

SystemLens Driver Series for Digital Still Cameras/Single-lens Reflex Cameras

7ch System Lens Drivers for Rolling Reflex Cameras Digital Still Cameras/Single-lens Reflex Cameras

BD6757KN, BD6889GU

No.09014EAT04

Description

BD6757KN and BD6889GU motor drivers provide 6 Full-ON Drive H-bridge channels and 1 Linear Constant-Current Drive H-bridge channel. Stepping motors can be used for the auto focus, zoom, and iris, making it possible to configure a sophisticated, high precision lens drive system. ROHM's motor drivers are both compact, multifunctional, and enable advanced features such as lens barrier and anti shock.

Features

- 1) Subminiature grid array package: $5.0 \times 5.0 \times 1.2 \text{mm}^3$ (BD6889GU)
- 2) DMOS output allowing a range power supply: 2.0V to 8.0V (BD6757KN)
- 3) Low ON-Resistance Power MOS output:
 - Full-ON Drive block with 1.3Ω Typ. and Linear Constant-Current Drive block with 0.9Ω Typ. (BD6757KN, BD6889GU)
- 4) Built-in two digital NPN transistor circuits for photo-interrupter waveform shaping: Input-dividing type with output pull-up resistance (BD6757KN)
- 5) Built-in four digital NPN transistor circuits for photo-interrupter waveform shaping: Input-dividing type with output pull-up resistance (BD6889GU)
- 6) Built-in four digital PNP transistor circuits for photo-interrupter waveform shaping: Input-dividing type with output pull-down resistance (BD6889GU)
- 7) Built-in voltage-regulator circuit for photo-interrupter (BD6889GU)
- 8) Built-in two-step output current setting switch for the Linear Constant-Current Drive block (BD6757KN)
- 9) 0.9V±2% high-precision reference voltage output
- 10) Constant-Current Drive block features phase compensation capacitor-free design
- 11) Built-in ±3% high-precision Linear Constant-Current Driver
- 12) Built-in charge pump circuit for the DMOS gate voltage drive(BD6757KN)
- 13) UVLO (Under Voltage Lockout Protection) function
- 14) Built-in TSD (Thermal Shut Down) circuit
- 15) Standby current consumption: 0µA (Typ.)

Absolute Maximum Ratings

Parameter	Cymphol	Lir	Unit	
Parameter	Symbol	BD6757KN	BD6889GU	Unit
Power supply voltage	VCC	-0.5 to +7.0	-0.5 to +7.0	V
Motor power supply voltage	VM	-0.5 to +10.0	-0.5 to +7.0	V
Charge pump voltage	VG	15.0	None	V
Control input voltage	VIN	-0.5 to VCC+0.5	-0.5 to VCC+0.5	V
Power dissipation	Pd	950 ^{**1}	980 ^{**2}	mW
Operating temperature range	Topr	-25 to +75	-25 to +85	°C
Junction temperature	Tjmax	+150	+150	°C
Storage temperature range	Tstg	-55 to +150	-55 to +150	°C
H-bridge output current	lout	-800 to +800 ^{**3}	-800 to +800 ^{**3}	mA/ch

^{%1} Reduced by 7.6mW/°C over 25°C, when mounted on a glass epoxy board (70mm × 70mm × 1.6mm).

●Operating Conditions (Ta=-25 to +75°C(BD6757KN), -25 to +85°C(BD6889GU))

Darameter	Cumbal	Lir	Lloit	
Parameter	Symbol	BD6757KN	BD6889GU	Unit
Power supply voltage	VCC	2.5 to 5.5	2.5 to 5.7	V
Motor power supply voltage	VM	2.5 to 8.0	2.5 to 5.7	V
Control input voltage	VIN	0 to VCC	0 to VCC	V
H-bridge output current	lout	-500 to +500 ^{**4}	-500 to +500 ^{**4}	mA/ch

¾4 Must not exceed Pd or ASO.

^{%2} Reduced by 7.84mW/°C over 25°C, when mounted on a glass epoxy board (70mm × 70mm × 1.6mm).

^{*3} Must not exceed Pd, ASO, or Tjmax of 150°C.

Electrical Characteristics

1) BD6757KN Electrical Characteristics (Unless otherwise specified, Ta=25°C, VCC=3.0V, VM=5.0V)

1) BD6757KN Electrical Cha Parameter	Symbol	Min.	Limit Typ.	Max.	Unit	Conditions
Overall		IVIII I.	тур.	IVIAX.		<u> </u>
Circuit current during standby operation	ICCST	-	0	10	μА	PS=0V
Circuit current	ICC	-	1.0	3.0	mA	PS=VCC with no signal
Control input (IN=PS, IN1A	to IN7B, an	d LIMSW)				
High level input voltage	VINH	2.0	-	-	V	
Low level input voltage	VINL	-	-	0.7	V	
High level input current	IINH	15	30	60	μΑ	VINH=3V
Low level input current	IINL	-1	0	-	μΑ	VINL=0V
Pull-down resistor	RIN	50	100	200	kΩ	
Charge pump	l					
Charge pump voltage	VCP	10	11	-	V	
UVLO	·					
UVLO voltage	VUVLO	1.6	-	2.4	V	
Full-ON Drive block (ch1 to	ch6)					
Output ON-Resistance	RON	-	1.3	1.6	Ω	Io=±400mA on high and low sides in total
Pulse input response	tp	100	-	-	ns	With an input pulse with of 200ns
Linear Constant-Current Dri	ive block (cl	า7)				
Output ON-Resistance	RON	-	0.9	1.1	Ω	lo=±400mA on high and low sides in total
VREF output voltage	VREF	88.0	0.90	0.92	V	lout=0~1mA
Output limit current 1	IOL1	388	400	412	mA	RNF=0.5 Ω with a load of 10 Ω VLIMH(L)=0.2V, LIMSW=0V(3V)
Output limit current 2	IOL2	285	300	315	mA	RNF=0.5Ω with a load of 10Ω VLIMH(L)=0.15V, LIMSW=0V(3V) *5
Output limit current 3	IOL3	190	200	210	mA	RNF=0.5 Ω with a load of 10 Ω VLIMH(L)=0.1V, LIMSW=0V(3V)** ⁵
Digital NPN transistor block	for photo-ir	nterrupter w	aveform sl	naping	•	
Input current	ISIH	-	-	0.1	mA	SIx=3V
Low level output voltage	VSOL	-	0.1	0.25	V	SIx=3V, ISO=0.5mA
Input dividing resistance	RSIL	70	100	130	kΩ	
Output pull-up resistance	RSOH	5	10	20	kΩ	
Input dividing resistance comparison 35 Design target value (Not all ship	-	0.8	1.0	1.2	-	Division resistance comparison between SIx and GND ^{*5}

^{%5} Design target value (Not all shipped devices are fully tested.)

2) BD6889GU Electrical Characteristics (Unless otherwise specified, Ta=25°C, VCC=3.0V, VM=5.0V)

2) BD6889GU Electrical Cha		(Uniess oth	erwise spe Limit	есіпеа, та=		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Overall						
Circuit current during standby operation	ICCST	-	0	10	μΑ	PS=0V
Circuit current	ICC	-	1.5	3.0	mA	PS=VCC with no signal
Control input (IN=PS, IN1A t	o IN7B, SW	/, DSW, DS	EL1, and D	SEL2)		
High level input voltage	VINH	2.0	-	-	V	
Low level input voltage	VINL	-	-	0.7	V	
High level input current	IINH	15	30	60	μA	VINH=3V
Low level input current	IINL	-1	0	-	μA	VINL=0V
Pull-down resistor	RIN	50	100	200	kΩ	
UVLO						
UVLO voltage	VUVLO	1.6	-	2.4	V	
Full-ON Drive block (ch1 to	ch6)					
Output ON-Resistance	RON	-	1.3	1.6	Ω	lo=±400mA on high and low sides in total
Pulse input response	tp	100	-	-	ns	With an input pulse with of 200ns
Linear Constant-Current Driv	ve block (ch	17)				
Output ON-Resistance	RON	-	0.9	1.1	Ω	lo=±400mA on high and low sides in total
VREF output voltage	VREF	0.88	0.90	0.92	V	lout=0~1mA
Output limit current 1	IOL1	388	400	412	mA	RNF=0.5 Ω with a load of 10 Ω , VLIM=0.2V
Output limit current 2	IOL2	285	300	315	mA	RNF=0.5 Ω with a load of 10 Ω , VLIM=0.15V
Output limit current 3	IOL3	190	200	210	mA	RNF=0.5 Ω with a load of 10 Ω , VLIM=0.1V
Digital NPN transistor block	for photo-in	terrupter w	aveform sh	aping		
Input current	ISIH	-	-	0.1	mA	SIx=3V
Low level output voltage	VSOL	-	0.1	0.25	V	SIx=3V, ISO=0.5mA
Input dividing resistance	RSIN	70	100	130	kΩ	
Output pull-up resistance	RSOH	23	33	43	kΩ	
Input dividing resistance comparison	-	0.8	1.0	1.2	-	Division resistance comparison between SIx and GND ^{*6}
Digital PNP transistor block	for photo-in	terrupter wa	aveform sh	aping		
Input current	ISIL	-0.1	-	-	mA	SIx=0V
High level output voltage	VSOH	VCC-0.25	VCC-0.1	-	V	SIx=0V, ISO=-0.5mA
Input dividing resistance	RSIP	70	100	130	kΩ	
Output pull-down resistance	RSOL	23	33	43	kΩ	
Input dividing resistance comparison	-	0.8	1.0	1.2	-	Division resistance comparison between SIx and VCC**6
Voltage-regulator for photo-i	nterrupter				1	
High level output voltage	VREGH	VCC-0.25	VCC-0.2	-	V	IREG=100mA
Output ON-Resistance	RONREG	-	2	2.5	Ω	IREG=100mA
Output leak current	ILPI	-	0	1	μA	SW=VCC

^{%6} Design target value (Not all shipped devices are fully tested.)

Electrical Characteristic Diagrams

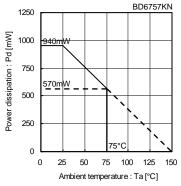


Fig.1 Power Dissipation Reduction

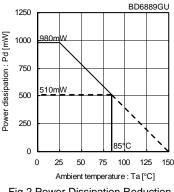


Fig.2 Power Dissipation Reduction

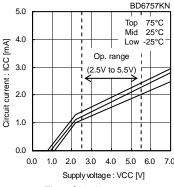


Fig.3 Circuit current

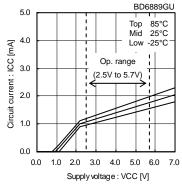


Fig.4 Circuit current

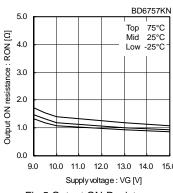


Fig.5 Output ON-Resistance (Full-ON Drive block)

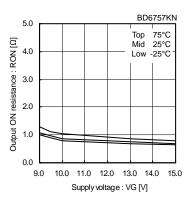


Fig.6 Output ON-Resistance (Linear Constant-Current Drive block)

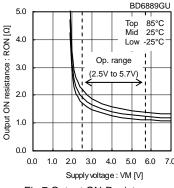


Fig.7 Output ON-Resistance (Full-ON Drive block)

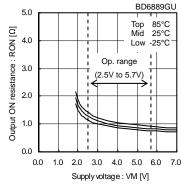


Fig.8 Output ON-Resistance (Linear Constant-Current Drive block)

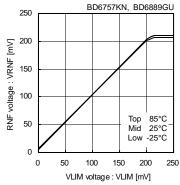


Fig.9 Output limit voltage $(RNF=0.5\Omega)$

●Pin arrangement and Pin Function

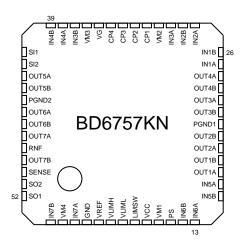


Fig.10 BD6757KN Pin Arrangement (Top View) UQFN52 Package

BD6757KN Pin Function Table

No.	Pin Name	Function	No.	Pin Name	Function
1	IN7B	Control input pin ch7 B	27	IN2A	Control input pin ch2 A
2	VM4	Motor power supply pin ch7	28	IN2B	Control input pin ch2 B
3	IN7A	Control input pin ch7 A	29	IN3A	Control input pin ch3 A
4	GND	Ground Pin	30	VM2	Motor power supply pin ch3 and ch4
5	VREF	Reference voltage output pin	31	CP1	Charge pump capacitor connection pin 1
6	VLIMH	Output current setting pin 1 ch7	32	CP2	Charge pump capacitor connection pin 2
7	VLIML	Output current setting pin 2 ch7	33	CP3	Charge pump capacitor connection pin 3
8	LIMSW	Output current setting selection pin ch7	34	CP4	Charge pump capacitor connection pin 4
9	VCC	Power supply pin	35	VG	Charge pump output pin
10	VM1	Motor power supply pin ch1 and ch2	36	VM3	Motor power supply pin ch5 and ch6
11	PS	Power-saving pin	37	IN3B	Control input pin ch3 B
12	IN6B	Control input pin ch6 B	38	IN4A	Control input pin ch4 A
13	IN6A	Control input pin ch6 A	39	IN4B	Control input pin ch4 B
14	IN5B	Control input pin ch5 B	40	SI1	Digital transistor input pin 1
15	IN5A	Control input pin ch5 A	41	SI2	Digital transistor input pin 2
16	OUT1A	H-bridge output pin ch1 A	42	OUT5A	H-bridge output pin ch5 A
17	OUT1B	H-bridge output pin ch1 B	43	OUT5B	H-bridge output pin ch5 B
18	OUT2A	H-bridge output pin ch2 A	44	PGND2	Motor ground pin ch5 and ch6
19	OUT2B	H-bridge output pin ch2 B	45	OUT6A	H-bridge output pin ch6 A
20	PGND1	Motor ground pin ch1 to ch4	46	OUT6B	H-bridge output pin ch6 B
21	OUT3B	H-bridge output pin ch3 B	47	OUT7A	H-bridge output pin ch7 A
22	OUT3A	H-bridge output pin ch3 A	48	RNF	Resistance connection pin for output current detection ch7
23	OUT4B	H-bridge output pin ch4 B	49	OUT7B	H-bridge output pin ch7 B
24	OUT4A	H-bridge output pin ch4 A	50	SENSE	Output current detection pin ch7
25	IN1A	Control input pin ch1 A	51	SO2	Digital transistor output pin 2
26	IN1B	Control input pin ch1 B	52	SO1	Digital transistor output pin 1

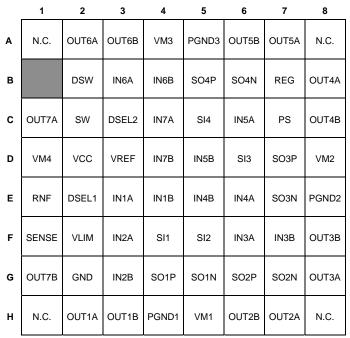


Fig.11 BD6889GU Pin Arrangement (Top View) VBGA063T050 Package

BD6889GU Pin Function Table

No.	Pin Name	Function	No.	Pin Name	Function
A1	N.C.	-	E1	RNF	Resistance connection pin for output current detection ch7
A2	OUT6A	H-bridge output pin ch6 A	E2	DSEL1	Selection pin for transistor output 1
A3	OUT6B	H-bridge output pin ch6 B	E3	IN1A	Control input pin ch1 A
A4	VM3	Motor power supply pin ch5 and ch6	E4	IN1B	Control input pin ch1 B
A5	PGND3	Motor ground pin ch5 and ch6	E5	IN4B	Control input pin ch4 B
A6	OUT5B	H-bridge output pin ch5 B	E6	IN4A	Control input pin ch4 A
A7	OUT5A	H-bridge output pin ch5 A	E7	SO3N	NPN transistor output pin 3
A8	N.C.	-	E8	PGND2	Motor ground pin ch3 and ch4
B1			F1	SENSE	Output current detection pin ch7
B2	DSW	Enable input pin for transistor	F2	VLIM	Output current setting ch7
В3	IN6A	Control input pin ch6 A	F3	IN2A	Control input pin ch2 A
B4	IN6B	Control input pin ch6 B	F4	SI1	Digital transistor input pin 1
B5	SO4P	PNP transistor output pin 4	F5	SI2	Digital transistor input pin 2
В6	SO4N	NPN transistor output pin 4	F6	IN3A	Control input pin ch3 A
B7	REG	Regulator output pin for PI	F7	IN3B	Control input pin ch3 B
B8	OUT4A	H-bridge output pin ch4 A	F8	OUT3B	H-bridge output pin ch3 B
C1	OUT7A	H-bridge output pin ch7 A	G1	OUT7B	H-bridge output pin ch7 B
C2	SW	Regulator input pin for PI	G2	GND	Ground pin
C3	DSEL2	Selection pin for transistor output 2	G3	IN2B	Control input pin ch2 B
C4	IN7A	Control input pin ch7 A	G4	SO1P	PNP transistor output pin 1
C5	SI4	Digital transistor input pin 4	G5	SO1N	NPN transistor output pin 1
C6	IN5A	Control input pin ch5 A	G6	SO2P	PNP transistor output pin 2
C7	PS	Power-saving pin	G7	SO2N	NPN transistor output pin 2
C8	OUT4B	H-bridge output pin ch4 B	G8	OUT3A	H-bridge output pin ch3 A
D1	VM4	Motor power supply pin ch7	H1	N.C.	-
D2	VCC	Power supply pin	H2	OUT1A	H-bridge output pin ch1 A
D3	VREF	Reference voltage output pin	НЗ	OUT1B	H-bridge output pin ch1 B
D4	IN7B	Control input pin ch7 B	H4	PGND1	Motor ground pin ch1 and ch2
D5	IN5B	Control input pin ch5 B	H5	VM1	Motor power supply pin ch1 and ch2
D6	SI3	Digital transistor input pin 3	H6	OUT2B	H-bridge output pin ch2 B
D7	SO3P	PNP transistor output pin 3	H7	OUT2A	H-bridge output pin ch2 A
D8	VM2	Motor power supply pin ch3 and ch4	H8	N.C.	-

Application Circuit Diagram

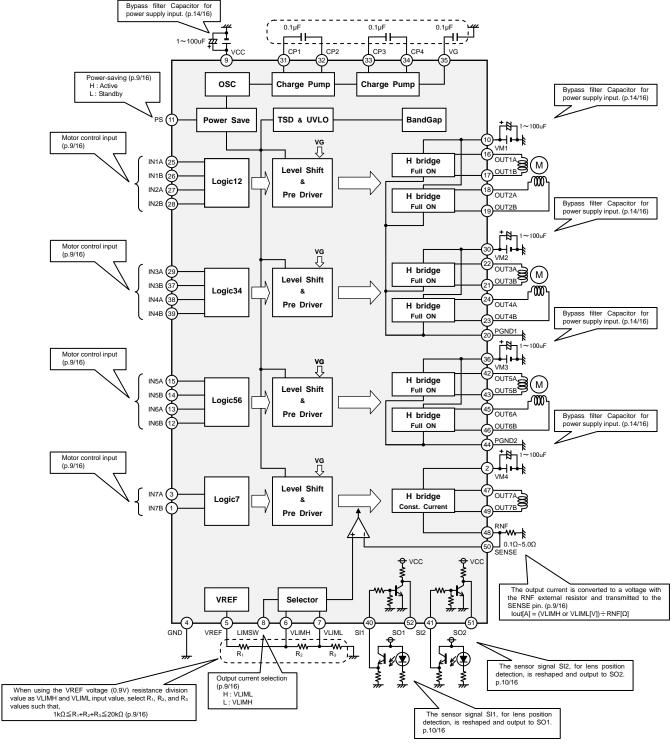


Fig.12 BD6757KN Application Circuit Diagram

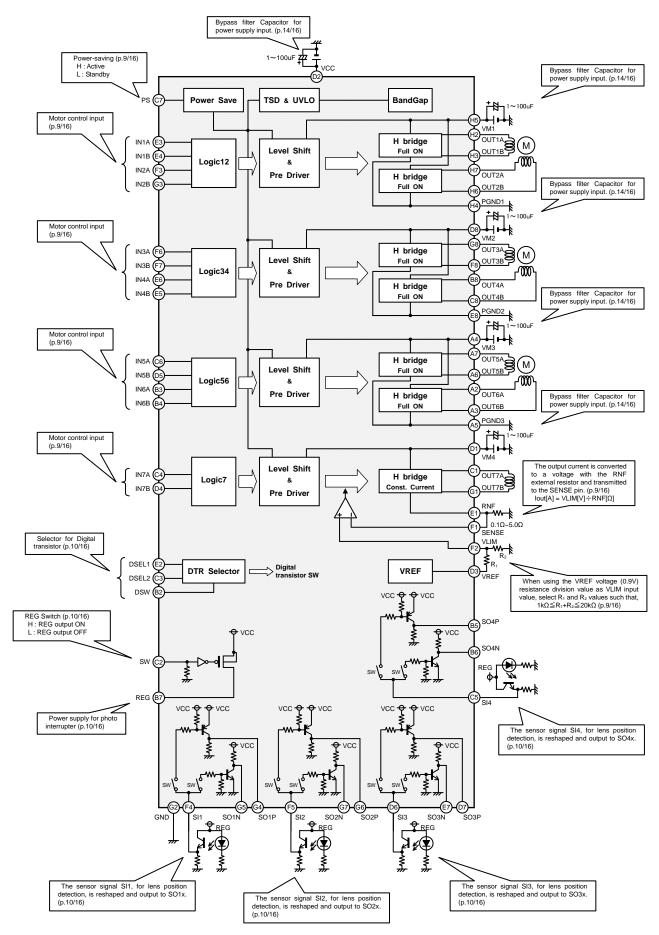


Fig.13 BD6889GU Application Circuit Diagram

• Function Explanation

1) Power-saving function

When Low-level voltage is applied to PS pin, the IC will be turned off internally and the circuit current will be 0µA (Typ.). During operating mode, PS pin should be High-level. (See the Electrical Characteristics; p.2/16 and p.3/16)

2) Motor Control input

(1) INxA and INxB pins

These pins are used to program and control the motor drive modes. The Full-ON drivers and the Linear Constant-Current driver use IN/IN and EN/IN input modes, respectively. (See the Electrical Characteristics; p.2/16 and p.3/16, and I/O Truth Table; p.10/16)

3) H-bridge

The 7-channel H-bridges can be controlled independently. For this reason, it is possible to drive the H-bridges simultaneously, as long as the package thermal tolerances are not exceeded.

The H-bridge output transistors of the BD6757KN and BD6889GU consist of Power DMOS, with the charge pump step-up power supply VG, and Power CMOS, with the motor power supply VM, respectively. The total H-bridge ON-Resistance on the high and low sides varies with the VG and VM voltages, respectively. The system must be designed so that the maximum H-bridge current for each channel is 800mA or below. (See the Operating Conditions; p.1/16)

- 4) Drive system of Linear Constant-Current H-bridge (BD6757KN: ch7 and BD6889GU: ch7) BD6757KN (ch7) and BD6889GU (ch7) enable Linear Constant-Current Driving.
 - (1) Reference voltage output (with a tolerance of ±2%)

The VREF pin outputs 0.9V, based on the internal reference voltage. The output current of the Constant-Current Drive block is controllable by connecting external resistance to the VREF pin of the IC and applying a voltage divided by the resistor to the output current setting pins. (BD6757KN: VLIMH and VLIML pins, BD6889GU: VLIM pin) It is recommended to set the external resistance to $1k\Omega$ or above in consideration of the current capacity of the VREF pin, and $20k\Omega$ or below in order to minimize the fluctuation of the set value caused by the base current of the internal transistor of the IC.

(2) Output current settings and setting changes (BD6757KN)

When the Low-level control voltage is applied to the LIMSW pin, the value on the VLIMH pin will be used as an output current set value to control the output current. When the High-level control voltage is applied to the LIMSW pin, the value on the VLIML pin will be used as an output current set value to control the output current. (See the Electrical Characteristics; P.2/16)

(3) Output current detection and current settings

By connecting external resistor $(0.1\Omega \text{ to } 5.0\Omega)$ to the RNF pin of the IC, the motor drive current will be converted into voltage in order to be detected. The output current is kept constant by shorting the RNF and SENSE pins and comparing the voltage with the VLIMH or VLIML voltage (VLIM voltage in the case of the BD6889GU). To perform output current settings more precisely, trim the external RNF resistance if needed, and supply a precise voltage externally to the VLIMH or VLIML pin of the IC (VLIM pin in the case of the BD6889GU). In that case, open the VREF pin.

$$Output \ current \ value \ Iout[A] = \begin{cases} \frac{VLIMH[V] \quad or \quad VLIML[V]}{RNF[\Omega]} & Select \ VLIML \ when \ LIMSW \ is \ Low-level} \\ \frac{VLIM[V]}{RNF[\Omega]} & (BD6889GU) \end{cases}$$

$$(BD6757KN) \dots (1)$$

The output current is $400\text{mA}\pm3\%$ if 0.2V is applied to the VLIMH or VLIML pin (VLIM pin in the case of the BD6889GU) and a 0.5Ω resistor is connected externally to the RNF pin.

If the VLIMH and VLIML pins (VLIM pin in the case of the BD6889GU) are shorted to the VCC pin (or the same voltage level as the VCC is applied) and the SENSE and RNF pins are shorted to the ground, this channel can be used as a Full-ON Drive H-bridge like the other six channels.

5) Charge pump (BD6757KN)

Each output H-bridge of the BD6757KN on the high and low sides consists of Nch DMOS. Therefore, the gate voltage VG should be higher than the VM voltage to drive the Nch DMOS on the high side.

The BD6757KN has a built-in charge pump circuit that generates VG voltage by connecting an external capacitor $(0.01 \mu F)$ to $0.1 \mu F$).

If a 0.1µF capacitor is connected between: CP1 and CP2, CP3 and CP4, VG and GND

Then, VG pin output voltage will be: $VM1 + (VCC \times 2)$

If a 0.1µF capacitor is connected between: CP1 and CP2, VG and GND

CP4 and VG pins are shorted, and CP3 pin is open

Then, VG pin output voltage will be: VM1 + VCC

The VM1 to VM4 respectively can be set to voltages different to one another. In order to ensure better performance, the voltage differential between VG and VM must be 4.5V or higher, and the VG voltage must not exceed the absolute maximum rating of 15V.

- 6) Digital transistor for photo-interrupter waveform shaping (BD6757KN and BD6889GU)
 The BD6757KN, and BD6889GU build in two digital NPN transistor circuits, and eight digital NPN and PNP transistor circuits for photo-interrupter waveform shaping, respectively. The sensor signal, for lens position detection, is reshaped and output to the DSP. The input (SIx pin) is a dividing resistance type, and provided with NPN output (SOxN pin) pull-up resistor and PNP output (SOxP pin) pull-down resistor. This is so that VCC, and GND voltage will be NPN output, and PNP output, respectively, when the input is open. In the case of the BD6889GU, DSW, DSEL1, and DSEL2 pins can control the switching of NPN and PNP transistor. The inputs are provided with input pull-down resistor. This is so that GND voltage will be input, when these three pins are open. (See I/O Truth Table; P.12/16)
- 7) Voltage-regulator for photo-interrupter (BD6889GU)
 The BD6889GU builds in voltage-regulator circuits for photo-interrupter. When High-level voltage is applied to SW pin, the REG pin will be turned on. The input is provided with input pull-down resistor. This is so that REG pin will be turn off, when the input is open.

●I/O Truth Table

BD6757KN and BD6889GU Full-ON Driver ch1 to ch6 I/O Truth Table

	2010114141422200000141101121101011110101101101101101101101101									
Drive mede	INF	TU	OUT	Output made						
Drive mode	INxA	INxB	OUTxA	OUTxB	Output mode					
	L	L	Z	Z	Standby					
INI/INI	Н	L	Н	L	CW					
IN/IN L	L	Н	L	Н	CCW					
	Н	Н	L	L	Brake					

L: Low, H: High, X: Don't care, Z: High impedance

At CW, current flows from OUTA to OUTB. At CCW, current flows from OUTB to OUTA.

BD6757KN and BD6889GU Linear Constant-Current Driver ch7 I/O Truth Table

Drive mode	INF	TUT	OUT	Output made	
Drive mode	IN7A	IN7B	OUT7A	OUT7B	Output mode
	L	X	Z	Z	Standby
EN/IN	Н	L	Н	L	CW
	Н	Н	L	Н	CCW

L: Low, H: High, X: Don't care, Z: High impedance

At CW, current flows from OUTA to OUTB. At CCW, current flows from OUTB to OUTA.

BD6889GU Digital Transistor I/O Truth Table

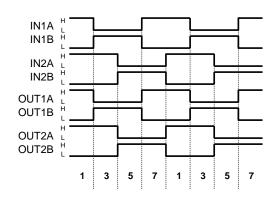
		INPUT			OUTPUT						
	DSW	DSEL1	DSEL2	PNP1	NPN1	PNP2	NPN2	PNP3	NPN3	PNP4	NPN4
	L	Χ	Χ	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	Н	L	L	OFF	ON	OFF	ON	OFF	ON	OFF	ON
Logic	Н	L	Н	OFF	ON	OFF	ON	ON	OFF	ON	OFF
	Н	Н	L	ON	OFF	ON	OFF	OFF	ON	OFF	ON
	Н	Н	Н	ON	OFF	ON	OFF	ON	OFF	ON	OFF

L: Low, H: High, X: Don't care, OFF: GND (in the case of PNP), VCC (in the case of NPN)

PNPx output to SOxP terminal, NPNx output to SOxN terminal

In the case of drive the Stepping Motor using ch1 and ch2 IN/IN input mode of the BD6757KN and BD6889GU 2 Phases

	INF	PUT			OUT	Output mode		
IN1A	IN1B	IN2A	IN2B	OUT1A	OUT1B	OUT2A	OUT2B	ch1 / ch2
L	L	L	L	Z	Z	Z	Z	Stand by
Н	L	Н	L	Н	L	Н	L	1. CW / CW
L	Н	Н	L	L	Н	Н	L	3. CCW / CW
L	Н	L	Н	L	Н	L	Н	5. CCW / CCW
Н	L	L	Н	Н	L	L	Н	7. CW / CCW


L: Low, H: High, X: Don't care, Z: High impedance
At CW, current flows from OUTA to OUTB. At CCW, current flows from OUTB to OUTA.

1-2 Phases

	INF	rUT			OUT		Output mode	
IN1A	IN1B	IN2A	IN2B	OUT1A	OUT1B	OUT2A	OUT2B	ch1 / ch2
L	L	L	L	Z	Z	Z	Z	Stand by
Н	L	Η	L	Н	L	Н	L	1. CW / CW
L	L	Η	L	Z	Z	Н	L	2. Z / CW
L	Н	Н	L	L	Н	Н	L	3. CCW / CW
L	Н	L	L	L	Н	Z	Z	4. CCW / Z
L	Н	L	Н	L	Н	L	Η	5. CCW / CCW
L	L	L	Н	Z	Z	L	Н	6. Z / CCW
Н	L	L	Н	Н	L	L	Η	7. CW / CCW
Н	L	L	L	Н	L	Z	Z	8. CW / Z

L: Low, H: High, X: Don't care, Z: High impedance

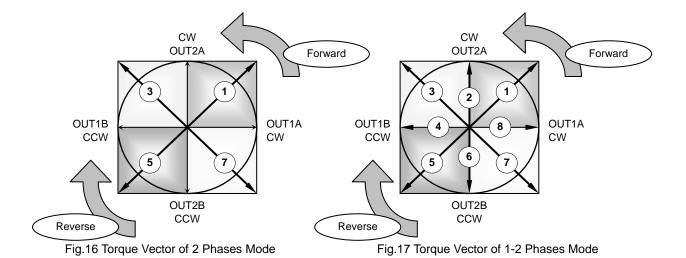
At CW, current flows from OUTA to OUTB. At CCW, current flows from OUTB to OUTA.

OUT1B OUT2A OUT2B 2 3 5 6 : High impedance

IN1A

IN1B

IN2A


IN2B

OUT1A

Fig.14 2 Phases Timing Sequence with IN/IN Input

Fig.15 1-2 Phases Timing Sequence with IN/IN Input

7 8

●I/O Circuit Diagram

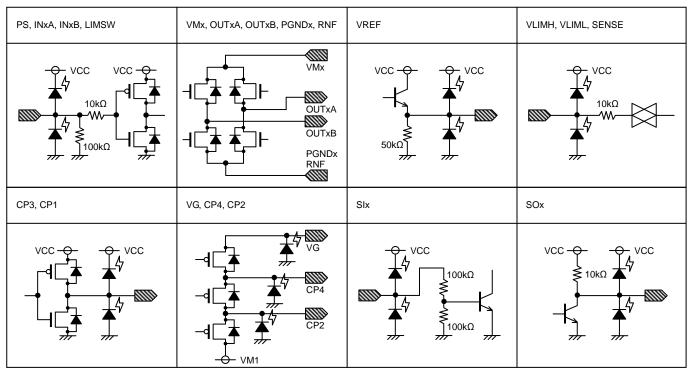


Fig.18 BD6757KN I/O Circuit Diagram (Resistance values are typical ones)

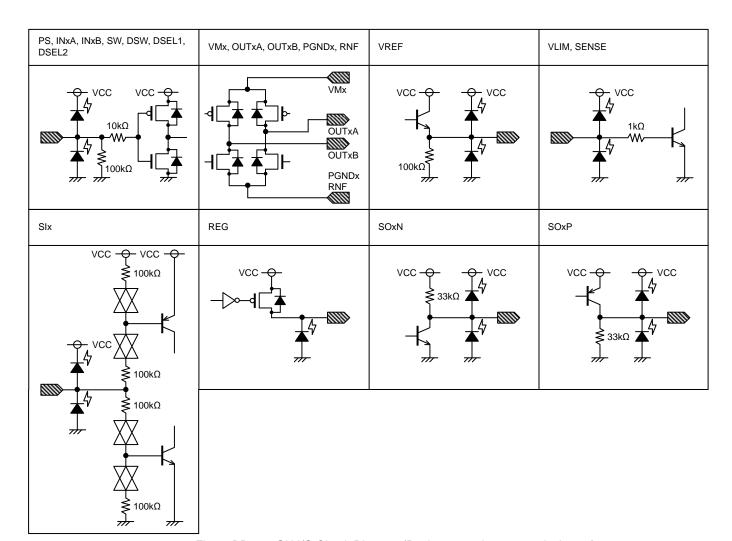


Fig.19 BD6889GU I/O Circuit Diagram (Resistance values are typical ones)

Heat Dissipation

1) Power Consumption

The power consumption of the IC (Pw) is expressed by the following formula.

 $Pw[W] = VCC[V] \times ICC[A] + Iout^2[A^2] \times RON[\Omega]$ (Full-ON Drive block and PWM Constant-Current Drive block) = VCC[V] × ICC[A] + Iout[A] × (VM[V] - VRNF[V] - Iout[A] × Rm[Ω]) (Linear Constant-Current Drive block) · · · · · · (3)

Pw: Power consumption of the IC

VCC: Power supply voltage on the VCC pin

ICC: Current consumption of the VCC pin

lout: Current consumption of the VM pin on the drive channel

RON: Total ON-Resistance on the high and low drive channel

VM: Power supply voltage on the VM pin on the drive channel

VRNF: Voltage on the RNF pin on the drive channel

Rm: Resistance on the motor on the drive channel

While in operation, check that the junction temperature (Tjmax) of the IC will not be in excess of 150°C, in consideration of formula (2), formula (3), the package power (Pd), and ambient temperature (Ta). If the junction temperature exceeds 150°C, the IC will not work as a properly. This can cause problems, such as parasitic oscillation and temperature leakage. If the IC is used under such conditions, it will result in characteristic degradation and eventually fail. Be sure to keep the junction temperature lower than 150°C.

Measurement Method of Junction Temperature

The junction temperature can be measured by the following method.

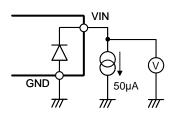


Fig.20 Tjmax Measurement Circuit Diagram

By using the diode temperature characteristics of the control input pin, on a channel that is not driven, the junction temperature X can be measured in a pseudo manner.

The junction temperature X[°C] under certain conditions is expressed by formula (4), provided that the temperature characteristic of the diode is -2 mV/°C

$$X[^{\circ}C] = \frac{a - b[mV]}{-2 [mV/^{\circ}C]} + 25[^{\circ}C] \qquad \cdots (4)$$

$$X: \text{ Junction temperature}$$
a: The voltmeter V value at a junction temperature of 25°C
b: The voltmeter V value at a junction temperature of X°C
-2: Temperature characteristic of diode

If the exact junction temperature is desired, it is necessary to measure the specific temperature characteristic of the internal diode, of each IC.

Notes for use

1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. The implementation of a physical safety measure such as a fuse should be considered when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.

2) Storage temperature range

As long as the IC is kept within this range, there should be no problems in the IC's performance. Conversely, extreme temperature changes may result in poor IC performance, even if the changes are within the above range.

3) Power supply pins and lines

None of the VM line for the H-bridges is internally connected to the VCC power supply line, which is only for the control logic or analog circuit. Therefore, the VM and VCC lines can be driven at different voltages. Although these lines can be connected to a common power supply, do not open the power supply pin but connect it to the power supply externally. Regenerated current may flow as a result of the motor's back electromotive force. Insert capacitors between the power supply and ground pins to serve as a route for regenerated current. Determine the capacitance in full consideration of all the characteristics of the electrolytic capacitor, because the electrolytic capacitor may loose some capacitance at low temperatures. If the connected power supply does not have sufficient current absorption capacity, regenerative current will cause the voltage on the power supply line to rise, which combined with the product and its peripheral circuitry may exceed the absolute maximum ratings. It is recommended to implement a physical safety measure such as the insertion of a voltage clamp diode between the power supply and ground pins.

For this IC with several power supplies and a part consists of the CMOS block, it is possible that rush current may flow instantaneously due to the internal powering sequence and delays, and to the unstable internal logic, respectively. Therefore, give special consideration to power coupling capacitance, width of power and ground wirings, and routing of wiring.

4) Ground pins and lines

Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND at any time, regardless of whether it is a transient signal or not.

When using both small signal GND and large current MGND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.

The power supply and ground lines must be as short and thick as possible to reduce line impedance.

5) Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

6) Pin short and wrong direction assembly of the device

Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins are shorted together or are shorted to other circuit's power lines.

7) Actions in strong magnetic field

Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.

8) ASO

When using the IC, set the output transistor for the motor so that it does not exceed absolute maximum ratings or ASO.

9) Thermal shutdown circuit

If the junction temperature (Tjmax) reaches 175°C, the TSD circuit will operate, and the coil output circuit of the motor will open. There is a temperature hysteresis of approximately 20°C (BD6757KN Typ.) and 25°C (BD6889GU Typ.). The TSD circuit is designed only to shut off the IC in order to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. The performance of the IC's characteristics is not guaranteed and it is recommended that the device is replaced after the TSD is activated.

10) Testing on application board

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting and storing the IC.

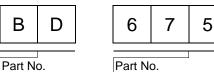
11) Application example

The application circuit is recommended for use. Make sure to confirm the adequacy of the characteristics. When using the circuit with changes to the external circuit constants, make sure to leave an adequate margin for external components including static and transitional characteristics as well as dispersion of the IC.

12) Regarding input pin of the IC

This monolithic IC contains P^+ isolation and P substrate layers between adjacent elements to keep them isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows:

When GND > Pin A, the P-N junction operates as a parasitic diode.


When GND > Pin B, the P-N junction operates as a parasitic diode and transistor.

Parasitic elements can occur inevitably in the structure of the IC. The operation of parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic elements operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.

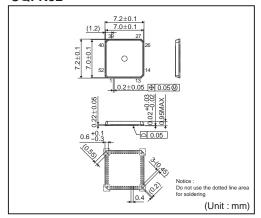
Fig.21 Example of Simple IC Architecture

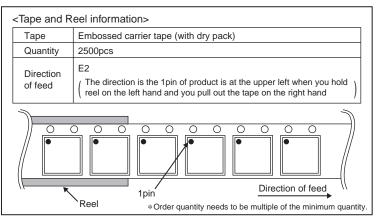
Ordering part number

Part No. 6757: Wide power supply voltage range

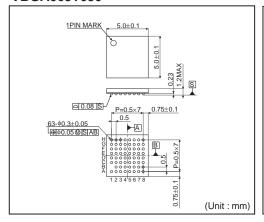
7

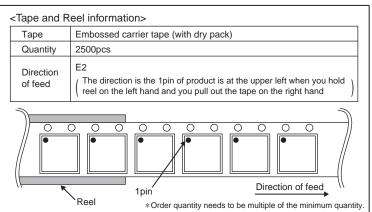
6889 : Subminiature package




Package KN: UQFN52

GU: VBGA063T050


Packaging and forming specification E2: Embossed tape and reel


UQFN52

VBGA063T050

Notice

Precaution on using ROHM Products

Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASSⅢ	CLASSⅢ	CLASS II b	CL ACCTI
CLASSIV	CLASSIII	CLASSⅢ	CLASSIII

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE © 2014 ROHM Co., Ltd. All rights reserved. Rev.001

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.