active-semi ACT520/ACT520A

Rev 0, 05-Jun-15

ActiveQR[™] Quasi-Resonant PWM Controller

FEATURES

- DCM and Quasi-Resonant Operation
- High VDD Sustain Voltage for Wide Output Range Application such as QC2.0
- Primary Side Constant Current Control
- **Integrated Patented Frequency Foldback Technique**
- Integrated Patented Line Compensation
- **Built-in Soft-Start Circuit**
- Line Under-Voltage, Thermal, Output Overvoltage, Output Short Protections
- Current Sense Resistor Short Protection
- **Transformer Short Winding Protection**
- 30mW Standby Power
- Complies with Global Energy Efficiency and **CEC Average Efficiency Standards**
- Sop-8 Packages

APPLICATIONS

- AC/DC Adaptors/Chargers for Cell Phones, Cordless Phone, PDAs, E-books
- Adaptors for Portable Media Player, DSCs, Set-top boxes, DVD players, records
- Linear Adapter Replacements

GENERAL DESCRIPTION

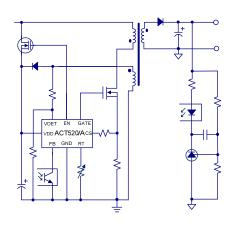
The ACT520/ACT520A is a high performance peak current mode PWM controller. ACT520/ACT520A applies $ActiveQR^{TM}$ and frequency foldback technique to reduce EMI and improve efficiency. ACT520/ACT520A's maximum design switching frequency is set at 130kHz. Very low standby power, good dynamic response and accurate voltage regulation is achieved with an opto-coupler and the secondary side control circuit.

The idle mode operation enables low standby power of 30mW with small output voltage ripple. By applying frequency foldback and ActiveQR[™] ACT520/ACT520A technology, increases the average system efficiency compared

conventional solutions and exceeds the latest ES2.0 efficiency standard with good margin.

ACT520/ACT520A integrates comprehensive protection. In case of over temperature, over voltage, short winding, short current sense resistor, open loop an d overload conditions, it would enter into auto restart mode including Cycle-by-Cycle current limiting.

ACT520/ACT520A is to achieve no overshoot and very short rise time even with big capacitive load with the built-in fast and soft start process.

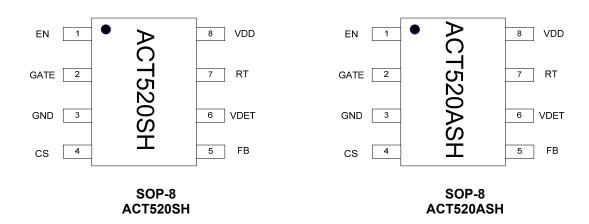

In low line full load condition, ACT520/ACT520A is able to be designed to work in first valley turn on DCM mode to meet different types of applications. Quasi-Resonant (QR) operation mode effectively improve efficiency during operation, and reduce the EMI noise and further reduce the components in input filter.

ACT520/ACT520A uses an opto-coupler feedback architecture to provide accurate constant voltage even at low loads, constant current (CV/CC) regulation. Integrated line and primary inductance compensation circuitry provides accurate constant current operation despite wide variations in line voltage and primary inductance.

ACT520 is idea for QC2.0 adaptor application up to 30 Watt.

ACT520A is typical for low standby power (<20mW) 12W charger application.

Figure 1: **Simplified Application Circuit**


-1-

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE	PINS	PACKING METHOD	TOP MARK
ACT520SH-T	-40°C to 85°C	SOP-8	8	TUBE & REEL	ACT520SH
ACT520ASH-T	-40°C to 85°C	SOP-8	8	TUBE & REEL	ACT520ASH

PIN CONFIGURATION

PIN DESCRIPTIONS

PIN	NAME	DESCRIPTION
1	EN	Connect this to the gate of the N-depletion FET.
2	GATE	Gate Drive. Gate driver for the external MOSFET transistor.
3	GND	Ground.
4	CS	Current Sense Pin. Connect an external resistor (R _{CS}) between this pin and ground to set peak current limit for the primary switch.
5	FB	Feedback Pin. Connect this pin to optocouplers's collector for output regulation.
6	VDET	Valley Detector Pin. Connect this pin to a resistor divider network from the auxiliary winding to detect zero-crossing points for valley turn on operation.
7	RT	Connected through a NTC resistor to ground for adjustable OTP, or empty if not used.
8	VDD	Power Supply. This pin provides bias power for the IC during startup and steady state operation.

ABSOLUTE MAXIMUM RATINGS®

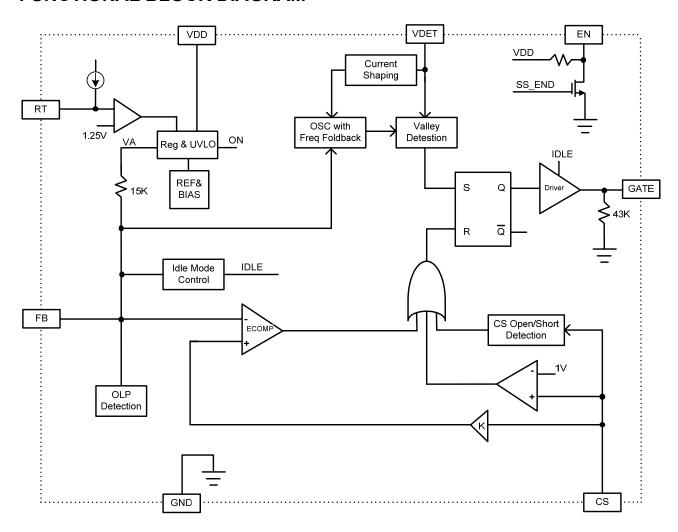
PARAMETER	VALUE	UNIT
FB, CS, VDET to GND	-0.3 to + 6	V
VDD, GATE to GND	-0.3 to + 45	V
Maximum Power Dissipation (SOP-8)	0.625	W
Maximum Continuous VDD Current	100	mA
Operating Junction Temperature	-40 to 150	°C
Junction to Ambient Thermal Resistance (θ _{JA})	160	°C/W
Storage Temperature	-55 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C

①: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 33V, L_{M} = 0.27mH, R_{CS} = 0.806\Omega, V_{OUT} = 12V, N_{P} = 34, N_{S} = 6, N_{A} = 16, T_{A} = 25^{\circ}C, unless otherwise specified.)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply						
VDD Turn-On Voltage	V_{DDON}	V _{DD} Rising from 0V	16	18	20	V
VDD Turn-Off Voltage	V_{DDOFF}	V _{DD} Falling after Turn-on	6.5	7.0	7.5	V
VDD Over Voltage Protection	V_{DDOVP}	V _{DD} Rising from 0V	43	44	45	V
Start Up Supply Current	I _{DDST}	VDD=16V, before VDD Turn-on (with N-depletion FET)			10	μΑ
IDD Supply Current	I _{DD}	V_{DD} = 18V, after VDD Turn-on ,FB floating		0.5	0.8	mA
IDD Supply Current at Standby	I _{DDSTBY}	FB = 1.9V		0.2	0.3	mA
IDD Supply Current at Fault	I _{DDFAULT}	Fault mode, FB Floating		250		μA
Feedback	•					
FB Pull up Resistor	R_{FB}			15		kΩ
CS to FB Gain	A _{CS}			2		V/V
VFB at Max Peak Current	V_{FBPEAK}			3 + V _{BE}		V
FB Threshold to Stop Switching	V_{FBBM1}			1.9		V
FB Threshold to Start Switching	V_{FBBM2}			1.95		V
Output Overload Threshold	V_{FBOLP}			3.75		V
OverLoad/Over Voltage Blanking Time	T _{OVBLANK}			400		ms
Slope Compensation	S _{lope}			24		mV/μS
RT Section						
RT Source Current	I _{OTP}			20		μA
Trigger Voltage for OTP	V_{OTP}			1.25		٧


ELECTRICAL CHARACTERISTICS CONT'D

 $(V_{DD} = 33V, L_{M} = 0.27mH, R_{CS} = 0.806\Omega, V_{OUT} = 12V, N_{P} = 34, N_{S} = 6, N_{A} = 16, T_{A} = 25^{\circ}C, unless otherwise specified.)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Current Limit	•						
CS Current Limit Threshold	V_{CSLIM}		0.98	1	1.02	V	
Leading Edge Blanking Time	T _{CSBLANK}		240	300	360	ns	
GATE DRIVE							
Gate High Level current source	I _{OG_ON}	V _{GATE} = 5V		30		mA	
Gate Rise Time	T _{RISE}	VDD = 10V, CL = 1nF		250	350	ns	
Gate Falling Time	T _{FALL}	VDD = 10V, CL = 1nF		50	100	ns	
Gate Low Level ON-Resistance	R _{ONLO}	I _{SINK} = 30mA		20		Ω	
Gate High Level ON-Resistance	R _{ONHI}	I _{SOURCE} = 30mA		40		Ω	
Gate Voltage	V_{GATE}	VDD = 10V, CL = 1nF		11		V	
Max Gate Voltage	$V_{G.MAX}$	VDD = 45V, Switching			14	٧	
Gate Leakage Current		GATE = 25V, before VDD turn-on			1	μΑ	
Oscillator							
Maximum Switching Fraguency	f	ACT520		130		kHz	
Maximum Switching Frequency	f _{MAX}	ACT520A		90		KI IZ	
Switching Frequency Foldback	f _{MIN}	FB = 2.3V+V _{BE}		$f_{\text{MAX}}/3$		kHz	
Maximum Duty Cycle	D_{MAX}		65	75		%	
Valley Detection							
ZCD Threshold Voltage	VDET _{TH}			100		mV	
Valley Detection Time Window		No valley detected, force turn-on main switch		2.5		μs	
VDET Leakage Current				1		μA	
Protection	•						
CS Short Waiting Time				2.5		μs	
CS Short Detection Threshold				0.1	0.15	V	
CS Open Threshold Voltage				2.5		V	
Abnormal OCP Blanking Time				150		ns	
Line UVLO	I _{VDETUVLO}			60		μA	
Line OVP	I _{VDETOVP}			2.4		mA	
VDET Over Voltage Protection	V _{DETVOOVP}			2.75		V	
VDET Vo Short Threshold	V _{DETVOshort}			0.58		V	

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

ACT520/ACT520A is a high performance peak current mode low-voltage PWM controller IC. The controller includes the most advance features that are required in the adaptor applications up to 30 Watt. Unique fast startup, frequency foldback, QR switching technique, accurate peak current line compensation, idle mode, short winding protection, OCP, OTP, OVP and UVLO are included in the controller.

Startup

VDD is the power supply terminal for the ACT520/ACT520A. During startup, the N-depletion FET will be turned ON. Once VDD reaches VDDON voltage, the ACT520/ACT520A will start switching and the N-depletion FET is turned OFF. To startup with a big capacitive load, a fast startup sequence is implemented in ACT520/ACT520A. To eliminate the initial current stress on the MOSFET, a soft startup sequence is implemented in ACT520/ACT520A.

During startup period, the IC begins to operate with minimum lppk to minimize the switching stresses for the main switch, output diode and transformers. And then, the IC operates at maximum power output to achieve fast rise time. After this, V_{OUT} reaches about 90% V_{OUT} , the IC operates with a 'soft-landing' mode(decrease lppk) to avoid output overshoot.

Constant Voltage (CV) Mode Operation

In constant voltage operation, the ACT520/ACT520A regulates its output voltage through secondary side control circuit. The output voltage information is sensed at FB pin through OPTO coupling. The error signal at FB pin is amplified through TL431 and OPTO circuit. When the secondary output voltage is above regulation, the error amplifier output voltage decreases to reduce the switch current. When the secondary output voltage is below regulation, the error amplifier output voltage increases to ramp up the switch current to bring the secondary output back to regulation. The output regulation voltage is determined by the following relationship:

$$V_{OUTCV} = V_{REF_{-}TL431} \times (1 + \frac{R_{F1}}{R_{F2}})$$
 (1)

where R_{F1} (R15) and R_{F2} (R16) are top and bottom feedback resistor of the TL431.

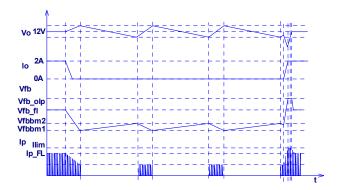
Constant Current (CC) Mode Operation

When the secondary output current reaches a level set by the internal current limiting circuit, the

ACT520/ACT520A enters current limit condition and causes the secondary output voltage to drop. As the output voltage decreases, so does the flyback voltage in a proportional manner. An internal current shaping circuitry adjusts the switching frequency based on the flyback voltage so that the transferred power remains proportional to the output voltage, resulting in a constant secondary side output current profile. The energy transferred to the output during each switching cycle is $\frac{1}{2}(LP \times ILIM^2) \times \eta$, where LP is the transformer primary inductance, ILIM is the primary peak current, and η is the conversion efficiency. From this formula, the constant output current can be derived:

$$I_{OUTCC} = \frac{1}{2} \times L_{p} \times (\frac{V_{CS}}{R_{CS}})^{2} \times (\frac{\eta \times f_{SW}}{V_{OUTCV}})$$
 (2)

where f_{SW} is the switching frequency and V_{OUTCV} is the nominal secondary output voltage.


There is an external resistor, Rline, connected in series between CS pin and RCS. This resistor is used to compensate for the line voltage.

No Load Idle Mode

In no load standby mode, the feedback voltage falls below V_{FBBM2} and reaches V_{FBBM1} , ACT520/ACT520A stop switching. After it stops, as a result of a feedback reaction, the feedback voltage increases. When the feedback voltage reaches V_{FBBM2} , ACT520/ACT520A start switching again. Feedback voltage drops again and output voltage starts to bounds back and forward with very small output ripple. ACT520/ACT520A leaves idle mode when load is added strong enough to pull feedback voltage exceed V_{FBBM2} .

Figure 2: Idle Mode

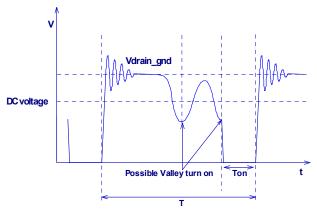
- 6 -

FUNCTIONAL DESCRIPTION CONT'D

Primary Inductor Current Limit Compensation

The ACT520/ACT520A integrates a primary inductor peak current limit compensation circuit to achieve constant current over wide line and wide inductance.

Frequency Foldback


When the load drops to 75% of full load level, ACT520/ACT520A starts to reduce the switching frequency, which is proportional to the load current ,to improve the efficiency of the converter.

ACT520/ACT520A's load adaptive switching frequency enables applications to meet all latest green energy standards. The actual minimum average switching frequency is programmable with output capacitance, feedback circuit and dummy load (while still meeting standby power).

Valley Switching

ACT520/ACT520A employed valley switching from no load to heavy load to reduce switching loss and EMI. In discontinuous mode operation, the resonant voltage between inductance and parasitic capacitance on MOSFET source pin is coupled by auxiliary winding and reflected on VDET pin through feedback network R5, R6. Internally, the VDET pin is connected to an zero-crossing detector to generate the switch turn on signal when the conditions are meet.

Figure 3: Valley Switching

Protection Features

The ACT520/ACT520A provides full protection functions. The following table summarizes all protection functions.

Auto-Restart Operation

ACT520/ACT520A will enter into auto-restart mode when a fault is identified. There is a startup phase in the auto-restart mode. After this startup phase the conditions are checked whether the failure is still present. Normal operation proceeds once the failure mode is removed. Otherwise, new startup phase will be initiated again.

To reduce the power loss during fault mode, the startup delay control is implemented. The startup delay time increases over lines.

PROTECTION FUNCTIONS	FAILURE CONDITION	PROTECTION MODE
V _{DD} Over Voltage	V _{DD} > 44V (4 duty cycle)	Auto Restart
V _{VDET} Over Voltage	V _{VD} > 2.75V or No switching for 4 cycles	Auto Restart
Over Temperature	V _{OTP} < 1.25V	Auto Restart
Short Winding/ Short Diode	V _{CS} > 1.75V	Auto Restart
Over Load/Open Loop (No CC)	$ \begin{aligned} \text{IPK} &= \textbf{I}_{\text{LIMIT}} \text{or} \\ \textbf{V}_{\text{FB}} &= 4 \textbf{V} \text{for} \\ 400 \text{ms} \end{aligned} $	Auto Restart
Output Short Circuit	V _{DET} < 0.58V	Auto Restart
V _{DD} Under Voltage	V _{DD} < 7V	Auto Restart
Line Brown Out	I _{VDETUVLO} < 60μA	Auto Restart

TYPICAL APPLICATION

Design Example

The design example below gives the procedure for rapid charger flyback converter using ACT520. Refer to application circuit Figure 4, the design for a QC2.0 application starts with the following specification:

Input Voltage Range	90VAC - 265VAC, 50/60Hz
Output Power, Po	18W
Output Voltage, V _{OUTCV}	12/9/5V
Full Load Current, IOUTFL	1.5A
Constant Current, I _{OUTCC}	1.5-1.9A
System Efficiency CV, η	0.83

The operation for the circuit shown in Figure 4 is as follows: the rectifier bridge D1-D4 and the capacitor C1/C2 convert the AC line voltage to DC bus voltage. This voltage supplies the primary winding of the transformer T1 and the startup circuit of Q2 and C4 to VDD pin of ACT520. The primary power current path is formed by the transformer's primary winding, Q1, and the current sense resistor R9. The resistors R3, R2, diode D5 and capacitor C3 create a snubber clamping network that protects Q1 from damage due to high voltage spike during Q1's turn off. The network consisting of capacitor C4, diode D6 and resistor R4 provides a VDD supply voltage for ACT520 from the auxiliary winding of the transformer. The resistor R4 is optional, which filters out spikes and noise to makes VDD more stable. C4 is the decoupling capacitor of the supply voltage and energy storage component for startup. During power startup, the current charges C4 through startup mosfet Q2 from the rectified bus voltage. The diode D8 and the capacitor C5/C6 rectify filter the output voltage. The resistor divider consists of R15 and R16 programs the output Since a bridge rectifier and bulk input voltage. capacitors are used, the resulting minimum and maximum DC input voltages can be calculated:

$$V_{INDC_MIN} = \sqrt{2V_{INAC_MIN}^2} \frac{2P_{OUT}(\frac{1}{2f_L} - t_C)}{\eta \times C_{IN}}$$

$$= \sqrt{2 \times 90^2 - \frac{2 \times 18 \times (\frac{1}{2 \times 47} - 3.5 \, ms)}{0.83 \times 30 \, \mu F}} \approx 80 \, V$$
(3)

$$V_{IN (MAX)DC} = \sqrt{2} \times V_{IN (MAX)AC}$$

= $\sqrt{2} \times (265 V_{AC}) = 375 V$ (4)

Where η is the estimated circuit efficiency, f_L is the line frequency, t_C is the estimated rectifier conduction time, C_{IN} is empirically selected to two

15µF electrolytic capacitors.

The maximum duty cycle is set to be 44% at low line voltage 90VAC and the circuit efficiency is estimated to be 83%. Then the maximum average input current is:

$$I_{IN_MAX} = \frac{V_{OUT} \times I_{OUT}}{V_{INDC_MIN} \times \eta}$$

$$= \frac{12 \times 1.5}{80 \times 0.83} = 271 \text{ mA}$$
(5)

The maximum input primary peak current:

$$I_{PPK} = \frac{2 \times L_{IN}}{D_{MAX}} = \frac{2 \times 271}{0.44} = 1.23A$$
 (6)

The primary inductance of the transformer:

$$L_p = \frac{V_{INDC_MIN} D_{max}}{I_{LIM} \times f_s}$$

$$= \frac{80 \times 0.44}{1.23 A \times 110 k} \approx 0.27 \text{ mH}$$
(7)

The maximum primary turns on time:

$$T_{ON_MAX} = L_p \frac{I_{LIM}}{V_{INDC_MIN}}$$

$$= \frac{0.27mH \times 1.23A}{80} = 4.15 \mu s$$
(8)

The ringing periods from primary inductance with mosfet Drain-Source capacitor:

$$T_{RINGING_MAX} = 2\pi \sqrt{L_{p_MAX}C_{DS_MAX}}$$

= $2 \times 3.14 \times \sqrt{0.27 \text{mH} \times (1+7\%) \times 100 \text{PF}} = 1.06 \mu \text{s}$ (9)

Design only an half ringing cycle at maximum load in minimum low line, so secondly reset time:

$$T_{RST} = T_{SW} - T_{ON_MAX} - 0.5T_{RINGING_MAX}$$

= 1/110 kHz - 4.15 \(\mu\sigma\) s - 0.5 \times 1.06 \(\mu\sigma\) s = 4.41 \(\mu\sigma\)

Base on conservation of energy and transformer transform identity, the primary to secondary turns ratio N_P/N_S :

(3)
$$\frac{N_{P}}{N_{S}} = \frac{T_{ON}}{T_{RST}} \times \frac{V_{IN - MIN}}{V_{OUT} + V_{D}}$$
$$= \frac{4.15}{4.41} \times \frac{80}{12 + 0.35} = 6.1$$
 (11)

The auxiliary to secondary turns ratio N_A/N_S:

- 8 -

$$\frac{N_A}{N_S} = \frac{V_{DD} + V_D'}{V_{OUT} + V_D} = \frac{32 + 0.45}{12 + 0.35} = 2.63$$
 (12)

TYPICAL APPLICATION CONT'D

An El16+ core is selected for the transformer. From the manufacture's catalogue recommendation, the gapped core with an effective inductance A_{LE} of 0.234 μ H/T² is selected. The turn of the primary winding is:

$$N_P = \sqrt{\frac{L_P}{A_{LE}}} = \sqrt{\frac{0.27 \, \text{mH}}{0.234 \, \mu \text{H} \, / \, \text{T}^2}} = 34 \, \text{T}$$
 (13)

The turns of secondary and auxiliary winding can be derived accordingly:

$$N_{S} = \frac{N_{s}}{N_{p}} \times N_{p} = \frac{1}{6.1} \times 34 \approx 6T$$
 (14)

$$N_A = \frac{N_A}{N_s} \times N_s = 2.63 \times 6 \approx 16T \tag{15}$$

Determining the value of the current sense resistor (R9) uses the peak current in the design. Since the ACT520 internal current limit is set to 1V, the design of the current sense resistor is given by:

$$R_{CS} = \frac{V_{CS}}{\sqrt{\frac{2 \times I_{OUT_MAX} \times V_{OUT}}{L_P \times F_{SW} \times \eta_{system}}}}$$

$$= \frac{1}{\sqrt{\frac{2 \times 1.6 \times 12}{0.27 \, \text{mH} \times 110 \, \text{kHz} \times 0.83}}} \approx 0.806 \, \Omega$$
(16)

The voltage feedback resistors are selected according to the loccmax and Vo. The design lo_cc max is given by:

$$f_{s} = \frac{N_{p}}{N_{s}} \times \frac{R_{det 1} \times R_{det 2}}{R_{det 1} + R_{det 2}} \times \frac{V_{O} + V_{D}}{L_{p} \times \frac{V_{cs}}{R_{cs}} \times K_{f_{sw}}}$$
(17)

The design Vo is given by:

$$V_o = (1 + \frac{R_{det 1}}{R_{det 2}}) \times \frac{N_s}{N_a} \times V_{det} - V_D$$
 (18)

Where k is IC constant and K=14530, then we can get the value:

$$R_{det 1} = 115 \text{ K}, R_{det 2} = 6.8 \text{ K}$$
 (19)

When selecting the output capacitor, a low ESR electrolytic capacitor is recommended to minimize ripple from the current ripple. The approximate equation for the output capacitance value is given by:

$$C_{OUT} = \frac{I_{OUT}}{f_{SW} \times V_{PIPPIF}} = \frac{1.6}{110k \times 50mV} = 291\mu F$$
 (20)

Two 330µF electrolytic capacitors are used to keep the ripple small.

PCB Layout Guideline

Good PCB layout is critical to have optimal performance. Decoupling capacitor (C4) and feedback resistor (R5/R6) should be placed close to VDD and FB pin respectively. There are two main power path loops. One is formed by C1/C2, primary winding, mosfet transistor and current sense resistor (R9). The other is secondary winding, rectifier D8 and output capacitors (C5/C6). Keep these loop areas as small as possible. Connecting high current ground returns, the input capacitor ground lead, and the ACT520/ACT520A GND pin to a single point (star ground configuration).

Figure 4: Universal VAC Input, 12/9/5V 1.5A rapid Charger

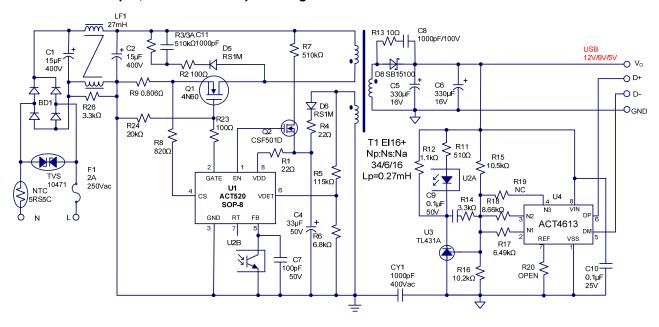
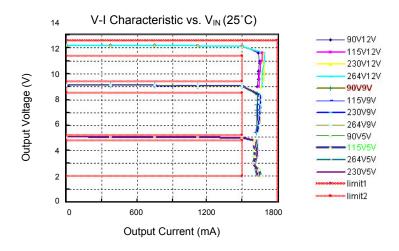
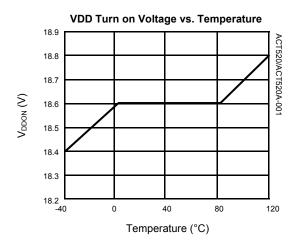
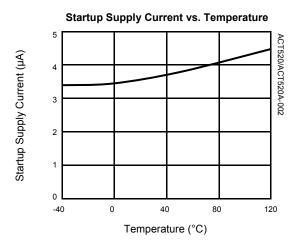
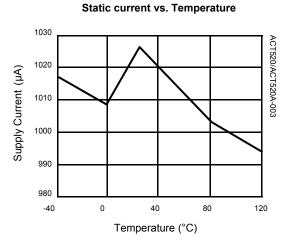
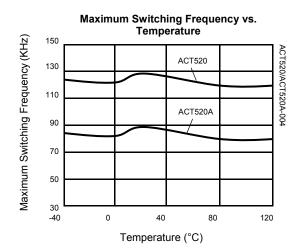



Figure 5:
Output CCCV curve

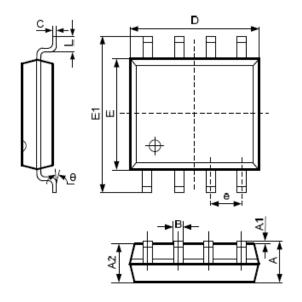

ACT520/ACT520A Rev 0, 05-Jun-15


Table 1: ACT520 18W Rapid Charger Bill of Materials


ITEM	REFERENCE	DESCRIPTION	QTY	MANUFACTURER
1	U1	IC, ACT520SH,SOP-8	1	Active-Semi.
2	U2	OPTO,EL3H7D,CTR:300-600%,4PIN SMD	1	EVERLIGHT
3	U3	TL431A, Ref=2.5V,1%,SOT23-3	1	TI
4	U4	IC, ACT4613SH201-T,SOP-8	1	Active-Semi.
5	C1,2	Capacitor, Electrolytic,15uF/400V, 8x14mm	2	RUBYCON
6	C11,C8	Capacitor, Ceramic, 1000pF/500V, 0805,SMD	2	POE
7	C4	Capacitor, Ceramic,33uF/50V, 1206	1	POE
8	C5,C6	Capacitor, Solid, 330uF/16V, 8x12mm	2	KSC
9	C9,10	Capacitor, Ceramic, 0.1uF/50V, 0805,SMD	2	POE
10	C7	Capacitor, Ceramic, 100pF/25V, 0805,SMD	1	POE
11	CY1	Safety Y1,Capacitor,1000pF/400V,Dip	1	UXT
12	BD1	BP06,1000V/1.0A,SDIP	1	PANJIT
13	D5,D6	Fast Recovery Rectifier, RS1M,1000V/1.0A, RMA	2	PANJIT
14	D8	Diode, Schottky, 100V/15A, TO-247AB	1	Diodes
15	LF1	CM Inductor, 27mH, EE8.3,D=0.2mm,90T	1	APY(安品源科技)
16	Q1	N-Mosfet Transistor, 4N60,TO-220	1	AUK
17	Q2	N-Mosfet, Depletion mode,CSF501D,20mA/600V,SOT23	1	HuiJing
18	PCB1	PCB, L*W*T=39x39x1.0mm,FR-4,Rev:A	1	Jintong
19	F1	Fuse,2A/250V	1	TY-OHM
20	R1,4	Chip Resistor, 22 ohm, 0805, 5%	2	TY-OHM
21	R2,23	Chip Resistor, 100 ohm, 0805, 5%	2	TY-OHM
22	R3,3A,7	Carbon Resistor, 510K ohm, 1206, 5%	3	TY-OHM
23	R5	Chip Resistor, 115K ohm, 0805,1%	1	TY-OHM
24	R6	Chip Resistor, 6.8K ohm, 0805, 1%	1	TY-OHM
25	R8	Chip Resistor, 820 ohm, 0805, 5%	1	TY-OHM
26	R9	Chip Resistor, 0.806 ohm,1206 , 1%	1	TY-OHM
27	R11	Chip Resistor, 510 ohm, 0805, 5%	1	TY-OHM
28	R12	Chip Resistor, 1.1k ohm, 0805,5%	1	TY-OHM
29	R14,26	Chip Resistor, 3.3k ohm, 0805, 5%	2	TY-OHM
30	R15	Chip Resistor, 10.5K ohm, 0805, 1%	1	TY-OHM
31	R16	Chip Resistor, 10.2K ohm, 0805, 1%	1	TY-OHM
32	R17	Chip Resistor, 6.49K ohm, 0805, 1%	1	TY-OHM
33	R18	Chip Resistor, 8.66K ohm, 0805, 1%	1	TY-OHM
34	R24	Chip Resistor, 20k ohm, 0805, 5%	1	TY-OHM
35	T1	Transformer, Lp=0.27mH, El16+ 1		APY(安品源科技)
36	NR1	Thermal resistor, SC053	1	TY-OHM
37	VR1	10D471	1	TY-OHM
38	USB1	Small standard USB connector.	1	TY-OHM
39	R19,20	NC		



TYPICAL PERFORMANCE CHARACTERISTICS



PACKAGE OUTLINE

SOP-8 PACKAGE OUTLINE AND DIMENSIONS

SYMBOL	DIMENSION IN MILLIMETERS		DIMENSION IN INCHES		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
В	0.330	0.510	0.013	0.020	
С	0.190	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
е	1.270 TYP		0.050	TYP	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Note: Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per end. Dimension E1 does not include flash or protrusion.

Active-Semi, Inc. reserves the right to modify the circuitry or specifications without notice. Users should evaluate each product to make sure that it is suitable for their applications. Active-Semi products are not intended or authorized for use as critical components in life-support devices or systems. Active-Semi, Inc. does not assume any liability arising out of the use of any product or circuit described in this datasheet, nor does it convey any patent license.

Active-Semi and its logo are trademarks of Active-Semi, Inc. For more information on this and other products, contact sales@active-semi.com or visit http://www.active-semi.com.

◆ active-semi is a registered trademark of Active-Semi.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.