This places the reset address in the flash memory area. For AVR32B,
the reset routine entry address is always fixed to 0xA000_0000. This address resides in
unmapped, uncached space in order to ensure well-defined resets.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

All external interrupt requests have entry points located at an offset relative to EVBA. This
autovector offset is specified by an external Interrupt Controller. The programmer must make
sure that none of the autovector offsets interfere with the placement of other code. The reach of
the autovector offset is IMPLEMENTATION DEFINED.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in the privileged address space, or in a
privileged memory protection region. In a system with MPU, the event routines could be placed
in a cacheable protection region. In a segmented AVR32B system, some segments of the virtual
memory space may be better suited than others for holding event handlers. This is due to differ-
ences in translateability and cacheability between segments. A cacheable, non-translated
segment may offer the best performance for event handlers, as this will eliminate any TLB
misses and speed up instruction fetch. The user may also consider to lock the event handlers in
the instruction cache.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 8-1. If events occur on several instructions at different locations in
the pipeline, the events on the oldest instruction are always handled before any events on any
younger instruction, even if the younger instruction has events of higher priority than the oldest
instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later
than A.

The addresses and priority of simultaneous events are shown in Table 8-1 on page 67

67
32000D–04/2011

AVR32

The interrupt system requires that an interrupt controller is present outside the core in order to
prioritize requests and generate a correct offset if more than one interrupt source exists for each
priority level. An interrupt controller generating different offsets depending on interrupt request
source is referred to as autovectoring. Note that the interrupt controller should generate
autovector addresses that do not conflict with addresses in use by other events or regular pro-
gram code.

Table 8-1. Priority and handler addresses for events

Priority Handler Address Name Event source Stored Return Address

1

0x8000_0000

for AVR32A.

0xA000_0000

for AVR32B.

Reset External input Undefined

2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction

3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction

4 EVBA+0x04 TLB multiple hit Internal signal PC of offending instruction

5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction

6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction

7 EVBA+0x10 NMI External input First non-completed instruction

8 Autovectored Interrupt 3 request External input First non-completed instruction

9 Autovectored Interrupt 2 request External input First non-completed instruction

10 Autovectored Interrupt 1 request External input First non-completed instruction

11 Autovectored Interrupt 0 request External input First non-completed instruction

12 EVBA+0x14 Instruction Address ITLB PC of offending instruction

13 EVBA+0x50 ITLB Miss ITLB PC of offending instruction

14 EVBA+0x18 ITLB Protection ITLB PC of offending instruction

15 EVBA+0x1C Breakpoint OCD system First non-completed instruction

16 EVBA+0x20 Illegal Opcode Instruction PC of offending instruction

17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction

18 EVBA+0x28 Privilege violation Instruction PC of offending instruction

19 EVBA+0x2C Floating-point FP Hardware PC of offending instruction

20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction

21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2

22 EVBA+0x34 Data Address (Read) DTLB PC of offending instruction

23 EVBA+0x38 Data Address (Write) DTLB PC of offending instruction

24 EVBA+0x60 DTLB Miss (Read) DTLB PC of offending instruction

25 EVBA+0x70 DTLB Miss (Write) DTLB PC of offending instruction

26 EVBA+0x3C DTLB Protection (Read) DTLB PC of offending instruction

27 EVBA+0x40 DTLB Protection (Write) DTLB PC of offending instruction

28 EVBA+0x44 DTLB Modified DTLB PC of offending instruction

68
32000D–04/2011

AVR32

The addresses of the interrupt routines are calculated by adding the address on the autovector
offset bus to the value of the Exception Vector Base Address (EVBA). The INT0, INT1, INT2,
INT3, and NMI signals indicate the priority of the pending interrupt. INT0 has the lowest priority,
and NMI the highest priority of the interrupts. Implementations may require that EVBA is aligned
in an IMPLEMENTATION DEFINED way in order to support autovectoring.

8.3.1 Description of events in AVR32A

8.3.1.1 Reset Exception
The Reset exception is generated when the reset input line to the CPU is asserted. The Reset
exception can not be masked by any bit. The Reset exception resets all synchronous elements
and registers in the CPU pipeline to their default value, and starts execution of instructions at
address 0x8000_0000.

SR = reset_value_of_SREG;

PC = 0x8000_0000;

All other system registers are reset to their reset value, which may or may not be defined. Refer
to the Programming Model chapter for details.

8.3.1.2 OCD Stop CPU Exception
The OCD Stop CPU exception is generated when the OCD Stop CPU input line to the CPU is
asserted. The OCD Stop CPU exception can not be masked by any bit. This exception is identi-
cal to a non-maskable, high priority breakpoint. Any subsequent operation is controlled by the
OCD hardware. The OCD hardware will take control over the CPU and start to feed instructions
directly into the pipeline.

RSR_DBG = SR;

RAR_DBG = PC;

SR[M2:M0] = B’110;

SR[R] = 0;

SR[J] = 0;

SR[D] = 1;

SR[DM] = 1;

SR[EM] = 1;

SR[GM] = 1;

69
32000D–04/2011

AVR32

8.3.1.3 Unrecoverable Exception
The Unrecoverable Exception is generated when an exception request is issued when the
Exception Mask (EM) bit in the status register is asserted. The Unrecoverable Exception can not
be masked by any bit. The Unrecoverable Exception is generated when a condition has
occurred that the hardware cannot handle. The system will in most cases have to be restarted if
this condition occurs.

*(--SPSYS) = PC of offending instruction;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x00;

8.3.1.4 TLB Multiple Hit Exception
TLB Multiple Hit exception is issued when multiple address matches occurs in the TLB, causing
an internal inconsistency.

This exception signals a critical error where the hardware is in an undefined state. All interrupts
are masked, and PC is loaded with EVBA + 0x04. MMU-related registers are updated with infor-
mation in order to identify the failing address and the failing TLB if multiple TLBs are present.
TLBEHI[ASID] is unchanged after the exception, and therefore identifies the ASID that caused
the exception.

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0/1, depending on which TLB caused the error;

*(--SPSYS) = PC of offending instruction;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x04;

70
32000D–04/2011

AVR32

8.3.1.5 Bus Error Exception on Data Access
The Bus Error on Data Access exception is generated when the data bus detects an error condi-
tion. This exception is caused by events unrelated to the instruction stream, or by data written to
the cache write-buffers many cycles ago. Therefore, execution can not be resumed in a safe
way after this exception. The value placed in RAR_EX is unrelated to the operation that caused
the exception. The exception handler is responsible for performing the appropriate action.

*(--SPSYS) = PC of first non-issued instruction;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x08;

8.3.1.6 Bus Error Exception on Instruction Fetch
The Bus Error on Instruction Fetch exception is generated when the data bus detects an error
condition. This exception is caused by events related to the instruction stream. Therefore, exe-
cution can be restarted in a safe way after this exception, assuming that the condition that
caused the bus error is dealt with.

*(--SPSYS) = PC of first non-issued instruction;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x0C;

8.3.1.7 NMI Exception
The NMI exception is generated when the NMI input line to the core is asserted. The NMI excep-
tion can not be masked by the SR[GM] bit. However, the core ignores the NMI input line when
processing an NMI Exception (the SR[M2:M0] bits are B’111). This guarantees serial execution
of NMI Exceptions, and simplifies the NMI hardware and software mechanisms.

Since the NMI exception is unrelated to the instruction stream, the instructions in the pipeline are
allowed to complete. After finishing the NMI exception routine, execution should continue at the
instruction following the last completed instruction in the instruction stream.

*(--SPSYS) = PC of first noncompleted instruction;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’111;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x10;

71
32000D–04/2011

AVR32

8.3.1.8 INT3 Exception
The INT3 exception is generated when the INT3 input line to the core is asserted. The INT3
exception can be masked by the SR[GM] bit, and the SR[I3M] bit. Hardware automatically sets
the SR[I3M] bit when accepting an INT3 exception, inhibiting new INT3 requests when process-
ing an INT3 request.

The INT3 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT3 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT3 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

*(--SPSYS) = R8;

*(--SPSYS) = R9;

*(--SPSYS) = R10;

*(--SPSYS) = R11;

*(--SPSYS) = R12;

*(--SPSYS) = LR;

*(--SPSYS) = PC of first noncompleted instruction;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’101;

SR[I3M] = 1;

SR[I2M] = 1;

SR[I1M] = 1;

SR[I0M] = 1;

PC = EVBA + INTERRUPT_VECTOR_OFFSET;

8.3.1.9 INT2 Exception
The INT2 exception is generated when the INT2 input line to the core is asserted. The INT2
exception can be masked by the SR[GM] bit, and the SR[I2M] bit. Hardware automatically sets
the SR[I2M] bit when accepting an INT2 exception, inhibiting new INT2 requests when process-
ing an INT2 request.

The INT2 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT2 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT2 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

*(--SPSYS) = R8;

*(--SPSYS) = R9;

*(--SPSYS) = R10;

*(--SPSYS) = R11;

*(--SPSYS) = R12;

*(--SPSYS) = LR;

72
32000D–04/2011

AVR32

*(--SPSYS) = PC of first noncompleted instruction;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’100;

SR[I2M] = 1;

SR[I1M] = 1;

SR[I0M] = 1;

PC = EVBA + INTERRUPT_VECTOR_OFFSET;

8.3.1.10 INT1 Exception
The INT1 exception is generated when the INT1 input line to the core is asserted. The INT1
exception can be masked by the SR[GM] bit, and the SR[I1M] bit. Hardware automatically sets
the SR[I1M] bit when accepting an INT1 exception, inhibiting new INT1 requests when process-
ing an INT1 request.

The INT1 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT1 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT1 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

*(--SPSYS) = R8;

*(--SPSYS) = R9;

*(--SPSYS) = R10;

*(--SPSYS) = R11;

*(--SPSYS) = R12;

*(--SPSYS) = LR;

*(--SPSYS) = PC of first noncompleted instruction;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’011;

SR[I1M] = 1;

SR[I0M] = 1;

PC = EVBA + INTERRUPT_VECTOR_OFFSET;

73
32000D–04/2011

AVR32

8.3.1.11 INT0 Exception
The INT0 exception is generated when the INT0 input line to the core is asserted. The INT0
exception can be masked by the SR[GM] bit, and the SR[I0M] bit. Hardware automatically sets
the SR[I0M] bit when accepting an INT0 exception, inhibiting new INT0 requests when process-
ing an INT0 request.

The INT0 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT0 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT0 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

*(--SPSYS) = R8;

*(--SPSYS) = R9;

*(--SPSYS) = R10;

*(--SPSYS) = R11;

*(--SPSYS) = R12;

*(--SPSYS) = LR;

*(--SPSYS) = PC of first noncompleted instruction;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’010;

SR[I0M] = 1;

PC = EVBA + INTERRUPT_VECTOR_OFFSET;

8.3.1.12 Instruction Address Exception
The Instruction Address Error exception is generated if the generated instruction memory
address has an illegal alignment.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x14;

74
32000D–04/2011

AVR32

8.3.1.13 ITLB Miss Exception
The ITLB Miss exception is generated when no TLB entry matches the instruction memory
address, or if the Valid bit in a matching entry is 0.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 1;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x50;

8.3.1.14 ITLB Protection Exception
The ITLB Protection exception is generated when the instruction memory access violates the
access rights specified by the protection bits of the addressed virtual page.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 1;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x18;

75
32000D–04/2011

AVR32

8.3.1.15 Breakpoint Exception
The Breakpoint exception is issued when a breakpoint instruction is executed, or the OCD
breakpoint input line to the CPU is asserted, and SREG[DM] is cleared.

An external debugger can optionally assume control of the CPU when the Breakpoint Exception
is executed. The debugger can then issue individual instructions to be executed in Debug mode.
Debug mode is exited with the retd instruction. This passes control from the debugger back to
the CPU, resuming normal execution.

RSR_DBG = SR;

RAR_DBG = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[D] = 1;

SR[DM] = 1;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x1C;

8.3.1.16 Illegal Opcode
This exception is issued when the core fetches an unknown instruction, or when a coprocessor
instruction is not acknowledged. When entering the exception routine, the return address on
stack points to the instruction that caused the exception.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x20;

8.3.1.17 Unimplemented Instruction
This exception is issued when the core fetches an instruction supported by the instruction set
but not by the current implementation. This allows software implementations of unimplemented
instructions. When entering the exception routine, the return address on stack points to the
instruction that caused the exception.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x24;

76
32000D–04/2011

AVR32

8.3.1.18 Data Read Address Exception
The Data Read Address Error exception is generated if the address of a data memory read has
an illegal alignment.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x34;

8.3.1.19 Data Write Address Exception
The Data Write Address Error exception is generated if the address of a data memory write has
an illegal alignment.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x38;

8.3.1.20 DTLB Read Miss Exception
The DTLB Read Miss exception is generated when no TLB entry matches the data memory
address of the current read operation, or if the Valid bit in a matching entry is 0.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x60;

77
32000D–04/2011

AVR32

8.3.1.21 DTLB Write Miss Exception
The DTLB Write Miss exception is generated when no TLB entry matches the data memory
address of the current write operation, or if the Valid bit in a matching entry is 0.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x70;

8.3.1.22 DTLB Read Protection Exception
The DTLB Protection exception is generated when the data memory read violates the access
rights specified by the protection bits of the addressed virtual page.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x3C;

8.3.1.23 DTLB Write Protection Exception
The DTLB Protection exception is generated when the data memory write violates the access
rights specified by the protection bits of the addressed virtual page.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x40;

78
32000D–04/2011

AVR32

8.3.1.24 Privilege Violation Exception
If the application tries to execute privileged instructions, this exception is issued. The complete
list of priveleged instructions is shown in Table 8-2 on page 78. When entering the exception
routine, the address of the instruction that caused the exception is stored as the stacked return
address.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x28;

Table 8-2. List of instructions which can only execute in privileged modes.

Privileged Instructions Comment

csrf - clear status register flag Privileged only when accessing upper half of status register

cache - perform cache operation

tlbr - read addressed TLB entry into
TLBEHI and TLBELO

tlbw - write TLB entry registers into
TLB

tlbs - search TLB for entry matching
TLBEHI[VPN]

mtsr - move to system register Unpriviledged when accessing JOSP and JECR

mfsr - move from system register Unpriviledged when accessing JOSP and JECR

mtdr - move to debug register

mfdr - move from debug register

rete- return from exception

rets - return from supervisor call

retd - return from debug mode

sleep - sleep

ssrf - set status register flag Privileged only when accessing upper half of status register

79
32000D–04/2011

AVR32

8.3.1.25 DTLB Modified Exception
The DTLB Modified exception is generated when a data memory write hits a valid TLB entry, but
the Dirty bit of the entry is 0. This indicates that the page is not writable.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x44;

8.3.1.26 Floating-point Exception
The Floating-point exception is generated when the optional Floating-Point Hardware signals
that an IEEE exception occurred, or when another type of error from the floating-point hardware
occurred..

*(--SPSYS) = PC;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x2C;

8.3.1.27 Coprocessor Exception
The Coprocessor exception occurs when the addressed coprocessor does not acknowledge an
instruction. This permits software implementation of coprocessors.

*(--SPSYS) = PC;

*(--SPSYS) = SR;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x30;

80
32000D–04/2011

AVR32

8.3.1.28 Supervisor call
Supervisor calls are signalled by the application code executing a supervisor call (scall) instruc-
tion. The scall instruction behaves differently depending on which context it is called from. This
allows scall to be called from other contexts than Application.

When the exception routine is finished, execution continues at the instruction following scall. The
rets instruction is used to return from supervisor calls.

If (SR[M2:M0] == {B’000 or B’001})

*(--SPSYS) = PC;

*(--SPSYS) = SR;

PC ← EVBA + 0x100;

SR[M2:M0] ← B’001;

else

LRCurrent Context ← PC + 2;

PC ← EVBA + 0x100;

81
32000D–04/2011

AVR32

8.3.2 Description of events in AVR32B

8.3.2.1 Reset Exception
The Reset exception is generated when the reset input line to the CPU is asserted. The Reset
exception can not be masked by any bit. The Reset exception resets all synchronous elements
and registers in the CPU pipeline to their default value, and starts execution of instructions at
address 0xA000_0000.

SR = reset_value_of_SREG;

PC = 0xA000_0000;

All other system registers are reset to their reset value, which may or may not be defined. Refer
to the Programming Model chapter for details.

8.3.2.2 OCD Stop CPU Exception
The OCD Stop CPU exception is generated when the OCD Stop CPU input line to the CPU is
asserted. The OCD Stop CPU exception can not be masked by any bit. This exception is identi-
cal to a non-maskable, high priority breakpoint. Any subsequent operation is controlled by the
OCD hardware. The OCD hardware will take control over the CPU and start to feed instructions
directly into the pipeline.

RSR_DBG = SR;

RAR_DBG = PC;

SR[M2:M0] = B’110;

SR[R] = 0;

SR[J] = 0;

SR[D] = 1;

SR[DM] = 1;

SR[EM] = 1;

SR[GM] = 1;

8.3.2.3 Unrecoverable Exception
The Unrecoverable Exception is generated when an exception request is issued when the
Exception Mask (EM) bit in the status register is asserted. The Unrecoverable Exception can not
be masked by any bit. The Unrecoverable Exception is generated when a condition has
occurred that the hardware cannot handle. The system will in most cases have to be restarted if
this condition occurs.

RSR_EX = SR;

RAR_EX = PC of offending instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x00;

82
32000D–04/2011

AVR32

8.3.2.4 TLB Multiple Hit Exception
TLB Multiple Hit exception is issued when multiple address matches occurs in the TLB, causing
an internal inconsistency.

This exception signals a critical error where the hardware is in an undefined state. All interrupts
are masked, and PC is loaded with EVBA + 0x04. MMU-related registers are updated with infor-
mation in order to identify the failing address and the failing TLB if multiple TLBs are present.
TLBEHI[ASID] is unchanged after the exception, and therefore identifies the ASID that caused
the exception.

RSR_EX = SR;

RAR_EX = PC of offending instruction;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0/1, depending on which TLB caused the error;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x04;

8.3.2.5 Bus Error Exception on Data Access
The Bus Error on Data Access exception is generated when the data bus detects an error condi-
tion. This exception is caused by events unrelated to the instruction stream, or by data written to
the cache write-buffers many cycles ago. Therefore, execution can not be resumed in a safe
way after this exception. The value placed in RAR_EX is unrelated to the operation that caused
the exception. The exception handler is responsible for performing the appropriate action.

RSR_EX = SR;

RAR_EX = PC of first non-issued instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x08;

8.3.2.6 Bus Error Exception on Instruction Fetch
The Bus Error on Instruction Fetch exception is generated when the data bus detects an error
condition. This exception is caused by events related to the instruction stream. Therefore, exe-
cution can be restarted in a safe way after this exception, assuming that the condition that
caused the bus error is dealt with.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

83
32000D–04/2011

AVR32

SR[GM] = 1;

PC = EVBA + 0x0C;

8.3.2.7 NMI Exception
The NMI exception is generated when the NMI input line to the core is asserted. The NMI excep-
tion can not be masked by the SR[GM] bit. However, the core ignores the NMI input line when
processing an NMI Exception (the SR[M2:M0] bits are B’111). This guarantees serial execution
of NMI Exceptions, and simplifies the NMI hardware and software mechanisms.

Since the NMI exception is unrelated to the instruction stream, the instructions in the pipeline are
allowed to complete. After finishing the NMI exception routine, execution should continue at the
instruction following the last completed instruction in the instruction stream.

RSR_NMI = SR;

RAR_NMI = Address of first noncompleted instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’111;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x10;

8.3.2.8 INT3 Exception
The INT3 exception is generated when the INT3 input line to the core is asserted. The INT3
exception can be masked by the SR[GM] bit, and the SR[I3M] bit. Hardware automatically sets
the SR[I3M] bit when accepting an INT3 exception, inhibiting new INT3 requests when process-
ing an INT3 request.

The INT3 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT3 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT3 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

RSR_INT3 = SR;

RAR_INT3 = Address of first noncompleted instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’101;

SR[I3M] = 1;

SR[I2M] = 1;

SR[I1M] = 1;

SR[I0M] = 1;

PC = EVBA + INTERRUPT_VECTOR_OFFSET;

84
32000D–04/2011

AVR32

8.3.2.9 INT2 Exception
The INT2 exception is generated when the INT2 input line to the core is asserted. The INT2
exception can be masked by the SR[GM] bit, and the SR[I2M] bit. Hardware automatically sets
the SR[I2M] bit when accepting an INT2 exception, inhibiting new INT2 requests when process-
ing an INT2 request.

The INT2 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT2 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT2 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

RSR_INT2 = SR;

RAR_INT2 = Address of first noncompleted instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’100;

SR[I2M] = 1;

SR[I1M] = 1;

SR[I0M] = 1;

PC = EVBA + INTERRUPT_VECTOR_OFFSET;

8.3.2.10 INT1 Exception
The INT1 exception is generated when the INT1 input line to the core is asserted. The INT1
exception can be masked by the SR[GM] bit, and the SR[I1M] bit. Hardware automatically sets
the SR[I1M] bit when accepting an INT1 exception, inhibiting new INT1 requests when process-
ing an INT1 request.

The INT1 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT1 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT1 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

RSR_INT1 = SR;

RAR_INT1 = Address of first noncompleted instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’011;

SR[I1M] = 1;

SR[I0M] = 1;

PC = EVBA + INTERRUPT_VECTOR_OFFSET;

85
32000D–04/2011

AVR32

8.3.2.11 INT0 Exception
The INT0 exception is generated when the INT0 input line to the core is asserted. The INT0
exception can be masked by the SR[GM] bit, and the SR[I0M] bit. Hardware automatically sets
the SR[I0M] bit when accepting an INT0 exception, inhibiting new INT0 requests when process-
ing an INT0 request.

The INT0 Exception handler address is calculated by adding EVBA to an interrupt vector offset
specified by an interrupt controller outside the core. The interrupt controller is responsible for
providing the correct offset.

Since the INT0 exception is unrelated to the instruction stream, the instructions in the pipeline
are allowed to complete. After finishing the INT0 exception routine, execution should continue at
the instruction following the last completed instruction in the instruction stream.

RSR_INT0 = SR;

RAR_INT0 = Address of first noncompleted instruction;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’010;

SR[I0M] = 1;

PC = EVBA + INTERRUPT_VECTOR_OFFSET;

8.3.2.12 Instruction Address Exception
The Instruction Address Error exception is generated if the generated instruction memory
address has an illegal alignment.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x14;

86
32000D–04/2011

AVR32

8.3.2.13 ITLB Miss Exception
The ITLB Miss exception is generated when no TLB entry matches the instruction memory
address, or if the Valid bit in a matching entry is 0.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 1;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x50;

8.3.2.14 ITLB Protection Exception
The ITLB Protection exception is generated when the instruction memory access violates the
access rights specified by the protection bits of the addressed virtual page.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 1;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x18;

8.3.2.15 Breakpoint Exception
The Breakpoint exception is issued when a breakpoint instruction is executed, or the OCD
breakpoint input line to the CPU is asserted, and SREG[DM] is cleared.

An external debugger can optionally assume control of the CPU when the Breakpoint Exception
is executed. The debugger can then issue individual instructions to be executed in Debug mode.
Debug mode is exited with the retd instruction. This passes control from the debugger back to
the CPU, resuming normal execution.

RSR_DBG = SR;

RAR_DBG = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[D] = 1;

SR[DM] = 1;

87
32000D–04/2011

AVR32

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x1C;

8.3.2.16 Illegal Opcode
This exception is issued when the core fetches an unknown instruction, or when a coprocessor
instruction is not acknowledged. When entering the exception routine, the return address on
stack points to the instruction that caused the exception.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x20;

8.3.2.17 Unimplemented Instruction
This exception is issued when the core fetches an instruction supported by the instruction set
but not by the current implementation. This allows software implementations of unimplemented
instructions. When entering the exception routine, the return address on stack points to the
instruction that caused the exception.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x24;

8.3.2.18 Data Read Address Exception
The Data Read Address Error exception is generated if the address of a data memory read has
an illegal alignment.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x34;

88
32000D–04/2011

AVR32

8.3.2.19 Data Write Address Exception
The Data Write Address Error exception is generated if the address of a data memory write has
an illegal alignment.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x38;

8.3.2.20 DTLB Read Miss Exception
The DTLB Read Miss exception is generated when no TLB entry matches the data memory
address of the current read operation, or if the Valid bit in a matching entry is 0.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x60;

8.3.2.21 DTLB Write Miss Exception
The DTLB Write Miss exception is generated when no TLB entry matches the data memory
address of the current write operation, or if the Valid bit in a matching entry is 0.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x70;

89
32000D–04/2011

AVR32

8.3.2.22 DTLB Read Protection Exception
The DTLB Protection exception is generated when the data memory read violates the access
rights specified by the protection bits of the addressed virtual page.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x3C;

8.3.2.23 DTLB Write Protection Exception
The DTLB Protection exception is generated when the data memory write violates the access
rights specified by the protection bits of the addressed virtual page.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x40;

8.3.2.24 Privilege Violation Exception
If the application tries to execute privileged instructions, this exception is issued. The complete
list of priveleged instructions is shown in Table 8-2. When entering the exception routine, the
address of the instruction that caused the exception is stored as yhe stacked return address.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x28;

90
32000D–04/2011

AVR32

8.3.2.25 DTLB Modified Exception
The DTLB Modified exception is generated when a data memory write hits a valid TLB entry, but
the Dirty bit of the entry is 0. This indicates that the page is not writable.

RSR_EX = SR;

RAR_EX = PC;

TLBEAR = FAILING_VIRTUAL_ADDRESS;

TLBEHI[VPN] = FAILING_PAGE_NUMBER;

TLBEHI[I] = 0;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x44;

Table 8-3. List of instructions which can only execute in privileged modes.

Privileged Instructions Comment

csrf - clear status register flag Privileged only when accessing upper half of status register

cache - perform cache operation

tlbr - read addressed TLB entry into
TLBEHI and TLBELO

tlbw - write TLB entry registers into
TLB

tlbs - search TLB for entry matching
TLBEHI[VPN]

mtsr - move to system register Unpriviledged when accessing JOSP and JECR

mfsr - move from system register Unpriviledged when accessing JOSP and JECR

 - move to debug register

mfdr - move from debug register

rete- return from exception

rets - return from supervisor call

retd - return from debug mode

sleep - sleep

ssrf - set status register flag Privileged only when accessing upper half of status register

91
32000D–04/2011

AVR32

8.3.2.26 Floating-point Exception
The Floating-point exception is generated when the optional Floating-Point Hardware signals
that an IEEE exception occurred, or when another type of error from the floating-point hardware
occurred..

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x2C;

8.3.2.27 Coprocessor Exception
The Coprocessor exception occurs when the addressed coprocessor does not acknowledge an
instruction. This permits software implementation of coprocessors.

RSR_EX = SR;

RAR_EX = PC;

SR[R] = 0;

SR[J] = 0;

SR[M2:M0] = B’110;

SR[EM] = 1;

SR[GM] = 1;

PC = EVBA + 0x30;

8.3.2.28 Supervisor call
Supervisor calls are signalled by the application code executing a supervisor call (scall) instruc-
tion. The scall instruction behaves differently depending on which context it is called from. This
allows scall to be called from other contexts than Application.

When the exception routine is finished, execution continues at the instruction following scall. The
rets instruction is used to return from supervisor calls.

If (SR[M2:M0] == {B’000 or B’001})

RAR_SUP ← PC + 2;

RSR_SUP ← SR;

PC ← EVBA + 0x100;

SR[M2:M0] ← B’001;

else

LRCurrent Context ← PC + 2;

PC ← EVBA + 0x100;

92
32000D–04/2011

AVR32

8.4 Event priority
Several instructions may be in the pipeline at the same time, and several events may be issued
in each pipeline stage. This implies that several pending exceptions may be in the pipeline
simultaneously. Priorities must therefore be imposed, ensuring that the correct event is serviced
first. The priority scheme obeys the following rules:

1. If several instructions trigger events, the instruction furthest down the pipeline is ser-
viced first, even if upstream instructions have pending events of higher priority.

2. If this instruction has several pending events, the event with the highest priority is ser-
viced first. After this event has been serviced, all pending events are cleared and the
instruction is restarted.

Details about the timing of events is IMPLEMENTATION DEFINED, and given in the hardware
manual for the specific implementation.

8.5 Event handling in secure state
Interrupt and exception handling in AVR32A and AVR32B has been described in the previous
chapters. This behavior is modified in the following way when interrupts and exceptions are
received in secure state:

• A sscall instruction will set SR[GM]. In secure state, SR[GM] masks both INT0-INT3, and
NMI. Clearing SR[GM], INT0-INT3 and NMI will remove the mask of these event sources.
INT0-INT3 are still additionally masked by the I0M-I3M bits in the status register.

• sscall has handler address at offset 0x4 relative to the reset handler address.

• Exceptions have a handler address at offset 0x8 relative to the reset handler address.

• NMI has a handler address at offset 0xC relative to the reset handler address.

• BREAKPOINT has a handler address at offset 0x10 relative to the reset handler address.

• INT0-INT3 are not autovectored, but have a common handler address at offset 0x14 relative
to the reset handler address.

Note that in the secure state, all exception sources share the same handler address. It is there-
fore not possible to separate different exception causes when in the secure world. The secure
world system must be designed to support this, the most obvious solution is to design the secure
software so that exceptions will not arise.

93
32000D–04/2011

AVR32

9. AVR32 RISC Instruction Set

9.1 Instruction Set Nomenclature

9.1.1 Registers and Operands

R{d, s, …} The uppercase ‘R’ denotes a 32-bit (word) register.

Rd The lowercase ‘d’ denotes the destination register number.
Rs The lowercase ‘s’ denotes the source register number.
Rx The lowercase ‘x’ denotes the first source register number for three reg-

ister operations.
Ry The lowercase ‘y’ denotes the second source register number for three

register operations.
Rb The lowercase ‘b’ denotes the base register number for indexed

addressing modes.
Ri The lowercase ‘i’ denotes the index register number for indexed

addressing modes.
Rp The lowercase ‘p’ denotes the pointer register number.

PC Program Counter, equal to R15
LR Link Register, equal to R14
SP Stack Pointer, equal to R13

Reglist8 Reglist8 ∈ {R0-R3, R4-R7, R8-R9, R10, R11, R12, LR, PC}
Reglist16 Reglist16 ∈ {R0, R1, R2, ..., R12, LR, SP, PC}
ReglistCPH8 ReglistCPH8 ∈ {CR8, CR9, CR10, ..., CR15}
ReglistCPL8 ReglistCPL8 ∈ {CR0, CR1, CR2, ..., CR7}
ReglistCP8 ReglistCPD8 ∈ {CR0-CR1,CR2-CR3,CR4-CR5,CR6-CR7,CR8-CR9,

CR10-CR11,CR12-CR13,CR14-CR15}
SysRegName Name of source or destination system register.
cond3 cond3 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl}
cond4 cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

disp Displacement
disp:E Displacement of n bits. If the both compact and extended versions of

the instruction exists,
then use the extended version. The compact version is used by default.

imm Immediate value
imm:E Immediate of n bits. If the both compact and extended versions of the

instruction exists,
then use the extended version. The compact version is used by default.

sa Shift amount
bp Bit postion
w Width of a bit field

[i] Denotes bit i in a immediate value. Example: imm6[4] denotes bit 4 in
an 6-bit immediate value.

94
32000D–04/2011

AVR32

[i:j] Denotes bit i to j in an immediate value.

Some instructions access or use doubleword operands. These operands must be
placed in two consecutive register addresses where the first register must be an even
register. The even register contains the least significant part and the odd register con-
tains the most significant part. This ordering is reversed in comparison with how data is
organized in memory (where the most significant part would receive the lowest address)
and is intentional.

The programmer is responsible for placing these operands in properly aligned register
pairs. This is also

specified in the "Operands" section in the detailed description of each instruction. Fail-
ure to do so will

result in an undefined behaviour.

9.1.2 Operator Symbols

∧ Bitwise logical AND operation.
∨ Bitwise logical OR operation.
⊗ Bitwise logical EOR operation.
¬ Bitwise logical NOT operation.
Sat Saturate operand

9.1.3 Operations
ASR(x, n) SE(x, Bits(x) + n) >> n
Bits(x) Number of bits in operand x
LSR(x, n) x >> n
LSL(x, n) x << n
SATS(x, n) Signed Saturation (x is treated as a signed value):

If (x > (2n-1-1)) then (2n-1-1); elseif (x < -2n-1) then -2n-1; else x;
SATSU(x, n) Signed to Unsigned Saturation (x is treated as a signed value):

If (x > (2n-1)) then (2n-1-1); elseif (x < 0) then 0; else x;
SATU(x, n) Unsigned Saturation (x is treated as an unsigned value):

If (x > (2n-1)) then (2n-1-1); else x;
SE(x, n) Sign Extend x to an n-bit value
SE(x) Identical to SE(x, 32)
ZE(x, n) Zero Extend x to an n-bit value
ZE(x) Identical to ZE(x, 32)

9.1.4 Status Register Flags

C: Carry / Borrow flag.
Z: Zero flag, set if the result of the operation is zero.
N: Bit 31 of the result.
V: Set if 2’s complement overflow occurred.
Q: Saturated flag, set if saturation and/or overflow has occurred after some

instructions.

M0: Mode bit 0

95
32000D–04/2011

AVR32

M1: Mode bit 1
M2: Mode bit 2

9.1.5 Data Type Extensions
.d Double (64-bit) operation.
.w Word (32-bit) operation.
.h Halfword (16-bit) operation.
.b Byte operation (8-bit) operation.

9.1.6 Halfword selectors

t Top halfword, bits 31-16.
b Bottom halfword, bits 15-0.

9.1.7 Byte selectors

t Top byte, bits 31-24.
u Upper byte, bits 23-16.
l Lower byte, bits 15-8.
b Bottom byte, bits 7-0.

9.1.8 CPU System Registers

RSR_INT0: Interrupt level 0 Return Status Register.
RSR_INT1: Interrupt level 1 Return Status Register.
RSR_INT2: Interrupt level 2 Return Status Register.
RSR_INT3: Interrupt level 3 Return Status Register.
RSR_EX: Exception Return Status Register.
RSR_NMI: Non maskable interrupt Return Status Register.
RSR_SUP: Supervisor Return Status Register.

RAR_INT0: Interrupt level 0 Return Address Register.
RAR_INT1: Interrupt level 1 Return Address Register.
RAR_INT2: Interrupt level 2 Return Address Register.
RAR_INT3: Interrupt level 3 Return Address Register.
RAR_EX: Exception Return Address Register.
RAR_NMI: Non maskable interrupt Return Address Register.
RAR_SUP: Supervisor Return Address Register.

ACBA: Application Call Base Address register.
EVBA: Exception Vector Base Address register.

96
32000D–04/2011

AVR32

9.1.9 Branch conditions

Table 9-1. Branch conditions

Coding
in cond3

Coding
in cond4

Condition
mnemonic

Evaluated
expression

Numerical
format Meaning

B’000 B’0000 eq Z Equal

B’001 B’0001 ne ¬Z Not equal

B’010 B’0010 cc / hs ¬C Unsigned Higher or same

B’011 B’0011 cs / lo C Unsigned Lower

B’100 B’0100 ge N == V Signed
Greater than or
equal

B’101 B’0101 lt N ⊕ V Signed Less than

B’110 B’0110 mi N Signed Minus / negative

B’111 B’0111 pl ¬N Signed Plus / positive

N/A B’1000 ls C ∨ Z Unsigned Lower or same

N/A B’1001 gt ¬Z ∧ (N==V) Signed Greater than

N/A B’1010 le Z ∨ (N ⊕ V) Signed Less than or equal

N/A B’1011 hi ¬C ∧ ¬Z Unsigned Higher

N/A B’1100 vs V Overflow

N/A B’1101 vc ¬V No overflow

N/A B’1110 qs Q Fractional Saturation

N/A B’1111 al True Always

97
32000D–04/2011

AVR32

9.2 Instruction Formats
This is an overview of the different instruction formats.

9.2.1 Two Register Instructions

9.2.2 Single Register Instructions

9.2.3 Return and test

9.2.4 K8 immediate and single register

9.2.5 SP / PC relative load / store

9.2.6 K5 immediate and single register

9.2.7 Displacement load with k5 immediate

9.2.8 Displacement load / store with k3 immediate

Opcod Rs/Rp Opcode Rd/Rs

15 13 12 9 8 4 3 0

0 1 0 1 1 1 0 Opcode Rd

15 13 12 9 8 4 3 0

0 1 0 1 1 1 1 Opc cond4 Rs/Rd

15 13 12 9 8 7 4 3 0

0 0 1 Opc k8 Rd

15 13 12 11 4 3 0

0 1 0 Opcode k7 Rd/Rs

15 13 12 11 10 4 3 0

0 1 0 1 1 0 Opc k5 Rd

15 13 12 10 9 8 4 3 0

0 1 1 Rp k5 Rd

15 13 12 9 8 4 3 0

1 0 0 Rp Opcode k3 Rd/Rs

15 14 13 12 9 8 7 6 4 3 0

98
32000D–04/2011

AVR32

9.2.9 One register and a register pair

9.2.10 One register with k8 immediate and cond4

9.2.11 One register with bit addressing

9.2.12 Short branch

9.2.13 Relative jump and call

9.2.14 K8 and no register

9.2.15 Multiple registers (POPM)

9.2.16 Multiple registers (PUSHM)

9.2.17 Status register bit specification

1 0 1 Rp 1 0 0 Opc Rd/Rs Opc

15 13 12 9 8 6 5 4 3 1 0

1 1 1 Opcode 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 cond4 k8

15 12 11 8 7 0

1 0 1 Bit[4:1] Opcode Bit[0] Rd

15 13 12 9 8 5 4 3 0

1 1 0 0 k8 0 cond3

15 13 12 11 4 3 2 0

1 1 0 0 K10[7:0] 1 Opc K10[9:8]

15 13 12 11 4 3 2 1 0

1 1 0 1 k8/Label 0 0 0 Opc

15 12 11 4 3 1 0

1 1 0 1 PC LR 12 11 10 9-8 7-4 3-0 k 0 1 0

15 3 2 0

1 1 0 1 PC LR 12 11 10 9-8 7-4 3-0 0 0 1 1

15 13 12 11 4 3 0

1 1 0 1 0 Opcode Bit No 0 1 0 0

15 11 10 9 8 4 3 0

99
32000D–04/2011

AVR32

9.2.18 Only Opcode

9.2.19 3 registers shifted

9.2.20 3 registers unshifted

9.2.21 DSP Halfword Multiply

9.2.22 DSP Word and Halfword Multiply

9.2.23 2 register operands with k8 immediate

1 1 0 1 0 1 1 Opcode 0 1 0 0

15 9 8 4 3 0

1 1 1 Rb/Rx 0 0 0 0 0 Ry/Ri

31 29 28 25 24 20 19 16

0 0 0 0 Opcode 0 0 Shift Amount Rd/Rs

15 12 11 8 7 6 5 4 3 0

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 Opcode Rd

15 12 11 4 3 0

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 Opcode 0 0 X Y Rd

15 12 11 8 7 6 5 4 3 0

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 Opcode 1 0 0 Y Rd

15 12 11 8 7 5 4 3 0

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 Opcode k8

15 12 11 8 7 0

100
32000D–04/2011

AVR32

9.2.24 2 register operands with k5 immediate

9.2.25 2 Registers with w5 and o5

9.2.26 Coprocessor 0 load and store

9.2.27 2 register operands

9.2.28 Register operand with K16

9.2.29 Cache operation

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 Opcode 0 0 0 k5

15 12 11 8 7 5 4 0

1 1 1 Rd 1 1 1 0 1 Rs

31 29 28 25 24 20 19 16

Opcode o5 w5

15 10 9 5 4 0

1 1 1 1 Opc 1 1 0 1 0 Rp

31 29 28 26 25 24 20 19 16

k12 [11:8] CRd/CRs k12[7:0]

15 13 12 11 8 7 6 0

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 Opcode 0 0 0 0 0 0 0 0

15 12 11 8 7 0

1 1 1 Opcode Rd/Rp

31 29 28 20 19 16

k16

15 0

1 1 1 1 1 0 0 0 0 0 1 Rp

31 20 19 16

Op5 k11

15 0

0

101
32000D–04/2011

AVR32

9.2.30 Register or condition code and K21

9.2.31 No register and k21

9.2.32 Two registers and K16

9.2.33 Register, doubleword register and K16

9.2.34 K16 and bit address

9.2.35 Coprocessor Operation

1 1 1 K21[20:17] Opcode
K21

Rd/cond

31 29 28 25 24 21 20 19 16

k21[15:0]

15 0

[16]

1 1 1 K[20:17] Opcode
K21

Opcode

31 29 28 25 24 21 20 19 16

k21[15:0]

15 0

[16]

1 1 1 Rs/Rp Opcode Rd/Rs

31 29 28 25 24 20 19 16

k16

15 0

1 1 1 Rs/Rp Opcode Rd/Rs Opc

31 29 28 25 24 20 19 16

k16

15 0

1 1 1 0 0 Bit[4] 1 1 0 0 1 Bit[3:0]

31 29 28 26 25 24 20 19 16

k16

15 0

0

1 1 1 0 0 Op[5:4] 1 1 0 1 0 Op[3:0]

31 29 28 25 24 20 19 16

CP# Op[6] CRd CRx CRy

15 0

102
32000D–04/2011

AVR32

9.2.36 Coprocessor load and store

9.2.37 Coprocessor load and store multiple registers

9.2.38 Coprocessor load, store and move

9.2.39 Coprocessor load and store with indexed addressing

9.2.40 Register and system register

9.2.41 Sleep and sync

1 1 1 0 0 Opc 1 1 0 1 0 Rp

31 29 28 26 25 24 20 19 16

CP # Opc CRd/CRs k8

15 13 12 11 8 7 6 0

1

1 1 1 0 1 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # ++/-- 0 Opcode
CR

14-

15 13 12 11 10 9 8 7 0

1

CR

13-
CR

11-
CR

9-8
CR

7-6
CR

5-4
CR

3-2
CR

1-0

1 1 1 0 1 1 1 1 0 1 0 Rd/Rs/Rp

31 29 28 25 24 20 19 16

CP# Opc CRs/CRd 0 Opc 0 0 0

15 13 12 11 8 7 6 4 3 0

1

0

1 1 1 0 1 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 17 16

CP# Opc CRs/CRd Opc k k i3

15 13 12 11 9 8 7 6 5 4 3 0

1

1 1 1 0 0 0 Opc 1 1 0 1 1 Rd/Rs

31 20 19 16

0 0 0 0 0 0 0 0 System Register Ad-

15 8 7 0

1 1 1 Opcode 1 1 0 1 1 0 0 0

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 0 Op8

15 8 7 0

0

103
32000D–04/2011

AVR32

9.2.42 Register and bit address

9.2.43 Load and store multiple registers

9.2.44 Register, k12 and halfword select

9.2.45 Register, k12 and byte select

9.2.46 2 Register and k12

9.2.47 ANDL / ANDH

1 1 1 Opcode 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 0 0 0 0 Bit Number

15 5 4 0

1 1 1 Opcode ++/-- 1 1 1 0 0 Rp

31 29 28 26 25 24 20 19 16

R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

15 0

1 1 1 Rp 1 1 1 0 1 Rd

31 29 28 25 24 20 19 16

0 0 Part k12

15 14 13 12 11 0

0

1 1 1 Rp 1 1 1 0 1 Rd

31 29 28 25 24 20 19 16

0 1 Part k12

15 14 13 12 11 0

1 1 1 Rp 1 1 1 0 1 Rd/Rs

31 29 28 25 24 20 19 16

Opcode k12

15 12 11 0

1 1 1 0 0 Opc COH 0 0 0 0 1 Rd

31 29 28 26 25 24 20 19 16

k16

15 0

104
32000D–04/2011

AVR32

9.2.48 Saturate

9.2.49 3 Registers with k5

9.2.50 2 Registers with k4

9.2.51 2 Registers with cond4

9.2.52 4 Registers with k2

9.2.53 3 Registers with k8 and sa

9.2.54 k3 immediate

1 1 1 Opcode 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 0 0 s5 k5

15 12 11 10 9 5 4 0

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

Opcode k5 Rd

15 9 8 4 3 0

1 0 0 Rp 1 k4 Rs

15 13 12 9 8 7 4 3 0

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 Opcode cond4 0 0 0 0

15 12 11 8 7 4 3 0

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

Opcode X Y Ri 0 0 k2 Rb

15 14 13 12 11 8 7 6 5 4 3 0

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

Opcode X Y k8 Rp

15 14 13 12 11 4 3 0

1 1 0 1 0 1 1 0 1 k3 0 1 0 0

15 13 12 7 6 4 3 0

105
32000D–04/2011

AVR32

9.2.55 Address and b5

9.2.56 2 register operands

9.2.57 2 register operands and k3

9.2.58 2 register operands and k4

1 1 1 Opcode 0 0 0 0 1 b5[4:1]

31 29 28 25 24 20 19 16

b5[0] k15

15 14 0

1 1 1 0 0 0 0 0 0 0 Rs

31 29 28 20 19 16

0 0 1 0 0 0 1 1 1 1 Opc Rd

15 12 11 8 7 4 3 0

0 0

1

1 1 1 Rs 0 0 0 0 0 0 k3

31 29 28 25 24 19 18 16

0 0 1 0 0 0 1 1 1 1 Opc Rd

15 12 11 8 7 4 3 0

1

1 1 1 Rs 0 0 0 0 0 k4

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 1 1 Opc Rd

15 12 11 8 7 4 3 0

1

106
32000D–04/2011

AVR32

9.3 Instruction Set Summary

9.3.1 Architecture revision
Unless otherwise noted, all instructions are part of revision 1 of the AVR32 architecture. The fol-
lowing instructions were added in revision 2, none were removed:

• movh Rd, imm

• {add, sub, and, or, eor}{cond4}, Rd, Rx, Ry

• ld.{sb, ub, sh, uh, w}{cond4} Rd, Rp[disp]

• st.{b, h, w}{cond4} Rp[disp], Rs

• rsub{cond4} Rd, imm

9.3.2 Arithmetic Operations
Table 9-2. Arithmetic Operations

Mnemonics Operands / Syntax Description Operation Rev

abs C Rd Absolute value. Rd ← |Rd| 1

acr C Rd Add carry to register. Rd ← Rd + C 1

adc E Rd, Rx, Ry Add with carry. Rd ← Rx + Ry + C 1

add
C Rd, Rs Add. Rd ← Rd + Rs 1

E Rd, Rx, Ry << sa Add shifted. Rd ← Rx + (Ry<<sa2) 1

add{cond4} E Rd, Rx, Ry Add if condition satisfied. if (cond4) Rd ← Rx + Ry 2

addabs E Rd, Rx, Ry Add with absolute value. Rd ← Rx + |Ry| 1

cp.b E Rd, Rs Compare Byte Rd - Rs 1

cp.h E Rd, Rs Compare Halfword Rd - Rs 1

cp.w

C Rd, Rs

Compare.

Rd - Rs 1

C Rd, imm Rd - SE(imm6) 1

E Rd, imm Rd - SE(imm21) 1

cpc
C Rd

Compare with carry.
Rd - C 1

E Rd, Rs Rd - Rs - C 1

max E Rd, Rx, Ry Return signed maximum Rd ← max(Rx, Ry) 1

min E Rd, Rx, Ry Return signed minimum Rd ← min(Rx, Ry) 1

neg C Rd Two’s Complement. Rd ← 0 - Rd 1

rsub
C Rd, Rs

Reverse subtract.
Rd ← Rs - Rd 1

E Rd, Rs, imm Rd ← SE(imm8) - Rs 1

rsub{cond4} E Rd, imm
Reverse subtract immediate if condition
satisfied.

if (cond4) Rd ← SE(imm8) - Rd 2

sbc E Rd, Rx, Ry Subtract with carry. Rd ← Rx - Ry - C 1

scr C Rd Subtract carry from register. Rd ← Rd - C 1

107
32000D–04/2011

AVR32

9.3.3 Multiplication Operations

sub

C Rd, Rs

Subtract.

Rd ← Rd - Rs 1

E Rd, Rx, Ry << sa Rd ← Rx - (Ry<<sa2) 1

C Rd, imm

if (Rd==SP)

 Rd ← Rd - SE(imm8<<2)

else

 Rd ← Rd - SE(imm8)

1

E Rd, imm Rd ← Rd - SE(imm21) 1

E Rd, Rs, imm Rd ← Rs - SE(imm16) 1

sub{cond4}
E Rd, imm Subtract immediate if condition satisfied. if (cond4) Rd ← Rd - SE(imm8) 1

E Rd, Rx, Ry Subtract if condition satisfied. if (cond4) Rd ← Rx - Ry 2

tnbz C Rd Test no byte equal to zero.

if (Rd[31:24] == 0 ∨

 Rd[23:16] == 0 ∨
 Rd[15:8] == 0 ∨ Rd[7:0] == 0)
 Z ← 1

else

 Z ← 0

1

Table 9-2. Arithmetic Operations (Continued)

Table 9-3. Multiplication Operations

Mnemonics Operands / Syntax Description Operation Rev

divs E Rd, Rx, Ry
Signed divide.

(32 ← 32/32)

Rd ← Rx / Ry

Rd+1 ← Rx % Ry
1

divu E Rd, Rx, Ry
Unsigned divide.

(32 ← 32/32)

Rd ← Rx / Ry

Rd+1 ← Rx % Ry
1

mac E Rd, Rx, Ry
Multiply accumulate.

(32 ← 32x32 + 32)
Rd ← Rx * Ry + Rd 1

macs.d E Rd, Rx, Ry
Multiply signed accumulate.

(64 ← 32x32 + 64)
Rd+1:Rd ← Rx * Ry + Rd+1:Rd 1

macu.d E Rd, Rx, Ry
Multiply unsigned accumulate.

(64 ← 32x32 + 64)
Rd+1:Rd ← Rx * Ry + Rd+1:Rd 1

mul

C Rd, Rs
Multiply.

(32 ← 32 x 32)
Rd ← Rx * Rs 1

E Rd, Rx, Ry
Multiply.

(32 ← 32 x 32)
Rd ← Rx * Ry 1

E Rd, Rs, imm Multiply immediate. Rd ← Rs * SE(imm8) 1

muls.d E Rd, Rx, Ry
Signed Multiply.

(64 ← 32 x 32)
Rd+1:Rd ← Rx * Ry 1

mulu.d E Rd, Rx, Ry
Unsigned Multiply.

(64 ← 32 x 32)
Rd+1:Rd ← Rx * Ry 1

108
32000D–04/2011

AVR32

9.3.4 DSP Operations

Table 9-4. DSP Operations

Mnemonics Operands / Syntax Description Operation Rev

addhh.w E
Rd, Rx:<part>,
Ry:<part>

Add signed halfwords.

(32 ← 16 +16)
Rd ← SE(Rx:<part>) +
SE(Ry:<part>)

1

machh.d E
Rd, Rx:<part>,
Ry:<part>

Multiply signed halfwords and
accumulate.

(48 ← 16x16 + 48)

Rd+1:Rd ← Rx:<part> * Ry:<part>
+ Rd+1:Rd

1

machh.w E
Rd, Rx:<part>,
Ry:<part>

Multiply signed halfwords and
accumulate.
(32 ← 16x16 + 32)

Rd ← Rx:<part> * Ry:<part> + Rd 1

macwh.d E Rd, Rx, Ry:<part>
Multiply signed word and halfword and
accumulate.

(48 ← 32x16 + 48)

Rd+1:Rd ← ((Rx * Ry:<part>)
<<16) + Rd+1:Rd

1

mulhh.w E
Rd, Rx:<part>,
Ry:<part>

Signed Multiply of halfwords.

(32 ← 16 x 16)
Rd ← Rx:<part> * Ry:<part> 1

mulwh.d E Rd, Rx, Ry:<part>
Unsigned Multiply, word and halfword.

48 ← (32 x 16)
Rd+1:Rd ← ((Rx * Ry:<part>)
<<16)

1

mulnhh.w E
Rd, Rx:<part>,
Ry:<part>

Signed Multiply of halfwords.

(32 ← 16 x 16)
Rd ← Rx:<part> * (- Ry:<part>) 1

mulnwh.d E Rd, Rx, Ry:<part>
Signed Multiply, word and negated
halfword.

48 ← (32 x 16)

Rd+1:Rd ← ((Rx * (- Ry:<part>))
<< 16)

1

satadd.h E Rd, Rx, Ry Saturated add halfwords.
Rd ← SE(Sat(Rx[15:0] +
Ry[15:0]))

1

satadd.w E Rd, Rx, Ry Saturated add. Rd ← Sat(Rx + Ry) 1

satsub.h E Rd, Rx, Ry Saturated subtract halfwords. Rd ← SE(Sat(Rx[15:0] - Ry[15:0])) 1

satsub.w
E Rd, Rx, Ry

Saturated subtract.
Rd ← Sat(Rx - Ry) 1

E Rd, Rs, imm Rd ← Sat(Rs - SE(imm16)) 1

satrnds E Rd >> sa, bp
Signed saturate from bit given by sa5 after
a right shift with rounding of bp5 bit
positions.

Rd ← Sat(Round((Rd >> sa5)),
bp5)

1

satrndu E Rd >> sa, bp
Unsigned saturate from bit given by sa5
after a right shift with rounding of bp5 bit
positions.

Rd ← Sat(Round((Rd >> sa5)),
bp5)

1

sats E Rd >> sa, bp
Signed saturate from bit given by sa5 after
a right shift of bp5 bit positions.

Rd ← Sat((Rd >> sa5), bp5) 1

satu E Rd >> sa, bp
Unsigned saturate from bit given by sa5
after a right shift of bp5 bit positions.

Rd ← Sat((Rd >> sa5),bp5) 1

subhh.w E
Rd, Rx:<part>,
Ry:<part>

Subtract signed halfwords.

(32 ← 16 -16)
Rd ← SE(Rx:<part>) -
SE(Ry:<part>)

1

109
32000D–04/2011

AVR32

mulsathh.h E
Rd, Rx:<part>,
Ry:<part>

Fractional signed multiply with saturation.
Return halfword.

(16 ← 16 x 16)

Rd ← SE(Sat(Rx:<part>

*Ry:<part> << 1) >> 16)
1

mulsathh.w E
Rd, Rx:<part>,
Ry:<part>

Fractional signed multiply with saturation.
Return word.

(32 ← 16 x 16)

Rd ← Sat(Rx:<part>*Ry:<part>
<< 1)

1

mulsatrndhh.h E
Rd, Rx:<part>,
Ry:<part>

Fractional signed multiply with rounding.
Return halfword.

(16 ← 16 x 16)

Rd ← SE((Sat(Rx:<part>
*Ry:<part> << 1) +0x8000) >>
16)

1

mulsatrndwh.
w

E Rd, Rx, Ry:<part>
Fractional signed multiply with rounding.
Return word.

(32 ← 32 x 16)

Rd ← SE((Sat(Rx*Ry:<part> <<
1) +0x8000) >> 16)

1

mulsatwh.w E Rd, Rx, Ry:<part>
Fractional signed multiply with saturation.
Return word.
(32 ← 32 x 16)

Rd ← Sat(Rx*Ry:<part> << 1)
>>16

1

macsathh.w E
Rd, Rx:<part>,
Ry:<part>

Fractional signed multiply accumulate with
saturation. Return word.

(32 ← 16 x 16 + 32)

Rd ← Sat (Sat(Rx:<part>

*Ry:<part> << 1) +Rd)
1

Table 9-4. DSP Operations (Continued)

110
32000D–04/2011

AVR32

9.3.5 Logic Operations

Table 9-5. Logic Operations

Mnemonics Operands / Syntax Description Operation Rev

and

C Rd, Rs

Logical AND.

Rd ← Rd ∧ Rs 1

E Rd, Rx, Ry << sa Rd ← Rx ∧ (Ry << sa5) 1

E Rd, Rx, Ry >> sa Rd ← Rx ∧ (Ry >> sa5) 1

and{cond4} E Rd, Rx, Ry Logical AND if condition satisfied. if (cond4) Rd ← Rx ∧ Ry 2

andn C Rd, Rs Logical AND NOT. Rd ← Rd ∧ ¬Rs 1

andh

E Rd, imm
Logical AND High Halfword, low halfword is
unchanged.

Rd[31:16] ← Rd[31:16] ∧ imm16 1

E Rd, imm, COH
Logical AND High Halfword, clear other
halfword.

Rd[31:16] ← Rd[31:16] ∧ imm16

Rd[15:0] ← 0
1

andl

E Rd, imm
Logical AND Low Halfword, high halfword
is unchanged.

Rd[15:0] ← Rd[15:0] ∧ imm16 1

E Rd, imm, COH
Logical AND Low Halfword, clear other
halfword.

Rd[15:0] ← Rd[15:0] ∧ imm16

Rd[31:16] ← 0
1

com C Rd One’s Complement (NOT). Rd ← ¬Rd 1

eor

C Rd, Rs

Logical Exclusive OR.

Rd ← Rd ⊕ Rs 1

E Rd, Rx, Ry << sa Rd ← Rd ⊕ (Rs << sa5) 1

E Rd, Rx, Ry >> sa Rd ← Rd ⊕ (Rs >> sa5) 1

eor{cond4} E Rd, Rx, Ry Logical EOR if condition satisfied. if (cond4) Rd ← Rx ⊕ Ry 2

eorh E Rd, imm
Logical Exclusive OR
(High Halfword).

Rd[31:16] ← Rd[31:16] ⊕ imm16 1

eorl E Rd, imm
Logical Exclusive OR
(Low Halfword).

Rd[15:0] ← Rd[15:0] ⊕ imm16 1

or

C Rd, Rs

Logical (Inclusive) OR.

Rd ← Rd ∨ Rs 1

E Rd, Rx, Ry << sa Rd ← Rd ∨ (Rs << sa5) 1

E Rd, Rx, Ry >> sa Rd ← Rd ∨ (Rs >> sa5) 1

or{cond4} E Rd, Rx, Ry Logical OR if condition satisfied. if (cond4) Rd ← Rx ∨ Ry 2

orh E Rd, imm Logical OR (High Halfword). Rd[31:16] ← Rd[31:16] ∨ imm16 1

orl E Rd, imm Logical OR (Low Halfword). Rd[15:0] ← Rd[15:0] ∨ imm16 1

tst C Rd, Rs Test register for zero. Rd ∧ Rs 1

111
32000D–04/2011

AVR32

9.3.6 Bit Operations

Table 9-6. Bit Operations

Mnemonics Operands / Syntax Description Operation Rev

bfexts E Rd, Rs, o5, w5
Extract and sign-extend the w5 bits in Rs
starting at bit-offset o5 to Rd.

See Instruction Set Reference 1

bfextu E Rd, Rs, o5, w5
Extract and zero-extend the w5 bits in Rs
starting at bit-offset o5 to Rd.

See Instruction Set Reference 1

bfins E Rd, Rs, o5, w5
Insert the lower w5 bits of Rs in Rd at bit-
offset o5.

See Instruction Set Reference 1

bld E Rd, bp Bit load.
C ← Rd[bp5]

Z ← Rd[bp5]
1

brev C Rd Bit reverse. Rd[0:31] ← Rd[31:0] 1

bst E Rd, bp Bit store. Rd[bp5] ← C 1

casts.b C Rd Typecast byte to signed word. Rd ← SE(Rd[7:0]) 1

casts.h C Rd Typecast halfword to signed word. Rd ← SE(Rd[15:0]) 1

castu.b C Rd Typecast byte to unsigned word. Rd ← ZE(Rd[7:0]) 1

castu.h C Rd Typecast halfword to unsigned word. Rd ← ZE(Rd[15:0]) 1

cbr C Rd, bp Clear bit in register. Rd[bp5] ← 0 1

clz E Rd, Rs Count leading zeros. See Instruction Set Reference 1

sbr C Rd, bp Set bit in register. Rd[bp5] ← 1 1

swap.b C Rd Swap bytes in register.

Rd[31:24] ← Rd[7:0],

Rd[23:16] ← Rd[15:8],
Rd[15:8] ← Rd[23:16],

Rd[7:0] ← Rd[31:24]

1

swap.bh C Rd Swap bytes in each halfword.

Rd[31:24] ← Rd[23:16],

Rd[23:16] ← Rd[31:24],

Rd[15:8] ← Rd[7:0],
Rd[7:0] ← Rd[15:8]

1

swap.h C Rd Swap halfwords in register.
Rd[31:16] ← Rd[15:0],
Rd[15:0] ← Rd[31:16]

1

112
32000D–04/2011

AVR32

9.3.7 Shift Operations

Table 9-7. Operations

Mnemonics Operands / Syntax Description Operation Rev

asr

E Rd, Rx, Ry

Arithmetic shift right (signed) . See Instruction Set Reference

1

E Rd, Rs, sa 1

C Rd, sa 1

lsl

E Rd, Rx, Ry

Logical shift left. See Instruction Set Reference

1

E Rd, Rs, sa 1

C Rd, sa 1

lsr

E Rd, Rx, Ry

Logical shift right. See Instruction Set Reference

1

E Rd, Rs, sa 1

C Rd, sa 1

rol C Rd Rotate left through carry. See Instruction Set Reference 1

ror C Rd Rotate right through carry. See Instruction Set Reference 1

113
32000D–04/2011

AVR32

9.3.8 Instruction Flow

Table 9-8. Instruction Flow

Mnemonics Operands / Syntax Description Operation Rev

br{cond3} C disp

Branch if condition satisfied.

if (cond3)

 PC ← PC + (SE(disp8)<<1)
1

br{cond4} E disp
if (cond4)

 PC ← PC + (SE(disp21)<<1)
1

rjmp C disp Relative jump. PC ← PC + (SE(disp10)<<1) 1

acall C disp Application call
LR ← PC + 2

PC ← ∗(ACBA + (ZE(disp8)<<2))
1

icall C Rd
Register inderect call. LR ← PC + 2

PC ← Rd
1

mcall E Rp[disp]
Memory call.

LR ← PC + 4

PC ← *((Rp && 0xFFFF_FFFC) +
(SE(disp16)<<2))

1

rcall

C disp

Relative call.

LR ← PC + 2
PC ← PC + (SE(disp10)<<1)

1

E disp
LR ← PC + 4
PC ← PC + (SE(disp21)<<1)

1

scall C Supervisor call See Instruction Set Reference. 1

sscall C Secure State call See Instruction Set Reference. 1

ret{cond4} C Rs

Conditional return from subroutine with
move and test of return value.

if (Rs != {SP, PC})

R12 ← Rs

PC ←LR

1

Conditional return from subroutine with
return of false value.

if (Rs = LR)

R12 ← -1
PC ←LR

1

Conditional return from subroutine with
return of false value.

if (Rs = SP)
R12 ← 0
PC ←LR

1

Conditional return from subroutine with
return of true value.

if (Rs = PC)

R12 ← 1
PC ←LR

1

retd C Return from debug mode
SR ←RSR_DBG

PC ←LR_DBG
1

rete C Return from event handler See Instruction Set Reference. 1

rets C Return from supervisor call See Instruction Set Reference. 1

retss C Return from secure state See Instruction Set Reference. 1

114
32000D–04/2011

AVR32

9.3.9 Data Transfer

9.3.9.1 Move/Load Immediate operations

9.3.9.2 Load/Store operations

Table 9-9. Move/Load Immediate Operations

Mnemonics Operands / Syntax Description Operation Rev

mov

C Rd, imm
Load immediate into register.

Rd ← SE(imm8) 1

E Rd, imm Rd ← SE(imm21) 1

C Rd, Rs Copy register. Rd ← Rs 1

mov{cond4}

E Rd, Rs Copy register if condition is true if (cond4) Rd ← Rs 1

E Rd, imm
Load immediate into register if condition is
true

if (cond4) Rd ← SE(imm8) 1

movh E Rd, imm
Load immediate into high halfword of
register.

Rd ← imm16<<16 2

Table 9-10. Load/Store Operations

Mnemonics Operands / Syntax Description Operation Rev

ld.ub

C Rd, Rp++ Load unsigned byte with post-increment. Rd ← ZE(*(Rp++)) 1

C Rd, --Rp Load unsigned byte with pre-decrement. Rd ← ZE(*(--Rp)) 1

C Rd, Rp[disp]
Load unsigned byte with displacement.

Rd ← ZE(*(Rp+ZE(disp3))) 1

E Rd, Rp[disp] Rd ← ZE(*(Rp+SE(disp16))) 1

E Rd, Rb[Ri<<sa] Indexed Load unsigned byte. Rd ← ZE(*(Rb+(Ri << sa2))) 1

ld.ub{cond4} E Rd, Rp[disp]
Load unsigned byte with displacement if
condition satisfied.

if {cond4}
Rd ← ZE(*(Rp+ZE(disp9)))

2

ld.sb
E Rd, Rp[disp] Load signed byte with displacement. Rd ← SE(*(Rp+SE(disp16))) 1

E Rd, Rb[Ri<<sa] Indexed Load signed byte. Rd ← SE(*(Rb+(Ri << sa2))) 1

ld.sb{cond4} E Rd, Rp[disp]
Load signed byte with displacement if
condition satisfied.

if {cond4}

Rd ← SE(*(Rp+ZE(disp9)))
2

ld.uh

C Rd, Rp++
Load unsigned halfword with post-
increment.

Rd ← ZE(*(Rp++)) 1

C Rd, --Rp
Load unsigned halfword with pre-
decrement.

Rd ← ZE(*(--Rp)) 1

C Rd, Rp[disp] Load unsigned halfword with
displacement.

Rd ← ZE(*(Rp+(ZE(disp3)<<1))) 1

E Rd, Rp[disp] Rd ← ZE(*(Rp+(SE(disp16)))) 1

E Rd, Rb[Ri<<sa] Indexed Load unsigned halfword. Rd ← ZE(*(Rb+(Ri << sa2))) 1

ld.uh{cond4} E Rd, Rp[disp]
Load unsigned halfword with
displacement if condition satisfied.

if {cond4}

Rd ← ZE(*(Rp+ZE(disp9<<1)))
2

115
32000D–04/2011

AVR32

ld.sh

C Rd, Rp++
Load signed halfword with post-
increment.

Rd ← SE(*(Rp++)) 1

C Rd, --Rp Load signed halfword with pre-decrement. Rd ← SE(*(--Rp)) 1

C Rd, Rp[disp]
Load signed halfword with displacement.

Rd ← SE(*(Rp+(ZE(disp3)<<1))) 1

E Rd, Rp[disp] Rd ← SE(*(Rp+(SE(disp16)))) 1

E Rd, Rb[Ri<<sa] Indexed Load signed halfword. Rd ← SE(*(Rb+(Ri << sa2))) 1

ld.sh{cond4} E Rd, Rp[disp]
Load signed halfword with displacement if
condition satisfied.

if {cond4}

Rd ← SE(*(Rp+ZE(disp9<<1)))
2

ld.w

C Rd, Rp++ Load word with post-increment. Rd ← *(Rp++) 1

C Rd, --Rp Load word with pre-decrement. Rd ← *(--Rp) 1

C Rd, Rp[disp]
Load word with displacement.

Rd ← *(Rp+(ZE(disp5)<<2)) 1

E Rd, Rp[disp] Rd ← *(Rp+(SE(disp16))) 1

E Rd, Rb[Ri<<sa] Indexed Load word. Rd ← *(Rb+(Ri << sa2)) 1

E
Rd, Rb[Ri:<part> <<
2]

Load word with extracted index into Rd. Rd ← *(Rb+(Ri:<part> << 2)) 1

ld.w{cond4} E Rd, Rp[disp]
Load word with displacement if condition
satisfied.

if {cond4}

Rd ← *(Rp+ZE(disp9<<2))
2

ld.d

C Rd, Rp++ Load doubleword with post-increment. Rd+1:Rd ← (*(Rp++)) 1

C Rd, --Rp Load doubleword with pre-decrement. Rd+1:Rd ← (*(--Rp)) 1

C Rd, Rp Load doubleword. Rd+1:Rd ← *(Rp) 1

E Rd, Rp[disp] Load double with displacement. Rd+1:Rd ← *(Rp+SE(disp16)) 1

E Rd, Rb[Ri<<sa] Indexed Load double. Rd+1:Rd ← *(Rb+(Ri << sa2)) 1

ldins.b E Rd:<part>, Rp[disp]
Load byte with displacement and insert at
specified byte location in Rd.

Rd:<part>← *(Rp+(SE(disp12))) 1

ldins.h E Rd:<part>, Rp[disp]
Load halfword with displacement and
insert at specified halfword location in Rd.

Rd:<part> ←
*(Rp+(SE(disp12)<<1))

1

ldswp.sh E

Rd, Rp[disp]

Load halfword with displacement, swap
bytes and sign-extend

Temp ← *(Rp+(SE(disp12) << 1)

Rd ← SE(Temp[7:0], Temp[15:8])
1

ldswp.uh E
Load halfword with displacement, swap
bytes and zero-extend

Temp ← *(Rp+(SE(disp12) << 1)

Rd ← ZE(Temp[7:0], Temp[15:8])
1

ldswp.w E
Load word with displacement and swap
bytes.

Temp ← *(Rp+(SE(disp12) << 2)

Rd[31:24] ← Temp[7:0],

Rd[23:16] ← Temp[15:8],
Rd[15:8] ← Temp[23:16],

Rd[7:0] ← Temp[31:24]

1

lddpc C Rd, PC[disp] Load with displacement from PC.
Rd ← *((PC && 0xFFFF_FFFC)
+(ZE(disp7)<<2))

1

lddsp C Rd, SP[disp] Load with displacement from SP.
Rd ← *((SP && 0xFFFF_FFFC)
+(ZE(disp7)<<2))

1

Table 9-10. Load/Store Operations (Continued)

116
32000D–04/2011

AVR32

st.b

C Rp++, Rs Store with post-increment. *(Rp++) ← Rs[7:0] 1

C --Rp, Rs Store with pre-decrement. *(--Rp) ← Rs[7:0] 1

C Rp[disp], Rs
Store byte with displacement.

*(Rp+ZE(disp3)) ← Rs[7:0] 1

E Rp[disp], Rs *(Rp+SE(disp16)) ← Rs[7:0] 1

E Rb[Ri<<sa], Rs Indexed Store byte. *(Rb+(Ri << sa2)) ← Rs[7:0] 1

st.b{cond4} E Rp[disp], Rs
Store byte with displacement if condition
satisfied.

if {cond4}
*(Rp+SE(disp9)) ← Rs[7:0]

2

st.d

C Rp++, Rs Store with post-increment. *(Rp++) ← (Rs+1:Rs) 1

C --Rp, Rs Store with pre-decrement. *(--Rp) ← (Rs+1:Rs) 1

C Rp, Rs Store doubleword *(Rp) ← (Rs+1:Rs) 1

E Rp[disp], Rs Store double with displacement *(Rp+SE(disp16)) ← (Rs+1:Rs) 1

E Rb[Ri<<sa], Rs Indexed Store double. *(Rb+(Ri << sa2)) ← (Rs+1:Rs) 1

st.h

C Rp++, Rs Store with post-increment. *(Rp++) ← Rs[15:0] 1

C --Rp, Rs Store with pre-decrement. *(--Rp) ← Rs[15:0] 1

C Rp[disp], Rs
Store halfword with displacement.

*(Rp+(ZE(disp3)<<1)) ← Rs[15:0] 1

E Rp[disp], Rs *(Rp+(SE(disp16))) ← Rs[15:0] 1

E Rb[Ri<<sa], Rs Indexed Store halfword. *(Rb+(Ri << sa2)) ← Rs[15:0] 1

st.h{cond4} E Rp[disp], Rs
Store halfword with displacement if
condition satisfied.

if {cond4}

*(Rp+SE(disp9<<1)) ← Rs[15:0]
2

st.w

C Rp++, Rs Store with post-increment. *(Rp++) ← Rs 1

C --Rp, Rs Store with pre-decrement. *(--Rp) ← Rs 1

C Rp[disp], Rs
Store word with displacement.

*(Rp+(ZE(disp4)<<2)) ← Rs 1

E Rp[disp], Rs *(Rp+(SE(disp16))) ← Rs 1

E Rb[Ri<<sa], Rs Indexed Store word. *(Rb+(Ri << sa2)) ← Rs 1

st.w{cond4} E Rp[disp], Rs
Store word with displacement if condition
satisfied.

if {cond4}
*(Rp+ZE(disp9<<2)) ← Rs

2

stcond C Rp[disp], Rs Conditional store with displacement.
SREG[Z] ← SREG[L]
if (SREG[L])

*(Rp+(SE(disp16))) ← Rs

1

stdsp C SP[disp], Rs Store with displacement from SP.
*((SP && 0xFFFF_FFFC)
+(ZE(disp7)<<2)) ← Rs

1

sthh.w

E
Rp[disp], Rx:<part>,
Ry:<part>

Combine halfwords to word and store with
displacement.

*(Rp+(ZE(disp8)<<2)) ←
{Rx:<part>, Ry:<part>}

1

E
Rb[Ri<<sa],
Rx:<part>, Ry:<part>

Combine halfwords to word and store
indexed.

*(Rb+(Ri << sa2)) ← {Rx:<part>,
Ry:<part>}

1

Table 9-10. Load/Store Operations (Continued)

117
32000D–04/2011

AVR32

9.3.9.3 Multiple data

9.3.10 System/Control

stswp.h E

Rp[disp], Rs

Swap bytes and store halfword with
displacement.

Temp ← Rs[7:0], Rs[15:8]
*(Rp+(SE(disp12) << 1) ← Temp

1

stswp.w E
Swap bytes and store word with
displacement.

Temp[31:24] ← Rs[7:0],
Temp[23:16] ← Rs[15:8],

Temp[15:8] ← Rs[23:16],

Temp[7:0] ← Rs[31:24]

*(Rp+(SE(disp12) << 2) ← Temp

1

xchg E Rd, Rx, Ry Exchange register and memory See Instruction Set Reference 1

Table 9-10. Load/Store Operations (Continued)

Table 9-11. Mutiple data

Mnemonics Operands / Syntax Description Operation Rev

ldm E
Rp{++}, Reglist16
{, R12={-1,0,1}}

Load multiple registers. R12 is tested if PC
is loaded.

See Instruction Set Reference 1

ldmts E Rp{++}, Reglist16
Load multiple registers in application
context for task switch.

See Instruction Set Reference 1

popm C
Reglist8 {, R12={-
1,0,1}}

Pop multiple registers from stack. R12 is
tested if PC is popped.

See Instruction Set Reference 1

pushm C Reglist8 Push multiple registers to stack. See Instruction Set Reference 1

stm E {--}Rp, Reglist16 Store multiple registers. See Instruction Set Reference 1

stmts E {--}Rp, Reglist16
Store multiple registers in application
context for task switch.

See Instruction Set Reference 1

Table 9-12. System/Control

Mnemonics Operands / Syntax Description Operation Rev

breakpoint C Breakpoint. See Instruction Set Reference 1

cache E Rp[disp], Op Perform cache operation See Instruction Set Reference 1

csrf C bp Clear status register flag. SR[bp5] ← 0 1

csrfcz C bp Copy status register flag to C and Z.
C ← SR[bp5]
Z ← SR[bp5]

1

frs C frs Invalidates the return address stack See Instruction Set Reference 1

mfdr E
Rd,
DebugRegAddress

Move debug register to Rd. Rd ←DebugRegister[DebugRegAddr] 1

mfsr E Rd, SysRegNo Move system register to Rd. Rd ← SystemRegister[SysRegNo] 1

mtdr E
DebugRegAddress,
Rs

Move Rs to debug register. DebugRegister[DebugRegAddr] ← Rs 1

mtsr E SysRegNo, Rs Move Rs to system register. SystemRegister[SysRegNo] ← Rs 1

musfr C Rs Move Rs to status register SR[3:0] ← Rs[3:0] 1

mustr C Rd Move status register to Rd Rd ← ZE(SR[3:0]) 1

118
32000D–04/2011

AVR32

nop C No operation See Instruction Set Reference 1

pref E Rp[disp] Prefetch cache line See Instruction Set Reference 1

sleep E Op8 Enter SLEEP mode. See Instruction Set Reference 1

sr{cond4} C Rd
Conditionally set register to true or
false.

if (cond4)

 Rd ← 1;
else

 Rd ← 0;

1

ssrf C bp Set status register flag. SR[bp5] ← 1 1

sync E Op8 Flush write buffer See Instruction Set Reference 1

tlbr C Read TLB entry See Instruction Set Reference 1

tlbs C Search TLB for entry See Instruction Set Reference 1

tlbw C Write TLB entry See Instruction Set Reference 1

Table 9-12. System/Control (Continued)

119
32000D–04/2011

AVR32

9.3.11 Coprocessor interface

Table 9-13. Coprocessor Interface

Mnemonics Operands / Syntax Description Operation Rev

cop E
CP#, CRd, CRx,
CRy, Op

Coprocessor operation. CRd ← CRx Op CRy 1

ldc.d

E CP#, CRd, Rp[disp] Load coprocessor register CRd+1:CRd ← *(Rp+ZE(disp8<<2)) 1

E CP#, CRd, --Rp
Load coprocessor register with pre-
decrement

CRd+1:CRd ← *(--Rp) 1

E
CP#, CRd,
Rb[Ri<<sa]

Load coprocessor register with indexed
addressing

CRd+1:CRd ← *(Rb+(Ri << sa2)) 1

ldc0.d E CRd, Rp[disp] Load coprocessor 0 register CRd+1:CRd ← *(Rp+ZE(disp12<<2)) 1

ldc.w

E CP#, CRd, Rp[disp] Load coprocessor register CRd ← *(Rp+ZE(disp8<<2)) 1

E CP#, CRd, --Rp
Load coprocessor register with pre-
decrement

CRd ← *(--Rp) 1

E
CP#, CRd,
Rb[Ri<<sa]

Load coprocessor register with indexed
addressing

CRd ← *(Rb+(Ri << sa2)) 1

ldc0.w E CRd, Rp[disp] Load coprocessor 0 register CRd ← *(Rp+ZE(disp12<<2)) 1

ldcm.d E
CP#, Rp{++},
ReglistCPD8

Load multiple coprocessor double
registers

See instruction set reference 1

ldcm.w E
CP#, Rp{++},
ReglistCPH8

Load multiple coprocessor high
registers

See instruction set reference 1

ldcm.w E
CP#, Rp{++},
ReglistCPL8

Load multiple coprocessor low registers See instruction set reference 1

mvcr.d E CP#, Rd, CRs Move from coprocessor to register Rd+1:Rd ← CRs+1:CRs 1

mvcr.w E CP#, Rd, CRs Move from coprocessor to register Rd ← CRs 1

mvrc.d E CP#, CRd, Rs Move from register to coprocessor CRd+1:CRd ← Rs+1:Rs 1

mvrc.w E CP#, CRd, Rs Move from register to coprocessor CRd ← Rs 1

stc.d

E CP#, Rp[disp], CRs Store coprocessor register *(Rp+ZE(disp8<<2)) ← CRs+1:CRs 1

E CP#, Rp++, CRs
Store coprocessor register with post-
increment

*(Rp--) ← CRs+1:CRs 1

E
CP#, Rb[Ri<<sa],
CRs

Store coprocessor register with indexed
addressing

*(Rb+(Ri << sa2)) ← CRs+1:CRs 1

stc0.d E Rp[disp], CRs Store coprocessor 0 register *(Rp+ZE(disp12<<2)) ← CRs+1:CRs 1

stc.w

E CP#, Rp[disp], CRs Store coprocessor register *(Rp+ZE(disp8<<2)) ← CRs 1

E CP#, Rp++, CRs
Store coprocessor register with post-
increment

*(Rp++) ← CRs 1

E
CP#, Rb[Ri<<sa],
CRs

Store coprocessor register with indexed
addressing

*(Rb+(Ri << sa2)) ← CRs 1

stc0.d E Rp[disp], CRs Store coprocessor 0 register *(Rp+ZE(disp12<<2)) ← CRs 1

120
32000D–04/2011

AVR32

9.3.12 Instructions to aid Java execution

9.3.13 SIMD Operations

stcm.d E
CP#, {--}Rp,
ReglistCPD8

Store multiple coprocessor double
registers

See instruction set reference 1

stcm.w E
CP#, {--}Rp,
ReglistCPH8

Store multiple coprocessor high
registers

See instruction set reference 1

stcm.w E
CP#, {--}Rp,
ReglistCPL8

Store multiple coprocessor low registers See instruction set reference 1

Table 9-13. Coprocessor Interface (Continued)

Table 9-14. Instructions to aid Java (Card) execution

Mnemonics Operands / Syntax Description Operation Rev

incjosp C imm Increment Java stack pointer JOSP + {-4, -3, -2, -1, 1, 2, 3, 4} 1

popjc C Pop Java context from Frame See instruction set reference 1

pushjc C Push Java context to Frame See instruction set reference 1

retj C Return from Java Trap See instruction set reference 1

Table 9-15. SIMD Operations

Mnemonics Operands / Syntax Description Operation Rev

pabs.{sb/sh} E Rd, Rs Packed Absolute Value See instruction set reference 1

packsh.{ub/sb} E Rd, Rx, Ry Pack Halfwords to Bytes See instruction set reference 1

packw.sh E Rd, Rx, Ry Pack Words to Halfwords See instruction set reference 1

padd.{b/h} E Rd, Rx, Ry Packed Addition See instruction set reference 1

paddh.{ub/sh} E Rd, Rx, Ry Packed Addition with halving See instruction set reference 1

padds.{ub/sb/uh/sh} E Rd, Rx, Ry Packed Addition with Saturation See instruction set reference 1

paddsub.h E
Rd, Rx:<part>,
Ry:<part>

Packed Halfword Addition and
Subtraction

See instruction set reference 1

paddsubh.sh E
Rd, Rx:<part>,
Ry:<part>

Packed Halfword Addition and
Subtraction with halving

See instruction set reference 1

paddsubs.{uh/sh} E
Rd, Rx:<part>,
Ry:<part> Packed Halfword Addition and

Subtraction with Saturation
See instruction set reference 1

paddx.h E Rd, Rx, Ry
Packed Halfword Addition with
Crossed Operand

See instruction set reference 1

paddxh.sh E Rd, Rx, Ry
Packed Halfword Addition with
Crossed Operand and Halving

See instruction set reference 1

paddxs.{uh/sh} E Rd, Rx, Ry
Packed Halfword Addition with
Crossed Operand and Saturation

See instruction set reference 1

pasr.{b/h} E Rd, Rs, {sa} Packed Arithmetic Shift Left See instruction set reference 1

pavg.{ub/sh} E Rd, Rx, Ry Packed Average See instruction set reference 1

plsl.{b/h} E Rd, Rs, {sa} Packed Logic Shift Left See instruction set reference 1

121
32000D–04/2011

AVR32

9.3.14 Memory read-modify-write instructions

plsr.{b/h} E Rd, Rs, {sa} Packed Logic Shift Right See instruction set reference 1

pmax.{ub/sh} E Rd, Rx, Ry Packed Maximum Value See instruction set reference 1

pmin.{ub/sh} E Rd, Rx, Ry Packed Minimum Value See instruction set reference 1

psad E Rd, Rx, Ry Sum of Absolute Differences See instruction set reference 1

psub.{b/h} E Rd, Rx, Ry Packed Subtraction See instruction set reference 1

psubadd.h E
Rd, Rx:<part>,
Ry:<part> Packed Halfword Subtraction and

Addition
See instruction set reference 1

psubaddh.sh E
Rd, Rx:<part>,
Ry:<part>

Packed Halfword Subtraction and
Addition with halving See instruction set reference 1

psubadds.{uh/sh} E
Rd, Rx:<part>,
Ry:<part> Packed Halfword Subtraction and

Addition with Saturation
See instruction set reference 1

psubh.{ub/sh} E Rd, Rx, Ry Packed Subtraction with halving See instruction set reference 1

psubs.{ub/sb/uh/sh} E Rd, Rx, Ry Packed Subtraction with Saturation See instruction set reference 1

psubx.h E Rd, Rx, Ry
Packed Halfword Subtraction with
Crossed Operand

See instruction set reference 1

psubxh.sh E Rd, Rx, Ry
Packed Halfword Subtraction with
Crossed Operand and Halving

See instruction set reference 1

psubxs.{uh/sh} E Rd, Rx, Ry
Packed Halfword Subtraction with
Crossed Operand and Saturation

See instruction set reference 1

punpck{ub/sb}.h E Rd, Rs:<part> Unpack Bytes to Halfwords See instruction set reference 1

Table 9-15. SIMD Operations (Continued)

Table 9-16. Memory read-modify-write Instructions

Mnemonics Operands / Syntax Description Operation Rev

memc E imm, bp Clear bit in memory Memory[(imm15<<2)[bp5]] = 0 1

mems E imm, bp Set bit in memory Memory[(imm15<<2)[bp5]] = 1 1

memt E imm, bp Toggle bit in memory
Memory[(imm15<<2)[bp5]] =
¬Memory[(imm15<<2)[bp5]]

1

122
32000D–04/2011

AVR32

9.4 Base Instruction Set Description
The following chapter describes the instructions in the base instruction set.

123
32000D–04/2011

AVR32

ABS – Absolute Value

Architecture revision:
Architecture revision1 and higher.

Description
The absolute value of the contents to the register specified is written back to the register. If the
initial value equals the maximum negative value (0x80000000), the result will equal the initial
value.

Operation:
I. Rd ← |Rd|;

Syntax:
I. abs Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: (RES[31:0] == 0)
C: Not affected

Opcode:

0 1 0 1 1 1 0 0 0 1 0 0 Rd

15 13 12 9 8 4 3 0

124
32000D–04/2011

AVR32

ACALL – Application Call

Architecture revision:
Architecture revision1 and higher.

Description
The ACALL instruction performs an application function call.

Operation:
I. LR ← PC + 2;

PC ← *(ACBA + (ZE(disp8)<<2));

Syntax:
I. acall disp

Operands:
I. disp ∈ {0, 4, ..., 1020}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

Note:
ACBA must be word aligned. Failing to align ACBA correctly may lead to erronous be-
havior.

1 1 0 1 disp8/Label 0 0 0 0

15 12 11 4 3 1 0

125
32000D–04/2011

AVR32

ACR – Add Carry to Register

Architecture revision:
Architecture revision1 and higher.

Description
Adds carry to the specified destination register.

Operation:
I. Rd ← Rd + C;

Syntax:
I. acr Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags
Q: Not affected
V: V ← RES[31] ∧ ¬Rd[31]
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0) ∧ Z
C: C ← ¬RES[31] ∧ Rd[31]

Opcode:

Example:
; Add a 32-bit variable (R0) to a 64-bit variable (R2:R1)
add R1, R0
acr R2

0 1 0 1 1 1 0 0 0 0 0 0 Rd

15 13 12 9 8 4 3 0

126
32000D–04/2011

AVR32

ADC – Add with Carry

Architecture revision:
Architecture revision1 and higher.

Description
Adds carry and the two registers specified and stores the result in destination register.

Operation:
I. Rd ← Rx + Ry + C;

Syntax:
I. adc Rd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: V ← (Rx[31] ∧ Ry[31] ∧ ¬RES[31]) ∨ (¬Rx[31] ∧ ¬Ry[31] ∧ RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0) ∧ Z
C: C ← Rx[31] ∧ Ry[31] ∨ Rx[31] ∧ ¬RES[31] ∨ Ry[31] ∧ ¬RES[31]

Opcode:

Example
; Add two 64-bit variables R1:R0 and R3:R2 and store the result in R1:R0
add R0, R2
adc R1, R1, R3

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 0 0 1 0 0 Rd

15 12 11 4 3 0

127
32000D–04/2011

AVR32

ADD– Add without Carry

Architecture revision:
Architecture revision1 and higher.

Description
Adds the two registers specified and stores the result in destination register. Format II allows
shifting of the second operand.

Operation:
I. Rd ← Rd + Rs;
II. Rd ← Rx + (Ry<< sa2);

Syntax:
I. add Rd, Rs
II. add Rd, Rx, Ry << sa

Operands:
I. {d, s} ∈ {0, 1, …, 15}
II. {d, x, y}∈ {0, 1, …, 15}

sa ∈ {0, 1, 2, 3}

Status Flags
Format I: OP1 = Rd, OP2 = Rs
Format II:OP1 = Rx, OP2 = Ry << sa2
Q: Not affected
V: V ← (OP1[31] ∧ OP2[31] ∧ ¬RES[31]) ∨ (¬OP1[31] ∧ ¬OP2[31] ∧ RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← OP1[31] ∧ OP2[31] ∨ OP1[31] ∧ ¬RES[31] ∨ OP2[31] ∧ ¬RES[31]

Opcode:
Format I:

Format II:

0 0 0 Rs 0 0 0 0 0 Rd

15 13 12 9 8 4 3 0

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 0 0 0 Shift Amount Rd

15 12 11 8 7 6 5 4 3 0

128
32000D–04/2011

AVR32

ADD{cond4} – Conditional Add

Architecture revision:
Architecture revision 2 and higher.

Description
Performs an addition and stores the result in destination register.

Operation:
I. if (cond4)

Rd ← Rx + Ry;

Syntax:
I. add{cond4}Rd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 0 1 Ry

31 29 28 25 24 20 19 16

1 1 1 0 cond4 0 0 0 0 Rd

15 12 11 8 7 0

Rx

129
32000D–04/2011

AVR32

ADDABS– Add Absolute Value

Architecture revision:
Architecture revision1 and higher.

Description
Adds Rx and the absolute value of Ry and stores the result in destination register. Useful for cal-
culating the sum of absolute differences.

Operation:
I. Rd ← Rx + |Ry|;

Syntax:
I. addabs Rd, Rx, Ry

Operands:
I. {d, x, y}∈ {0, 1, …, 15}

Status Flags
Q: Not affected
V: Not affected
N: Not affected
Z: Z ← (RES[31:0] == 0)
C: Not affected

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 1 1 0 0 1 0 0 Rd

15 12 11 4 3 0

130
32000D–04/2011

AVR32

ADDHH.W– Add Halfwords into Word

Architecture revision:
Architecture revision1 and higher.

Description
Adds the two halfword registers specified and stores the result in the destination word-register.
The halfword registers are selected as either the high or low part of the operand registers.

Operation:
I. If (Rx-part == t) then operand1 = SE(Rx[31:16]) else operand1 = SE(Rx[15:0]);

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
Rd ← operand1 + operand2;

Syntax:
I. addhh.wRd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
OP1 = operand1, OP2 = operand2
Q: Not affected
V: V ← (OP1[31] ∧ OP2[31] ∧ ¬RES[31]) ∨ (¬OP1[31] ∧ ¬OP2[31] ∧ RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← OP1[31] ∧ OP2[31] ∨ OP1[31] ∧ ¬RES[31] ∨ OP2[31] ∧ ¬RES[31]

Opcode:

Example:
addhh.wR10, R2:t, R3:b
will perform R10 ← SE(R2[31:16]) + SE(R3[15:0])

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 1 1 0 0 0 X Y Rd

15 12 11 8 7 6 5 4 3 0

131
32000D–04/2011

AVR32

AND – Logical AND with optional logical shift

Architecture revision:
Architecture revision1 and higher.

Description
Performs a bitwise logical AND between the specified registers and stores the result in the desti-
nation register.

Operation:
I. Rd ← Rd ∧ Rs;
II. Rd ← Rx ∧ (Ry << sa5);
III. Rd ← Rx ∧ (Ry >> sa5);

Syntax:
I. and Rd, Rs
II. and Rd, Rx, Ry << sa
III. and Rd, Rx, Ry >> sa

Operands:
I. {d, s} ∈ {0, 1, …, 15}
II, III {d, x, y} ∈ {0, 1, …, 15}

sa ∈ {0, 1, …, 31}

Status Flags
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: Not affected

Opcode
Format I:

Format II:

0 0 0 Rs 0 0 1 1 0 Rd

15 13 12 9 8 4 3 0

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 sa5 Rd

15 9 8 4 3 0

132
32000D–04/2011

AVR32

Format III:

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 1 sa5 Rd

15 9 8 4 3 0

133
32000D–04/2011

AVR32

AND{cond4} – Conditional And

Architecture revision:
Architecture revision1 and higher.

Architecture revision:
Architecture revision 2 and higher.

Description
Performs a bitwise logical AND between the specified registers and stores the result in the desti-
nation register.

Operation:
I. if (cond4)

Rd ← Rx ∧ Ry;

Syntax:
I. and{cond4}Rd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 0 1 Ry

31 29 28 25 24 20 19 16

1 1 1 0 cond4 0 0 1 0 Rd

15 12 11 8 7 0

Rx

134
32000D–04/2011

AVR32

ANDH, ANDL – Logical AND into high or low half of register

Architecture revision:
Architecture revision1 and higher.

Description
Performs a bitwise logical AND between the high or the low halfword in the specified register and
a constant. The result is stored in the high or the low halfword of the destination register while
the other bits remain unchanged. The Clear Other Half (COH) parameter allows the other half to
be cleared.
Operation:
I. Rd[31:16] ← Rd[31:16] ∧ imm16;
II. Rd[31:16] ← Rd[31:16] ∧ imm16;

Rd[15:0] ← 0;
III. Rd[15:0] ← Rd[15:0] ∧ imm16;
IV. Rd[15:0] ← Rd[15:0] ∧ imm16;

Rd[31:16] ← 0;

Syntax:
I. andh Rd, imm
II. andh Rd, imm, COH
III. andl Rd, imm
IV. andl Rd, imm, COH

Operands:
I, II, III, IV.

d ∈ {0, 1, …, 15}
imm ∈ {0, 1, ..., 65535}

Status Flags:
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: Not affected

Opcode
Format I, II:

1 1 1 0 0 1 COH 0 0 0 0 1 Rd

31 29 28 26 25 24 20 19 16

imm16

15 0

135
32000D–04/2011

AVR32

Format III, IV:

1 1 1 0 0 0 COH 0 0 0 0 1 Rd

31 29 28 26 25 24 20 19 16

imm16

15 0

136
32000D–04/2011

AVR32

ANDN – Logical AND NOT

Architecture revision:
Architecture revision1 and higher.

Description
Performs a bitwise logical ANDNOT between the specified registers and stores the result in the
destination register.

Operation:
I. Rd ← Rd ∧ ¬Rs;

Syntax:
I. andn Rd, Rs

Operands:
I. {d, s} ∈ {0, 1, …, 15}

Status Flags
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: Not affected

Opcode(s):

0 0 0 Rs 0 1 0 0 0 Rd

15 13 12 9 8 4 3 0

137
32000D–04/2011

AVR32

ASR – Arithmetic Shift Right

Architecture revision:
Architecture revision1 and higher.

Description
Shifts all bits in a register to the right the amount of bits specified by the five least significant bits
in Ry or an immediate while keeping the sign.

Operation:
I. Rd ← ASR(Rx, Ry[4:0]);
II. Rd ← ASR(Rd, sa5);
III. Rd ← ASR(Rs, sa5);
Syntax:
I. asr Rd, Rx, Ry
II. asr Rd, sa
III. asr Rd, Rs, sa

Operands:
I. d, x, y ∈ {0, 1, …, 15}
II. d ∈ {0, 1, …, 15}

sa ∈ {0, 1, …, 31}
III. {d,s} ∈ {0, 1, …, 15}

sa ∈ {0, 1, …, 31}

Status Flags:
Format I: Shamt = Ry[4:0], Op = Rx
Format II: Shamt = sa5, Op = Rd
Format III: Shamt = sa5, Op = Rs
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: if (Shamt != 0) then

C ← Op[Shamt-1]
else

C ← 0

Opcode

138
32000D–04/2011

AVR32

Format I:

Format II:

Format III:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 0 0 0 0 1 0 0 Rd

15 12 11 4 3 0

1 0 1 Bit[4:1] 1 0 1 0 Bit[0] Rd

15 13 12 9 8 5 4 3 0

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 0 1 0 0 0 0 0 sa5

15 12 11 8 7 5 4 0

139
32000D–04/2011

AVR32

BFEXTS – Bitfield extract and sign-extend

Architecture revision:
Architecture revision1 and higher.

Description
This instruction extracts and sign-extends the w5 bits in Rs starting at bit-offset bp5 to Rd.

Operation:
I. Rd ← SE(Rs[bp5+w5-1:bp5]);

Syntax:
I. bfexts Rd, Rs, bp5, w5

Operands:
I. {d, s} ∈ {0, 1, …, 15}

{bp5, w5} ∈ {0, 1, ..., 31}

Status Flags:
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← RES[31]

Opcode:
Format I:

Note:
If (w5 = 0) or if (bp5 + w5 > 32) the result is undefined.

1 1 1 Rd 1 1 1 0 1 Rs

31 29 28 25 24 20 19 16

1 0 1 1 0 0 bp5 w5

15 12 11 10 9 5 4 0

140
32000D–04/2011

AVR32

BFEXTU – Bitfield extract and zero-extend

Architecture revision:
Architecture revision1 and higher.

Description
This instruction extracts and zero-extends the w5 bits in Rs starting at bit-offset bp5 to Rd.

Operation:
I. Rd ← ZE(Rs[bp5+w5-1:bp5]);

Syntax:
I. bfextu Rd, Rs, bp5, w5

Operands:
I. {d, s} ∈ {0, 1, …, 15}

{bp5, w5} ∈ {0, 1, ..., 31}

Status Flags:
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← RES[31]

Opcode:

Format I:

Note:
If (w5 = 0) or if (bp5 + w5 > 32) the result is undefined.

1 1 1 Rd 1 1 1 0 1 Rs

31 29 28 25 24 20 19 16

1 1 0 0 0 0 bp5 w5

15 12 11 10 9 5 4 0

141
32000D–04/2011

AVR32

BFINS – Bitfield insert

Architecture revision:
Architecture revision1 and higher.

Description
This instruction inserts the lower w5 bits of Rs in Rd at bit-offset bp5.

Operation:
I. Rd[bp5+w5-1:bp5] ← Rs[w5-1:0];

Syntax:
I. bfins Rd, Rs, bp5, w5

Operands:
I. {d, s} ∈ {0, 1, …, 15}

{bp5, w5} ∈ {0, 1, ..., 31}

Status Flags:
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← RES[31]

Opcode:

Format I:

Note:
If (w5 = 0) or if (bp5 + w5 > 32) the result is undefined.

1 1 1 Rd 1 1 1 0 1 Rs

31 29 28 25 24 20 19 16

1 1 0 1 0 0 bp5 w5

15 12 11 10 9 5 4 0

142
32000D–04/2011

AVR32

BLD – Bit load from register to C and Z

Architecture revision:
Architecture revision1 and higher.

Description
Copy an arbitrary bit in a register to C and Z.

Operation:
I. C ← Rd[bp5];

Z ← Rd[bp5];

Syntax:
I. bld Rd, bp

Operands:
I. d ∈{0, 1, …, 15}

bp ∈ {0, 1, …, 31}

Status Flags
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Z ← Rd[bp5]
C: C ← Rd[bp5]

Opcode:

1 1 1 0 1 1 0 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 0 0 0 0 Bit Position

15 5 4 0

143
32000D–04/2011

AVR32

BR{cond} – Branch if Condition Satisfied

Architecture revision:
Architecture revision1 and higher.

Description
Branch if the specified condition is satisfied.

Operation:
I. if (cond3)

PC ← PC + (SE(disp8) << 1);
else

PC ← PC + 2;

II. if (cond4)
PC ← PC + (SE(disp21) << 1);

else
PC ← PC + 4;

Syntax:
I. br{cond3}disp
II. br{cond4}disp

Operands:
I. cond3 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl}

disp ∈ {-256, -254, ..., 254}
II. cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

disp ∈ {-2097152, -2097150, ..., 2097150}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:
Format I:

1 1 0 0 disp8 0 cond3

15 13 12 11 4 3 2 0

144
32000D–04/2011

AVR32

Format II:

1 1 1 disp21[20:1 0 1 0 0 d21 cond4

31 29 28 25 24 20 19 16

disp21[15:0]

15 0

[16]

145
32000D–04/2011

AVR32

BREAKPOINT – Software Debug Breakpoint

Architecture revision:
Architecture revision1 and higher.

Description
If the on chip debug system is enabled, this instruction traps a software breakpoint for debugging. The breakpoint instruc-
tion will enter debug mode disabling all interrupts and exceptions. If the on chip debug system is not enabled, this
instruction will execute as a nop.

Operation:
I. if (SR[DM]==0)

RSR_DBG ← SR;
RAR_DBG ← address of first non-completed instruction;
SR[R] ← 1;
SR[J] ← 1;
SR[D] ← 1;
SR[M2:M0] ← B’110;
SR[DM] ← 1;
SR[EM] ← 1;
SR[GM] ← 1;
PC ← EVBA+0x1C;

else
PC ← PC + 2;

Syntax:
I. breakpoint

Operands:
None

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Note:

If no on chip debug system is implemented, this instruction will execute as a "NOP".

1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1

15 9 8 4 3 0

146
32000D–04/2011

AVR32

BREV – Bit Reverse

Architecture revision:
Architecture revision1 and higher.

Description
Bit-reverse the contents in the register.

Operation:
I. Rd[31:0] ← Rd[0:31];

Syntax:
I. brev Rd

Operands:
I. d ∈{0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Z ← (RES[31:0] == 0)
C: Not affected.

Opcode:

0 1 0 1 1 1 0 0 1 0 0 1 Rd

15 13 12 9 8 4 3 0

147
32000D–04/2011

AVR32

BST – Copy C to register bit

Architecture revision:
Architecture revision1 and higher.

Description
Copy the C-flag to an arbitrary bit in a register.

Operation:
I. Rd[bp5] ← C;

Syntax:
I. bst Rd, bp

Operands:
I. d ∈ {0, 1, …, 15}

bp ∈ {0, 1, …, 31}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 0 1 1 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 0 0 0 0 Bit Position

15 5 4 0

1

148
32000D–04/2011

AVR32

CACHE – Perform Cache control operation

Architecture revision:
Architecture revision1 and higher.

Description
Control cache operation.

Operation:
I. Issue a command to the cache

Syntax:
I. cache Rp[disp], Op5

Operands:
I. disp ∈ {-1024, -1023, ..., 1023}

p ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Op[4:3] Semantic

00 Instruction Cache

01 Data Cache or unified cache

10 Secondary Cache

11 Tertiary Cache

Op[2:0] Semantic

000 Implementation definedk

001 Implementation defined

010 Implementation defined

011 Implementation defined

100 Implementation defined

101 Implementation defined

110 Implementation defined

111 Implementation defined

149
32000D–04/2011

AVR32

Opcode:

Note:
This instruction can only be executed in a privileged mode. Execution from any other mode will trigger a Privilege Violation
exception.

1 1 1 1 1 0 0 0 0 0 1 Rp

31 20 19 16

Op5 disp11

15 0

0

150
32000D–04/2011

AVR32

CASTS.{H,B} – Typecast to Signed Word

Architecture revision:
Architecture revision1 and higher.

Description
Sign extends the halfword or byte that is specified to word size. The result is stored back to the
specified register.

Operation:
I. Rd[31:16] ← Rd[15];
II. Rd[31:8] ← Rd[7];

Syntax:
I. casts.h Rd
II. casts.b Rd

Operands:
I, II. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← RES[31]

Opcode:
Format I:

Format II:

0 1 0 1 1 1 0 0 1 0 0 0 Rd

15 13 12 9 8 4 3 0

0 1 0 1 1 1 0 0 0 1 1 0 Rd

15 13 12 9 8 4 3 0

151
32000D–04/2011

AVR32

CASTU.{H,B} – Typecast to Unsigned Word

Architecture revision:
Architecture revision1 and higher.

Description
Zero extends the halfword or byte that is specified to word size. The result is stored back to the
specified register.

Operation:
I. Rd[31:16] ← 0;
II. Rd[31:8] ← 0:

Syntax:
I. castu.h Rd
II. castu.b Rd

Operands:
I, II. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← RES[31]

Opcode:
Format I:

Format II:

0 1 0 1 1 1 0 0 0 1 1 1 Rd

15 13 12 9 8 4 3 0

0 1 0 1 1 1 0 0 0 1 0 1 Rd

15 13 12 9 8 4 3 0

152
32000D–04/2011

AVR32

CBR – Clear Bit in Register

Architecture revision:
Architecture revision1 and higher.

Description
Clears a bit in the specified register. All other bits are unaffected.

Operation:
I. Rd[bp5] ← 0;

Syntax:
I. cbr Rd, bp

Operands:
I. d ∈ {0, 1, …, 15}

bp ∈ {0, 1, …, 31}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Z ← (RES[31:0] == 0)
C: Not affected

Opcode:

1 0 1 Bit[4:1] 1 1 1 0 Bit[0] Rd

15 13 12 9 8 5 4 3 0

153
32000D–04/2011

AVR32

CLZ – Count Leading Zeros

Architecture revision:
Architecture revision1 and higher.

Description
Counts the number of binary zero bits before the first binary one bit in a register value. The value
returned from the operation can be used for doing normalize operations. If the operand is zero,
the value 32 is returned.

Operation:
I. temp ← 32;

for (i = 31; i >= 0; i--)
if (Rs[i] == 1) then

temp ← 31 - i;
break;

Rd ← temp;

Syntax:
I. clz Rd, Rs

Operands:
I. {d, s} ∈ {0, 1, …, 15}

Status Flags
Q: Not affected
V: Not affected
N: Not affected
Z: Z ← (RES[31:0] == 0)
C: C ← (RES[31:0] == 32)

Opcode:

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

15 12 11 8 7 0

154
32000D–04/2011

AVR32

COM – One’s Compliment

Architecture revision:
Architecture revision1 and higher.

Description
Perform a one’s complement of specified register.

Operation:
I. Rd ← ¬Rd;

Syntax:
I. com Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Z ← (RES[31:0] == 0)
C: Not affected

Opcode:

0 1 0 1 1 1 0 0 1 1 0 1 Rd

15 13 12 9 8 4 3 0

155
32000D–04/2011

AVR32

COP – Coprocessor Operation

Architecture revision:
Architecture revision1 and higher.

Description
Addresses a coprocessor and performs the specified operation on the specified registers.

Operation:
I. CP#(CRd) ← CP#(CRx) Op CP#(CRy);

Syntax:
I. cop CP#, CRd, CRx, CRy, Op

Operands:
I. # ∈ {0, 1, …, 7}

Op ∈ {0, 1, …, 127}
{d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Coprocessor-specific
V: Coprocessor-specific
N: Coprocessor-specific
Z: Coprocessor-specific
C: Coprocessor-specific

Opcode:

Example:
cop CP2, CR0, CR1, CR2, 0

1 1 1 0 0 Op[6:5] 1 1 0 1 0 Op[4:1]

31 29 28 25 24 20 19 16

CP# Op[0] CRd CRx CRy

15 0

156
32000D–04/2011

AVR32

CP.B – Compare Byte

Architecture revision:
Architecture revision1 and higher.

Description
Performs a compare between the lowermost bytes in the two operands specified. The operation
is implemented by doing a subtraction without writeback of the difference. The operation sets the
status flags according to the result of the subtraction, but does not affect the operand registers.

Operation:
I. Rd[7:0] - Rs[7:0];

Syntax:
I. cp.b Rd, Rs

Operands:
I. {d, s} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: V ← (Rd[7] ∧ ¬Rs[7] ∧ ¬RES[7]) ∨ (¬Rd[7] ∧ Rs[7] ∧ RES[7])
N: N ← RES[7]
Z: Z ← (RES[7:0] == 0)
C: C ← ¬Rd[7] ∧ Rs[7] ∨ Rs[7] ∧ RES[7] ∨ ¬Rd[7] ∧ RES[7]

Opcode

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

15 12 11 8 7 0

157
32000D–04/2011

AVR32

CP.H – Compare Halfword

Architecture revision:
Architecture revision1 and higher.

Description
Performs a compare between the lowermost halfwords in the two operands specified. The oper-
ation is implemented by doing a subtraction without writeback of the difference. The operation
sets the status flags according to the result of the subtraction, but does not affect the operand
registers.

Operation:
I. Rd[15:0] - Rs[15:0];

Syntax:
I. cp.h Rd, Rs

Operands:
I. {d, s} ∈ {0, 1, …, 15}

Status Flags:
Format I: OP1 = Rd, OP2 = Rs
Q: Not affected
V: V ← (OP1[15] ∧ ¬OP2[15] ∧ ¬RES[15]) ∨ (¬OP1[15] ∧ OP2[15] ∧ RES[15])
N: N ← RES[15]
Z: Z ← (RES[15:0] == 0)
C: C ← ¬OP1[15] ∧ OP2[15] ∨ OP2[15] ∧ RES[15] ∨ ¬OP1[15] ∧ RES[15]

Opcode

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

15 12 11 8 7 0

158
32000D–04/2011

AVR32

CP.W – Compare Word

Architecture revision:
Architecture revision1 and higher.

Description
Performs a compare between the two operands specified. The operation is implemented by
doing a subtraction without writeback of the difference. The operation sets the status flags
according to the result of the subtraction, but does not affect the operand registers.

Operation:
I. Rd - Rs;
II. Rd - SE(imm6);
III. Rd - SE(imm21);
Syntax:
I. cp.w Rd, Rs
II. cp.w Rd, imm
III. cp.w Rd, imm
Operands:
I. {d, s} ∈ {0, 1, …, 15}
II. d ∈ {0, 1, …, 15}

imm ∈ {-32, -31, ..., 31}
III. d ∈ {0, 1, …, 15}

imm ∈ {-1048576, -104875, ..., 1048575}
Status Flags:

Format I: OP1 = Rd, OP2 = Rs
Format II: OP1 = Rd, OP2 = SE(imm6)
Format III:OP1 = Rd, OP2 = SE(imm21)
Q: Not affected
V: V ← (OP1[31] ∧ ¬OP2[31] ∧ ¬RES[31]) ∨ (¬OP1[31] ∧ OP2[31] ∧ RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← ¬OP1[31] ∧ OP2[31] ∨ OP2[31] ∧ RES[31] ∨ ¬OP1[31] ∧ RES[31]

Opcode

Format I:

Format II:

0 0 0 Rs 0 0 0 1 1 Rd

15 13 12 9 8 4 3 0

0 1 0 1 1 0 imm6 Rd

15 13 12 10 9 4 3 0

159
32000D–04/2011

AVR32

Format III:

1 1 1 imm21[20:17 0 0 1 0
i21

Rd

31 29 28 25 24 20 19 16

imm21[15:0

15 0

[16]

160
32000D–04/2011

AVR32

CPC – Compare with Carry

Architecture revision:
Architecture revision1 and higher.

Description
Performs a compare between the two registers specified. The operation is executed by doing a
subtraction with carry (as borrow) without writeback of the difference. The operation sets the sta-
tus flags according to the result of the subtraction, but does not affect the operand registers.
Note that the zero flag status before the operation is included in the calculation of the new zero
flag. This instruction allows large compares (64, 128 or more bits).

Operation:
I. Rd - Rs - C;
II. Rd - C;

Syntax:
I. cpc Rd, Rs
II. cpc Rd

Operands:
I. {d, s} ∈ {0, 1, …, 15}
II. d ∈ {0, 1, …, 15}

Status Flags:
In format II, Rs referred to below equals zero.
Q: Not affected
V: V ← (Rd[31] ∧ ¬Rs[31] ∧ ¬RES[31]) ∨ (¬Rd[31] ∧ Rs[31] ∧ RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0) ∧ Z
C: C ← ¬Rd[31] ∧ Rs[31] ∨ Rs[31] ∧ RES[31] ∨ ¬Rd[31] ∧ RES[31]

Opcode:

Format I:

Format II:

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

15 12 11 8 7 0

0 1 0 1 1 1 0 0 0 0 1 0 Rd

15 13 12 9 8 4 3 0

161
32000D–04/2011

AVR32

CSRF – Clear Status Register Flag

Architecture revision:
Architecture revision1 and higher.

Description
Clears the status register (SR) flag specified.

Operation:
I. SR[bp5] ← 0;

Syntax:
I. csrf bp

Operands:
I. bp ∈ {0, 1, …, 31}

Status Flags:
SR[bp5] ← 0, all other flags unchanged.

Opcode:

Note:
Privileged if bp5 > 15, ie. upper half of status register. An exception will be triggered if the upper
half of the status register is attempted changed in user mode.

1 1 0 1 0 1 0 bp5 0 0 1 1

15 11 10 9 8 4 3 0

162
32000D–04/2011

AVR32

CSRFCZ – Copy Status Register Flag to C and Z

Architecture revision:
Architecture revision1 and higher.

Description
Copies the status register (SR) flag specified to C and Z.

Operation:
I. C ← SR[bp5];

Z ← SR[bp5];

Syntax:
I. csrfcz bp

Operands:
I. bp ∈ {0, 1, …, 31}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Z ← SR[bp5]
C: C ← SR[bp5]

Opcode:

Note:
Privileged if bp5 > 15, ie. upper half of status register. A Privilege Violation exception will be trig-
gered if the upper half of the status register is attempted read in user mode.

1 1 0 1 0 0 0 bp5 0 0 1 1

15 11 10 9 8 4 3 0

163
32000D–04/2011

AVR32

DIVS – Signed divide

Architecture revision:
Architecture revision1 and higher.

Description
Performs a signed divide between the two 32-bit register specified. The quotient is returned in
Rd, the remainder in Rd+1. No exceptions are taken if dividing by 0. Result in Rd and Rd+1 is
UNDEFINED when dividing by 0. The sign of the remainder will be the same as the dividend,
and the quotient will be negative if the signs of Rx and Ry are opposite.

Operation:
I. Rd ← Rx / Ry;

Rd+1 ← Rx % Ry;

Syntax:
I. divs Rd, Rx, Ry

Operands:
I. d ∈ {0, 2, …, 14}

{x, y} ∈ {0, 1, …, 15}

Status Flags
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 1 0 0 0 0 0 0 Rd

15 12 11 4 3 0

164
32000D–04/2011

AVR32

DIVU – Unsigned divide

Architecture revision:
Architecture revision1 and higher.

Description
Performs an unsigned divide between the two 32-bit register specified. The quotient is returned
in Rd, the remainder in Rd+1. No exceptions are taken if dividing by 0. Result in Rd and Rd+1 is
UNDEFINED when dividing by 0.

Operation:
I. Rd ← Rx / Ry;

Rd+1 ← Rx % Ry;

Syntax:
I. divu Rd, Rx, Ry

Operands:
I. d ∈ {0, 2, …, 14}

{x, y} ∈ {0, 1, …, 15}

Status Flags
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 1 0 1 0 0 0 0 Rd

15 12 11 4 3 0

165
32000D–04/2011

AVR32

EOR – Logical Exclusive OR with optional logical shift

Architecture revision:
Architecture revision1 and higher.

Description
Performs a bitwise logical Exclusive-OR between the specified registers and stores the result in
the destination register.

Operation:
I. Rd ← Rd ⊕ Rs;
II. Rd ← Rx ⊕ (Ry << sa5);
III. Rd ← Rx ⊕ (Ry >> sa5);

Syntax:
I. eor Rd, Rs
II. eor Rd, Rx, Ry << sa
III. eor Rd, Rx, Ry >> sa

Operands:
I. {d, s} ∈ {0, 1, …, 15}
II, III. {d, x, y} ∈ {0, 1, …, 15}

sa ∈ {0, 1, …, 31}

Status Flags
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: Not affected

Opcode:

Format I:

Format II:

0 0 0 Rs 0 0 1 0 1 Rd

15 13 12 9 8 4 3 0

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 sa5 Rd

15 9 8 4 3 0

166
32000D–04/2011

AVR32

Format III:

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 sa5 Rd

15 9 8 4 3 0

167
32000D–04/2011

AVR32

EOR{cond4} – Conditional Logical EOR

Architecture revision:
Architecture revision 2 and higher.

Description
Performs a bitwise logical Exclusive-OR between the specified registers and stores the result in
the destination register.

Operation:
I. if (cond4)

Rd ← Rx ⊕ Ry;

Syntax:
I. eor{cond4} Rd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 0 1 Ry

31 29 28 25 24 20 19 16

1 1 1 0 cond4 0 1 0 0 Rd

15 12 11 8 7 0

Rx

168
32000D–04/2011

AVR32

EORH, EORL – Logical EOR into high or low half of register

Architecture revision:
Architecture revision1 and higher.

Description
Performs a bitwise logical Exclusive-OR between the high or low halfword in the specified regis-
ter and a constant. The result is stored in the destination register.

Operation:
I. Rd[31:16] ← Rd[31:16] ⊕ imm16
II. Rd[15:0] ← Rd[15:0] ⊕ imm16

Syntax:
I. eorh Rd, imm
II. eorl Rd, imm

Operands:
I, II. d ∈ {0, 1, …, 15}

imm ∈ {0, 1, ..., 65535}

Status Flags:
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: Not affected

Opcode

Format I:

Format II:

1 1 1 0 1 1 0 0 0 0 1 Rd

31 29 28 20 19 16

imm16

15 0

1

1 1 1 0 1 0 0 0 0 0 1 Rd

31 29 28 20 19 16

imm16

15 0

1

169
32000D–04/2011

AVR32

FRS – Flush Return Stack

Architecture revision:
Architecture revision1 and higher.

Description
Special instruction to invalidate the return address stack. This instruction is used when the user
writes code that conflicts with the semantics required by the return address stack.

Operation:
I. Invalidate all entries in the return address stack.

Syntax:
I. frs

Operands:
I. none

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

Note:
On implementation without a return stack this instruction will execute as a "NOP".

1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1

15 9 8 4 3 0

170
32000D–04/2011

AVR32

ICALL – Indirect Call to Subroutine

Architecture revision:
Architecture revision1 and higher.

Description
Call to a subroutine pointed to by the pointer residing in Rp.

Operation:
I. LR ← PC + 2;

PC ← Rd;

Syntax:
I. icall Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

0 1 0 1 1 1 0 1 0 0 0 1 Rd

15 13 12 9 8 4 3 0

171
32000D–04/2011

AVR32

INCJOSP – Increment Java Operand Stack Pointer

Architecture revision:
Architecture revision1 and higher.

Description
Increment the system register "Java Operand Stack Pointer" with value.

Operation:
I. if (JOSP[3:0] + imm < 0)

TRAP 4
else if (JOSP[3:0] + imm > 8)

TRAP 3
else

JOSP ← JOSP + imm;

Syntax:
I. incjosp imm

Operands:
I. imm ∈ {-4, -3, -2, -1, 1, 2, 3, 4}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

imm3 imm

100 -4

101 -3

110 -2

111 -1

000 1

001 2

010 3

011 4

1 1 0 1 0 1 1 0 1 imm3 0 0 1 1

15 13 12 7 6 4 3 0

172
32000D–04/2011

AVR32

Note:
When trapped, this instruction will destroy R12. It is the programmer’s responsibility to keep the
R12value if needed.

173
32000D–04/2011

AVR32

LD.D – Load Doubleword

Architecture revision:
Architecture revision1 and higher.

Description
Reads the doubleword memory location specified.

Operation:
I. Rd+1:Rd ← *(Rp);

Rp ← Rp + 8;
II. Rp ← Rp - 8;

Rd+1:Rd ← *(Rp);
III. Rd+1:Rd ← *(Rp);
IV. Rd+1:Rd ← *(Rp + (SE(disp16)));
V. Rd+1:Rd ← *(Rb + (Ri << sa2));

Syntax:
I. ld.d Rd, Rp++
II. ld.d Rd, --Rp
III. ld.d Rd, Rp
IV. ld.d Rd, Rp[disp]
V. ld.d Rd, Rb[Ri<<sa]

Operands:
I-V. d ∈ {0, 2, 4, …, 14}

p, b, i ∈ {0, 1, …, 15}
IV. disp ∈ {-32768, -32767, ..., 32767}
V. sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 0 1 Rp 1 0 0 0 0 Rd 1

15 13 12 9 8 6 5 4 3 1 0

174
32000D–04/2011

AVR32

Format II:

Format III:

Format IV:

Format V:

Note:
Format I and II: If Rd = Rp, the result is UNDEFINED.

If Rd = Rp+1, the result is UNDEFINED.

1 0 1 Rp 1 0 0 0 1 Rd 0

15 13 12 9 8 6 5 4 3 1 0

1 0 1 Rp 1 0 0 0 0 Rd 0

15 13 12 9 8 6 5 4 3 1 0

1 1 1 Rp 0 1 1 1 0 Rd 0

31 29 28 25 24 20 19 16

disp16

15 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 0 0 1 0 0 0 Shift Amount Rd

15 12 11 8 7 6 5 4 3 0

175
32000D–04/2011

AVR32

LD.SB – Load Sign-extended Byte

Architecture revision:
Architecture revision1 and higher.

Description
Reads the byte memory location specified and sign-extends it.

Operation:
I. Rd ← SE(*(Rp + (SE(disp16))));
II. Rd ← SE(*(Rb + (Ri << sa2)));

Syntax:
I. ld.sb Rd, Rp[disp]
II. ld.sb Rd, Rb[Ri<<sa]

Operands:
I. d, p ∈ {0, 1, …, 15}

disp ∈ {-32768, -32767, ..., 32767}
II. d, b, i ∈ {0, 1, …, 15}

sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 1 1 Rp 1 0 0 1 0 Rd

31 29 28 25 24 20 19 16

disp16

15 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 0 1 1 0 0 0 Shift Amount Rd

15 12 11 8 7 6 5 4 3 0

176
32000D–04/2011

AVR32

LD.SB{cond4} – Conditionally Load Sign-extended Byte

Architecture revision:
Architecture revision 2 and higher.

Description
Reads the byte memory location specified and sign-extends it if the given condition is satisfied.

Operation:
I. if (cond4)

Rd ← SE(*(Rp + (ZE(disp9))));

Syntax:
I. ld.sb{cond4} Rd, Rp[disp]

Operands:
I. d, p ∈ {0, 1, …, 15}

disp ∈ {0, 1, ..., 511}
cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 1 1

31 29 28 25 24 20 19 16

cond4 0 1 1 disp9

15 12 11 8 7 6 5 4 3 0

RdRp

177
32000D–04/2011

AVR32

LD.UB – Load Zero-extended Byte

Architecture revision:
Architecture revision1 and higher.

Description
Reads the byte memory location specified and zero-extends it.

Operation:
I. Rd ← ZE(*(Rp));

Rp ← Rp + 1;
II. Rp ← Rp - 1;

Rd ← ZE(*(Rp));
III. Rd ← ZE(*(Rp + (ZE(disp3))));
IV. Rd ← ZE(*(Rp + (SE(disp16))));
V. Rd ← ZE(*(Rb + (Ri << sa2)));

Syntax:
I. ld.ub Rd, Rp++
II. ld.ub Rd, --Rp
III. ld.ub Rd, Rp[disp]
IV. ld.ub Rd, Rp[disp]
V. ld.ub Rd, Rb[Ri<<sa]

Operands:
I-V. d, p, b, i ∈ {0, 1, …, 15}
III. disp ∈ {0, 1, ..., 7}
IV. disp ∈ {-32768, -32767, ..., 32767}
V. sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

0 0 0 Rp 1 0 0 1 1 Rd

15 13 12 9 8 4 3 0

178
32000D–04/2011

AVR32

Format II:

Format III:

Format IV:

Format V:

Note:
Format I and II: If Rd = Rp, the result is UNDEFINED.

0 0 0 Rp 1 0 1 1 1 Rd

15 13 12 9 8 4 3 0

0 0 0 Rp 1 1 disp3 Rd

15 13 12 9 8 7 6 4 3 0

1 1 1 Rp 1 0 0 1 1 Rd

31 29 28 25 24 20 19 16

disp16

15 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 0 1 1 1 0 0 Shift Amount Rd

15 12 11 8 7 6 5 4 3 0

179
32000D–04/2011

AVR32

LD.UB{cond4} – Conditionally Load Zero-extended Byte

Architecture revision:
Architecture revision 2 and higher.

Description
Reads the byte memory location specified and zero-extends it if the given condition is satisfied.

Operation:
I. if (cond4)

Rd ← ZE(*(Rp + (ZE(disp9))));

Syntax:
I. ld.ub{cond4} Rd, Rp[disp]

Operands:
I. d, p ∈ {0, 1, …, 15}

disp ∈ {0, 1, ..., 511}
cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 1 1

31 29 28 25 24 20 19 16

cond4 1 0 0 disp9

15 12 11 8 7 6 5 4 3 0

RdRp

180
32000D–04/2011

AVR32

LD.SH – Load Sign-extended Halfword

Architecture revision:
Architecture revision1 and higher.

Description
Reads the halfword memory location specified and sign-extends it.

Operation:
I. Rd ← SE(*(Rp));

Rp ← Rp + 2;
II. Rp ← Rp - 2;

Rd ← SE(*(Rp));
III. Rd ← SE(*(Rp + (ZE(disp3) << 1)));
IV. Rd ← SE(*(Rp + (SE(disp16)));
V. Rd ← SE(*(Rb + (Ri << sa2));

Syntax:
I. ld.sh Rd, Rp++
II. ld.sh Rd, --Rp
III. ld.sh Rd, Rp[disp]
IV. ld.sh Rd, Rp[disp]
V. ld.sh Rd, Rb[Ri<<sa]

Operands:
I-V. d, p, b, i ∈ {0, 1, …, 15}
III. disp ∈ {0, 2, ..., 14}
IV. disp ∈ {-32768, -32767, ..., 32767}
V. sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

0 0 0 Rp 1 0 0 0 1 Rd

15 13 12 9 8 4 3 0

181
32000D–04/2011

AVR32

Format II:

Format III:

Format IV:

Format V:

Note:
Format I and II: If Rd = Rp, the result is UNDEFINED.

0 0 0 Rp 1 0 1 0 1 Rd

15 13 12 9 8 4 3 0

1 0 0 Rp 0 0 disp3 Rd

15 13 12 9 8 7 6 4 3 0

1 1 1 Rp 1 0 0 0 0 Rd

31 29 28 25 24 20 19 16

disp16

15 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 0 1 0 0 0 0 Shift Amount Rd

15 12 11 8 7 6 5 4 3 0

182
32000D–04/2011

AVR32

LD.SH{cond4} – Conditionally Load Sign-extended Halfword

Architecture revision:
Architecture revision 2 and higher.

Description
Reads the halfword memory location specified and sign-extends it if the given condition is satis-
fied.

Operation:
I. if (cond4)

Rd ← SE(*(Rp + (ZE(disp9<<1))));

Syntax:
I. ld.sh{cond4} Rd, Rp[disp]

Operands:
I. d, p ∈ {0, 1, …, 15}

disp ∈ {0, 2, ..., 1022}
cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 1 1

31 29 28 25 24 20 19 16

cond4 0 0 1 disp9

15 12 11 8 7 6 5 4 3 0

RdRp

183
32000D–04/2011

AVR32

LD.UH – Load Zero-extended Halfword

Architecture revision:
Architecture revision1 and higher.

Description
Reads the halfword memory location specified and zero-extends it.

Operation:
I. Rd ← ZE(*(Rp));

Rp ← Rp + 2;
II. Rp ← Rp - 2;

Rd ← ZE(*(Rp));
III. Rd ← ZE(*(Rp + (ZE(disp3) << 1)));
IV. Rd ← ZE(*(Rp + (SE(disp16))));
V. Rd ← ZE(*(Rb + (Ri << sa2)));

Syntax:
I. ld.uh Rd, Rp++
II. ld.uh Rd, --Rp
III. ld.uh Rd, Rp[disp]
IV. ld.uh Rd, Rp[disp]
V. ld.uh Rd, Rb[Ri<<sa]

Operands:
I-V. d, p, b, i ∈ {0, 1, …, 15}
III. disp ∈ {0, 2, ..., 14}
IV. disp ∈ {-32768, -32767, ..., 32767}
V. sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

0 0 0 Rp 1 0 0 1 0 Rd

15 13 12 9 8 4 3 0

184
32000D–04/2011

AVR32

Format II:

Format III:

Format IV:

Format V:

Note:
Format I and II: If Rd = Rp, the result is UNDEFINED.

0 0 0 Rp 1 0 1 1 0 Rd

15 13 12 9 8 4 3 0

1 0 0 Rp 0 1 disp3 Rd

15 13 12 9 8 7 6 4 3 0

1 1 1 Rp 1 0 0 0 1 Rd

31 29 28 25 24 20 19 16

disp16

15 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 0 1 0 1 0 0 Shift Amount Rd

15 12 11 8 7 6 5 4 3 0

185
32000D–04/2011

AVR32

LD.UH{cond4} – Conditionally Load Zero-extended Halfword

Architecture revision:
Architecture revision 2 and higher.

Description
Reads the halfword memory location specified and zero-extends it if the given condition is satis-
fied.

Operation:
I. if (cond4)

Rd ← ZE(*(Rp + (ZE(disp9<<1))));

Syntax:
I. ld.uh{cond4} Rd, Rp[disp]

Operands:
I. d, p ∈ {0, 1, …, 15}

disp ∈ {0, 2, ..., 1022}
cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 1 1

31 29 28 25 24 20 19 16

cond4 0 1 0 disp9

15 12 11 8 7 6 5 4 3 0

RdRp

186
32000D–04/2011

AVR32

LD.W – Load Word

Architecture revision:
Architecture revision1 and higher.

Description
Format I to V: Reads the word memory location specified.
Format VI: This instruction extracts a specified byte from Ri. This value is zero-extended, shifted
left two positions and added to Rb to form an address. The contents of this address is loaded
into Rd. The instruction is useful for indexing tables.

Operation:
I. Rd ← *(Rp);

Rp ← Rp + 4;
II. Rp ← Rp - 4;

Rd ← *(Rp);
III. Rd ← *(Rp + (ZE(disp5) << 2));
IV. Rd ← *(Rp + (SE(disp16)));
V. Rd ← *(Rb + (Ri << sa2));
VI. If (part == b)

Rd ← *(Rb + (Ri[7:0] << 2));
else if (part == l)

Rd ← *(Rb + (Ri[15:8] << 2));
else if (part == u)

Rd ← *(Rb + (Ri[23:16] << 2));
else

Rd ← *(Rb + (Ri[31:24] << 2));

Syntax:
I. ld.w Rd, Rp++
II. ld.w Rd, --Rp
III. ld.w Rd, Rp[disp]
IV. ld.w Rd, Rp[disp]
V. ld.w Rd, Rb[Ri<<sa]
VI. ld.w Rd, Rb[Ri:<part> << 2]

Operands:
I-V. d, p, b, i ∈ {0, 1, …, 15}
III. disp ∈ {0, 4, ..., 124}
IV. disp ∈ {-32768, -32767, ..., 32767}
V. sa ∈ {0, 1, 2, 3}
VI. {d, b, i} ∈ {0, 1, …, 15}

part ∈ {t, u, l, b}

187
32000D–04/2011

AVR32

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

Format III:

Format IV:

Format V:

Format VI:

Note:
Format I and II: If Rd = Rp, the result is UNDEFINED.

0 0 0 Rp 1 0 0 0 0 Rd

15 13 12 9 8 4 3 0

0 0 0 Rp 1 0 1 0 0 Rd

15 13 12 9 8 4 3 0

0 1 1 Rp disp5 Rd

15 13 12 9 8 4 3 0

1 1 1 Rp 0 1 1 1 1 Rd

31 29 28 25 24 20 19 16

disp16

15 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 0 0 1 1 0 0 Shift Amount Rd

15 12 11 8 7 6 5 4 3 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 1 1 1 1 1 0 X Y Rd

15 12 11 6 5 4 3 0

188
32000D–04/2011

AVR32

189
32000D–04/2011

AVR32

LD.W{cond4} – Conditionally Load Word

Architecture revision:
Architecture revision 2 and higher.

Description
Reads the word memory location specified if the given condition is satisfied.

Operation:
I. if (cond4)

Rd ← *(Rp + (ZE(disp9<<2)));

Syntax:
I. ld.w{cond4} Rd, Rp[disp]

Operands:
I. d, p ∈ {0, 1, …, 15}

disp ∈ {0, 4, ..., 2044}
cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 1 1

31 29 28 25 24 20 19 16

cond4 0 0 0 disp9

15 12 11 8 7 6 5 4 3 0

RdRp

190
32000D–04/2011

AVR32

LDC.{D,W} – Load Coprocessor

Architecture revision:
Architecture revision1 and higher.

Description
Reads the memory location specified into the addressed coprocessor.

Operation:
I. CP#(CRd+1:CRd) ← *(Rp + (ZE(disp8) << 2));
II. Rp ← Rp-8;

CP#(CRd+1:CRd) ← *(Rp);
III. CP#(CRd+1:CRd) ← *(Rb + (Ri << sa2));
IV. CP#(CRd) ← *(Rp + (ZE(disp8) << 2));
V. Rp ← Rp-4;

CP#(CRd) ← *(Rp);
VI. CP#(CRd) ← *(Rb + (Ri << sa2));

Syntax:
I. ldc.d CP#, CRd, Rp[disp]
II. ldc.d CP#, CRd, --Rp
III. ldc.d CP#, CRd, Rb[Ri<<sa]
IV. ldc.w CP#, CRd, Rp[disp]
V. ldc.w CP#, CRd, --Rp
VI. ldc.w CP#, CRd, Rb[Ri<<sa]

Operands:
I-VI. # ∈ {0, 1, …, 7}
I-II, IV-V.p ∈ {0, 1, …, 15}
I-III. d ∈ {0, 2, …, 14}
I, IV. disp ∈ {0, 4, …, 1020}
III, VI. {b, i} ∈ {0, 1, …, 15}
III, VI. sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

191
32000D–04/2011

AVR32

Format I:

Format II:

Format III:

Format IV:

Format V:

Format VI:

Example:
ldc.d CP2, CR0, R2[0]

1 1 1 0 0 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 1 CRd[3:1] 0 disp8

15 13 12 11 8 7 0

1

1 1 1 0 1 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 0 CRd[3:1] 0 0 1 0 1 0 0 0

15 13 12 11 9 8 7 0

1

0

1 1 1 0 1 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 1 CRd[3:1] 0 0 1 Sh amt Ri

15 13 12 11 9 8 7 6 5 4 3 0

1

1 1 1 0 0 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 0 CRd k8

15 13 12 11 8 7 0

1

1 1 1 0 1 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 0 0 1 0 0 0 0 0

15 13 12 11 8 7 0

1

0CRd

1 1 1 0 1 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 1 0 0 Sh amt Ri

15 13 12 11 8 7 6 5 4 3 0

1

CRd

192
32000D–04/2011

AVR32

LDC0.{D,W} – Load Coprocessor 0

Architecture revision:
Architecture revision1 and higher.

Description
Reads the memory location specified into coprocessor 0.

Operation:
I. CP0(CRd+1:CRd) ← *(Rp + (ZE(disp12) << 2));
II. CP0(CRd) ← *(Rp + (ZE(disp12) << 2));

Syntax:
I. ldc0.d CRd, Rp[disp]
II. ldc0.w CRd, Rp[disp]

Operands:
I,II p ∈ {0, 1, …, 15}
I. d ∈ {0, 2, …, 14}
II. d ∈ {0, 1, …, 15}
I, II. disp ∈ {0, 4, …, 16380}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

Example:
ldc0.d CR0, R2[0]

1 1 1 1 0 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

disp[11:8] CRd[3:1] 0 disp[7:0]

15 13 12 11 8 7 0

0

1 1 1 1 0 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

disp[11:8] CRd disp[7:0]

15 12 11 8 7 0

0

193
32000D–04/2011

AVR32

LDCM.{D,W} – Load Coprocessor Multiple Registers

Architecture revision:
Architecture revision1 and higher.

Description
Reads the memory locations specified into the addressed coprocessor. The pointer register can
optionally be updated after the operation.

Operation:
I. Loadaddress ←Rp;

for (i = 7 to 0)
if ReglistCPD8[i] == 1 then

CP#(CR(2*i+1)) ←*(Loadaddress++);
CP#(CR(2*i)) ←*(Loadaddress++);

if Opcode[++] == 1 then
Rp ← Loadaddress;

II. Loadaddress ←Rp;
for (i = 7 to 0)

if ReglistCPH8[i] == 1 then
CP#(CRi+8) ←*(Loadaddress++);

if Opcode[++] == 1 then
Rp ← Loadaddress;

III. Loadaddress ←Rp;
for (i = 7 to 0)

if ReglistCPL8[i] == 1 then
CP#(CRi) ←*(Loadaddress++);

if Opcode[++] == 1 then
Rp ← Loadaddress;

Syntax:
I. ldcm.d CP#, Rp{++}, ReglistCPD8
II. ldcm.w CP#, Rp{++}, ReglistCPH8
III. ldcm.w CP#, Rp{++}, ReglistCPL8

Operands:
I-III. # ∈ {0, 1, …, 7}

p ∈ {0, 1, …, 15}
I. ReglistCPD8 ∈ {CR0-CR1,CR2-CR3,CR4-CR5,CR6-CR7,CR8-CR9,

CR10-CR11,CR12-CR13,CR14-CR15}
II. ReglistCPH8 ∈ {CR8, CR9, CR10, ..., CR15}
III. ReglistCPL8 ∈ {CR0, CR1, CR2, ..., CR7}

194
32000D–04/2011

AVR32

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

Format III:

Example:
ldcm.w CP2, SP++, CR2-CR5

Note:
Emtpy ReglistCPL8/ReglistCPL8/ReglistCPD8 gives UNDEFINED result.

1 1 1 0 1 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP# ++ 0 1 0 0 CR

15 13 12 11 8 7 0

1

15-14
CR

13-12
CR

11-10
CR
9-8

CR
7-6

CR
5-4

CR
3-2

CR
1-0

1 1 1 0 1 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP# ++ 0 0 0 1 CR

15 13 12 11 8 7 0

1

 15
CR

 14
CR

 13
CR
 12

CR
 11

CR
 10

CR
 9

CR
 8

1 1 1 0 1 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP# ++ 0 0 0 0 CR

15 13 12 11 8 7 0

1

 7
CR

 6
CR

 5
CR
 4

CR
 3

CR
 2

CR
 1

CR
 0

195
32000D–04/2011

AVR32

LDDPC – Load PC-relative with Displacement

Architecture revision:
Architecture revision1 and higher.

Description
Performs a PC relative load of a register

Operation:
I. Rd ← *((PC && 0xFFFF_FFFC) + (ZE(disp7) << 2));

Syntax:
I. lddpc Rd, PC[disp]

Operands:
I. d ∈ {0, 1, …, 15}

disp ∈ {0, 4, …, 508}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

0 1 0 0 1 disp7 Rd

15 13 12 11 10 4 3 0

196
32000D–04/2011

AVR32

LDDSP – Load SP-relative with Displacement

Architecture revision:
Architecture revision1 and higher.

Description
Reads the value of a memory location referred to by the stack pointer register and a displace-
ment.

Operation:
I. Rd ← *((SP && 0xFFFF_FFFC) + (ZE(disp7) << 2));

Syntax:
I. lddsp Rd, SP[disp]

Operands:
I. d ∈ {0, 1, …, 15}

disp ∈ {0, 4, …, 508}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

0 1 0 0 0 disp7 Rd

15 13 12 11 10 4 3 0

197
32000D–04/2011

AVR32

LDINS.{B,H} – Load and Insert Byte or Halfword into register

Architecture revision:
Architecture revision1 and higher.

Description
This instruction loads a byte or a halfword from memory and inserts it into the addressed byte or
halfword position in Rd. The other parts of Rd are unaffected.

Operation:
I. If (part == b)

Rd[7:0] ← *(Rp+SE(disp12));
else if (part == l)

Rd[15:8] ← *(Rp+SE(disp12));
else if (part == u)

Rd[23:16] ← *(Rp+SE(disp12));
else

Rd[31:24] ← *(Rp+SE(disp12));
II. If (part == b)

Rd[15:0] ← *(Rp+SE(disp12) << 1);
else

Rd[31:16] ← *(Rp+SE(disp12) << 1);

Syntax:
I. ldins.b Rd:<part>, Rp[disp]
II. ldins.h Rd:<part>, Rp[disp]

Operands:
I. {p, d} ∈ {0, 1, …, 15}

part ∈ {t, u, l, b}
disp ∈ {-2048, -2047, ..., 2047}

II. {p, d} ∈ {0, 1, …, 15}
part ∈ {t, b}
disp ∈ {-4096, -4094, ..., 4094}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

198
32000D–04/2011

AVR32

Opcode:

Format I:

Format II:

1 1 1 Rp 1 1 1 0 1 Rd

31 29 28 25 24 20 19 16

0 1 part disp12

15 14 13 12 11 0

1 1 1 Rp 1 1 1 0 1 Rd

31 29 28 25 24 20 19 16

0 0 0 part disp12

15 13 12 11 0

199
32000D–04/2011

AVR32

LDM – Load Multiple Registers

Architecture revision:
Architecture revision1 and higher.

Description
Loads the consecutive words pointed to by Rp into the registers specified in the instruction. The
PC can be loaded, resulting in a jump to the loaded target address. If PC is loaded, the return
value in R12 is tested and the flags are updated. The return value may optionally be set to -1, 0
or 1.

Operation:
I. Loadaddress ← Rp;

if Reglist16[PC] == 1 then
if Rp == PC then

Loadaddress ← SP;

PC ← *(Loadaddress++);
if Rp == PC then

if Reglist16[LR,R12] == B’00

R12 ← 0;
else if Reglist16[LR,R12] == B’01

R12 ← 1;
else

R12 ← −1;
Test R12 and update flags;

else
if Reglist16[LR] == 1

LR ← *(Loadaddress++);
if Reglist16[SP] == 1

SP ← *(Loadaddress++);
if Reglist16[R12] == 1

R12 ← *(Loadaddress++);
Test R12 and update flags;

else
if Reglist16[LR] == 1

LR ← *(Loadaddress++);
if Reglist16[SP] == 1

SP ← *(Loadaddress++);
if Reglist16[R12] == 1

R12 ← *(Loadaddress++);
for (i = 11 to 0)

if Reglist16[i] == 1 then

Ri ← *(Loadaddress++);
if Opcode[++] == 1 then

if Rp == PC then

SP ← Loadaddress;
else

Rp ← Loadaddress;

200
32000D–04/2011

AVR32

Syntax:
I. ldm Rp{++}, Reglist16

Operands:
I. Reglist16 ∈ {R0, R1, R2, ..., R12, LR, SP, PC}

p ∈ {0, 1, …, 15}

Status Flags:
Flags are only updated if Reglist16[PC] == 1.
They are set as the result of the operation cp R12, 0.

Q: Not affected
V: V ← 0
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← 0

Opcode:

Note:
Emtpy Reglist16 gives UNDEFINED result.
If Rp is in Reglist16 and pointer is written back the result is UNDEFINED.
The R bit in the status register has no effect on this instruction.

1 1 1 0 0 ++ 1 1 1 0 0 Rp

31 29 28 26 25 24 20 19 16

R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

15 0

0

201
32000D–04/2011

AVR32

LDMTS – Load Multiple Registers for Task Switch

Architecture revision:
Architecture revision1 and higher.

Description
Loads the consecutive words pointed to by Rp into the registers specified in the instruction.The
target registers reside in the User Register Context, regardless of which context the instruction is
called from.

Operation:
I. Loadaddress ←Rp;

for (i = 15 to 0)
if Reglist16[i] == 1 then

Ri USER ←*(Loadaddress++);

if Opcode[++] == 1 then
Rp ← Loadaddress;

Syntax:
I. ldmts Rp{++}, Reglist16

Operands:
I. Reglist16 ∈ {R0, R1, R2, ..., R12, LR, SP}

p ∈ {0, 1, …, 15}

Status Flags:
Not affected.

Opcode:

Note:
This instruction is intended for performing task switches.
Emtpy Reglist16 gives UNDEFINED result.
PC in Reglist16 gives UNDEFINED result.

1 1 1 0 1 ++ 1 1 1 0 0 Rp

31 29 28 26 25 24 20 19 16

R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

15 0

0

202
32000D–04/2011

AVR32

LDSWP.{SH, UH, W} – Load and Swap

Architecture revision:
Architecture revision1 and higher.

Description
This instruction loads a halfword or a word from memory. If a halfword load is performed, the
loaded value is zero- or sign-extended. The bytes in the loaded value are shuffled and the result
is written back to Rd. The instruction can be used for performing loads from memories of differ-
ent endianness.

Operation:
I. temp[15:0] ← *(Rp+SE(disp12) << 1);

Rd ← SE(temp[7:0], temp[15:8]);
II. temp[15:0] ← *(Rp+SE(disp12) << 1);

Rd ← ZE(temp[7:0], temp[15:8]);
III. temp ← *(Rp+SE(disp12) << 2);

Rd ← (temp[7:0], temp[15:8], temp[23:16], temp[31:24]);

Syntax:
I. ldswp.shRd, Rp[disp]
II. ldswp.uhRd, Rp[disp]
III. ldswp.wRd, Rp[disp]

Operands:
I, II. {d, p} ∈ {0, 1, …, 15}

disp ∈ {-4096, -4094, ..., 4094}
III. {d, p} ∈ {0, 1, …, 15}

disp ∈ {-8192, -8188, ..., 8188}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

Format I:

1 1 1 Rp 1 1 1 0 1 Rd

31 29 28 25 24 20 19 16

0 0 1 0 disp12

15 12 11 0

203
32000D–04/2011

AVR32

Format II:

Format III:

1 1 1 Rp 1 1 1 0 1 Rd

31 29 28 25 24 20 19 16

0 0 1 1 disp12

15 12 11 0

1 1 1 Rp 1 1 1 0 1 Rd

31 29 28 25 24 20 19 16

1 0 0 0 disp12

15 12 11 0

204
32000D–04/2011

AVR32

LSL – Logical Shift Left

Architecture revision:
Architecture revision1 and higher.

Description
Shifts all bits in a register the amount of bits specified to the left. The shift amount can reside in
a register or be specified as an immediate. Zeros are shifted into the LSBs. The last bit that is
shifted out is placed in C.

Operation:
I. Rd ← LSL(Rx, Ry[4:0]);
II. Rd ← LSL(Rd, sa5);
III. Rd ← LSL(Rs, sa5);

Syntax:
I. lsl Rd, Rx, Ry
II. lsl Rd, sa
III. lsl Rd, Rs, sa

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}
II. d ∈ {0, 1, …, 15}

sa ∈ {0, 1, …, 31}
III. {d,s} ∈ {0, 1, …, 15}

sa ∈ {0, 1, …, 31}

Status Flags:
Format I: Shamt = Ry[4:0], Op = Rx
Format II: Shamt = sa5, Op = Rd
Format III: Shamt = sa5, Op = Rs
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: if Shamt != 0

C ← Op[32-Shamt]
else

C ← 0

Opcode:

205
32000D–04/2011

AVR32

Format I:

Format II:

Format III:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 0 0 1 0 1 0 0 Rd

15 12 11 4 3 0

1 0 1 Bit[4:1] 1 0 1 1 Bit[0] Rd

15 13 12 9 8 5 4 3 0

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 0 1 0 1 0 0 0 sa5

15 12 11 8 7 5 4 0

206
32000D–04/2011

AVR32

LSR – Logical Shift Right

Architecture revision:
Architecture revision1 and higher.

Description
Shifts all bits in a register the amount specified to the right. The shift amount may be specified by
a register or an immediate. Zeros are shifted into the MSB.

Operation:
I. Rd ← LSR(Rx, Ry[4:0]);
II. Rd ← LSR(Rd, sa5);
III. Rd ← LSR(Rs, sa5);

Syntax:
I. lsr Rd, Rx, Ry
II. lsr Rd, sa
III. lsr Rd, Rs, sa

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}
II. d ∈ {0, 1, …, 15}

sa ∈ {0, 1, …, 31}
III. {d,s} ∈ {0, 1, …, 15}

sa ∈ {0, 1, …, 31}

Status Flags:
Format I: Shamt = Ry[4:0], Op = Rx
Format II: Shamt = sa5, Op = Rd
Format III: Shamt = sa5, Op = Rs
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: if Shamt != 0

C ← Op[Shamt-1]
else

C ← 0

207
32000D–04/2011

AVR32

Opcode:

Format I:

Format II:

Format III:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 0 1 0 0 1 0 0 Rd

15 12 11 4 3 0

1 0 1 Bit[4:0] 1 1 0 0 Bit[0] Rd

15 13 12 9 8 5 4 3 0

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 0 1 1 0 0 0 0 sa5

15 12 11 8 7 5 4 0

208
32000D–04/2011

AVR32

MAC – Multiply Accumulate

Architecture revision:
Architecture revision1 and higher.

Description
Performs a Multiply-Accumulate operation and stores the result into the destination register.

Operation:
I. Rd ← (Rx × Ry) + Rd;

Syntax:
I. mac Rd, Rx, Ry

Operands:
{d, x, y} ∈ {0, 1, …, 15}

Status Flags
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 1 1 0 1 0 0 Rd

15 12 11 4 3 0

209
32000D–04/2011

AVR32

MACHH.D – Multiply Halfwords and Accumulate in Doubleword

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the two halfword registers specified and adds the result to the specified doubleword-
register. Only the 48 highest of the 64 possible bits in the doubleword accumulator are used. The
16 lowest bits are cleared. The halfword registers are selected as either the high or low part of
the operand registers.

Operation:
I. If (Rx-part == t) then operand1 = SE(Rx[31:16]) else operand1 = SE(Rx[15:0]);

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
(Rd+1:Rd)[63:16] ← (operand1 × operand2)[31:0] + (Rd+1:Rd)[63:16];
Rd[15:0] ← 0;

Syntax:
I. machh.d Rd, Rx:<part>, Ry:<part>

Operands:
I. d ∈ {0, 2, 4, …, 14}

{x, y} ∈ {0, 1, …, 15}
part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Example:
machh.d R10, R2:t, R3:b will perform
(R11 : R10)[63:16] ← (SE(R2[31:16]) × SE(R3[15:0])) + (R11 : R10)[63:16]
R10[15:0] ← 0

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 1 0 1 1 0 X Y Rd

15 12 11 8 7 6 5 4 3 0

210
32000D–04/2011

AVR32

MACHH.W – Multiply Halfwords and Accumulate in Word

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the two halfword registers specified and adds the result to the specified word-register.
The halfword registers are selected as either the high or low part of the operand registers.

Operation:
I. If (Rx-part == t) then operand1 = SE(Rx[31:16]) else operand1 = SE(Rx[15:0]);

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
Rd ← (operand1 × operand2) + Rd;

Syntax:
I. machh.w Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Example:
machh.w R10, R2:t, R3:b
will perform R10 ← (SE(R2[31:16]) × SE(R3[15:0])) + R10

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 1 0 0 1 0 X Y Rd

15 12 11 8 7 6 5 4 3 0

211
32000D–04/2011

AVR32

MACS.D – Multiply Accumulate Signed

Architecture revision:
Architecture revision1 and higher.

Description
Performs a Multiply-Accumulate operation with signed numbers and stores the result into the
destination registers.

Operation:
I. acc ← (Rd+1:Rd);

prod ← (Rx × Ry);
res ← prod + acc;
(Rd+1:Rd) ← res;

Syntax:
I. macs.d Rd, Rx, Ry

Operands:
I. d ∈ {0, 2, 4, …, 14}

{x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 1 0 1 0 1 0 0 Rd

15 12 11 4 3 0

212
32000D–04/2011

AVR32

MACSATHH.W – Multiply-Accumulate Halfwords with Saturation into Word

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the two halfword registers specified, shifts the results one position to the left and
stores the result as a temporary word-sized product. If the two operands equals -1, the product
is saturated to the largest positive 32-bit fractional number. The halfword registers are selected
as either the high or low part of the operand registers. The temporary product is added with sat-
uration to Rd.

Operation:
I. If (Rx-part == t) then operand1 = SE(Rx[31:16]) else operand1 = SE(Rx[15:0]);

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
If (operand1 == operand2 == 0x8000)

product ← 0x7FFF_FFFF;
else

product ← (operand1 × operand2) << 1;
Rd ← Sat(product + Rd);

Syntax:
I. macsathh.w Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Set if saturation occurred, or if the accumulation overflows, or previously set.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Example:
macsathh.wR10, R2:t, R3:b
will perform R10 ← Sat (Sat((SE(R2[31:16]) × SE(R3[15:0])) << 1) + R10)

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 1 1 0 1 0 X Y Rd

15 12 11 8 7 6 5 4 3 0

213
32000D–04/2011

AVR32

MACU.D – Multiply Accumulate Unsigned

Architecture revision:
Architecture revision1 and higher.

Description
Performs a Multiply-Accumulate operation with unsigned numbers and stores the result into the
destination registers.

Operation:
I. acc ← (Rd+1:Rd);

prod ← (Rx × Ry);
res ← prod + acc;
(Rd+1:Rd) ← res;

Syntax:
I. macu.d Rd, Rx, Ry

Operands:
I. d ∈ {0, 2, 4, …, 14}

{x, y} ∈ {0, 1, …, 15}

Status Flags
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 1 1 1 0 1 0 0 Rd

15 12 11 4 3 0

214
32000D–04/2011

AVR32

MACWH.D – Multiply Word with Halfword and Accumulate in Doubleword

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the word and halfword register specified and adds the result to the specified double-
word-register. The halfword register is selected as either the high or low part of Ry. Only the 48
highest of the 64 possible bits in the doubleword accumulator are used. The 16 lowest bits are
cleared.

Operation:
I. operand1 = Rx;

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
(Rd+1:Rd)[63:16] ← (operand1 × operand2)[47:0] + (Rd+1:Rd)[63:16];
Rd[15:0] ← 0;

Syntax:
I. macwh.d Rd, Rx, Ry:<part>

Operands:
I. d ∈ {0, 2, …, 14}

{x, y} ∈ {0, 1, …, 15}
part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Example:
macwh.dR10, R2, R3:bwill perform
(R11:R10)[63:16] ← (R2 × SE(R3[15:0])) + (R11:R10)[63:16]
R10[15:0] ← 0

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 1 0 0 1 0 0 Y Rd

15 12 11 8 7 5 4 3 0

215
32000D–04/2011

AVR32

MAX – Return Maximum Value

Architecture revision:
Architecture revision1 and higher.

Description
Sets Rd equal to the signed maximum of Rx and Ry.

Operation:

I. If Rx > Ry

Rd ← Rx;
else

Rd ← Ry;

Syntax:
I. max Rd, Rx, Ry

Operands:
d, x, y ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 1 0 0 0 1 0 0 Rd

15 12 11 4 3 0

216
32000D–04/2011

AVR32

MCALL – Subroutine Call

Architecture revision:
Architecture revision1 and higher.

Description
Subroutine call to a call destination specified in a location residing in memory.

Operation:

I. LR ← PC + 4

PC ← *((Rp & 0xFFFFFFFC) + (SE(disp16) << 2))

Syntax:
I. mcall Rp[disp]

Operands:
p ∈ {0, 1, …, 15}
disp ∈ {-131072, -131068,…, 131068}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 0 0 0 0 0 0 0 1 Rp

31 29 28 20 19 16

disp16

15 0

217
32000D–04/2011

AVR32

MEMC – Clear bit in memory

Architecture revision:
Architecture revision1 and higher.

Description
Performs a read-modify-write operation to clear an arbitrary bit in memory. The word to modify is pointed to
by a signed 17-bit address. This allows the instruction to address the upper 64KB and lower 64KB of mem-
ory. This instruction is part of the optional RMW instruction set.

Operation:

I. *(SE(imm15<<2)[bp5]) ← 0

Syntax:
I. memc imm, bp5

Operands:
bp5 ∈ {0, 1, …, 31}
imm ∈ {-65536, -65532,…, 65532}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 0 0 0 0 1 bp5[4:1]

31 20 19 16

b5[0] imm15

15 14 0

0

218
32000D–04/2011

AVR32

MEMS – Set bit in memory

Architecture revision:
Architecture revision1 and higher.

Description
Performs a read-modify-write operation to set an arbitrary bit in memory. The word to modify is pointed to
by a signed 17-bit address. This allows the instruction to address the upper 64KB and lower 64KB of mem-
ory. This instruction is part of the optional RMW instruction set.

Operation:

I. *(SE(imm15<<2)[bp5]) ← 1

Syntax:
I. mems imm, bp5

Operands:
bp5 ∈ {0, 1, …, 31}
imm ∈ {-65536, -65532,…, 65532}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 0 0 0 0 0 0 1 bp5[4:1]

31 20 19 16

b5[0] imm15

15 14 0

1

219
32000D–04/2011

AVR32

MEMT – Toggle bit in memory

Architecture revision:
Architecture revision1 and higher.

Description
Performs a read-modify-write operation to toggle an arbitrary bit in memory. The word to modify
is pointed to by a signed 17-bit address. This allows the instruction to address the upper 64KB
and lower 64KB of memory. This instruction is part of the optional RMW instruction set.

Operation:

I. *(SE(imm15<<2)[bp5]) ← ¬*(SE(k15<<2)[bp5])

Syntax:
I. memt imm, bp5

Operands:
bp5 ∈ {0, 1, …, 31}
imm ∈ {-65536, -65532,…, 65532}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 0 1 0 0 0 0 1 bp5[4:1]

31 20 19 16

b5[0] imm15

15 14 0

1

220
32000D–04/2011

AVR32

MFDR – Move from Debug Register

Architecture revision:
Architecture revision1 and higher.

Description
The instruction copies the value in the specified debug register to the specified register in the
register file. Note that special timing concerns must be considered when operating on the debug
registers, see the Pipeline Chapter for details.

Operation:
I. Rd ← DebugRegister[DebugRegisterAddress << 2];

Syntax:
I. mfdr Rd, DebugRegisterNo

Operands:
I. DebugRegisterNo ∈ {0, 4, 8, ..., 1020}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Note:
Debug registers are implementation defined. If accessing a debug register that does not exist,
the result is UNDEFINED.

This instruction can only be executed in a privileged mode. Execution from any other mode will
trigger a Privilege Violation exception.

1 1 1 0 0 1 0 1 1 0 1 1 Rd

31 20 19 16

0 0 0 0 0 0 0 0 Debug Register Ad-

15 8 7 0

221
32000D–04/2011

AVR32

MFSR – Move from System Register

Architecture revision:
Architecture revision1 and higher.

Description
The instruction copies the value in the specified system register to the specified register in the
register file. Note that special timing concerns must be considered when operating on the sys-
tem registers, see the Pipeline Chapter for details.

Operation:
I. Rd ← SystemRegister[SystemRegisterAddress << 2];

Syntax:
I. mfsr Rd, SystemRegisterAddress

Operands:
I. SystemRegisterAddress ∈ {0, 4, 8, ..., 1020}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Note:
Some system registers are implementation defined. If accessing a system register that does not
exist, the result is UNDEFINED.

With the exception of accessing the JECR and JOSP system registers, this instruction can only
be executed in a privileged mode. Execution from any other mode will trigger a Privilege Viola-
tion exception.

JECR and JOSP can be accessed from all modes with this instruction.

1 1 1 0 0 0 0 1 1 0 1 1 Rd

31 20 19 16

0 0 0 0 0 0 0 0 System Register Ad-

15 8 7 0

222
32000D–04/2011

AVR32

MIN – Return Minimum Value

Architecture revision:
Architecture revision1 and higher.

Description
Sets Rd equal to the signed minimum of Rx and Ry.

Operation:

I. If Rx < Ry

Rd ← Rx;
else

Rd ← Ry;

Syntax:
I. min Rd, Rx, Ry

Operands:
d, x, y ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 Rx 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 0 1 1 0 1 0 1 0 0 Rd

15 12 11 4 3 0

223
32000D–04/2011

AVR32

MOV – Move Data Into Register

Architecture revision:
Architecture revision1 and higher.

Description
Moves a value into a register. The value may be an immediate or the contents of another regis-
ter. Note that Rd may specify PC, resulting in a jump. All flags are unchanged.

Operation:
I. Rd ← SE(imm8);
II. Rd ← SE(imm21);
III. Rd ← Rs;

Syntax:
I. mov Rd, imm
II. mov Rd, imm
III. mov Rd, Rs

Operands:
I. d ∈ {0, 1, …, 15}

imm ∈ {-128, -127, ..., 127}
II. d ∈ {0, 1, …, 15}

imm ∈ {-1048576, -104875, ..., 1048575}
III. d, s ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

0 0 1 1 imm8 Rd

15 13 12 11 4 3 0

1 1 1 imm21[20:17 0 0 1 1 imm21 Rd

31 29 28 25 24 21 20 19 16

imm21[15:0]

15 0

[16]

224
32000D–04/2011

AVR32

Format III:

0 0 0 Rs 0 1 0 0 1 Rd

15 13 12 9 8 4 3 0

225
32000D–04/2011

AVR32

MOV{cond4} – Conditional Move Register

Architecture revision:
Architecture revision1 and higher.

Description
Copies the contents of the source register or immediate to the destination register. The source
register is unchanged. All flags are unchanged.

Operation:
I. if (cond4)

Rd ← Rs;
II. if (cond4)

Rd ← SE(imm8);

Syntax:
I. mov{cond4} Rd, Rs
II. mov{cond4} Rd, imm

Operands:
I. {d, s} ∈ {0, 1, …, 15}

cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}
II. d ∈ {0, 1, …, 15}

cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}
imm ∈ {-128, -127, ..., 127}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 0 1 1 1 cond4 0 0 0 0

15 12 11 8 7 4 3 0

226
32000D–04/2011

AVR32

Format II:

1 1 1 1 0 0 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 cond4 imm8

15 12 11 8 7 0

1

227
32000D–04/2011

AVR32

MOVH – Move Data Into High Halfword of Register

Architecture revision:
Architecture revision 2 and higher.

Description
Moves a value into the high halfword of a register. The low halfword is cleared. All flags are
unchanged.

Operation:
I. Rd ← imm16<<16;

Syntax:
I. movh Rd, imm

Operands:
I. d ∈ {0, 1, …, 15}

imm ∈ {0, 1, ..., 65535}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

imm16

15 0

1 1

228
32000D–04/2011

AVR32

MTDR – Move to Debug Register

Architecture revision:
Architecture revision1 and higher.

Description
The instruction copies the value in the specified register to the specified debug register. Note
that special timing concerns must be considered when operating on the system registers, see
the Pipeline Chapter for details.

Operation:
I. DebugRegister[DebugRegisterAddress << 2] ← Rs;

Syntax:
I. mtdr DebugRegisterAddress, Rs

Operands:
I. DebugRegisterAddress ∈ {0, 4, 8, ..., 1020}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Note:
The debug registers are implementation defined, and updates of these registers are handled in
an implementation specific way.

This instruction can only be executed in a privileged mode. Execution from any other mode will
trigger a Privilege Violation exception.

1 1 1 0 0 1 1 1 1 0 1 1 Rs

31 20 19 16

0 0 0 0 0 0 0 0 Debug Register Ad-

15 8 7 0

229
32000D–04/2011

AVR32

MTSR – Move to System Register

Architecture revision:
Architecture revision1 and higher.

Description
The instruction copies the value in the specified register to the specified system register. Note
that special timing concerns must be considered when operating on the system registers, see
the Implementation Manual for details.

Operation:
I. SystemRegister[SystemRegisterAddress << 2] ← Rs;

Syntax:
I. mtsr SystemRegisterAddress, Rs

Operands:
I. SystemRegisterAddress ∈ {0, 4, 8, ..., 1020}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Note:
Some system registers are implementation defined. If writing a system register that does not
exist, or to a register that is read only, the instruction is executed but no registers are updated.

With the exception of accessing the JECR and JOSP system registers, this instruction can only
be executed in a privileged mode. Execution from any other mode will trigger a Privilege Viola-
tion exception. JECR and JOSP can be accessed from all modes with this instruction.

The instruction mtsr JOSP, Rx must be used with care. The programmer must ensure that no
change of flow instruction nor an INCJOSP instruction follows mtsr JOSP, Rx within a number of
instructions. This number of cycles is implementation defined. It should also be noted, that this is
true even if the instructions are not to be executed. For instance the sequence

mtsr JOSP, Rx
retj
incjosp

1 1 1 0 0 0 1 1 1 0 1 1 Rs

31 20 19 16

0 0 0 0 0 0 0 0 System Register Ad-

15 8 7 0

230
32000D–04/2011

AVR32

will execute with an incorrect result. In practice this warning will only affect programmers writing
their own Java Virtual Machine based on the AVR32 Java Extension module.

231
32000D–04/2011

AVR32

MUL – Multiply

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the specified operands and stores the result in the destination register.

Operation:
I. Rd ← Rd × Rs;
II. Rd ← Rx × Ry;
III. Rd ← Rs × SE(imm8)

Syntax:
I. mul Rd, Rs
II. mul Rd, Rx, Ry
III. mul Rd, Rs, imm

Operands:
I. {d, s} ∈ {0, 1, …, 15}
II. {d, x, y} ∈ {0, 1, …, 15}
III. {d, s} ∈ {0, 1, …, 15}

imm ∈ {-128, -127, ..., 127}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 0 1 Rs 1 0 0 1 1 Rd

15 13 12 9 8 4 3 0

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 1 0 0 1 0 0 Rd

15 12 11 4 3 0

232
32000D–04/2011

AVR32

Format III:

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 0 0 0 0 imm8

15 12 11 8 7 0

233
32000D–04/2011

AVR32

MULHH.W – Multiply Halfword with Halfword

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the two halfword registers specified and stores the result in the destination word-regis-
ter. The halfword registers are selected as either the high or low part of the operand registers.

Operation:
I. If (Rx-part == t) then operand1 = SE(Rx[31:16]) else operand1 = SE(Rx[15:0]);

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
Rd ← operand1 × operand2;

Syntax:
I. mulhh.w Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Example:
mulhh.wR10, R2:t, R3:b
will perform R10 ← SE(R2[31:16]) × SE(R3[15:0])

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 1 1 1 1 0 X Y Rd

15 8 7 6 5 4 3 0

234
32000D–04/2011

AVR32

MULNHH.W – Multiply Halfword with Negated Halfword

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the two halfword registers specified and stores the result in the destination word-regis-
ter. The halfword registers are selected as either the high or low part of the operand registers.
The result is negated.

Operation:
I. If (Rx-part == t) then operand1 = SE(Rx[31:16]) else operand1 = SE(Rx[15:0]);

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
Rd ← - (operand1 × operand2);

Syntax:
I. mulnhh.w Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 1 1 0 X Y Rd

15 8 7 6 5 4 3 0

235
32000D–04/2011

AVR32

MULNWH.D – Multiply Word with Negated Halfword

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the word register with the halfword register specified and stores the negated result in
the destination register pair. The halfword register is selected as either the high or low part of Ry.
Since the most significant part of the product is stored, no overflow will occur.

Operation:
I. operand1 = Rx;

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
(Rd+1:Rd)[63:16] ← - (operand1 × operand2);
Rd[15:0] ← 0;

Syntax:
I. mulnwh.d Rd, Rx, Ry:<part>

Operands:
I. d ∈ {0, 2, 4, …, 14}

{x, y} ∈ {0, 1, …, 15}
part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 1 0 1 0 0 Y Rd

15 12 11 8 7 5 4 3 0

236
32000D–04/2011

AVR32

MULS.D – Multiply Signed

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the two registers specified and stores the result in the destination registers.

Operation:
I. Rd+1:Rd ← Rx × Ry;

Syntax:
I. muls.d Rd, Rx, Ry

Operands:
I. d ∈ {0, 2, 4, …, 14}

{x, y} ∈ {0, 1, …, 15}

Status Flags
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 1 0 0 0 1 0 0 Rd

15 12 11 4 3 0

237
32000D–04/2011

AVR32

MULSATHH.H – Multiply Halfwords with Saturation into Halfword

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the two halfword registers specified, shifts the results one position to the left and
stores the sign-extended high halfword of the result in the destination word-register. If the two
operands equals -1, the result is saturated to the largest positive 16-bit fractional number. The
halfword registers are selected as either the high or low part of the operand registers.

Operation:
I. If (Rx-part == t) then operand1 = SE(Rx[31:16]) else operand1 = SE(Rx[15:0]);

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
If (operand1 == operand2 == 0x8000)

Rd ← 0x7FFF;
else

Rd ← SE((operand1 × operand2) >> 15);

Syntax:
I. mulsathh.h Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Set if saturation occurred, or previously set.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Example:
mulsathh.h R10, R2:t, R3:b
will perform R10 ← SE(Sat(SE(R2[31:16]) × SE(R3[15:0])) >> 15)

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 0 0 0 1 0 X Y Rd

15 12 11 8 7 6 5 4 3 0

238
32000D–04/2011

AVR32

MULSATHH.W – Multiply Halfwords with Saturation into Word

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the two halfword registers specified, shifts the results one position to the left and
stores the result in the destination word-register. If the two operands equals -1, the result is sat-
urated to the largest positive 32-bit fractional number. The halfword registers are selected as
either the high or low part of the operand registers.

Operation:
I. If (Rx-part == t) then operand1 = SE(Rx[31:16]) else operand1 = SE(Rx[15:0]);

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
If (operand1 == operand2 == 0x8000)

Rd ← 0x7FFF_FFFF;
else

Rd ← (operand1 × operand2) << 1;

Syntax:
I. mulsathh.w Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Set if saturation occurred, or previously set.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Example:
mulsathh.w R10, R2:t, R3:b
will perform R10 ← Sat((SE(R2[31:16]) × SE(R3[15:0])) << 1)

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 0 0 1 1 0 X Y Rd

15 12 11 8 7 6 5 4 3 0

239
32000D–04/2011

AVR32

MULSATRNDHH.H – Multiply Halfwords with Saturation and Rounding into
Halfword

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the two halfword registers specified, shifts the results one position to the left and
stores the result in the destination word-register. If the two operands equal -1, the result is satu-
rated to the largest positive 16-bit fractional number. The halfword registers are selected as
either the high or low part of the operand registers. The product is rounded.

Operation:
I. If (Rx-part == t) then operand1 = SE(Rx[31:16]) else operand1 = SE(Rx[15:0]);

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
If (operand1 == operand2 == 0x8000)

Rd ← 0x7FFF;
else

Rd ← SE(((operand1 × operand2) + 0x4000) >> 15);

Syntax:
I. mulsatrndhh.h Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Set if saturation occurred, or previously set.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Example:
mulsatrndhh.h R10, R2:t, R3:b
will perform R10 ← SE(Sat(SE(R2[31:16]) × SE(R3[15:0])) + 0x4000) >> 15)

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 0 1 0 1 0 X Y Rd

15 12 11 8 7 6 5 4 3 0

240
32000D–04/2011

AVR32

MULSATRNDWH.W – Multiply Word and Halfword with Saturation and
Rounding into Word

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the word register with the halfword register specified, rounds the upper 32 bits of the
result and stores it in the destination word-register. The halfword register is selected as either
the high or low part of Ry. Since the most significant part of the product is stored, no overflow will
occur. If the two operands equals -1, the result is saturated to the largest positive 32-bit fractional
number.

Operation:
I. operand1 = Rx;

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
If ((operand1 == 0x8000_0000) && (operand2 == 0x8000))

Rd ← 0x7FFF_FFFF;
else

Rd ← SE(((operand1 × operand2) + 0x4000) >> 15);

Syntax:
I. mulsatrndwh.w Rd, Rx, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Set if saturation occurred, or previously set.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Example:
mulsatrndwh.w R10, R2, R3b will perform R10 ← (Sat(R2[31:16] × SE(R3[15:0])) +

0x4000) >> 15

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 0 1 1 1 0 0 Y Rd

15 12 11 8 7 5 4 3 0

241
32000D–04/2011

AVR32

MULSATWH.W – Multiply Word and Halfword with Saturation into Word

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the word register with the halfword register specified and stores the upper 32 bits of
the result in the destination word-register. The halfword register is selected as either the high or
low part of Ry. Since the most significant part of the product is stored, no overflow will occur. If
the two operands equal -1, the result is saturated to the largest positive 32-bit fractional number.

Operation:
I. operand1 = Rx;

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
If ((operand1 == 0x8000_0000) && (operand2 == 0x8000))

Rd ← 0x7FFF_FFFF;
else

Rd ← (operand1 × operand2) >> 15;

Syntax:
I. mulsatwh.w Rd, Rx, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Set if saturation occurred, or previously set.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Example:
mulsatwh.wR10, R2, R3:b
will perform R10 ← Sat(R2 × SE(R3[15:0])) >> 15

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 1 1 0 1 0 0 Y Rd

15 12 11 8 7 5 4 3 0

242
32000D–04/2011

AVR32

MULU.D – Multiply Unsigned

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the two registers specified and stores the result in the destination registers.

Operation:
I. Rd+1:Rd ← Rx × Ry;

Syntax:
I. mulu.d Rd, Rx, Ry

Operands:
I. d ∈ {0, 2, 4, …, 14}

{x, y} ∈ {0, 1, …, 15}

Status Flags
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 Rx 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 0 0 1 1 0 0 1 0 0 Rd

15 12 11 4 3 0

243
32000D–04/2011

AVR32

MULWH.D – Multiply Word with Halfword

Architecture revision:
Architecture revision1 and higher.

Description
Multiplies the word register with the halfword register specified and stores result in the destina-
tion register pair. The halfword register is selected as either the high or low part of Ry. Since the
most significant part of the product is stored, no overflow will occur.

Operation:
I. operand1 = Rx;

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
(Rd+1:Rd)[63:16] ← operand1 × operand2;
Rd[15:0] ← 0;

Syntax:
I. mulwh.d Rd, Rx, Ry:<part>

Operands:
I. d ∈ {0, 2, 4, …, 14}

{x, y} ∈ {0, 1, …, 15}
part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 1 0 1 1 0 0 Y Rd

15 12 11 8 7 5 4 3 0

244
32000D–04/2011

AVR32

MUSFR – Copy Register to Status Register

Architecture revision:
Architecture revision1 and higher.

Description
The instruction copies the lower 4 bits of the register Rs to the lower 4 bits of the status register.

Operation:
I. SR[3:0] ← Rs[3:0];

Syntax:
I. musfr Rs

Operands:
I. s ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

0 1 0 1 1 1 0 1 0 0 1 1 Rs

15 13 12 9 8 4 3 0

245
32000D–04/2011

AVR32

MUSTR – Copy Status Register to Register

Architecture revision:
Architecture revision1 and higher.

Description
The instruction copies the value of the 4 lower bits of the status register into the register Rd. The
value is zero extended.

Operation:
I. Rd ← ZE(SR[3:0]);

Syntax:
I. mustr Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

0 1 0 1 1 1 0 1 0 0 1 0 Rd

15 13 12 9 8 4 3 0

246
32000D–04/2011

AVR32

MVCR.{D,W} – Move Coprocessor Register to Register file

Architecture revision:
Architecture revision1 and higher.

Description
Addresses a coprocessor and moves the specified registers into the register file.

Operation:
I. (Rd+1:Rd) ← CP#(CRs+1:CRs);
II. Rd ← CP#(CRs);

Syntax:
I. mvcr.d CP#, Rd, CRs
II. mvcr.w CP#, Rd, CRs

Operands:
I. # ∈ {0, 1, …, 7}

{d, s} ∈ {0, 2, 4, …, 14}
II. # ∈ {0, 1, …, 7}

{d, s} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

Format I:

Format II:

Example:
mvcr.d CP2, R0, CR2

1 1 1 0 1 1 1 1 0 1 0 Rd 0

31 29 28 25 24 20 19 17 16

CP# 0 CRs 0 0 0 0 1 0 0 0 0

15 13 12 11 9 8 7 0

1

1 1 1 0 1 1 1 1 0 1 0 Rd

31 29 28 25 24 20 19 16

CP# 0 CRs 0 0 0 0 0 0 0

15 13 12 11 8 7 0

1

0

247
32000D–04/2011

AVR32

MVRC.{D,W} – Move Register file Register to Coprocessor Register

Architecture revision:
Architecture revision1 and higher.

Description
Moves the specified register into the addressed coprocessor.

Operation:
I. CP#(CRd+1:CRd) ← Rs+1:Rs;
II. CP#(CRd) ← Rs;

Syntax:
I. mvrc.d CP#, CRd, Rs
II. mvrc.w CP#, CRd, Rs

Operands:
I. # ∈ {0, 1, …, 7}

{d, s} ∈ {0, 2, 4, …, 14}
I. # ∈ {0, 1, …, 7}

{d, s} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

Format I:

Format II:

Example:
mvrc.d CP2, CR0, R2

1 1 1 0 1 1 1 1 0 1 0 Rs 0

31 29 28 25 24 20 19 17 16

CP# 0 CRd 0 0 0 1 1 0 0 0 0

15 13 12 11 9 8 7 0

1

1 1 1 0 1 1 1 1 0 1 0 Rs

31 29 28 25 24 20 19 16

CP# 0 CRd 0 0 1 0 0 0 0

15 13 12 11 8 7 0

1

0

248
32000D–04/2011

AVR32

NEG – Two’s Complement

Architecture revision:
Architecture revision1 and higher.

Description
Perform a two’s complement of specified register.

Operation:
I. Rd ← 0 -Rd;

Syntax:
I. neg Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: V ← Rd[31] ∧ RES[31]
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← Rd[31] ∨ RES[31]

Opcode:

0 1 0 1 1 1 0 0 0 0 1 1 Rd

15 13 12 9 8 4 3 0

249
32000D–04/2011

AVR32

NOP – No Operation

Architecture revision:
Architecture revision1 and higher.

Description
Special instructions for "no operation" that does not create data depencencies in the pipeline

Operation:
I. none

Syntax:
I. nop

Operands:
I. none

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1

15 9 8 4 3 0

250
32000D–04/2011

AVR32

OR – Logical OR with optional logical shift

Architecture revision:
Architecture revision1 and higher.

Description
Performs a bitwise logical OR between the specified registers and stores the result in the desti-
nation register.

Operation:
I. Rd ← Rd ∨ Rs;
II. Rd ← Rx ∨ (Ry << sa5);
III. Rd ← Rx ∨ (Ry >> sa5);

Syntax:
I. or Rd, Rs
II. or Rd, Rx, Ry << sa
III. or Rd, Rx, Ry >> sa

Operands:
I. {d, s} ∈ {0, 1, …, 15}
II, III. {d, x, y} ∈ {0, 1, …, 15}

sa ∈ {0, 1, …, 31}

Status Flags:
Q: Not affected.
V: Not affected.
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: Not affected.

Opcode:

Format I:

Format II:

0 0 0 Rs 0 0 1 0 0 Rd

15 13 12 9 8 4 3 0

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

0 0 0 1 0 0 0 sa5 Rd

15 9 8 4 3 0

251
32000D–04/2011

AVR32

Format III:

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

0 0 0 1 0 0 1 sa5 Rd

15 9 8 4 3 0

252
32000D–04/2011

AVR32

OR{cond4} – Conditional logical OR

Architecture revision:
Architecture revision 2 and higher.

Description
Performs a bitwise logical OR between the specified registers and stores the result in the desti-
nation register.

Operation:
I. if (cond4)

Rd ← Rx ∨ Ry;

Syntax:
I. or{cond4} Rd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 0 1 Ry

31 29 28 25 24 20 19 16

1 1 1 0 cond4 0 0 1 1 Rd

15 12 11 8 7 0

Rx

253
32000D–04/2011

AVR32

ORH, ORL – Logical OR into high or low half of register

Architecture revision:
Architecture revision1 and higher.

Description
Performs a bitwise logical OR between the high or low word in the specified register and a con-
stant. The result is stored in the destination register.

Operation:
I. Rd[31:16] ← Rd[31:16] ∨ imm16;
II. Rd[15:0] ← Rd[15:0] ∨ imm16;

Syntax:
I. orh Rd, imm
II. orl Rd, imm

Operands:
I, II. d ∈ {0, 1, …, 15}

imm ∈ {0, 1, ..., 65535}

Status Flags:
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: Not affected

Opcode

Format I:

Format II:

1 1 1 0 0 1 0 0 0 0 1 Rd

31 29 28 20 19 16

imm16

15 0

1

1 1 1 0 0 0 0 0 0 0 1 Rd

31 29 28 20 19 16

imm16

15 0

1

254
32000D–04/2011

AVR32

PABS.{SB/SH} – Packed absolute value

Architecture revision:
Architecture revision1 and higher.

Description
Compute the absolute values of four packed signed bytes (pabs.sb) or two packed signed half-
words (pabs.sh) from the source register and store the results as packed bytes or halfwords in
the destination register.

Operation:
I. Rd[31:24] ← | Rs[31:24] |; Rd[23:16] ← | Rs[23:16] |;

Rd[15:8] ← | Rs[15:8] |; Rd[7:0] ← | Rs[7:0] |;
II. Rd[31:16] ← | Rs[31:16] |;

Rd[15:0] ← | Rs[15:0] |;

Syntax:
I. pabs.sb Rd, Rs
II. pabs.sh Rd, Rs

Operands:
I, II. {d, s} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 1 1 0 0 0 0 0 0 Rs

31 20 19 16

0 0 1 0 0 0 1 1 1 1 1 0 Rd

15 4 3 0

0 0 0

1 1 1 0 0 0 0 0 0 Rs

31 20 19 16

0 0 1 0 0 0 1 1 1 1 1 1 Rd

15 4 3 0

0 0 0

255
32000D–04/2011

AVR32

PACKSH.{UB/SB} – Pack Signed Halfwords to Bytes

Architecture revision:
Architecture revision1 and higher.

Description
Pack the four signed halfwords located in the two source registers into four bytes in the destina-
tion register. Each of the signed halfwords are saturated to unsigned (packsh.ub) or signed bytes
(packsh.sb).

Operation:
I. Rd[31:24] ← SATSU(Rx[31:16], 8); Rd[23:16] ← SATSU(Rx[15:0], 8);

Rd[15:8] ← SATSU(Ry[31:16], 8); Rd[7:0] ← SATSU(Ry[15:0], 8);
II. Rd[31:24] ← SATS(Rx[31:16], 8); Rd[23:16] ← SATS(Rx[15:0], 8);

Rd[15:8] ← SATS(Ry[31:16], 8); Rd[7:0] ← SATS(Ry[15:0], 8);

Syntax:
I. packsh.ub Rd, Rx, Ry
II. packsh.sb Rd, Rx, Ry

Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Flag set if saturation occured in one or more of the partial operations.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 1 0 0 1 1 0 0 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 1 0 0 1 1 0 1 Rd

15 4 3 0

Rx

256
32000D–04/2011

AVR32

257
32000D–04/2011

AVR32

PACKW.SH – Pack Words to Signed Halfwords

Architecture revision:
Architecture revision1 and higher.

Description
Pack the two words given in the source registers into two halfwords in the destination register.
Each of the words are saturated to signed halfwords before being packed.

Operation:
I. Rd[31:16] ← SATS(Rx, 16);

Rd[15:0] ← SATS(Ry, 16);

Syntax:
I. packw.sh Rd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Flag set if saturation occured in one or more of the partial operations.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 1 0 0 0 1 1 1 Rd

15 4 3 0

Rx

258
32000D–04/2011

AVR32

PADD.{B/H} – Packed Addition

Architecture revision:
Architecture revision1 and higher.

Description
Perform addition of four pairs of packed bytes (padd.b) or two pairs of halfwords (padd.h). Upon
overflow any additional bits are discarded and the result is wrapped around.

Operation:
I. Rd[31:24] ← Rx[31:24] + Ry[31:24]; Rd[23:16] ← Rx[23:16] + Ry[23:16];

Rd[15:8] ← Rx[15:8] + Ry[15:8]; Rd[7:0] ← Rx[7:0] + Ry[7:0];
II. Rd[31:16] ← Rx[31:16] + Ry[31:16];

Rd[15:0] ← Rx[15:0] + Ry[15:0];

Syntax:
I. padd.b Rd, Rx, Ry
II. padd.h Rd, Rx, Ry

Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 0 0 0 0 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 0 0 0 0 Rd

15 4 3 0

Rx

259
32000D–04/2011

AVR32

PADDH.{UB/SH} – Packed Addition with Halving

Architecture revision:
Architecture revision1 and higher.

Description
Perform addition of four pairs of packed unsigned bytes (paddh.ub) or two pairs of packed signed
halfwords (paddh.sh) with a halving of the result to prevent any overflows from occuring.

Operation:
I. Rd[31:24] ← LSR(ZE(Rx[31:24], 9) + ZE(Ry[31:24], 9), 1) ;

Rd[23:16] ← LSR(ZE(Rx[23:16], 9) + ZE(Ry[23:16], 9), 1);
Rd[15:8] ← LSR(ZE(Rx[15:8], 9) + ZE(Ry[15:8], 9), 1);
Rd[7:0] ← LSR(ZE(Rx[7:0], 9) + ZE(Ry[7:0], 9), 1);

II. Rd[31:16] ← ASR(SE(Rx[31:16], 17) + SE(Ry[31:16], 17), 1);
Rd[15:0] ← ASR(SE(Rx[15:0], 17) + SE(Ry[15:0], 17), 1);

Syntax:
I. paddh.ub Rd, Rx, Ry
II. paddh.sh Rd, Rx, Ry

Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 0 1 1 0 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 1 1 0 0 Rd

15 4 3 0

Rx

260
32000D–04/2011

AVR32

PADDS.{UB/SB/UH/SH} – Packed Addition with Saturation

Architecture revision:
Architecture revision1 and higher.

Description
Perform addition of four pairs of packed bytes or two pairs of halfwords. The result is saturated to
either unsigned bytes (padds.ub), signed bytes (padds.sb), unsigned halfwords (padds.uh) or
signed halfwords (padds.sh).

Operation:
I. Rd[31:24] ← SATU(ZE(Rx[31:24], 9) + ZE(Ry[31:24], 9), 8) ;

Rd[23:16] ← SATU(ZE(Rx[23:16], 9) + ZE(Ry[23:16], 9), 8);
Rd[15:8] ← SATU(ZE(Rx[15:8], 9) + ZE(Ry[15:8], 9), 8);
Rd[7:0] ← SATU(ZE(Rx[7:0], 9) + ZE(Ry[7:0], 9), 8);

II. Rd[31:24] ← SATS(SE(Rx[31:24], 9) + SE(Ry[31:24], 9), 8);
Rd[23:16] ← SATS(SE(Rx[23:16], 9) + SE(Ry[23:16], 9), 8);
Rd[15:8] ← SATS(SE(Rx[15:8], 9) + SE(Ry[15:8], 9), 8);
Rd[7:0] ← SATS(SE(Rx[7:0], 9) + SE(Ry[7:0], 9), 8);

III. Rd[31:16] ← SATU(ZE(Rx[31:16], 17) + ZE(Ry[31:16], 17), 16);
Rd[15:0] ← SATU(ZE(Rx[15:0], 17) + ZE(Ry[15:0], 17), 16);

IV. Rd[31:16] ← SATS(SE(Rx[31:16], 17) + SE(Ry[31:16], 17), 16);
Rd[15:0] ← SATS(SE(Rx[15:0], 17) + SE(Ry[15:0], 17), 16);

Syntax:
I. padds.ub Rd, Rx, Ry
II. padds.sb Rd, Rx, Ry
III. padds.uh Rd, Rx, Ry
IV. padds.sh Rd, Rx, Ry

Operands:
I, II, III, IV.{d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Flag set if saturation occured in one or more of the partial operations.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

261
32000D–04/2011

AVR32

Format I:

Format II:

Format III:

Format IV:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 0 1 0 0 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 0 0 1 0 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 1 0 0 0 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 0 1 0 0 Rd

15 4 3 0

Rx

262
32000D–04/2011

AVR32

PADDSUB.H – Packed Halfword Addition and Subtraction

Architecture revision:
Architecture revision1 and higher.

Description
Perform an addition and subtraction on the same halfword operands which are selected from the
source registers. The two halfword results are packed into the destination register without per-
forming any saturation.

Operation:

I. If (Rx-part == t) then operand1 = Rx[31:16] else operand1 = Rx[15:0];
If (Ry-part == t) then operand2 = Ry[31:16] else operand2 = Ry[15:0];
Rd[31:16] ← operand1 + operand2;
Rd[15:0] ← operand1 - operand2;

Syntax:
I. paddsub.h Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 1 0 0 X Y Rd

15 6 5 4 3 0

Rx

263
32000D–04/2011

AVR32

PADDSUBH.SH – Packed Halfword Addition and Subtraction with Halving

Description
Perform an addition and subtraction on the same signed halfword operands which are selected
from the source registers. The halfword results are halved in order to prevent any overflows from
occuring

Operation:

I. If (Rx-part == t) then operand1 = Rx[31:16] else operand1 = Rx[15:0];
If (Ry-part == t) then operand2 = Ry[31:16] else operand2 = Ry[15:0];
Rd[31:16] ← ASR(SE(operand1, 17) + SE(operand2, 17), 1);
Rd[15:0] ← ASR(SE(operand1, 17) - SE(operand2, 17), 1);

Syntax:
I. paddsubh.sh Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 0 1 0 X Y Rd

15 6 5 4 3 0

Rx

264
32000D–04/2011

AVR32

PADDSUBS.{UH/SH} – Packed Halfword Addition and Subtraction with Sat-
uration

Architecture revision:
Architecture revision1 and higher.

Description
Perform an addition and subtraction on the same halfword operands which are selected from the
source registers. The resulting halfwords are saturated to unsigned halfwords (paddsubs.uh) or
signed halfwords (paddsubs.sh) and then packed together in the destination register.

Operation:
I. If (Rx-part == t) then operand1 = Rx[31:16] else operand1 = Rx[15:0];

If (Ry-part == t) then operand2 = Ry[31:16] else operand2 = Ry[15:0];
Rd[31:16] ← SATU(ZE(operand1, 17) + ZE(operand2, 17), 16);
Rd[15:0] ← SATSU(ZE(operand1, 17) - ZE(operand2, 17), 16);

II. If (Rx-part == t) then operand1 = Rx[31:16] else operand1 = Rx[15:0];
If (Ry-part == t) then operand2 = Ry[31:16] else operand2 = Ry[15:0];
Rd[31:16] ← SATS(SE(operand1, 17) + SE(operand2, 17), 16);
Rd[15:0] ← SATS(SE(operand1, 17) - SE(operand2, 17), 16);

Syntax:
I. paddsubs.uh Rd, Rx:<part>, Ry:<part>
II. paddsubs.sh Rd, Rx:<part>, Ry:<part>

Operands:
I,II. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Flag set if saturation occured in one or more of the partial operations.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 0 0 0 X Y Rd

15 6 5 4 3 0

Rx

265
32000D–04/2011

AVR32

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 1 1 0 X Y Rd

15 6 5 4 3 0

Rx

266
32000D–04/2011

AVR32

PADDX.H – Packed Halfword Addition with Crossed Operand

Architecture revision:
Architecture revision1 and higher.

Description
Add together the top halfword of Rx with the bottom halfword of Ry and the bottom halfword of
Rx with the top halfword of Ry. The resulting halfwords are packed together in the destination
register without performing any saturation.

Operation:
I. Rd[31:16] ← Rx[31:16] + Ry[15:0] ;

Rd[15:0] ← Rx[15:0] + Ry[31:16];

Syntax:
I. paddx.h Rd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 0 0 1 0 Rd

Rx

15 4 3 0

267
32000D–04/2011

AVR32

PADDXH.SH – Packed Signed Halfword Addition with Crossed Operand
and Halving

Architecture revision:
Architecture revision1 and higher.

Description
Add together the top halfword of Rx with the bottom halfword of Ry and the bottom halfword of
Rx with the top halfword of Ry. The resulting halfwords are halved in order to avoid any overflow
and then packed together in the destination register.

Operation:
I. Rd[31:16] ← ASR(SE(Rx[31:16], 17) + SE(Ry[15:0], 17), 1);

Rd[15:0] ← ASR(SE(Rx[15:0], 17) + SE(Ry[31:16], 17), 1);

Syntax:
I. paddxh.sh Rd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 1 1 1 0 Rd

15 4 3 0

Rx

268
32000D–04/2011

AVR32

PADDXS.{UH/SH} – Packed Halfword Addition with Crossed Operand and
Saturation

Architecture revision:
Architecture revision1 and higher.

Description
Add together the top halfword of Rx with the bottom halfword of Ry and the bottom halfword of
Rx with the top halfword of Ry. The resulting halfwords are saturated to unsigned halfwords
(paddxh.uh) or signed halfwords (paddxh.sh) and then packed together in the destination regis-
ter.

Operation:
I. Rd[31:16] ← SATU(ZE(Rx[31:16], 17) + ZE(Ry[15:0], 17), 16) ;

Rd[15:0] ← SATU(ZE(Rx[15:0], 17) + ZE(Ry[31:16], 17), 16);
II. Rd[31:16] ← SATS(SE(Rx[31:16], 17) + SE(Ry[15:0], 17), 16) ;

Rd[15:0] ← SATS(SE(Rx[15:0], 17) + SE(Ry[31:16], 17), 16);

Syntax:
I. paddxs.uh Rd, Rx, Ry
II. paddxs.sh Rd, Rx, Ry

Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Flag set if saturation occured in one or more of the partial operations.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 1 0 1 0 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 0 1 1 0 Rd

15 4 3 0

Rx

269
32000D–04/2011

AVR32

PASR.{B/H} – Packed Arithmetic Shift Right

Architecture revision:
Architecture revision1 and higher.

Description
Perform an arithmetic shift right on each of the packed bytes or halfwords in the source register.

Operation:
I. Rd[31:24] ← ASR(Rs[31:24], sa3);

Rd[23:16] ← ASR(Rs[23:16], sa3);
Rd[15:8] ← ASR(Rs[15:8], sa3);
Rd[7:0] ← ASR(Rs[7:0], sa3);

II. Rd[31:16] ← ASR(Rs[31:16], sa4);
Rd[15:0] ← ASR(Rs[15:0], sa4);

Syntax:
I. pasr.b Rd, Rs, sa
II. pasr.h Rd, Rs, sa

Operands:
I, II. {d, s} ∈ {0, 1, …, 15}
I. sa ∈ {0, 1, …, 7}
II. sa ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 0 sa3

31 29 28 25 24 19 18 16

0 0 1 0 0 1 0 0 0 0 0 1 Rd

15 4 3 0

Rs

270
32000D–04/2011

AVR32

Format II:

1 1 1 0 0 0 0 0 sa4

31 29 28 25 24 20 19 16

0 0 1 0 0 1 0 0 0 1 0 0 Rd

15 4 3 0

Rs

271
32000D–04/2011

AVR32

PAVG.{UB/SH} – Packed Average

Architecture revision:
Architecture revision1 and higher.

Description
Computes the average of pairs of packed unsigned bytes (pavg.ub) or packed signed halfwords
(pavg.sh). The averages are computed by adding two values together while also adding in a
rounding factor in the least significant bit. The result is then halved by shifting it one position to
the right.

Operation:
I. Rd[31:24] ← LSR(ZE(Rx[31:24], 9) + ZE(Ry[31:24], 9) + 1, 1);

Rd[23:16] ← LSR(ZE(Rx[23:16], 9) + ZE(Ry[23:16], 9) + 1, 1);
Rd[15:8] ← LSR(ZE(Rx[15:8], 9) + ZE(Ry[15:8], 9) + 1, 1);
Rd[7:0] ← LSR(ZE(Rx[7:0], 9) + ZE(Ry[7:0], 9) + 1, 1);

II. Rd[31:16] ← ASR(SE(Rx[31:16], 17) + SE(Ry[31:16], 17) + 1, 1);
Rd[15:0] ← ASR(SE(Rx[15:0], 17) + SE(Ry[15:0], 17) + 1, 1);

Syntax:
I. pavg.ub Rd, Rx, Ry
II. pavg.sh Rd, Rx, Ry

Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 1 1 0 0 Rd

15 4 3 0

Rx

272
32000D–04/2011

AVR32

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 1 1 0 1 Rd

15 4 3 0

Rx

273
32000D–04/2011

AVR32

PLSL.{B/H} – Packed Logical Shift Left

Architecture revision:
Architecture revision1 and higher.

Description
Perform a logical shift left on each of the packed bytes or halfwords in the source register and
store the result to the destination register.

Operation:
I. Rd[31:24] ← LSL(Rs[31:24], sa3);

Rd[23:16] ← LSL(Rs[23:16], sa3);
Rd[15:8] ← LSL(Rs[15:8], sa3);
Rd[7:0] ← LSL(Rs[7:0], sa3);

II. Rd[31:16] ← LSL(Rs[31:16], sa4);
Rd[15:0] ← LSL(Rs[15:0], sa4);

Syntax:
I. plsl.b Rd, Rs, sa
II. plsl.h Rd, Rs, sa

Operands:
I, II. {d, s} ∈ {0, 1, …, 15}
I. sa ∈ {0, 1, …, 7}
II. sa ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 0 sa3

31 29 28 25 24 19 18 16

0 0 1 0 0 1 0 0 0 0 1 0 Rd

15 4 3 0

Rs

274
32000D–04/2011

AVR32

Format II:

1 1 1 0 0 0 0 0 sa4

31 29 28 25 24 20 19 16

0 0 1 0 0 1 0 0 0 1 0 1 Rd

15 4 3 0

Rs

275
32000D–04/2011

AVR32

PLSR.{B/H} – Packed Logical Shift Right

Architecture revision:
Architecture revision1 and higher.

Description
Perform a logical shift right on each of the packed bytes or halfwords in the source register and
store the result to the destination register.

Operation:
I. Rd[31:24] ← LSR(Rs[31:24], sa3);

Rd[23:16] ← LSR(Rs[23:16], sa3);
Rd[15:8] ← LSR(Rs[15:8], sa3);
Rd[7:0] ← LSR(Rs[7:0], sa3);

II. Rd[31:16] ← LSR(Rs[31:16], sa4);
Rd[15:0] ← LSR(Rs[15:0], sa4);

Syntax:
I. plsr.b Rd, Rs, sa
II. plsr.h Rd, Rs, sa

Operands:
I, II. {d, s} ∈ {0, 1, …, 15}
I. sa ∈ {0, 1, …, 7}
II. sa ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 0 sa3

31 29 28 25 24 19 18 16

0 0 1 0 0 1 0 0 0 0 1 1 Rd

15 4 3 0

Rs

276
32000D–04/2011

AVR32

Format II:

1 1 1 0 0 0 0 0 sa4

31 29 28 25 24 20 19 16

0 0 1 0 0 1 0 0 0 1 1 0 Rd

15 4 3 0

Rs

277
32000D–04/2011

AVR32

PMAX.{UB/SH} – Packed Maximum Value

Architecture revision:
Architecture revision1 and higher.

Description
Compute the maximum values of pairs of packed unsigned bytes (pmax.ub) or packed signed
halfwords (pmax.sh).
Operation:
I. If (Rx[31:24] > Ry[31:24]) then Rd[31:24] ← Rx[31:24] else Rd[31:24] ← Ry[31:24] ;

If (Rx[23:16] > Ry[23:16]) then Rd[23:16] ← Rx[23:16] else Rd[23:16] ← Ry[23:16] ;
If (Rx[15:8] > Ry[15:8]) then Rd[15:8] ← Rx[15:8] else Rd[15:8] ← Ry[15:8] ;
If (Rx[7:0] > Ry[7:0]) then Rd[7:0] ← Rx[7:0] else Rd[7:0] ← Ry[7:0] ;

II. If (Rx[31:16] > Ry[31:16]) then Rd[31:16] ← Rx[31:16] else Rd[31:16] ← Ry[31:16] ;
If (Rx[15:0] > Ry[15:0]) then Rd[15:0] ← Rx[15:0] else Rd[15:0] ← Ry[15:0] ;

Syntax:
I. pmax.ub Rd, Rx, Ry
II. pmax.sh Rd, Rx, Ry
Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Format I:
Q: Not affected.
V: (Rx[7:0] > Ry[7:0])
N: (Rx[15:8] > Ry[15:8])
Z: (Rx[23:16] > Ry[23:16])
C: (Rx[31:24] > Ry[31:24])
Format II:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: (Rx[15:0] > Ry[15:0])
C: (Rx[31:16] > Ry[31:16])

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 1 0 0 0 Rd

15 4 3 0

Rx

278
32000D–04/2011

AVR32

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 1 0 0 1 Rd

15 4 3 0

Rx

279
32000D–04/2011

AVR32

PMIN.{UB/SH} – Packed Minimum Value

Architecture revision:
Architecture revision1 and higher.

Description
Compute the minimum values of pairs of packed unsigned bytes (pmin.ub) or packed signed
halfwords (pmin.sh).
Operation:
I. If (Rx[31:24] < Ry[31:24]) then Rd[31:24] ← Rx[31:24] else Rd[31:24] ← Ry[31:24] ;

If (Rx[23:16] < Ry[23:16]) then Rd[23:16] ← Rx[23:16] else Rd[23:16] ← Ry[23:16] ;
If (Rx[15:8] < Ry[15:8]) then Rd[15:8] ← Rx[15:8] else Rd[15:8] ← Ry[15:8] ;
If (Rx[7:0] < Ry[7:0]) then Rd[7:0] ← Rx[7:0] else Rd[7:0] ← Ry[7:0] ;

II. If (Rx[31:16] < Ry[31:16]) then Rd[31:16] ← Rx[31:16] else Rd[31:16] ← Ry[31:16] ;
If (Rx[15:0] < Ry[15:0]) then Rd[15:0] ← Rx[15:0] else Rd[15:0] ← Ry[15:0] ;

Syntax:
I. pmin.ub Rd, Rx, Ry
II. pmin.sh Rd, Rx, Ry
Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Format I:
Q: Not affected.
V: (Rx[7:0] < Ry[7:0])
N: (Rx[15:8] < Ry[15:8])
Z: (Rx[23:16] < Ry[23:16])
C: (Rx[31:24] < Ry[31:24])
Format II:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: (Rx[15:0] < Ry[15:0])
C: (Rx[31:16] < Ry[31:16])

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 1 0 1 0 Rd

15 4 3 0

Rx

280
32000D–04/2011

AVR32

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 1 0 1 1 Rd

15 4 3 0

Rx

281
32000D–04/2011

AVR32

POPJC – Pop Java Context from Frame

Architecture revision:
Architecture revision1 and higher.

Description
Fetch the system registers LV0 to LV7 used in Java state from the current method frame. The
register FRAME (equal to R9) is used as pointer register.

Operation:
I. temp ←FRAME;

JAVA_LV0 ←*(temp--);
JAVA_LV1 ←*(temp--);
JAVA_LV2 ←*(temp--);
JAVA_LV3 ←*(temp--);
JAVA_LV4 ←*(temp--);
JAVA_LV5 ←*(temp--);
JAVA_LV6 ←*(temp--);
JAVA_LV7 ←*(temp--);

Syntax:
I. popjc

Operands:
I. none

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1

15 9 8 4 3 0

282
32000D–04/2011

AVR32

POPM – Pop Multiple Registers from Stack

Architecture revision:
Architecture revision1 and higher.

Description
Loads the consecutive words pointed to by SP into the registers specified in the instruction. The
PC can be loaded, resulting in a jump to the loaded value. If PC is popped, the return value in
R12 is tested and the flags are updated. R12 can optionally be updated with -1, 0 or 1. The k bit
in the instruction coding is used to optionally let the POPM instruction update the return register
R12 with the values -1, 0 or 1.

Operation:
I. if Reglist8[PC] ∧ k == B’1

PC ← *(SP++)
if Reglist8[LR:R12] == B’00

R12 ← 0;
else if Reglist8[LR:R12] == B’01

R12 ← 1;
else

R12 ← −1;
Test R12 and update flags;

else
if Reglist8[PC] == 1 then

PC ← *(SP++);
if Reglist8[LR] == 1 then

LR ← *(SP++);
if Reglist8[R12] == 1 then

R12 ←*(SP++);
if Reglist8[PC] == 1 then

Test R12 and update flags;

if Reglist8[5] == 1 then
R11 ←*(SP++);

if Reglist8[4] == 1 then
R10 ←*(SP++);

if Reglist8[3] == 1 then
R9 ← *(SP++);
R8 ← *(SP++);

if Reglist8[2] == 1 then
R7 ← *(SP++);
R6 ← *(SP++);
R5 ← *(SP++);
R4 ← *(SP++);

if Reglist8[1] == 1 then
R3 ← *(SP++);

283
32000D–04/2011

AVR32

R2 ← *(SP++);
R1 ← *(SP++);
R0 ← *(SP++);

Syntax:
I. popm Reglist8 {, R12 = {-1, 0, 1}}

If the optional R12 = {-1, 0, 1} parameter is specified, PC must be in Reglist8.
If the optional R12 = {-1, 0, 1} parameter is specified, LR should NOT be in Reglist8.

Operands:
I. Reglist8 ∈ {R0- R3, R4-R7, R8-R9, R10,R11, R12, LR, PC}

Status Flags:
Flags are only updated if Reglist8[PC] == 1.
They are set as the result of the operation cp R12, 0

Q: Not affected
V: V ← 0
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← 0

Opcode:

Note:
Emtpy Reglist8 gives UNDEFINED result.
The R bit in the status register has no effect on this instruction.

1 1 0 1 PC LR 12 11 10 9-8 7-4 3-0 k 0 1 0

15 3 2 0

284
32000D–04/2011

AVR32

PREF – Cache Prefetch

Architecture revision:
Architecture revision1 and higher.

Description
This instruction allows the programmer to explicitly state that the cache should prefetch the
specified line. The memory system treats this instruction in an implementation-dependent man-
ner, and implementations without cache treats the instruction as a NOP. A prefetch instruction
never reduces the performance of the system. If the prefetch instruction performs an action that
would lower the system performance, it is treated as a NOP. For example, if the prefetch instruc-
tion is about to generate an addressing exception, the instruction is cancelled and no exception
is taken.

Operation:
I. Prefetch cache line containing the address (Rp + SE(disp16)).

Syntax:
pref Rp[disp]

Operands:
I. p ∈ {0, 1, …, 15}

disp ∈ {-32768, -32767, ..., 32767}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 0 1 0 0 0 0 1 Rp

31 29 28 20 19 16

disp16

15 0

0

285
32000D–04/2011

AVR32

PSAD – Packed Sum of Absolute Differences

Architecture revision:
Architecture revision1 and higher.

Description
Compute the Sum of Absolute Differences (SAD) of four pairs of packed unsigned bytes from the
source registers and store the result in the destination register.

Operation:
I. Rd ← | Rx[31:24] - Ry[31:24] | + | Rx[23:16] - Ry[23:16] | +

 | Rx[15:8] - Ry[15:8] | + | Rx[7:0] - Ry[7:0] |;

Syntax:
I. psad Rd, Rx, Ry

Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 1 0 0 0 0 0 0 Rd

15 4 3 0

Rx

286
32000D–04/2011

AVR32

PSUB.{B/H} – Packed Subtraction

Architecture revision:
Architecture revision1 and higher.

Description
Perform subtraction of four pairs of packed bytes (psub.b) or two pairs of halfwords (psub.h).
Upon overflow any additional bits are discarded and the result is wrapped around.

Operation:
I. Rd[31:24] ← Rx[31:24] - Ry[31:24]; Rd[23:16] ← Rx[23:16] - Ry[23:16];

Rd[15:8] ← Rx[15:8] - Ry[15:8]; Rd[7:0] ← Rx[7:0] - Ry[7:0];
II. Rd[31:16] ← Rx[31:16] - Ry[31:16];

Rd[15:0] ← Rx[15:0] - Ry[15:0];

Syntax:
I. psub.b Rd, Rx, Ry
II. psub.h Rd, Rx, Ry

Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 0 0 0 1 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 0 0 0 1 Rd

15 4 3 0

Rx

287
32000D–04/2011

AVR32

PSUBADD.H – Packed Halfword Subtraction and Addition

Architecture revision:
Architecture revision1 and higher.

Description
Perform an subtraction and addition on the same halfword operands which are selected from the
source registers. The two halfword results are packed into the destination register without per-
forming any saturation.

Operation:

I. If (Rx-part == t) then operand1 = Rx[31:16] else operand1 = Rx[15:0];
If (Ry-part == t) then operand2 = Ry[31:16] else operand2 = Ry[15:0];
Rd[31:16] ← operand1 - operand2;
Rd[15:0] ← operand1 + operand2;

Syntax:
I. psubadd.h Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 1 0 1 X Y Rd

15 6 5 4 3 0

Rx

288
32000D–04/2011

AVR32

PSUBADDH.SH – Packed Signed Halfword Subtraction and Addition with
Halving

Architecture revision:
Architecture revision1 and higher.

Description
Perform a subtraction and addition on the same halfword operands which are selected from the
source registers. The halfword results are halved in order to prevent any overflows from occuring

Operation:

I. If (Rx-part == t) then operand1 = Rx[31:16] else operand1 = Rx[15:0];
If (Ry-part == t) then operand2 = Ry[31:16] else operand2 = Ry[15:0];
Rd[31:16] ← ASR(SE(operand1, 17) - SE(operand2, 17), 1);
Rd[15:0] ← ASR(SE(operand1, 17) + SE(operand2, 17), 1);

Syntax:
I. psubaddh.sh Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 0 1 1 X Y Rd

15 6 5 4 3 0

Rx

289
32000D–04/2011

AVR32

PSUBADDS.{UH/SH} – Packed Halfword Subtraction and Addition with
Saturation

Architecture revision:
Architecture revision1 and higher.

Description
Perform a subtraction and addition on the same halfword operands which are selected from the
source registers. The resulting halfwords are saturated to unsigned halfwords (psubadds.uh) or
signed halfwords (psubadds.sh) and then packed together in the destination register.

Operation:
I. If (Rx-part == t) then operand1 = Rx[31:16] else operand1 = Rx[15:0];

If (Ry-part == t) then operand2 = Ry[31:16] else operand2 = Ry[15:0];
Rd[31:16] ← SATSU(ZE(operand1, 17) - ZE(operand2, 17), 16);
Rd[15:0] ← SATU(ZE(operand1, 17) + ZE(operand2, 17), 16);

II. If (Rx-part == t) then operand1 = Rx[31:16] else operand1 = Rx[15:0];
If (Ry-part == t) then operand2 = Ry[31:16] else operand2 = Ry[15:0];
Rd[31:16] ← SATS(SE(operand1, 17) - SE(operand2, 17), 16);
Rd[15:0] ← SATS(SE(operand1, 17) + SE(operand2, 17), 16);

Syntax:
I. psubadds.uh Rd, Rx:<part>, Ry:<part>
II. psubadds.sh Rd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
Q: Flag set if saturation occured in one or more of the partial operations.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 0 0 1 X Y Rd

15 6 5 4 3 0

Rx

290
32000D–04/2011

AVR32

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 1 1 1 X Y Rd

15 6 5 4 3 0

Rx

291
32000D–04/2011

AVR32

PSUBH.{UB/SH} – Packed Subtraction with Halving

Architecture revision:
Architecture revision1 and higher.

Description
Perform subtraction of four pairs of packed unsigned bytes (psub.ub) or two pairs of signed half-
words (psub.sh) with a halfing of the result to prevent any overflows from occuring.

Operation:
I. Rd[31:24] ← LSR(ZE(Rx[31:24], 9) - ZE(Ry[31:24], 9), 1);

Rd[23:16] ← LSR(ZE(Rx[23:16], 9) - ZE(Ry[23:16], 9), 1);
Rd[15:8] ← LSR(ZE(Rx[15:8], 9) - ZE(Ry[15:8], 9), 1);
Rd[7:0] ← LSR(ZE(Rx[7:0], 9) - ZE(Ry[7:0], 9), 1);

II. Rd[31:16] ← ASR(SE(Rx[31:16], 17) - SE(Ry[31:16], 17), 1);
Rd[15:0] ← ASR(SE(Rx[15:0], 17) - SE(Ry[15:0], 17), 1);

Syntax:
I. psubh.ub Rd, Rx, Ry
II. psubh.sh Rd, Rx, Ry

Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 0 1 1 1 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 1 1 0 1 Rd

15 4 3 0

Rx

292
32000D–04/2011

AVR32

PSUBS.{UB/SB/UH/SH} – Packed Subtraction with Saturation

Architecture revision:
Architecture revision1 and higher.

Description
Perform subtraction of four pairs of packed bytes or two pairs of halfwords. The result is satu-
rated to either unsigned bytes (psubs.ub), signed bytes (psubs.sb), unsigned halfwords
(psubs.uh) or signed halfwords (psubs.sh).

Operation:
I. Rd[31:24] ← SATSU(ZE(Rx[31:24], 9) - ZE(Ry[31:24], 9), 8) ;

Rd[23:16] ← SATSU(ZE(Rx[23:16], 9) - ZE(Ry[23:16], 9), 8);
Rd[15:8] ← SATSU(ZE(Rx[15:8], 9) - ZE(Ry[15:8], 9), 8);
Rd[7:0] ← SATSU(ZE(Rx[7:0], 9) - ZE(Ry[7:0], 9), 8);

II. Rd[31:24] ← SATS(SE(Rx[31:24], 9) - SE(Ry[31:24], 9), 8);
Rd[23:16] ← SATS(SE(Rx[23:16], 9) - SE(Ry[23:16], 9), 8);
Rd[15:8] ← SATS(SE(Rx[15:8], 9) - SE(Ry[15:8], 9), 8);
Rd[7:0] ← SATS(SE(Rx[7:0], 9) - SE(Ry[7:0], 9), 8);

III. Rd[31:16] ← SATSU(ZE(Rx[31:16], 17) - ZE(Ry[31:16], 17), 16);
Rd[15:0] ← SATSU(ZE(Rx[15:0], 17) - ZE(Ry[15:0], 17), 16);

IV. Rd[31:16] ← SATS(SE(Rx[31:16], 17) - SE(Ry[31:16], 17), 16);
Rd[15:0] ← SATS(SE(Rx[15:0], 17) - SE(Ry[15:0], 17), 16);

Syntax:
I. psubs.ub Rd, Rx, Ry
II. psubs.sb Rd, Rx, Ry
III. psubs.uh Rd, Rx, Ry
IV. psubs.sh Rd, Rx, Ry

Operands:
I, II, III, IV.{d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Flag set if saturation occured in one or more of the partial operations.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 0 1 0 1 Rd

15 4 3 0

Rx

293
32000D–04/2011

AVR32

Format II:

Format III:

Format IV:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 1 1 0 0 1 1 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 1 0 0 1 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 0 1 0 1 Rd

15 4 3 0

Rx

294
32000D–04/2011

AVR32

PSUBX.H – Packed Halfword Subtraction with Crossed Operand

Architecture revision:
Architecture revision1 and higher.

Description
Subtract the bottom halfword of Ry from the top halfword of Rx and the top halfword of Ry from
the bottom halfword of Rx. The resulting halfwords are packed together in the destination regis-
ter without performing any saturation.

Operation:
I. Rd[31:16] ← Rx[31:16] - Ry[15:0] ;

Rd[15:0] ← Rx[15:0] - Ry[31:16];

Syntax:
I. psubx.h Rd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 0 0 1 1 Rd

15 4 3 0

Rx

295
32000D–04/2011

AVR32

PSUBXH.SH – Packed Signed Halfword Subtraction with Crossed Operand
and Halving

Architecture revision:
Architecture revision1 and higher.

Description
Subtract the bottom halfword of Ry from the top halfword of Rx and the top halfword of Ry from
the bottom halfword of Rx. The resulting halfwords are halved in order to avoid any overflow and
then packed together in the destination register.

Operation:
I. Rd[31:16] ← ASR(SE(Rx[31:16], 17) - SE(Ry[15:0], 17), 1);

Rd[15:0] ← ASR(SE(Rx[15:0], 17) - SE(Ry[31:16], 17), 1);

Syntax:
I. psubxh.sh Rd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 1 1 1 1 Rd

15 4 3 0

Rx

296
32000D–04/2011

AVR32

PSUBXS.{UH/SH} – Packed Halfword Subtraction with Crossed Operand
and Saturation

Architecture revision:
Architecture revision1 and higher.

Description
Subtract the bottom halfword of Ry from the top halfword of Rx and the top halfword of Ry from
the bottom halfword of Rx. The resulting halfwords are saturated to unsigned halfwords
(psubxh.uh) or signed halfwords (psubxh.sh) and then packed together in the destination regis-
ter.

Operation:
I. Rd[31:16] ← SATSU(ZE(Rx[31:16], 17) - ZE(Ry[15:0], 17), 16) ;

Rd[15:0] ← SATSU(ZE(Rx[15:0], 17) - ZE(Ry[31:16], 17), 16);
II. Rd[31:16] ← SATS(SE(Rx[31:16], 17) - SE(Ry[15:0], 17), 16) ;

Rd[15:0] ← SATS(SE(Rx[15:0], 17) - SE(Ry[31:16], 17), 16);

Syntax:
I. psubxs.uh Rd, Rx, Ry
II. psubxs.sh Rd, Rx, Ry

Operands:
I, II. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Flag set if saturation occured in one or more of the partial operations.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 1 0 1 1 Rd

15 4 3 0

Rx

1 1 1 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 1 0 0 0 0 0 0 1 1 1 Rd

15 4 3 0

Rx

297
32000D–04/2011

AVR32

298
32000D–04/2011

AVR32

PUNPCK{SB/UB}.H – Unpack bytes to halfwords

Architecture revision:
Architecture revision1 and higher.

Description
Unpack two unsigned bytes (punpckub.h) or two signed bytes (punpcksb.h) from the source reg-
ister to two packed halfwords in the destination register.

Operation:
I. If (Rs-part == top) then

Rd[31:16] ← ZE(Rs[31:24], 16); Rd[15:0] ← ZE(Rs[23:16], 16);
else

Rd[31:16] ← ZE(Rs[15:8], 16); Rd[15:0] ← ZE(Rs[7:0], 16);
II. If (Rs-part == top) then

Rd[31:16] ← SE(Rs[31:24], 16); Rd[15:0] ← SE(Rs[23:16], 16);
else

Rd[31:16] ← SE(Rs[15:8], 16); Rd[15:0] ← SE(Rs[7:0], 16);

Syntax:
I. punpckub.h Rd, Rs:<part>
II. punpcksb.h Rd, Rs:<part>

Operands:
I, II. {d, s} ∈ {0, 1, …, 15}

part ∈ {t, b}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 0 0 0 0 0 0 0 0

31 29 28 25 24 16

0 0 1 0 0 1 0 0 1 0 0 k Rd

15 5 4 3 0

Rs 0

299
32000D–04/2011

AVR32

Format II:

1 1 1 0 0 0 0 0 0 0 0

31 29 28 25 24 16

0 0 1 0 0 1 0 0 1 0 1 k Rd

15 5 4 3 0

Rs 0

300
32000D–04/2011

AVR32

PUSHJC – Push Java Context to Frame

Architecture revision:
Architecture revision1 and higher.

Description
Stores the system registers LV0 to LV7 used in Java state to designated place on the current
method frame. FRAME (equal to R9) is used as pointer register.

Operation:
I. temp ←FRAME;

*(temp--) ←JAVA_LV0;
*(temp--) ←JAVA_LV1;
*(temp--) ←JAVA_LV2;
*(temp--) ←JAVA_LV3;
*(temp--) ←JAVA_LV4;
*(temp--) ←JAVA_LV5;
*(temp--) ←JAVA_LV6;
*(temp--) ←JAVA_LV7;

Syntax:
I. pushjc

Operands:
I. none

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1

15 9 8 4 3 0

301
32000D–04/2011

AVR32

PUSHM – Push Multiple Registers to Stack

Architecture revision:
Architecture revision1 and higher.

Description
Stores the registers specified in the instruction into consecutive words pointed to by SP.

Operation:
I. if Reglist8[0] == 1 then

*(--SP) ←R0;
*(--SP) ←R1;
*(--SP) ←R2;
*(--SP) ←R3;

if Reglist8[1] == 1 then
*(--SP) ←R4;
*(--SP) ←R5;
*(--SP) ←R6;
*(--SP) ←R7;

if Reglist8[2] == 1 then
*(--SP) ←R8;
*(--SP) ←R9;

if Reglist8[3] == 1 then
*(--SP) ←R10;

if Reglist8[4] == 1 then
*(--SP) ←R11;

if Reglist8[5] == 1 then
*(--SP) ←R12;

if Reglist8[6] == 1 then
*(--SP) ←LR;

if Reglist8[7] == 1 then
*(--SP) ←PC;

Syntax:
I. pushm Reglist8

Operands:
I. Reglist8 ∈ {R0- R3, R4-R7, R8-R9, R10,R11, R12, LR, PC}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

302
32000D–04/2011

AVR32

Opcode:

Note:
Emtpy Reglist8 gives UNDEFINED result.
The R bit in the status register has no effect on this instruction.

1 1 0 1 PC LR 12 11 10 9-8 7-4 3-0 0 0 0 1

15 13 12 11 4 3 0

303
32000D–04/2011

AVR32

RCALL – Relative Subroutine Call

Architecture revision:
Architecture revision1 and higher.

Description
PC-relative call of subroutine

Operation:
I. LR ← PC + 2

PC ← PC + (SE(disp10)<<1)
II. LR ← PC + 4

PC ← PC + (SE(disp21)<<1)

Syntax:
I. rcall PC[disp]
II. rcall PC[disp]

Operands:
I. disp ∈ {-1024, -1022, ..., 1022}
II. disp ∈ {-2097152, -2097150, ..., 2097150}

Status Flags
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

1 1 0 0 disp10[7:0] 1 1 d10[9:8]

15 13 12 11 4 3 2 1 0

1 1 1 disp21[20:17] 0 1 0 1
K21

0 0 0

31 29 28 25 24 21 20 19 16

disp21[15:0]

15 0

0[16]

304
32000D–04/2011

AVR32

RET{cond4} – Conditional Return from Subroutine

Architecture revision:
Architecture revision1 and higher.

Description
Return from subroutine if the specified condition is true. Values are moved into the return regis-
ter, the return value is tested, and flags are set.

Operation:
I. If (cond4)

If (Rs != {LR, SP, PC})
R12 ← Rs;

else if (Rs == LR)
R12 ← -1;

else if (Rs == SP)
R12 ← 0;

else
R12 ← 1;

Test R12 and set flags;
PC ← LR;

Syntax:
I. ret{cond4} Rs

Operands:
I. cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

s ∈{0, 1, …, 15}

Status Flags:
Flags are set as result of the operation CP R12, 0.
Q: Not affected
V: V ← 0
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← 0

Opcode:

0 1 0 1 1 1 1 0 cond4 Rs

15 13 12 9 8 7 4 3 0

305
32000D–04/2011

AVR32

RETD – Return from Debug mode

Architecture revision:
Architecture revision1 and higher.

Description
Return from debug mode.

Operation:
I. SR ← RSR_DBG

PC ← RAR_DBG

Syntax:
I. retd

Operands:
None

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

Note:

This instruction can only be executed in a privileged mode. Execution from any other mode will
trigger a Privilege Violation exception.

1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1

15 9 8 4 3 0

306
32000D–04/2011

AVR32

RETE – Return from event handler

Architecture revision:
Architecture revision1 and higher.

Description

Returns from an exception or interrupt. SREG[L] is cleared to support atomical memory access
with the stcond instruction. This instruction can only be executed in INT0-INT3, EX and NMI
modes. Execution in Application or Supervisor modes will trigger a Privilege Violation exception.

Operation:

I. If (microarchitecture == AVR32A)

SR ← *(SPSYS++)

PC ← *(SPSYS++)

If (SR[M2:M0] == {B’010, B’011, B’100, B’101})

LR ← *(SPSYS++)

R12 ← *(SPSYS++)

R11 ← *(SPSYS++)

R10 ← *(SPSYS++)

R9 ← *(SPSYS++)

R8 ← *(SPSYS++)

SREG[L] ← 0;

else
SR ← RSRCurrent Context

PC ← RARCurrent Context

SREG[L] ← 0;

Syntax:

I RETE

Operands:

None

Status Flags
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

307
32000D–04/2011

AVR32

Opcode:

1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1

15 9 8 4 3 0

308
32000D–04/2011

AVR32

RETJ – Return from Java trap

Architecture revision:
Architecture revision1 and higher.

Description
Returns from a Java trap.

Operation:
I. PC ← LR;

J ← 1;
R ← 0;
if (SR[M2:M0] == B’001)

GM ← 0;

Syntax:
I retj

Operands:
None

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1

15 9 8 4 3 0

309
32000D–04/2011

AVR32

RETS – Return from supervisor call

Architecture revision:
Architecture revision1 and higher.

Description

Returns from a supervisor call.

Operation:

I. If (SR[M2:M0] == B’000)

Issue Privilege Violation Exception;

else if (SR[M2:M0] == B’001)

If (microarchitecture == AVR32A)

SR ← *(SPSYS++)

PC ← *(SPSYS++)

else

SR ← RSRSUP;

PC ← RARSUP;

else

PC ← LRCurrent Context

Syntax:

I RETS

Operands:

None

Status Flags
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1

15 9 8 4 3 0

310
32000D–04/2011

AVR32

RETSS – Return from Secure State

Architecture revision:
Architecture revision 3 and higher.

Description

Returns from Secure State.

Operation:

I. If (SR[SS] == 0)

Issue Privilege Violation Exception;

else

SR ← SS_RSR

PC ← SS_RAR

Syntax:

I RETSS

Operands:

None

Status Flags
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1

15 9 8 4 3 0

311
32000D–04/2011

AVR32

RJMP – Relative Jump

Architecture revision:
Architecture revision1 and higher.

Description
Jump the specified amount relative to the Program Counter .

Operation:
I. PC ← PC + (SE(disp10)<<1);

Syntax:
I. rjmp PC[disp]

Operands:
I. disp ∈ {-1024, -1022, ..., 1022}

Status Flags
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 0 0 disp10[7:0] 1 0 disp10[9:8]

15 13 12 11 4 3 2 1 0

312
32000D–04/2011

AVR32

ROL – Rotate Left through Carry

Architecture revision:
Architecture revision1 and higher.

Description
Shift all bits in Rd one place to the left. The C flag is shifted into the LSB. The MSB is shifted into
the C flag.

Operation:
I. C´ ← Rd[31];

Rd ← Rd << 1;
Rd[0] ← C;
C ← C´;

Syntax:
I. rol Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: Not affected
N: N ← Res[31]
Z: Z ← (RES[31:0] == 0)
C: C ← Rd[31]

Opcode:

0 1 0 1 1 1 0 0 1 1 1 1 Rd

15 13 12 9 8 4 3 0

313
32000D–04/2011

AVR32

ROR – Rotate Right through Carry

Architecture revision:
Architecture revision1 and higher.

Description
Shift all bits in Rd one place to the right. The C flag is shifted into the MSB. The LSB is shifted
into the C flag.

Operation:
I. C´ ← Rd[0];

Rd ← Rd >> 1;
Rd[31] ← C;
C ← C´;

Syntax:
I. ror Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: Not affected
N: N ← Res[31]
Z: Z ← (RES[31:0] == 0)
C: C ← Rd[0]

Opcode:

0 1 0 1 1 1 0 1 0 0 0 0 Rd

15 13 12 9 8 4 3 0

314
32000D–04/2011

AVR32

RSUB – Reverse Subtract

Architecture revision:
Architecture revision1 and higher.

Description
Performs a subtraction and stores the result in destination register. Similar to sub, but the minu-
end and subtrahend are interchanged.

Operation:
I. Rd ← Rs - Rd;
II. Rd ← SE(imm8) - Rs;

Syntax:
I. rsub Rd, Rs
II. rsub Rd, Rs, imm

Operands:
I. {d, s} ∈ {0, 1, …, 15}
II. {d, s} ∈ {0, 1, …, 15}

imm ∈ {-128, -127, ..., 127}

Status Flags:
Format I: OP1 = Rs, OP2 = Rd
Format II: OP1 = SE(imm8), OP2 = Rs
Q: Not affected
V: V ← (OP1[31] ∧ ¬OP2[31] ∧ ¬RES[31]) ∨ (¬OP1[31] ∧ OP2[31] ∧ RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← ¬OP1[31] ∧ OP2[31] ∨ OP2[31] ∧ RES[31] ∨ ¬OP1[31] ∧ RES[31]

Opcode:

Format I:

Format II:

0 0 0 Rs 0 0 0 1 0 Rd

15 13 12 9 8 4 3 0

1 1 1 Rs 0 0 0 0 0 Rd

31 29 28 25 24 20 19 16

0 0 0 1 0 0 0 1 imm8

15 12 11 8 7 0

315
32000D–04/2011

AVR32

RSUB{cond4} – Conditional Reverse Subtract

Architecture revision:
Architecture revision1 and higher.

Architecture revision:
Architecture revision 2 and higher.

Description
Performs a subtraction and stores the result in destination register. Similar to sub, but the minu-
end and subtrahend are interchanged.

Operation:
I. if (cond4)

Rd ← SE(imm8) - Rd;

Syntax:
I. rsub{cond4} Rd, imm

Operands:
I. d ∈ {0, 1, …, 15}

cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}
imm ∈ {-128, -127, ..., 127}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 0 1 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 cond4 imm8

15 12 11 8 7 0

1

316
32000D–04/2011

AVR32

SATADD.H – Saturated Add of Halfwords

Architecture revision:
Architecture revision1 and higher.

Description
Adds the two halfword registers specified and stores the result in destination register. The result
is saturated if it overflows the range representable with 16 bits. If saturation occurs, the Q flag is
set.

Operation:
I. temp ← ZE(Rx[15:0]) + ZE(Ry[15:0]));

if (Rx[15] ∧ Ry[15] ∧ ¬temp[15]) ∨ (¬Rx[15] ∧ ¬Ry[15] ∧ temp[15]) then
if Rx[15] == 0 then

Rd ← 0x00007fff;
else

Rd ← 0xffff8000;
else

Rd ← SE(temp[15:0]);

Syntax:
I. satadd.hRd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Q ← (Rx[15] ∧ Ry[15] ∧ ¬temp[15]) ∨ (¬Rx[15] ∧ ¬Ry[15] ∧ temp[15]) ∨ Q
V: V ← (Rx[15] ∧ Ry[15] ∧ ¬temp[15]) ∨ (¬Rx[15] ∧ ¬Ry[15] ∧ temp[15])
N: N ← Rd[15]
Z: Z ← if (Rd[15:0] == 0)
C: C ← 0

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 1 0 1 1 0 0 Rd

15 12 11 4 3 0

317
32000D–04/2011

AVR32

SATADD.W– Saturated Add of Words

Architecture revision:
Architecture revision1 and higher.

Description
Adds the two registers specified and stores the result in destination register. The result is satu-
rated if a two’s complement overflow occurs. If saturation occurs, the Q flag is set.

Operation:
I. temp ← Rx + Ry;

if (Rx[31] ∧ Ry[31] ∧ ¬temp[31]) ∨ (¬Rx[31] ∧ ¬Ry[31] ∧ temp[31]) then
if Rx[31] == 0 then

Rd ← 0x7fffffff;
else

Rd ← 0x8000000;
else

Rd ← temp;

Syntax:
I. satadd.wRd, Rx, Ry

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

Status Flags:
Q: Q ← (Rx[31] ∧ Ry[31] ∧ ¬temp[31]) ∨ (¬Rx[31] ∧ ¬Ry[31] ∧ temp[31]) ∨ Q
V: V ← (Rx[31] ∧ Ry[31] ∧ ¬temp[31]) ∨ (¬Rx[31] ∧ ¬Ry[31] ∧ temp[31])
N: N ← Rd[31]
Z: Z ← (Rd[31:0] == 0)
C: C ← 0

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 0 1 1 0 0 Rd

15 12 11 4 3 0

318
32000D–04/2011

AVR32

SATRNDS – Saturate with Rounding Signed

Architecture revision:
Architecture revision1 and higher.

Description
This instruction considers the value in (Rd>>sa)[bp-1:0] as a signed value. Rounding is per-
formed after the shift. If the value in (Rd>>sa)[31:bp] is not merely a sign-extention of this value,
overflow has occurred and saturation is performed to the maximum signed positive or negative
value. If saturation occurs, the Q flag is set. An arithmetic shift is performed on Rd. If bp equals
zero, no saturation is performed.

Operation:
I. Temp ← Rd >> sa

if (sa != 0)
Rnd = Rd[sa-1]
Temp = Temp + Rnd;

if ((Temp == SE(Temp[bp-1:0])) || (bp == 0))
Rd ← Temp;

else
if (Temp[31] == 1)

Rd ← -2bp-1;
else

Rd ← 2bp-1 - 1;

Syntax:
I. satrnds Rd >> sa, bp

Operands:
I. d ∈ {0, 1, …, 15}

{sa, bp} ∈ {0, 1, …, 31}

Status Flags:
Q: Set if saturation occurred or Q was already set, cleared otherwise.
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 1 1 0 1 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 0 0 bp sa

15 12 11 10 9 5 4 0

0

319
32000D–04/2011

AVR32

SATRNDU – Saturate with Rounding Unsigned

Architecture revision:
Architecture revision1 and higher.

Description
This instruction considers the value in (Rd>>sa)[bp-1:0] as a unsigned value. Rounding is per-
formed after the shift. If the value in (Rd>>sa)[31:bp] is not merely a zero extention of this value,
overflow has occurred and saturation is performed to the maximum unsigned positive value or
zero. If saturation occurs, the Q flag is set. An arithmetic shift is performed on Rd. If bp equals
zero, no saturation is performed.

Operation:

I. Temp ← Rd >> sa
if (sa != 0)

Rnd = Rd[sa-1]
Temp = Temp + Rnd;

If ((Temp == ZE(Temp[bp-1:0])) || (bp == 0))
Rd ← Temp;

else
if (Temp[31] == 1)

Rd ← 0x0000_0000;
else

Rd ← 2bp - 1;

Syntax:
I. satrndu Rd >> sa, bp

Operands:
I. d ∈ {0, 1, …, 15}

{sa, bp} ∈ {0, 1, …, 31}

Status Flags:
Q: Set if saturation occurred or Q was already set, cleared otherwise.
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 1 1 0 1 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 0 1 bp sa

15 12 11 10 9 5 4 0

0

320
32000D–04/2011

AVR32

SATS – Saturate Signed

Architecture revision:
Architecture revision1 and higher.

Description
This instruction considers the value in (Rd>>sa)[bp-1:0] as a signed value. If the value in
(Rd>>sa)[31:bp] is not merely a sign-extention of this value, overflow has occurred and satura-
tion is performed to the maximum signed positive or negative value. If saturation occurs, the Q
flag is set. An arithmetic shift is performed on Rd. If bp equals zero, no saturation is performed.

Operation:
I. Temp ← Rd >> sa

If ((Temp == SE(Temp[bp-1:0])) || (bp == 0))
Rd ← Temp;

else
if (Temp[31] == 1)

Rd ← -2bp-1;
else

Rd ← 2bp-1 - 1;

Syntax:
I. sats Rd >> sa, bp

Operands:
I. d ∈ {0, 1, …, 15}

{sa, bp} ∈ {0, 1, …, 31}

Status Flags:
Q: Set if saturation occurred or Q was already set, cleared otherwise.
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 1 1 0 0 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 0 0 bp sa

15 12 11 10 9 5 4 0

0

321
32000D–04/2011

AVR32

SATSUB.H – Saturated Subtract of Halfwords

Architecture revision:
Architecture revision1 and higher.

Description
Performs a subtraction of the specified halfwords and stores the result in destination register.
The result is saturated if it overflows the range representable with 16 bits. If saturation occurs,
the Q flag is set.

Operation:
I. temp ← ZE(Rx[15:0]) - ZE(Ry[15:0]) ;

if (Rx[15] ∧ ¬Ry[15] ∧ ¬temp[15]) ∨ (¬Rx[15] ∧ Ry[15] ∧ temp[15]) then
if Rx[15]==0 then

Rd ← 0x00007fff;
else

Rd ← 0xffff8000;
else

Rd ← SE(temp[15:0]);

Syntax:
I. satsub.hRd, Rx, Ry

Operands:
I. {d, s} ∈ {0, 1, …, 15}

Status Flags:
Q: Q ← (Rx[15] ∧ ¬Ry[15] ∧ ¬temp[15]) ∨ (¬Rx[15] ∧ Ry[15] ∧ temp[15]) ∨ Q
V: V ← (Rx[15] ∧ ¬Ry[15] ∧ ¬temp[15]) ∨ (¬Rx[15] ∧ Ry[15] ∧ temp[15])
N: N ← Rd[15]
Z: Z ← (Rd[15:0] == 0)
C: C ← 0

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 1 1 1 1 0 0 Rd

15 12 11 4 3 0

322
32000D–04/2011

AVR32

SATSUB.W – Saturated Subtract of Words

Architecture revision:
Architecture revision1 and higher.

Description
Performs a subtraction and stores the result in destination register. The result is saturated if a
two’s complement overflow occurs. If saturation occurs, the Q flag is set.

Operation:
I. temp ← Rx - Ry;
II. temp ← Rs - SE(imm16));

Format I: OP1 = Rx, OP2 = Ry
Format II: OP1 = Rs, OP2 = SE(imm16)

if (OP1[31] ∧ ¬OP2[31] ∧ ¬temp[31]) ∨ (¬OP1[31] ∧ OP2[31] ∧ temp[31]) then
if(OP1[31]==0) then

Rd ← 0x7fffffff;
else

Rd ← 0x80000000;
else

Rd ← temp

Syntax:
I. satsub.w Rd, Rx, Ry
II. satsub.w Rd, Rs, imm

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}
II. {d, s} ∈ {0, 1, …, 15}

imm ∈ {-32768, -32767, ..., 32767}

Status Flags:
Format I: OP1 = Rx, OP2 = Ry
Format II: OP1 = Rs, OP2 = SE(imm16)
Q: Q ← (OP1[31] ∧ ¬OP2[31] ∧ ¬temp[31]) ∨ (¬OP1[31] ∧ OP2[31] ∧ temp[31]) ∨

Q
V: V ← (OP1[31] ∧ ¬OP2[31] ∧ ¬temp[31]) ∨ (¬OP1[31] ∧ OP2[31] ∧ temp[31])
N: N ← Rd[31]
Z: Z ← (Rd[31:0] == 0)
C: C ← 0

Opcode:

323
32000D–04/2011

AVR32

Format I:

Format II:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 1 1 1 0 0 Rd

15 12 11 4 3 0

1 1 1 Rs 0 1 1 0 1 Rd

31 29 28 25 24 20 19 16

imm16

15 0

324
32000D–04/2011

AVR32

SATU – Saturate Unsigned

Architecture revision:
Architecture revision1 and higher.

Description
This instruction considers the value in (Rd>>sa)[bp-1:0] as a unsigned value. If the value in
(Rd>>sa)[31:bp] is not merely a zero extention of this value, overflow has occurred and satura-
tion is performed to the maximum unsigned positive value or zero. If saturation occurs, the Q flag
is set. An arithmetic shift is performed on Rd. If bp equals zero, no saturation is performed.

Operation:

I. Temp ← Rd >> sa
If ((Temp == ZE(Temp[bp-1:0])) || (bp == 0))

Rd ← Temp;
else

if (Temp[31] == 1)
Rd ← 0x0000_0000;

else

Rd ← 2bp - 1;

Syntax:
I. satu Rd >> sa, bp

Operands:
I. d ∈ {0, 1, …, 15}

{sa, bp} ∈ {0, 1, …, 31}

Status Flags:
Q: Set if saturation occurred or Q was already set, cleared otherwise.
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 1 1 0 0 1 1 0 1 1 Rd

31 29 28 25 24 20 19 16

0 0 0 0 0 1 bp sa

15 12 11 10 9 5 4 0

0

325
32000D–04/2011

AVR32

SBC – Subtract with Carry

Architecture revision:
Architecture revision1 and higher.

Description
Subtracts a specified register and the value of the carry bit from a destination register and stores
the result in the destination register.

Operation:
I. Rd ← Rx - Ry - C;

Syntax:
I. sbc Rd, Rx, Ry

Operands:
I. {x, y, d} ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: V ← (Rx[31] ∧ ¬Ry[31] ∧ ¬RES[31]) ∨ (¬Rx[31] ∧ Ry[31] ∧ RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0) ∧ Z
C: C ← ¬Rx[31] ∧ Ry[31] ∨ Ry[31] ∧ RES[31] ∨ ¬Rx[31] ∧ RES[31]

Opcode:

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 1 0 1 0 0 Rd

15 12 11 4 3 0

326
32000D–04/2011

AVR32

SBR – Set Bit in Register

Architecture revision:
Architecture revision1 and higher.

Description
Sets a bit in the specified register. All other bits are unaffected.

Operation:
I. Rd[bp5] ← 1;

Syntax:
I. sbr Rd, bp

Operands:
I. d ∈ {0, 1, …, 15}

bp ∈ {0, 1, …, 31}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Z ← 0
C: Not affected

Opcode:

1 0 1 bp[4:1] 1 1 0 1 bp[0] Rd

15 13 12 9 8 5 4 3 0

327
32000D–04/2011

AVR32

SCALL – Supervisor Call

Architecture revision:
Architecture revision1 and higher.

Description
The scall instruction performs a supervisor routine call. The behaviour of the instruction is
dependent on the mode it is called from, allowing scall to be executed from all contexts. Scall
jumps to a dedicated entry point relative to EVBA. Scall can use the same call convention as
regular subprogram calls.

Operation:

I. If (SR[M2:M0] == {B’000 or B’001})

If (microarchitecture == AVR32A)
*(--SPSYS) ← PC + 2;

*(--SPSYS) ← SR;

PC ← EVBA + 0x100;
SR[M2:M0] ← B’001;

else
RARSUP ← PC + 2;

RSRSUP ← SR;

PC ← EVBA + 0x100;
SR[M2:M0] ← B’001;

else
LRCurrent Context ← PC + 2;

PC ← EVBA + 0x100;

Syntax:
I. scall

Operands:
I. none

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1

15 9 8 4 3 0

328
32000D–04/2011

AVR32

SCR – Subtract Carry from Register

Architecture revision:
Architecture revision1 and higher.

Description
Subtracts carry from the specified destination register.

Operation:
I. Rd ← Rd - C;

Syntax:
I. scr Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: V ← (Rd[31] ∧ ¬RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0) ∧ Z
C: C ← ¬Rd[31] ∧ RES[31]

Opcode:

Example
; Subtract a 32-bit variable (R0) from a 64-bit variable (R2:R1)
sub R1, R0
scr R2

0 1 0 1 1 1 0 0 0 0 0 1 Rd

15 13 12 4 3 0

329
32000D–04/2011

AVR32

SLEEP – Set CPU Activity Mode

Architecture revision:
Architecture revision1 and higher.

Description
Sets the system in the sleep mode specified by the implementation defined Op8 operand. The
semantic of Op8 is IMPLEMENTATION DEFINED. If bit 7 in Op8 is one, SR[GM] will be cleared
when entering sleep mode.

Operation:
I. Set the system in the specified sleep mode.

Syntax:
I. sleep Op8

Operands:
I. Op8 ∈ {0, 1, …, 255}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

Note:
The sleep instruction is a privileged instruction, and will trigger a Privilege Violation exception if
executed in user mode.

1 1 1 0 0 0 1 1 0 1 1 0 0 0

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 0 Op8

15 8 7 0

1 0

330
32000D–04/2011

AVR32

SR{cond4} – Set Register Conditionally

Architecture revision:
Architecture revision1 and higher.

Description
Sets the register specified to 1 if the condition specified is true, clear the register otherwise.

Operation:
I. if (cond4)

Rd ← 1;
else

Rd ← 0;

Syntax:
I. sr{cond4} Rd

Operands:
I. cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

d ∈ {0, 1, ..., 15}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

0 1 0 1 1 1 1 1 cond4 Rd

15 13 12 9 8 7 4 3 0

331
32000D–04/2011

AVR32

SSCALL – Secure State Call

Architecture revision:
Architecture revision 3 and higher.

Description
The sscall instruction performs a secure state call. Sscall can use the same call convention as
regular subprogram calls.

Operation:

I.

SS_RAR ← PC;
SS_RSR ← SR;
If (microarchitecture == AVR32A)

PC ← 0x8000_0004;
else)

PC ← 0xA000_0004;
SR[SS] ← 1;
SR[GM] ← 1;
if (SR[M2:M0] == 0)

SR[M2:M0] ← 001;

Syntax:
I. sscall

Operands:
I. none

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1

15 9 8 4 3 0

332
32000D–04/2011

AVR32

SSRF – Set Status Register Flag

Architecture revision:
Architecture revision1 and higher.

Description
Sets the status register (SR) flag specified.

Operation:
I. SR[bp5] ← 1;

Syntax:
I. ssrf bp

Operands:
I. bp ∈ {0, 1, …, 31}

Status Flags:
SR[bp5] ← 1, all other flags unchanged.

Opcode:

Note:
Privileged if bp5 > 15, ie. upper half of status register. An exception will be triggered if the upper
half of the status register is attempted changed in user mode.

1 1 0 1 0 0 1 bp5 0 0 1 1

15 11 10 9 8 4 3 0

333
32000D–04/2011

AVR32

ST.B – Store Byte

Architecture revision:
Architecture revision1 and higher.

Description
The source register is stored to the byte memory location referred to by the pointer address.

Operation:
I. *(Rp) ← Rs[7:0];

Rp ← Rp + 1;
II. Rp ← Rp - 1;

*(Rp) ← Rs[7:0];
III. *(Rp + ZE(disp3)) ← Rs[7:0];
IV. *(Rp + SE(disp16)) ← Rs[7:0];
V. *(Rb + (Ri << sa2)) ← Rs[7:0];

Syntax:
I. st.b Rp++, Rs
II. st.b --Rp, Rs
III. st.b Rp[disp], Rs
IV. st.b Rp[disp], Rs
V. st.b Rb[Ri << sa], Rs

Operands:
I, II. {s , p} ∈ {0, 1, …, 15}
III. {s , p} ∈ {0, 1, …, 15}

disp ∈ {0, 1, ..., 7}
IV. {s , p} ∈ {0, 1, …, 15}

disp ∈ {-32768, -32767, ..., 32767}
V. {b, i, s} ∈ {0, 1, …, 15}

sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

0 0 0 Rp 0 1 1 0 0 Rs

15 13 12 9 8 4 3 0

334
32000D–04/2011

AVR32

Format II:

Format III:

Format IV:

Format V:

Note:
For formats I. and II., if Rp = Rs the result will be UNDEFINED.

0 0 0 Rp 0 1 1 1 1 Rs

15 13 12 9 8 4 3 0

1 0 1 Rp 0 1 disp3 Rs

15 13 12 9 8 7 6 4 3 0

1 1 1 Rp 1 0 1 1 0 Rs

31 29 28 25 24 20 19 16

disp16

15 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 1 0 1 1 0 0 Shift Amount Rs

15 12 11 8 7 6 5 4 3 0

335
32000D–04/2011

AVR32

ST.B{cond4} – Conditionally Store Byte

Architecture revision:
Architecture revision 2 and higher.

Description
The source register is stored to the byte memory location referred to by the pointer address if the
given condition is satisfied.

Operation:
I. if (cond4)

*(Rp + ZE(disp9)) ← Rs[7:0];

Syntax:
I. st.b{cond4} Rp[disp], Rs

Operands:
I. s, p ∈ {0, 1, …, 15}

disp ∈ {0, 1, ..., 511}
cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 1 1

31 29 28 25 24 20 19 16

cond4 1 1 1 disp9

15 12 11 8 7 6 5 4 3 0

RdRp

336
32000D–04/2011

AVR32

ST.D – Store Doubleword

Architecture revision:
Architecture revision1 and higher.

Description
The source registers are stored to the doubleword memory location referred to by the pointer
address.

Operation:
I. *(Rp) ← Rs+1:Rs;

Rp ← Rp + 8;
II. Rp ← Rp - 8;

*(Rp) ← Rs+1:Rs;
III. *(Rp) ← Rs+1:Rs;
IV. *(Rp + SE(disp16)) ← Rs+1:Rs;
V. *(Rb + (Ri << sa2)) ← Rs+1:Rs;

Syntax:
I. st.d Rp++, Rs
II. st.d --Rp, Rs
III. st.d Rp, Rs
IV. st.d Rp[disp], Rs
V. st.d Rb[Ri << sa], Rs

Operands:
I, II, III. p ∈ {0, 1, …, 15}

s ∈ {0, 2, …, 14}
IV. p ∈ {0, 1, …, 15}

s ∈ {0, 2, …, 14}
disp ∈ {-32768, -32767, ..., 32767}

V. {b, i} ∈ {0, 1, …, 15}
s ∈ {0, 2, …, 14}
sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

337
32000D–04/2011

AVR32

Format I:

Format II:

Format III:

Format IV:

Format V:

Note:
For formats I. and II., if Rp == Rs the result will be UNDEFINED.

1 0 1 Rp 1 0 0 1 0 Rs 0

15 13 12 9 8 6 5 4 3 1 0

1 0 1 Rp 1 0 0 1 0 Rs 1

15 13 12 9 8 6 5 4 3 1 0

1 0 1 Rp 1 0 0 0 1 Rs 1

15 13 12 9 8 4 3 0

1 1 1 Rp 0 1 1 1 0 Rs 1

31 29 28 25 24 20 19 17 16

disp16

15 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 1 0 0 0 0 0 Shift Amount Rs

15 12 11 8 7 6 5 4 3 0

338
32000D–04/2011

AVR32

ST.H – Store Halfword

Architecture revision:
Architecture revision1 and higher.

Description
The source register is stored to the halfword memory location referred to by the pointer address.

Operation:
I. *(Rp) ← Rs[15:0];

Rp ← Rp + 2;
II. Rp ← Rp - 2;

*(Rp) ← Rs[15:0];
III. *(Rp + ZE(disp3 << 1)) ← Rs[15:0];
IV. *(Rp + SE(disp16)) ← Rs[15:0];
V. *(Rb + (Ri << sa2)) ← Rs[15:0];

Syntax:
I. st.h Rp++, Rs
II. st.h --Rp, Rs
III. st.h Rp[disp], Rs
IV. st.h Rp[disp], Rs
V. st.h Rb[Ri << sa], Rs

Operands:
I, II. {s , p} ∈ {0, 1, …, 15}
III. {s , p} ∈ {0, 1, …, 15}

disp ∈ {0, 2, ..., 14}
IV. {s , p} ∈ {0, 1, …, 15}

disp ∈ {-32768, -32767, ..., 32767}
V. {b, i, s} ∈ {0, 1, …, 15}

sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

0 0 0 Rp 0 1 0 1 1 Rs

15 13 12 9 8 4 3 0

339
32000D–04/2011

AVR32

Format II:

Format III:

Format IV:

Format V:

Note:
For formats I. and II., if Rp == Rs the result will be UNDEFINED.

0 0 0 Rp 0 1 1 1 0 Rs

15 13 12 9 8 4 3 0

1 0 1 Rp 0 0 disp3 Rs

15 13 12 9 8 7 6 4 3 0

1 1 1 Rp 1 0 1 0 1 Rs

31 29 28 25 24 20 19 16

disp16

15 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 1 0 1 0 0 0 Shift Amount Rs

15 12 11 8 7 6 5 4 3 0

340
32000D–04/2011

AVR32

ST.H{cond4} – Conditionally Store Halfword

Architecture revision:
Architecture revision 2 and higher.

Description
The source register is stored to the halfword memory location referred to by the pointer address
if the given condition is satisfied.

Operation:
I. if (cond4)

*(Rp + ZE(disp9<<1)) ← Rs[15:0];

Syntax:
I. st.h{cond4} Rp[disp], Rs

Operands:
I. s, p ∈ {0, 1, …, 15}

disp ∈ {0, 2, ..., 1022}
cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 1 1

31 29 28 25 24 20 19 16

cond4 1 1 0 disp9

15 12 11 8 7 6 5 4 3 0

RsRp

341
32000D–04/2011

AVR32

ST.W – Store Word

Architecture revision:
Architecture revision1 and higher.

Description
The source register is stored to the word memory location referred to by the pointer address.

Operation:
I. *(Rp) ← Rs;

Rp ← Rp + 4;
II. Rp ← Rp - 4;

*(Rp) ← Rs;
III. *(Rp + ZE(disp4 << 2)) ← Rs;
IV. *(Rp + SE(disp16)) ← Rs;
V. *(Rb + (Ri << sa2)) ← Rs;

Syntax:
I. st.w Rp++, Rs
II. st.w --Rp, Rs
III. st.w Rp[disp], Rs
IV. st.w Rp[disp], Rs
V. st.w Rb[Ri << sa], Rs

Operands:
I, II. {s , p} ∈ {0, 1, …, 15}
III. {s , p} ∈ {0, 1, …, 15}

disp ∈ {0, 4, ..., 60}
IV. {s , p} ∈ {0, 1, …, 15}

disp ∈ {-32768, -32767,…, 32767}
V. {b, i, s} ∈ {0, 1, …, 15}

sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

0 0 0 Rp 0 1 0 1 0 Rs

15 13 12 9 8 4 3 0

342
32000D–04/2011

AVR32

Format II:

Format III:

Format IV:

Format V:

Note:
For formats I. and II., if Rp == Rs the result will be UNDEFINED.

0 0 0 Rp 0 1 1 0 1 Rs

15 13 12 9 8 4 3 0

1 0 0 Rp 1 disp4 Rs

15 13 12 9 8 7 4 3 0

1 1 1 Rp 1 0 1 0 0 Rs

31 29 28 25 24 20 19 16

disp16

15 0

1 1 1 Rb 0 0 0 0 0 Ri

31 29 28 25 24 20 19 16

0 0 0 0 1 0 0 1 0 0 Shift Amount Rs

15 12 11 8 7 6 5 4 3 0

343
32000D–04/2011

AVR32

ST.W{cond4} – Conditionally Store Word

Architecture revision:
Architecture revision 2 and higher.

Description
The source register is stored to the word memory location referred to by the pointer address if
the given condition is satisfied.

Operation:
I. if (cond4)

*(Rp + ZE(disp9<<2)) ← Rs;

Syntax:
I. st.w{cond4} Rp[disp], Rs

Operands:
I. s, p ∈ {0, 1, …, 15}

disp ∈ {0, 4, ..., 2044}
cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 1 1 1 1 1

31 29 28 25 24 20 19 16

cond4 1 0 1 disp9

15 12 11 8 7 6 5 4 3 0

RdRp

344
32000D–04/2011

AVR32

STC.{D,W} – Store Coprocessor

Architecture revision:
Architecture revision1 and higher.

Description
Stores the source register value to the location specified by the addressing mode.

Operation:
I. *(Rp + (ZE(disp8) << 2)) ← CP#(CRd+1:CRd);
II. *(Rp) ← CP#(CRd+1:CRd);

Rp ← Rp+8;
III. *(Rb + (Ri << sa2)) ← CP#(CRd+1:CRd);
IV. *(Rp + (ZE(disp8) << 2)) ← CP#(CRd);
V. *(Rp) ← CP#(CRd);

Rp ← Rp+4;
VI. *(Rb + (Ri << sa2)) ← CP#(CRd);

Syntax:
I. stc.d CP#, Rp[disp], CRs
II. stc.d CP#, Rp++, CRs
III. stc.d CP#, Rb[Ri<<sa], CRs
IV. stc.w CP#, Rp[disp], CRs
V. stc.w CP#, Rp++, CRs
VI. stc.w CP#, Rb[Ri<<sa], CRs

Operands:
I-VI. # ∈ {0, 1, …, 7}
I-II, IV-V.s ∈ {0, 1, …, 15}
I-III. s ∈ {0, 2, …, 14}
I, IV. disp ∈ {0, 4, …, 1020}
III, VI. {b, i} ∈ {0, 1, …, 15}
III, VI. sa ∈ {0, 1, 2, 3}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

345
32000D–04/2011

AVR32

Format I:

Format II:

Format III:

Format IV:

Format V:

Format VI:

Example:
stc.d CP2, R2[0], CR0

1 1 1 0 0 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 1 CRs[3:1] 0 disp8

15 13 12 11 8 7 0

1

1 1 1 0 1 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 0 CRs[3:1] 0 0 1 1 1 0 0 0

15 13 12 11 9 8 7 0

1

0

1 1 1 0 1 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 1 CRs[3:1] 0 1 1 Sh amt Ri

15 13 12 11 9 8 7 6 5 4 3 0

1

1 1 1 0 0 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 0 CRs disp8

15 13 12 11 8 7 0

1

1 1 1 0 1 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 0 0 1 1 0 0 0 0

15 13 12 11 8 7 0

1

0CRs

1 1 1 0 1 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP # 1 1 0 Sh amt Ri

15 13 12 11 8 7 6 5 4 3 0

1

CRs

346
32000D–04/2011

AVR32

STC0.{D,W} – Store Coprocessor 0 Register

Architecture revision:
Architecture revision1 and higher.

Description
Stores the coprocessor 0 source register value to the location specified by the addressing mode.

Operation:
I. *(Rp + (ZE(disp12) << 2)) ← CP#(CRd+1:CRd);
II. *(Rp + (ZE(disp12) << 2)) ← CP#(CRd);

Syntax:
I. stc0.d Rp[disp], CRs
II. stc0.w Rp[disp], CRs

Operands:
I-II. p ∈ {0, 1, …, 15}
I. s ∈ {0, 2, …, 14}
II. s ∈ {0, 1, …, 15}
I, IV. disp ∈ {0, 4, …, 16380}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

Format I:

Format II:

Example:
stc0.d R2[0], CR0

1 1 1 1 1 1 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

disp[11:8] CRs[3:1] 0 disp[7:0]

15 12 11 8 7 0

0

1 1 1 1 1 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

disp[11:8] CRs disp[7:0]

15 12 11 8 7 0

0

347
32000D–04/2011

AVR32

STCM.{D,W} – Store Coprocessor Multiple Registers

Architecture revision:
Architecture revision1 and higher.

Description
Writes multiple registers in the addressed coprocessor into the specified memory locations.

Operation:

I. Storeaddress ←Rp;
if Opcode[--] == 1 then

for (i = 0 to 7)
if ReglistCPD8[i] == 1 then

*(--Storeaddress) ←CP#(CR(2*i));
*(--Storeaddress) ←CP#(CR(2*i+1));

Rp ← Storeaddress;
else

for (i = 7 to 0)
if ReglistCPD8[i] == 1 then

*(Storeaddress++) ←CP#(CR(2*i+1));
*(Storeaddress++) ←CP#(CR(2*i));

II Storeaddress ←Rp;
if Opcode[--] == 1 then

for (i = 0 to 7)
if ReglistCPH8[i] == 1 then

*(--Storeaddress) ←CP#(CRi+8);
Rp ← Storeaddress;

else
for (i = 7 to 0)

if ReglistCPH8[i] == 1 then
*(Storeaddress++) ←CP#(CRi+8);

III Storeaddress ←Rp;
if Opcode[--] == 1 then

for (i = 0 to 7)
if ReglistCPL8[i] == 1 then

*(--Storeaddress) ←CP#(CRi);
Rp ← Storeaddress;

else
for (i = 7 to 0)

if ReglistCPL8[i] == 1 then
*(Storeaddress++) ←CP#(CRi);

348
32000D–04/2011

AVR32

Syntax:
I. stcm.d CP#, {--}Rp, ReglistCPD8
II. stcm.w CP#, {--}Rp, ReglistCPH8
III. stcm.w CP#, {--}Rp, ReglistCPL8

Operands:
I-III. # ∈ {0, 1, …, 7}

p ∈ {0, 1, …, 15}
I. ReglistCPD8 ∈ {CR0-CR1,CR2-CR3,CR4-CR5,CR6-CR7,CR8-CR9,

CR10-CR11,CR12-CR13,CR14-CR15}
II. ReglistCPH8 ∈ {CR8, CR9, CR10, ..., CR15}
III. ReglistCPL8 ∈ {CR0, CR1, CR2, ..., CR7}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

Format II:

Format III:

Example:
stcm.w CP2, --SP, CR2-CR5

Note:
Emtpy ReglistCPH8/ReglistCPL8/ReglistCPD8 gives UNDEFINED result.

1 1 1 0 1 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP# -- 0 1 0 1 CR

15 13 12 11 8 7 0

1

15-14
CR

13-12
CR

11-10
CR
9-8

CR
7-6

CR
5-4

CR
3-2

CR
1-0

1 1 1 0 1 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP# -- 0 0 1 1 CR

15 13 12 11 8 7 0

1

 15
CR

 14
CR

 13
CR
 12

CR
 11

CR
 10

CR
 9

CR
 8

1 1 1 0 1 0 1 1 0 1 0 Rp

31 29 28 25 24 20 19 16

CP# -- 0 0 1 0 CR

15 13 12 11 8 7 0

1

 7
CR

 6
CR

 5
CR
 4

CR
 3

CR
 2

CR
 1

CR
 0

349
32000D–04/2011

AVR32

STCOND – Store Word Conditionally

Architecture revision:
Architecture revision1 and higher.

Description
The source register is stored to the word memory location referred to by the pointer address if
SREG[L] is set. Also, SREG[L] is copied to SREG[Z] to indicate a success or failure of the oper-
ation. This instruction is used for atomical memory access.

Operation:
I. SREG[Z] ← SREG[L];

If SREG[L]
*(Rp + SE(disp16)) ← Rs;

Syntax:
I. stcond Rp[disp], Rs

Operands:
I. {s , p} ∈ {0, 1, …, 15}

disp ∈ {-32768, -32767, ..., 32767}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: SREG[Z] ← SREG[L].
C: Not affected.

Opcode:

Note:

1 1 1 Rp 1 0 1 1 1 Rs

31 29 28 25 24 20 19 16

disp16

15 0

350
32000D–04/2011

AVR32

STDSP – Store Stack-Pointer Relative

Architecture revision:
Architecture revision1 and higher.

Description
Stores the source register value to the memory location referred to specified by the Stack Pointer
and the displacement.

Operation:
I. *((SP && 0xFFFF_FFFC) + (ZE(disp7) << 2)) ← Rs;

Syntax:
I. stdsp SP[disp], Rs

Operands:
I. disp ∈ {0, 4, ..., 508}

s ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

0 1 0 1 0 disp7 Rs

15 13 12 11 10 4 3 0

351
32000D–04/2011

AVR32

STHH.W – Store Halfwords into Word

Architecture revision:
Architecture revision1 and higher.

Description
The selected halfwords of the source registers are combined and stored to the word memory
location referred to by the pointer address.

Operation:
If (Rx-part == t) then high-part = Rx[31:16] else high-part = Rx[15:0];
If (Ry-part == t) then low-part = Ry[31:16] else low-part = Ry[15:0];

I. *(Rp + ZE(disp8 << 2)) ← {high-part, low-part};
II. *(Rb + (Ri << sa2)) ← {high-part, low-part};

Syntax:
I. sthh.w Rp[disp], Rx:<part>, Ry:<part>
II. sthh.w Rb[Ri << sa], Rx:<part>, Ry:<part>

Operands:
I. {p, x, y} ∈ {0, 1, …, 15}

disp ∈ {0, 4, ..., 1020}
part ∈ {b,t}

II. {b, i, x, y} ∈ {0, 1, …, 15}
sa ∈ {0, 1, 2, 3}
part ∈ {b,t}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Format I:

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

1 1 X Y disp8 Rp

15 14 13 12 11 4 3 0

352
32000D–04/2011

AVR32

Format II:

1 1 1 Rx 1 1 1 1 0 Ry

31 29 28 25 24 20 19 16

1 0 X Y Ri 0 0 sa2 Rb

15 14 13 12 11 8 7 6 5 4 3 0

353
32000D–04/2011

AVR32

STM – Store Multiple Registers

Architecture revision:
Architecture revision1 and higher.

Description
Stores the registers specified to the consecutive memory locations pointed to by Rp. Both regis-
ters in the register file and some of the special-purpose registers can be stored.

I. Storeaddress ← Rp;
if Opcode[--] == 1 then

for (i = 0 to 15)
if Reglist16[i] == 1 then

 *(--Storeaddress) ←Ri;
Rp ← Storeaddress;

else
for (i = 15 to 0)

if Reglist16[i] == 1 then
 *(Storeaddress++) ←Ri;

Syntax:
I. stm {--}Rp, Reglist16

Operands:
I. Reglist16 ∈ {R0, R1, R2, ..., R12, LR, SP, PC}

p ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Note:

Emtpy Reglist16 gives UNDEFINED result.

If Rp is in Reglist16 and pointer is written back the result is UNDEFINED

The R bit in the status register has no effect on this instruction.

1 1 1 0 0 -- 1 1 1 0 0 Rp

31 29 28 26 25 24 20 19 16

R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

15 0

1

354
32000D–04/2011

AVR32

STMTS – Store Multiple Registers for Task Switch

Architecture revision:
Architecture revision1 and higher.

Description
Stores the registers specified to the consecutive memory locations pointed to by Rp. The regis-
ters specified all reside in the application context.

I. Storeaddress ← Rp;
if Opcode[--] == 1 then

for (i = 0 to 15)
if Reglist16[i] == 1 then

 *(--Storeaddress) ←RiApp;

Rp ← Storeaddress;
else

for (i = 15 to 0)
if Reglist16[i] == 1 then

 *(Storeaddress++) ←RiApp;

Syntax:
I. stmts {--}Rp, Reglist16

Operands:
I. Reglist16 ∈ {R0, R1, R2, ..., R12, LR, SP}

p ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Note:
Emtpy Reglist16 gives UNDEFINED result.
PC in Reglist16 gives UNDEFINED result.

1 1 1 0 1 -- 1 1 1 0 0 Rp

31 29 28 26 25 24 20 19 16

R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

15 0

1

355
32000D–04/2011

AVR32

STSWP.{H, W} – Swap and Store

Architecture revision:
Architecture revision1 and higher.

Description
This instruction swaps the bytes in a halfword or a word in the register file and stores the result to
memory. The instruction can be used for performing stores to memories of different endianness.

Operation:
I. temp[15:0] ← (Rs[7:0], Rs[15:8]);

*(Rp+SE(disp12) << 1) ← temp[15:0];
II. temp[31:0] ← (Rs[7:0], Rs[15:8], Rs[23:16], Rs[31:24]);

*(Rp+SE(disp12) << 2) ← temp[31:0];

Syntax:
I. stswp.h Rp[disp], Rs
II. stswp.wRp[disp], Rs

Operands:
I. {s, p} ∈ {0, 1, …, 15}

disp ∈ {-4096, -4094, ..., 4094}
II. {s, p} ∈ {0, 1, …, 15}

disp ∈ {-8192, -8188 ..., 8188}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

Format I:

Format II:

1 1 1 Rp 1 1 1 0 1 Rs

31 29 28 25 24 20 19 16

1 0 0 1 disp12

15 12 11 0

1 1 1 Rp 1 1 1 0 1 Rs

31 29 28 25 24 20 19 16

1 0 1 0 disp12

15 12 11 0

356
32000D–04/2011

AVR32

SUB – Subtract (without Carry)

Architecture revision:
Architecture revision1 and higher.

Description
Performs a subtraction and stores the result in destination register.

Operation:
I. Rd ← Rd - Rs;
II. Rd ← Rx - (Ry << sa2);
III. if (Rd == SP)

Rd ← Rd - SE(imm8 << 2);
else

Rd ← Rd - SE(imm8);
IV. Rd ← Rd - SE(imm21);
V. Rd ← Rs - SE(imm16);

Syntax:
I. sub Rd, Rs
II. sub Rd, Rx, Ry << sa
III. sub Rd, imm
IV. sub Rd, imm
V. sub Rd, Rs, imm

Operands:
I-V. {d, s, x, y} ∈ {0, 1, …, 15}
II. sa ∈ {0, 1, 2, 3}
III. if (Rd == SP)

imm ∈{-512, -508, ..., 508}
else

imm ∈{-128, -127, ..., 127}
IV. imm ∈{-1048576, -104875, ..., 1048575}
V. imm ∈ {-32768, -32767, ..., 32767}

Status Flags:
Format I: OP1 = Rd, OP2 = Rs
Format II:OP1 = Rx, OP2 = Ry << sa2
Format III: OP1 = Rd, if (Rd==SP) OP2 = SE(imm8<<2) else OP2 = SE(imm8)
Format IV: OP1 = Rd, OP2 = SE(imm21)
Format V: OP1 = Rs, OP2 = SE(imm16)
Q: Not affected
V: V ← (OP1[31] ∧ ¬OP2[31] ∧ ¬RES[31]) ∨ (¬OP1[31] ∧ OP2[31] ∧ RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← ¬OP1[31] ∧ OP2[31] ∨ OP2[31] ∧ RES[31] ∨ ¬OP1[31] ∧ RES[31]

357
32000D–04/2011

AVR32

Opcode:

Format I:

Format II:

Format III:

Format IV:

Format V:

0 0 0 Rs 0 0 0 0 1 Rd

15 13 12 9 8 4 3 0

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 1 0 0 Shift Amount Rd

15 12 11 8 7 6 5 4 3 0

0 0 1 0 imm8 Rd

15 13 12 11 4 3 0

1 1 1 imm21[20:17 0 0 0 1
imm21

Rd

31 29 28 25 24 21 20 19 16

imm21[15:0]

15 0

[16]

1 1 1 Rs 0 1 1 0 0 Rd

31 29 28 25 24 20 19 16

imm16

15 0

358
32000D–04/2011

AVR32

SUB{cond4} – Conditional Subtract

Architecture revision:
Format I in Architecture revision1 and higher.
Format II in Architecture revision 2 and higher.

Description
Subtracts a value from a given register and stores the result in destination register if cond4 is
true.

Operation:
I. If (cond4) then

Rd ← Rd - imm8;
Update flags if opcode[f] field is cleared

II. If (cond4) then
Rd ← Rx - Ry;

Syntax:
I. sub{f}{cond4} Rd, imm
II. sub{cond4} Rd, Rx, Ry

Operands:
I. cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}

d ∈ {0, 1, …, 15}
imm ∈ {-128, -127, ..., 127}

II. cond4 ∈ {eq, ne, cc/hs, cs/lo, ge, lt, mi, pl, ls, gt, le, hi, vs, vc, qs, al}
{d, x, y} ∈ {0, 1, …, 15}

Status Flag:
K = SE(imm8)
Flags only affected if format I and (cond4) is true and F parameter is given
Q: Not affected
V: V ← (Rd[31] ∧ ¬K[31] ∧ ¬RES[31]) ∨ (¬Rd[31] ∧ K[31] ∧ RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← ¬Rd[31] ∧ K[31] ∨ K[31] ∧ RES[31] ∨ RES[31] ∧ ¬Rd[31]

Opcode:
Format I:I

1 1 1 1 1 F 1 1 0 1 1 Rd

31 29 28 26 25 24 20 19 16

0 0 0 0 cond4 imm8

15 12 11 8 7 0

0

359
32000D–04/2011

AVR32

Format II:

Example:
subfeq R3, 5 performs R3 ← R3 - 5 and sets flags accordingly if Z flag set.
subeq R5, 7 performs R5 ← R5 - 5 if Z flag set. Flags are not affected.

1 1 1 1 1 1 0 1 Ry

31 29 28 25 24 20 19 16

1 1 1 0 cond4 0 0 0 1 Rd

15 12 11 8 7 0

Rx

360
32000D–04/2011

AVR32

SUBHH.W– Subtract Halfwords into Word

Architecture revision:
Architecture revision1 and higher.

Description
Subtracts the two halfword registers specified and stores the result in the destination word-regis-
ter. The halfword registers are selected as either the high or low part of the operand registers.

Operation:
I. If (Rx-part == t) then operand1 = SE(Rx[31:16]) else operand1 = SE(Rx[15:0]);

If (Ry-part == t) then operand2 = SE(Ry[31:16]) else operand2 = SE(Ry[15:0]);
Rd ← operand1 - operand2;

Syntax:
I. subhh.wRd, Rx:<part>, Ry:<part>

Operands:
I. {d, x, y} ∈ {0, 1, …, 15}

part ∈ {t,b}

Status Flags:
OP1 = operand1, OP2 = operand2
Q: Not affected
V: V ← (OP1[31] ∧ ¬OP2[31] ∧ ¬RES[31]) ∨ (¬OP1[31] ∧ OP2[31] ∧ RES[31])
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: C ← ¬OP1[31] ∧ OP2[31] ∨ OP2[31] ∧ RES[31] ∨ ¬OP1[31] ∧ RES[31]

Opcode:

Example:
subhh.wR10, R2:t, R3:b
will perform R10 ← SE(R2[31:16]) - SE(R3[15:0])

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 1 1 1 0 0 X Y Rd

15 12 11 6 5 4 3 0

361
32000D–04/2011

AVR32

SWAP.B – Swap Bytes

Architecture revision:
Architecture revision1 and higher.

Description
Swaps different parts of a register.

Operation:
I. Temp ← Rd;

Rd[31:24] ← Temp[7:0];
Rd[23:16] ← Temp[15:8];
Rd[15:8] ← Temp[23:16];
Rd[7:0] ← Temp[31:24];

Syntax:
I. swap.b Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

0 1 0 1 1 1 0 0 1 0 1 1 Rd

15 13 12 9 8 4 3 0

362
32000D–04/2011

AVR32

SWAP.BH – Swap Bytes in Halfword

Architecture revision:
Architecture revision1 and higher.

Description
Swaps different parts of a register.

Operation:
I. Temp ← Rd;

Rd[31:24] ← Temp[23:16];
Rd[23:16] ← Temp[31:24];
Rd[15:8] ← Temp[7:0];
Rd[7:0] ← Temp[15:8];

Syntax:
I. swap.bhRd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

0 1 0 1 1 1 0 0 1 1 0 0 Rd

15 13 12 9 8 4 3 0

363
32000D–04/2011

AVR32

SWAP.H – Swap Halfwords

Architecture revision:
Architecture revision1 and higher.

Description
Swaps different parts of a register.

Operation:
I. Temp ← Rd;

Rd[31:16] ← Temp[15:0];
Rd[15:0] ← Temp[31:16];

Syntax:
I. swap.h Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

0 1 0 1 1 1 0 0 1 0 1 0 Rd

15 13 12 9 8 4 3 0

364
32000D–04/2011

AVR32

SYNC – Synchronize memory

Architecture revision:
Architecture revision1 and higher.

Description
Finish all pending memory accesses and empties write buffers. The semantic of Op8 is IMPLE-
MENTATION DEFINED.

Operation:
I. Finishes all pending memory operations.

Syntax:
I. sync Op8

Operands:
I. 0 ≤ Op8 ≤ 255

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

1 1 1 0 0 1 1 1 0 1 1 0 0 0

31 29 28 25 24 20 19 16

0 0 0 0 0 0 0 0 Op8

15 8 7 0

1 0

365
32000D–04/2011

AVR32

TLBR – Read TLB Entry

Architecture revision:
Architecture revision1 and higher.

Description
Read the contents of the addressed ITLB or DTLB Entry into TLBEHI and TLBELO.

Operation:
I. if (TLBEHI[I] == 1)

{TLBEHI, TLBELO} ←ITLB[MMUCR[IRP]];
else

{TLBEHI, TLBELO} ←DTLB[MMUCR[DRP]];

Syntax:
I. tlbr

Operands:
None

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Note:
This instruction can only be executed in a privileged mode.

1 1 0 1 0 1 1 0 0 1 0 0 0 0 1 1

15 9 8 4 3 0

366
32000D–04/2011

AVR32

TLBS – Search TLB For Entry

Architecture revision:
Architecture revision1 and higher.

Description
Search the addressed TLB for an entry matching TLB Entry High and Low (TLBEHI/TLBELO)
registers. Return a pointer to the entry in MMUCR[IRP] or MMUCR[DRP] if a match found, oth-
erwise set the Not Found bit in the MMU control register, MMUCR[N].

Operation:
I. MMUCR[N] ←1;

if (TLBEHI[I] == 1)
TlbToSearch ←ITLB;

else
TlbToSearch ←DTLB;

endif;

for (i = 0 to TLBToSearchEntries-1)
if (Compare(TlbToSearch[i]VPN, VA, TlbToSearch[i]SZ, TlbToSearch[i]V))
// VPN and VA matches for the given page size and entry valid

if (SharedVMM or
(PrivateVMM and (TlbToSearch[i]G or (TlbToSearch[i]ASID==TLBEHI[ASID]))))
ptr ← i;
MMUCR[N] ←0;

endif;
endif;

endfor;
if (TLBEHI[I] == 1)

MMUCR[IRP] ←ptr;
else

MMUCR[DRP] ←ptr;
endif;

Syntax:
I. tlbs
Operands:

None

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

367
32000D–04/2011

AVR32

Opcode:

Note:
This instruction can only be executed in a privileged mode.

1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1

15 9 8 4 3 0

368
32000D–04/2011

AVR32

TLBW – Write TLB Entry

Architecture revision:
Architecture revision1 and higher.

Description
Write the contents of the TLB Entry High and Low (TLBEHI/TLBELO) registers into the
addressed TLB entry.

Operation:
I. if (TLBEHI[I] == 1)

ITLB[MMUCR[IRP]] ← {TLBEHI, TLBELO};
else

ITLB[MMUCR[DRP]] ← {TLBEHI, TLBELO};

Syntax:
I. tlbw

Operands:
None

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Not affected.
C: Not affected.

Opcode:

Note:
This instruction can only be executed in a privileged mode.

1 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1

15 9 8 4 3 0

369
32000D–04/2011

AVR32

TNBZ – Test if No Byte is Equal to Zero

Architecture revision:
Architecture revision1 and higher.

Description
If any of the bytes 0,1,2,3 in the word is zero, the SR[Z] flag is set.

Operation:
I. if (Rd[31:24] == 0 ∨

 Rd[23:16] == 0 ∨
 Rd[15:8] == 0 ∨ Rd[7:0] == 0)

 SR[Z] ← 1;
else

 SR[Z] ← 0;

Syntax:
I. tnbz Rd

Operands:
I. d ∈ {0, 1, …, 15}

Status Flags:
Q: Not affected.
V: Not affected.
N: Not affected.
Z: Z ← (Rd[31:24] == 0 ∨ Rd[23:16] == 0 ∨ Rd[15:8] == 0 ∨ Rd[7:0] == 0)

C: Not affected.

Opcode:

0 1 0 1 1 1 0 0 1 1 1 0 Rd

15 13 12 9 8 4 3 0

370
32000D–04/2011

AVR32

TST – Test Register

Architecture revision:
Architecture revision1 and higher.

Description
Test register. Used to check if a subset of a register includes one or more set bits. No writeback
of the result is performed, but the flags are set.

Operation:
I. Rd ∧ Rs;

Syntax:
I. tst Rd, Rs

Operands:
I. {d,s} ∈ {0, 1, …, 15}

Status Flags
Q: Not affected
V: Not affected
N: N ← RES[31]
Z: Z ← (RES[31:0] == 0)
C: Not affected

Opcode(s)

0 0 0 Rs 0 0 1 1 1 Rd

15 13 12 9 8 4 3 0

371
32000D–04/2011

AVR32

XCHG – Exchange Register and Memory

Architecture revision:
Architecture revision1 and higher.

Description
Reads a word from memory pointed to by Rx into register Rd, and writes the value of register Ry
to memory. This instruction can be used to implement binary semaphores (mutexes). The stcond
instruction should be used to implement counting semaphores.

Operation:
I. Temp ← *(Rx);

*(Rx) ← Ry;
Rd ← Temp;

Syntax:
I. xchg Rd, Rx, Ry

Operands:
I. {d,x,y} ∈ {0, 1, …, 14}

Status Flags:
Q: Not affected
V: Not affected
N: Not affected
Z: Not affected
C: Not affected

Opcode:

Note:
If R15 is used as Rd, Rx or Ry, the result is UNDEFINED.
If Rd = Ry, the result is UNDEFINED.
If Rd = Rx, the result is UNDEFINED.

1 1 1 Rx 0 0 0 0 0 Ry

31 29 28 25 24 20 19 16

0 0 0 0 1 0 1 1 0 1 0 0 Rd

15 12 11 4 3 0

372
32000D–04/2011

AVR32

373
32000D–04/2011

AVR32

10. Revision History

10.1 Rev. 32000A-02/2006

10.2 Rev. 32000B-11/2007

10.3 Rev. 32000C-08/2009

10.4 Rev. 32000D-04/2011

1. Initial version.

1. Improved description of RETE in Instruction Set Chapter.
2. Corrected description of STC.D in Instruction Set Chapter.
3. Added micro-TLB miss performance counting.
4. Added clear-on-compare functionality to COUNT system register
5. Updated MPU description to match implementation
6. Added new architecture revision 2 instructions

1. Corrected typos in the MOVH instruction description.
2. Corrected Reset address typo in chapter 7.3.1.1
3. Corrected typos in RETE, DIVS and DIVU detailed instruction set descriptions.
4. Described new architecture revision 3 secure execution state.
5. Automatic clear of COUNT on COMPARE match can now be overridden, usually

by writing a bit in the implementation’s CPUCR register.

1. FlashVault™ description added
2. Instruction syntax: Each Ri<part> has been replaced by Ri:<part> in the instruc-

tion set summary and descriptions
3. Added description of bit 7 in Op8 in sleep instruction
4. Parantheses added to shift instruction descriptions to clarify the order of the

operations
5. Added cond4 to ld.sb, ld.ub, ld.sh, ld.uh, ld.w, st.b, st.h, st.w instruction descrip-

tion syntax
6. SE replaced by ZE in st.w{cond4} in the Instruction Set Summary table

374
32000D–04/2011

AVR32

i
32000D–04/2011

AVR32

Table of contents

Feature Summary.. 1

1 Introduction .. 2

1.1 The AVR family ..2

1.2 The AVR32 Microprocessor Architecture ...2

1.3 Microarchitectures ...4

2 Programming Model .. 5

2.1 Data Formats ...5

2.2 Data Organization ..5

2.3 Instruction Organization ...6

2.4 Processor States ...7

2.5 Entry and Exit Mechanism ...8

2.6 Register File ..8

2.7 The Stack Pointer ..10

2.8 The Program Counter ..11

2.9 The Link Register ..11

2.10 The Status Register ...11

2.11 System registers ..14

2.12 Recommended Call Convention ..26

3 Java Extension Module ... 27

3.1 The AVR32 Java Virtual Machine ..27

4 Secure state .. 31

4.1 Mechanisms implementing the Secure State ..31

4.2 Secure state programming model ...32

4.3 Details on Secure State implementation ...33

5 Memory Management Unit .. 35

5.1 Memory map in systems with MMU ...35

5.2 Understanding the MMU ..37

5.3 Operation of the MMU and MMU exceptions ..47

6 Memory Protection Unit .. 51

6.1 Memory map in systems with MPU ...51

6.2 Understanding the MPU ..51

6.3 Example of MPU functionality ..55

ii
32000D–04/2011

AVR32

7 Performance counters ... 57

7.1 Overview ..57

7.2 Registers ...57

7.3 Monitorable events ..59

7.4 Usage ..60

8 Event Processing ... 63

8.1 Event handling in AVR32A ..63

8.2 Event handling in AVR32B ..64

8.3 Entry points for events ...66

8.4 Event priority ..92

8.5 Event handling in secure state ..92

9 AVR32 RISC Instruction Set .. 93

9.1 Instruction Set Nomenclature ..93

9.2 Instruction Formats ..97

9.3 Instruction Set Summary ...106

9.4 Base Instruction Set Description ...122

10 Revision History ... 373

10.1 Rev. 32000A-02/2006 ..373

10.2 Rev. 32000B-11/2007 ..373

10.3 Rev. 32000C-08/2009 ...373

10.4 Rev. 32000D-04/2011 ...373

Table of contents ... i

32000D–04/2011

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581

© 2011 Atmel Corporation. All rights reserved. / Rev. CORP072610

Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-
tions intended to support or sustain life.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Microchip:

 ATUC128D4-AUR ATUC128D4-AUT ATUC128D4-Z1UR ATUC64D3-A2UT ATUC64D3-Z2UR ATUC64D3-Z2UT

ATUC64D4-AUR ATUC64D4-Z1UR ATUC64D4-Z1UT ATUC64D4-AUT ATUC64D3-A2UR ATUC256L4U-ZAUT

ATUC256L4U-ZAUR ATUC256L4U-D3HR ATUC256L4U-D3HT ATUC256L4U-AUT ATUC256L4U-AUR

ATUC256L3U-AUT ATUC128L4U-D3HT ATUC128L4U-D3HR ATUC128L4U-AUT ATUC128L4U-AUR ATUC64L4U-

ZAUR ATUC128L3U-AUT ATUC64L4U-ZAUT ATUC64L4U-D3HT ATUC64L4U-D3HR ATUC64L4U-AUT

ATUC64L4U-AUR ATUC64L3U-AUT ATUC128D3-A2UR ATUC128D3-A2UT ATUC128D3-Z2UR ATUC128D3-Z2UT

https://www.mouser.com/atmel
https://www.mouser.com/access/?pn=ATUC128D4-AUR
https://www.mouser.com/access/?pn=ATUC128D4-AUT
https://www.mouser.com/access/?pn=ATUC128D4-Z1UR
https://www.mouser.com/access/?pn=ATUC64D3-A2UT
https://www.mouser.com/access/?pn=ATUC64D3-Z2UR
https://www.mouser.com/access/?pn=ATUC64D3-Z2UT
https://www.mouser.com/access/?pn=ATUC64D4-AUR
https://www.mouser.com/access/?pn=ATUC64D4-Z1UR
https://www.mouser.com/access/?pn=ATUC64D4-Z1UT
https://www.mouser.com/access/?pn=ATUC64D4-AUT
https://www.mouser.com/access/?pn=ATUC64D3-A2UR
https://www.mouser.com/access/?pn=ATUC256L4U-ZAUT
https://www.mouser.com/access/?pn=ATUC256L4U-ZAUR
https://www.mouser.com/access/?pn=ATUC256L4U-D3HR
https://www.mouser.com/access/?pn=ATUC256L4U-D3HT
https://www.mouser.com/access/?pn=ATUC256L4U-AUT
https://www.mouser.com/access/?pn=ATUC256L4U-AUR
https://www.mouser.com/access/?pn=ATUC256L3U-AUT
https://www.mouser.com/access/?pn=ATUC128L4U-D3HT
https://www.mouser.com/access/?pn=ATUC128L4U-D3HR
https://www.mouser.com/access/?pn=ATUC128L4U-AUT
https://www.mouser.com/access/?pn=ATUC128L4U-AUR
https://www.mouser.com/access/?pn=ATUC64L4U-ZAUR
https://www.mouser.com/access/?pn=ATUC64L4U-ZAUR
https://www.mouser.com/access/?pn=ATUC128L3U-AUT
https://www.mouser.com/access/?pn=ATUC64L4U-ZAUT
https://www.mouser.com/access/?pn=ATUC64L4U-D3HT
https://www.mouser.com/access/?pn=ATUC64L4U-D3HR
https://www.mouser.com/access/?pn=ATUC64L4U-AUT
https://www.mouser.com/access/?pn=ATUC64L4U-AUR
https://www.mouser.com/access/?pn=ATUC64L3U-AUT
https://www.mouser.com/access/?pn=ATUC128D3-A2UR
https://www.mouser.com/access/?pn=ATUC128D3-A2UT
https://www.mouser.com/access/?pn=ATUC128D3-Z2UR
https://www.mouser.com/access/?pn=ATUC128D3-Z2UT

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при
поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

 Оперативные поставки широкого спектра электронных компонентов отечественного и
импортного производства напрямую от производителей и с крупнейших мировых
складов;

 Поставка более 17-ти миллионов наименований электронных компонентов;

 Поставка сложных, дефицитных, либо снятых с производства позиций;

 Оперативные сроки поставки под заказ (от 5 рабочих дней);

 Экспресс доставка в любую точку России;

 Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;

 Система менеджмента качества сертифицирована по Международному стандарту ISO
9001;

 Лицензия ФСБ на осуществление работ с использованием сведений, составляющих
государственную тайну;

 Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление
«Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

 Подбор оптимального решения, техническое обоснование при выборе компонента;

 Подбор аналогов;

 Консультации по применению компонента;

 Поставка образцов и прототипов;

 Техническая поддержка проекта;

 Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)
Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.

mailto:org@eplast1.ru

