
Reed-Solomon
Encoder v9.0

LogiCORE IP Product Guide

Vivado Design Suite

PG025 November 18, 2015

Reed-Solomon Encoder v9.0 www.xilinx.com 2
PG025 November 18, 2015

Table of Contents
IP Facts

Chapter 1: Overview
Feature Summary. 6
Applications . 6
Unsupported Features. 7
Licensing and Ordering Information . 7

Chapter 2: Product Specification
Standards . 9
Performance. 9
Resource Utilization. 10
Port Descriptions . 10

Chapter 3: Designing with the Core
Functional Description. 19
Block Code Settings . 20

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 23
Constraining the Core . 30
Simulation . 31
Synthesis and Implementation . 31

Chapter 5: Test Bench
Demonstration Test Bench . 32
Simulation . 33

Appendix A: Migrating and Upgrading
Migrating to the Vivado Design Suite. 34
Upgrading in the Vivado Design Suite . 34

Appendix B: Debugging
Finding Help on Xilinx.com . 35

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=2

Reed-Solomon Encoder v9.0 www.xilinx.com 3
PG025 November 18, 2015

Debug Tools . 37
Simulation Debug. 38
AXI4-Stream Interface Debug . 39

Appendix C: Additional Resources and Legal Notices
References . 40
Revision History . 41
Please Read: Important Legal Notices . 41

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=3

Reed-Solomon Encoder v9.0 www.xilinx.com 4
PG025 November 18, 2015 Product Specification

Introduction
The Xilinx ® LogiCORE™ IP Reed-Solomon
Encoder core is used in many Forward Error
Correction (FEC) applications and in systems
such as communications systems and disk
drives where data is transmitted and subject to
errors before reception.

Features
• Implements many different Reed-Solomon

coding standards, including all ITU-T J.83
and CCSDS codes

• Automatically configured by user-entered
parameters

• Efficiently handles multiple channels

• Fully synchronous design using a single
clock

• Supports continuous output data with no
gap between code blocks

• Symbol width from 3 bits to 12 bits

• Code block length variable up to 4095
symbols with up to 256 check symbols

• Block length can be changed in real time

• The number of check symbols can be
changed in real time

• Supports shortened codes

• Supports any primitive f ield polynomial for
a given symbol width

• User-configured generator polynomial

• AXI4-Stream compliant interfaces

• Use with Xilinx Vivado® Design Suite and
Xilinx System Generator for DSP

IP Facts

LogiCORE IP Facts Table

Core Specifics

Supported
Device Family(1)

UltraScale+™ Families,
UltraScale™ Architecture,

Zynq®-7000 All Programmable SoC,
7 Series

Supported User
Interfaces AXI4-Stream

Resources Performance and Resource Utilization web page

Provided with Core
Design Files Encrypted RTL

Example Design Not Provided

Test Bench VHDL

Constraints File Not Applicable

Simulation
Model

Verilog, VHDL
VHDL Behavioral, VHDL or Verilog Structural

Supported
S/W Driver N/A

Tested Design Flows(2)

Design Entry
Vivado® Design Suite

Vivado
System Generator for DSP

Simulation For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis

Support
Provided by Xilinx at the Xilinx Support web page

Notes:
1. For a complete list of supported devices, see the Vivado IP

catalog .
2. For the supported versions of the tools, see the

Xilinx Design Tools: Release Notes Guide.

Send Feedback

http://www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=rs-encoder.html
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+release+notes
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=4

Reed-Solomon Encoder v9.0 www.xilinx.com 5
PG025 November 18, 2015

Chapter 1

Overview
Reed-Solomon codes are usually referred to as (n,k) codes, where n is the total number of
symbols in a code block and k is the number of information or data symbols. This core
generates systematic code blocks where the complete code block is formed from the k
information symbols, followed by the (n-k) check symbols. The maximum number of symbol
errors in a block that can be guaranteed to be correct is t = (n-k)/2. A symbol error can
contain any number of bit errors.

Normally n = 2(Symbol_Width)-1. If n is less than this, the code is referred to as a “shortened
code.” The encoder core handles both full-length and shortened codes.

The parameters n, k, and (n-k) are optionally variable from block to block. The current code
block settings for n, k , and (n-k) are referred to as n_block , k_block, and r_block, respectively.

A Reed-Solomon code is also characterized by two polynomials: the f ield polynomial and
the generator polynomial. The f ield polynomial defines the Galois f ield, of which the
symbols are members. The generator polynomial defines how the check symbols are
generated. Both of these polynomials are usually defined in the specif ication for any
particular Reed-Solomon code. The core Vivado Integrated Design Environment (IDE)
allows both of these polynomials to be configured.

The core synchronous input control signals are not registered inside the core. It is assumed
these are registered external to the core if required.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=5

Reed-Solomon Encoder v9.0 www.xilinx.com 6
PG025 November 18, 2015

Chapter 1: Overview

Feature Summary
The core configuration Vivado IDE allows several pre-configured standards to be selected.
Some of these standards result in additional standard-specific hardware being inserted
around the core, such as CCSDS and ITU J.83. After the appropriate standard has been
selected it is still possible to edit some parameter settings, depending on the standard. If
this does not give the required configuration then "Custom" can be selected and any
parameter values can be chosen. See Customizing and Generating the Core in Chapter 4.

Multiple channels can be supported by selecting the number of channels required in the
Vivado IDE. This results in time-division multiplexing of channels on the input and output.
If this does not give suff icient throughput, multiple channels can be handled by using
multiple instances of the core.

Most commonly used Reed-Solomon codes have an 8-bit symbol width. This gives a good
balance of error correction capability, throughput, and implementation cost. The core does
support any symbol width from 3 to 12.

Some standards required the block length or the number of check symbols or both to be
run time variables. The core supports all of these options. Changing the number of check
symbols automatically changes the generator polynomial, although the core assumes the
scaling factor (h) remains at the value configured in the Vivado IDE.

The core uses standard AXI4-Stream interfaces with full handshaking and there is only one
clock input, making it straightforward to use in a system.

Applications
Reed-Solomon forward error correction is often used where speed and latency are
important and reasonable error correction performance is required. For example, the core
can be used in high-speed wired networking, satellite and space communications, digital
video broadcast, and data storage.

Each code block is independent, so multiple encoders and encoders can be used to process
blocks in parallel to achieve arbitrarily high data rates. Another property is good burst error
correction performance, as it does not matter how many bits are received in error within a
single input symbol. RS codes are sometimes used in concatenation with convolution
codes. The RS code can correct bursts of errors that sometimes occur when the convolution
encoder fails.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=6

Reed-Solomon Encoder v9.0 www.xilinx.com 7
PG025 November 18, 2015

Chapter 1: Overview

Unsupported Features
The core cannot dynamically change f ield polynomial or symbol width.

Licensing and Ordering Information

License Checkers
If the IP requires a license key, the key must be verif ied. The Vivado design tools have
several license checkpoints for gating licensed IP through the flow. If the license check
succeeds, the IP can continue generation. Otherwise, generation halts with error. License
checkpoints are enforced by the following Vivado design flow:

• Vivado Synthesis

• Vivado Implementation

• write_bitstream (Tcl Console)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does
not check IP license level.

License Type
This Xilinx LogiCORE™ IP module is provided under the terms of the Xilinx Core License
Agreement. The module is shipped as part of the Vivado® Design Suite. For full access to
all core functionalities in simulation and in hardware, you must purchase a license for the
core. Contact your local Xilinx sales representative for information about pricing and
availability.

For more information, visit the Reed-Solomon Encoder product web page.

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual
Property page. For information on pricing and availability of other Xilinx LogiCORE IP
modules and tools, contact your local Xilinx sales representative.

An evaluation license is available for this core. The evaluation version of the core operates
in the same way as the full version for several hours, dependent on clock frequency.
Operation is then disabled and the data output does not change. If you notice this behavior
in hardware, it probably means you are using an evaluation version of the core. The Xilinx
tools warn that an evaluation license is being used during netlist implementation. If a full
license is installed for the core to run on hardware, delete the old XCO file and recreate the
core from new.

Send Feedback

http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/about/contact.html
http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/do-di-rse.htm
http://www.xilinx.com/products/intellectual-property.html
http://www.xilinx.com/products/intellectual-property.html
http://www.xilinx.com/about/contact.html
http://www.xilinx.com/ipcenter/ip_license/ip_licensing.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=7

Reed-Solomon Encoder v9.0 www.xilinx.com 8
PG025 November 18, 2015

Chapter 2

Product Specification
The Reed-Solomon Encoder inputs k information symbols and appends n-k check symbols.
This is illustrated in the Figure 2-1, which also shows how the symbols can be interpreted as
polynomial coeff icients. The check symbols are generated to form c(x) such that c(x) is
divisible by the generator polynomial, g(x). If the received code word is not divisible by g(x),
the code word contains errors. Fig 2 illustrates how the input data is passed through the
core while check symbols are computed. When k symbols have been output, the multiplexer
is switched and the (n-k) check symbols are output.
X-Ref Target - Figure 2-1

Figure 2-1: Reed-Solomon Codeword Format

X-Ref Target - Figure 2-2

Figure 2-2: Block Diagram

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=8

Reed-Solomon Encoder v9.0 www.xilinx.com 9
PG025 November 18, 2015

Chapter 2: Product Specification

Standards
The Reed-Solomon IP core adheres to the AMBA® AXI4-Stream standard [Ref 1].

Performance
This section contains the following subsections.

• Latency

• Throughput

Latency
For this core, latency is defined as the number of rising clock edges from sampling
s_axis_input_tdata to the sampled value appearing on m_axis_output_tdata. The
basic latency of the core is (2 + number of channels). For example, the latency in Figure 2-3
is 3.

• Selecting CCSDS increases the latency of the encoder by 2.

• Selecting ITU J.83 Annex B increases the latency by 1.

• Selecting m_axis_output_tready increases the latency by a further 2, but also
makes latency variable due to the presence of a FIFO to accommodate backpressure
inherent in the AXI4-Stream protocol.

Throughput
The maximum raw data input rate in Mb/s can be calculated as:

Fmax (MHz) * Symbol_Width (bits) * k/n

X-Ref Target - Figure 2-3

Figure 2-3: Latency

aclk

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tvalid

m_axis_output_tdata

D0 D1 D2 D3 D4

D0 D1

Latency=3

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=9

Reed-Solomon Encoder v9.0 www.xilinx.com 10
PG025 November 18, 2015

Chapter 2: Product Specification

Resource Utilization
For full details about performance and resource utilization, visit the Performance and
Resource Utilization web page.

The area of the core increases with (n-k) and Symbol_Width.

When a variable number of check symbols is not required, the check symbol generator is
implemented eff iciently as a fixed architecture. When a variable number of check symbols
is required, the check symbol generator must be either optimized for area, where the
implementation area is increased by a factor of approximately 3, or optimized for flexibility,
where the implementation area is increased by a factor of approximately 5.

The option to map primary I/O registers into IOB flip-flops should be selected if the core
I/Os are to be connected directly onto a PCB using the FPGA package pins. This gives lower
output clock-to-out times and predictable setup and hold times. Remember the control
signal inputs are used unregistered inside the core, so these should be registered external
to the core.

Port Descriptions

Pinout
Port names for the core module are shown in Figure 2-4 and described in Table 2-1.

Send Feedback

http://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=rs-encoder.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=rs-encoder.html
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=10

Reed-Solomon Encoder v9.0 www.xilinx.com 11
PG025 November 18, 2015

Chapter 2: Product Specification

X-Ref Target - Figure 2-4

Figure 2-4: Core Schematic Symbol

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=11

Reed-Solomon Encoder v9.0 www.xilinx.com 12
PG025 November 18, 2015

Chapter 2: Product Specification

Table 2-1: Core Signal Pinout

Signal Direction Optional Description

aclk INPUT No Rising edge clock

aclken INPUT Yes Active-High clock enable

aresetn INPUT Yes
Active-Low synchronous clear (overrides
aclken). aresetn must be asserted for at least 2
clock cycles.

s_axis_input_tvalid INPUT No TVALID for S_AXIS_INPUT channel. See
AXI4-Stream Protocol [Ref 1] for protocol.

s_axis_input_tready OUTPUT No TREADY for S_AXIS_INPUT

s_axis_input_tdata INPUT No Input data and erase flag, if applicable

s_axis_input_tuser INPUT Yes User bits, passed through core unmodif ied, with
same latency as s_axis_input_tdata

s_axis_input_tlast INPUT No
Marks last symbol of input block. Only used to
generate event outputs. Can be tied Low or High
if event outputs not used.

s_axis_ctrl_tvalid INPUT Yes
TVALID for S_AXIS_CTRL channel. This channel is
only present if core has variable block length or
number of check symbols

s_axis_ctrl_tready OUTPUT Yes TREADY for S_AXIS_CTRL channel

s_axis_ctrl_tdata INPUT Yes Block length and number of check symbols, if
applicable

m_axis_output_tvalid OUTPUT No TVALID for M_AXIS_OUTPUT channel

m_axis_output_tready INPUT Yes
TREADY for M_AXIS_OUTPUT channel. Tie High
if downstream slave is always able to accept
data from M_AXIS_OUTPUT

m_axis_output_tdata OUTPUT No Corrected data output

m_axis_output_tuser OUTPUT Yes s_axis_input_tuser delayed by core latency

m_axis_output_tlast OUTPUT No High when last symbol of last channel is on
m_axis_output_tdata

event_s_input_tlast_missing OUTPUT No
Flags that s_axis_input_tlast was not asserted
when expected. Leave unconnected if not
required.

event_s_input_tlast_unexpected OUTPUT No
Flags that s_axis_input_tlast was asserted when
not expected. Leave unconnected if not
required.

event_s_ctrl_tdata_invalid OUTPUT No
Flags that values provided on s_axis_ctrl_tdata
were illegal. Core must be reset if this is
asserted. Leave unconnected if not required.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=12

Reed-Solomon Encoder v9.0 www.xilinx.com 13
PG025 November 18, 2015

Chapter 2: Product Specification

aclken
The clock enable input (aclken) is an optional pin. When aclken is deasserted (Low), all
the other synchronous inputs are ignored, except aresetn, and the core remains in its
current state. This pin should be used only if it is genuinely required because it has a high
fan out within the core and can result in lower performance.

aclken is a true clock enable and causes the entire core to freeze state when it is Low.

An example of aclken operation is shown in Figure 2-5. In this case, the core ignores
symbol D4 as input to the block, and the current m_axis_output_tdata value remains
unchanged. (The encoder still samples n symbols.) As D4 is not included in the code block,
the output sequence ...D0,D1,D2,D3,D5... appears on m_axis_output_tdata during the
output stage of this block.

aresetn
The synchronous reset (aresetn) input is an optional pin. It can be used to re-initialize the
core at any time, regardless of the state of aclken. aresetn needs to be asserted Low for
at least two clock cycles to initialize the circuit. The core becomes ready for normal
operation two cycles after aresetn goes High.

CAUTION! This pin should be selected with caution, as it increases the size of the core and can reduce
performance.

The timing for the aresetn input is illustrated in Figure 2-6. Note that some outputs are
not reset by aresetn.

X-Ref Target - Figure 2-5

Figure 2-5: Clock Enable Timing

aclk

aclken

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tdata

D0 D1 D2 D3 D4 D5 D6

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=13

Reed-Solomon Encoder v9.0 www.xilinx.com 14
PG025 November 18, 2015

Chapter 2: Product Specification

S_AXIS_INPUT Channel

s_axis_input_tdata

Data to be processed is passed into the core on this port. To ease interoperability with
byte-oriented buses, TDATA is padded with zeros, if necessary, to f it a bit f ield which is a
multiple of 8 bits. The padding bits are ignored by the core and do not result in additional
resource use. The structure is shown in Figure 2-7.

The DATA_IN field is the input bus for the incoming uncoded data. The width of the DATA_IN
portion of the f ield is set by the Symbol Width parameter in the Vivado IDE.

s_axis_input_tuser

This optional input is used to pass information through the core with exactly the same
latency as s_axis_input_tdata. This could be used to tag each symbol sampled on
DATA_IN with marker bits, for example. The number of TUSER bits is parameterizable and
set by the Number of Marker Bits parameter in the Vivado IDE. The TUSER bits are delayed
with the same latency as DATA_IN to DATA_OUT and output on m_axis_output_tuser.

X-Ref Target - Figure 2-6

Figure 2-6: Synchronous Reset Timing

X-Ref Target - Figure 2-7

Figure 2-7: Input Channel TDATA Structure

aclk

aclken

aresetn

s_axis_input_tready

s_axis_ctrl_tready

m_axis_output_tdata

m_axis_output_tuser

m_axis_output_tvalid

m_axis_output_tlast

event_s_input_tlast_missing

event_s_input_tlast_unexpected

event_s_ctrl_tdata_invalid

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=14

Reed-Solomon Encoder v9.0 www.xilinx.com 15
PG025 November 18, 2015

Chapter 2: Product Specification

For example, if “5” is sampled on s_axis_input_tuser at the same time as the f irst
symbol on s_axis_input_tdata, then “5” is output on m_axis_output_tuser at the
same time the f irst symbol is output on m_axis_output_tdata.

This feature can be used to mark special symbols within a frame or to tag data from
different blocks with block identif ication numbers.

s_axis_input_tlast

This input can be tied Low or High if the event outputs
(event_s_input_tlast_missing and event_s_input_tlast_unexpected) are not
used. It is present purely to provide a check that the system and core are in sync with block
sizes. If the event outputs are used then s_axis_input_tlast must be asserted High
when the last symbol of a block is sampled on s_axis_input_tdata. In the multichannel
case it must be asserted when the last symbol of the last channel of the block is sampled on
s_axis_input_tdata. The core maintains its own internal count of the symbols, so it
knows when the last symbol is being sampled. If s_axis_input_tlast is not sampled
High when the last input symbol is sampled then event_s_input_tlast_missing is
asserted until the next input sample is taken. Similarly, if s_axis_input_tlast is
sampled High when the core is not expecting it, event_s_input_tlast_unexpected is
asserted until the next input sample is taken. If either of these events occurs then the
system and the core are out of sync and the core, and possibly the system, should be reset.

S_AXIS_CTRL Channel

s_axis_ctrl_tdata

If the S_AXIS_CTRL channel is present, control data for each block is passed into the core on
this port. The port is composed of several subfields, depending on parameter settings. Each
subfield is padded to make it a multiple of 8 bits. The padding bits are ignored by the core
and do not result in additional resource use. The structure is shown in Figure 2-8. Care
should be taken to ensure only valid combinations of N_IN and R_IN are provided, as the
core might need to be reset if invalid values are written.

X-Ref Target - Figure 2-8

Figure 2-8: Control Channel TDATA Structure

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=15

Reed-Solomon Encoder v9.0 www.xilinx.com 16
PG025 November 18, 2015

Chapter 2: Product Specification

N_IN Field

This f ield is only present if “Variable Block Length” is selected in the Vivado IDE. This allows
the block length to be changed every block. Unless there is an R_IN f ield, the number of
check symbols is f ixed, so varying n automatically varies k .

For example, if N_IN is set to 255 and R_IN is set to 16 in the control word C1 in Figure 2-10,
the next input block (starting D1) is treated as a (n=255, k=239) codeword. If C2 has N_IN
equal to 64 and R_IN is equal to 8, then the next input block (starting DN) is treated as a
(n=64, k=56) codeword. For this example, n should be set to 255 and k to 239 in the Vivado
IDE, as the largest expected R_IN value is 16. This would give an R_IN f ield width of 5 bits
(plus 3 padding bits).

R_IN Field

This f ield is only present if “Variable Number of Check Symbols” is selected in the Vivado
IDE. It allows the number of check symbols to be changed every block. Selecting this input
signif icantly increases the size of the core.

The width of the R_IN f ield is the minimum number of bits required to represent the
maximum n value minus the minimum k value, padded with unused inputs to round up to
the nearest multiple of 8.

M_AXIS_OUTPUT Channel

m_axis_output_tdata

Uncoded data sampled on s_axis_input_tdata is encoded and output from the core on
this port. The port is composed of several subfields, depending on parameter settings. All
output f ields are padded with zeroes to f it a bit f ield which is a multiple of 8 bits. The
structure is shown in Figure 2-9.

DATA_OUT Field

This is the output field for the corrected symbols. This f ield always has the same width as
DATA_IN.

Corrected symbols start to appear several clock cycles after the f irst symbol is sampled on
DATA_IN. This delay is termed the latency of the encoder and is explained in Latency,
page 9. Latency can vary if the block size is dynamically varied with the N_IN f ield or if the
output is stalled by deassertion of a TREADY input.

X-Ref Target - Figure 2-9

Figure 2-9: Output Channel TDATA Structure

DATA_OUTINFOPAD PAD
X12369

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=16

Reed-Solomon Encoder v9.0 www.xilinx.com 17
PG025 November 18, 2015

Chapter 2: Product Specification

INFO Field

This optional output f ield contains a single information bit, INFO, which is High when data
symbols are on DATA_OUT and Low when check symbols are on DATA_OUT (that is, the last
n-k symbols of the block).

m_axis_output_tuser

This optional output is s_axis_input_tuser delayed by the same latency as
s_axis_input_tdata to m_axis_output_tdata. The width is the same as
s_axis_input_tuser. As only k values are sampled on the input, only k values can be
output.

m_axis_output_tlast

This output is High when the last symbol of a block is on m_axis_output_tdata (the nth
symbol). In the multichannel case, m_axis_output_tlast is only asserted High when the
last symbol of the last channel is present on m_axis_output_tdata. This is shown in
Figure 2-11.

X-Ref Target - Figure 2-10

Figure 2-10: Block Input to Output Timing

aclk

s_axis_ctrl_tdata

s_axis_ctrl_tvalid

s_axis_ctrl_tready

s_axis_input_tdata

s_axis_input_tuser

s_axis_input_tvalid

s_axis_input_tlast

s_axis_input_tready

m_axis_output_tready

m_axis_output_tvalid

m_axis_output_tlast

m_axis_output_tdata

m_axis_output_tuser

C1 C2

D1 D2 D3 DK-2 DK-1 DK

U1 U2 U3 UK-2 UK-1 UK

D1 D2 D3 DN-2 DN-1 DN

U1 U2 U3

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=17

Reed-Solomon Encoder v9.0 www.xilinx.com 18
PG025 November 18, 2015

Chapter 2: Product Specification

event_s_input_tlast_missing
This output is asserted High if s_axis_input_tlast is not sampled High when the last
symbol of a block is sampled. It should be left unconnected if not required and the logic
used to generate it is optimized away.

IMPORTANT: This output is only asserted until the next input sample starts to be processed inside the
core, so care must be taken not to miss a pulse on this output. This output can be used to interrupt the
system and possibly instigate a reset sequence.

event_s_input_tlast_unexpected
This output is asserted High if s_axis_input_tlast is sampled High when an input
symbol that is not the last symbol of a block is sampled. Its timing and operation are the
same as event_s_input_tlast_missing.

event_s_ctrl_tdata_invalid
This output is asserted High if the core has an S_AXIS_CTRL channel and values are sampled
on N_IN or R_IN that are outside the absolute limits the core can handle. The limits are
computed at core generation time, based on the parameters selected. When asserted, this
output remains asserted until the core is reset. The core must be reset if this output is
asserted, as invalid N_IN or R_IN values can cause the core to malfunction for subsequent
blocks and not recover. Control values should be within the limits defined in Table 3-1.

X-Ref Target - Figure 2-11

Figure 2-11: TLAST Output Timing for 3 Channel Example

aclk

m_axis_output_tlast

m_axis_output_tdata

m_axis_output_tvalid

m_axis_output_tready

AN-1 BN-1 CN-1 AN BN CN

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=18

Reed-Solomon Encoder v9.0 www.xilinx.com 19
PG025 November 18, 2015

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to make designing with the
core easier.

Functional Description

AXI4-Stream Protocol
The use of AXI4-Stream interfaces brings standardization and enhances interoperability of
Xilinx IP LogiCORE™ IP solutions. Other than general control signals such as aclk , aclken
and aresetn, and event outputs, all inputs and outputs to the core are conveyed using
AXI4-Stream channels. A channel consists of TVALID and TDATA always, plus several
optional ports and f ields. In the RS Encoder core, the additional ports used are TREADY,
TLAST and TUSER. Together, TVALID and TREADY perform a handshake to transfer a value,
where the payload is TDATA, TUSER and TLAST. The payload is indeterminate when TVALID
is deasserted.

The RS Encoder core operates on the values contained in the S_AXIS_INPUT channel TDATA
fields and outputs the results in the TDATA fields of the M_AXIS_OUTPUT channel. The RS
Encoder core does not use inputs TUSER and TLAST as such, but the core provides the
facility to convey TUSER with the same latency as TDATA. This facility of passing TUSER from
input to output is intended to ease use of the core in a system. TLAST is provided purely as
a check that the core is in sync with the system and its use is optional.

For further details on AXI4-Stream Interfaces see [Ref 1] and [Ref 2].

Basic Handshake

Figure 3-1 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the
source (master) side of the channel and TREADY is driven by the receiver (slave). TVALID
indicates that the value in the payload f ields (TDATA, TUSER and TLAST) is valid. TREADY
indicates that the slave is ready to receive data. When both TVALID and TREADY are TRUE in
a cycle, a transfer occurs. The master and slave set TVALID and TREADY respectively for the
next transfer appropriately.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=19

Reed-Solomon Encoder v9.0 www.xilinx.com 20
PG025 November 18, 2015

Chapter 3: Designing with the Core

The full flow control of AXI4-Stream aids system design because the flow of data is
self-regulating. Data loss is prevented by the presence of back pressure (TREADY), so that
data is only propagated when the downstream datapath is ready to process it.

The core has two input channels: S_AXIS_INPUT and S_AXIS_CTRL. If any of the block
parameters, such as block length, have been selected to be run time configurable then a
block cannot be processed until the control values for that block have been loaded on
S_AXIS_CTRL. A new control value must be loaded for every new block or the core will stall
the S_AXIS_INPUT channel by deasserting s_axis_input_tready. Some data can be
input without a control value until the input FIFO fills. It is recommended to write control
values before the data is supplied. To guarantee that the input channel is not stalled due to
lack of control information, the control value should be written no later than one clock cycle
before the f irst data symbol is sampled. Control values are stored in a FIFO inside the core
and used when a new input block is started. Up to 16 control values can be stored before
any input data is provided. After the control FIFO fills, s_axis_ctrl_tready is
deasserted.

The core has one output channel: M_AXIS_OUTPUT. If the output is prevented from
off-loading data because m_axis_output_tready is Low then data accumulates in the
core. When the internal buffers of the core are full the core stops further operations. This
prevents the input buffers from off-loading data for new operations so the input buffers f ill
as new data is input. When the input buffers f ill, their respective TREADYs
(s_axis_input_tready and s_axis_ctrl_tready) are deasserted to prevent further
input. This is the normal action of back pressure.

Block Code Settings
The RS Encoder generates a systematic (n_block , k_block) block code, where the output
block is n_block symbols long, comprised from k_block data symbols followed by r_block
check symbols. The block code settings n_block, k_block and r_block are optionally variable
on a block-by-block basis. For multichannel configurations, all channels have the same
settings for n_block , k_block and r_block . See Table 3-1.

X-Ref Target - Figure 3-1

Figure 3-1: Data Transfer in an AXI-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=20

Reed-Solomon Encoder v9.0 www.xilinx.com 21
PG025 November 18, 2015

Chapter 3: Designing with the Core

n_block
The block code setting n_block specifies the total number of symbols in the current code
block.

• When a variable block length is not required, n_block is set to the parameter n for every
code block.

• When a variable block length is required, n_block is set to the value written for the
current block on the CTRL channel N_IN f ield.

k_block
The block code setting k_block specifies the number of data symbols in the current code
block.

• When a variable block length is not required, k_block is set to the parameter k for every
block.

• When a variable block length is required and a variable number of check symbols is not
required, k_block is set to the value written for the current block on the CTRL channel
N_IN f ield minus the parameter (n-k).

Table 3-1: Block Code Settings – Value and Range

Block Code Settings Value Range Min Range Max

Fixed Block Length

n_block n 4 2(Symbol_Width)-1

k_block k 2 2(Symbol_Width)-3

r_block (n-k) 2 min(n-k , 256)

Variable Block Length. Fixed Number of Check Symbols

n_block N_IN 4 2(Symbol_Width)-1

k_block N_IN – (n-k) 2 2(Symbol_Width)-3

r_block (n-k) 2 min(n-k , 256)

Variable Number of Check Symbols (optimized for flexibility)

n_block N_IN 5 2(Symbol_Width)-1

k_block N_IN – R_IN 3 2(Symbol_Width)-3

r_block R_IN 2 min(n-k , 128)

Variable Number of Check Symbols (optimized for area)

n_block N_IN 2*(n-k) 2(Symbol_Width)-1

k_block N_IN – R_IN 3 2(Symbol_Width)-3

r_block R_IN 2 min(n-k , 128)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=21

Reed-Solomon Encoder v9.0 www.xilinx.com 22
PG025 November 18, 2015

Chapter 3: Designing with the Core

• When a variable number of check symbols is required, k_block is set to the value written
for the current block on the CTRL channel N_IN f ield minus the value sampled on
R_IN.

r_block
The block code setting r_block specifies the number of check symbols in the current code
block.

• When a variable number of check symbols is not required, r_block is set to parameter
(n-k) for every block.

• When a variable number of check symbols is required, r_block is set to the value written
for the current block on the CTRL channel R_IN f ield.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=22

Reed-Solomon Encoder v9.0 www.xilinx.com 23
PG025 November 18, 2015

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 3]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4]

• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 5]

• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 7]

Customizing and Generating the Core
This section includes information about using Xilinx tools to customize and generate the
core in the Vivado Design Suite.

If you are customizing and generating the core in the Vivado IP Integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 3] for
detailed information. IP Integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values change, see the
description of the parameter in this chapter. To view the parameter value, run the
validate_bd_design command in the Tcl console.

You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or
right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4] and
the Vivado Design Suite User Guide: Getting Started ((UG910) [Ref 5].

Note: Figures in this chapter are illustrations of the Vivado IDE. This layout might vary from the
current version.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals_j/xilinx2013_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=23

Reed-Solomon Encoder v9.0 www.xilinx.com 24
PG025 November 18, 2015

Chapter 4: Design Flow Steps

Code Block Specification Parameters

Code Specification

The Vivado IDE aids the creation of cores for a number of common Reed-Solomon
specifications. After a particular specification has been chosen, the Vivado IDE
automatically selects the values necessary to meet the specif ication.

Most of the standards listed just result in particular values being set and then greyed out for
most of the parameters in the Vivado IDE. However, some of the standards result in
additional logic being added to the core. These are described in the following sections.

CCSDS

When implementing the CCSDS specification, the core automatically implements the
dual-basis conversions defined in the CCSDS specif ication. This is illustrated in Figure 4-1.
If the dual-basis conversions are not required, select custom specification instead of CCSDS
and enter all the code parameters manually. Selecting CCSDS increases the latency of the
encoder by 2.

ITU J.83 Annex B

This standard is unusual in that it calls for a (128,122) code. This suggests that n is greater
than 2(Symbol_Width)-1, as the Symbol Width is only 7 bits. However, the standard specif ies
that the f irst 127 symbols are generated as a normal RS code. A special 128th symbol is
then appended to the end of the block. If ITU J.83 Annex B is selected, then the core
includes the logic required to generate this 128th symbol.

Selecting ITU J.83 Annex B increases the latency of the encoder by 1. The other RS codes
specified in the ITU J.83 standard do not require this additional symbol, and the custom
code specif ication should be selected for them.

X-Ref Target - Figure 4-1

Figure 4-1: CCSDS Encoder

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=24

Reed-Solomon Encoder v9.0 www.xilinx.com 25
PG025 November 18, 2015

Chapter 4: Design Flow Steps

Variable Number of Check Symbols

The R_IN f ield is added when a variable number of check symbols is required.

• Whenever a block is started, the new number of check symbols, r_block , is read from
the internal CTRL data FIFO.

• The number of check symbols in the new block is independent of the block length, so
varying R_IN also changes the number of data symbols in the block, k_block , by
negative the same amount.

• The n parameter must be set to 2(Symbol_Width)-1. The k parameter should be set such
that (n-k) equals the maximum number of check symbols required. The width of R_IN
port is the number of bits required to represent (n-k) in unsigned binary format.

• A multichannel implementation is not available if a variable number of check symbols is
required.

• The value sampled on R_IN must be in the range given for r_block in Table 3-1,
page 21.

For full details on the variable block code settings k_block and r_block , see Block Code
Settings, page 20.

Variable Block Length

The N_IN f ield is added when a variable block length is required.

• Whenever a block is started, the new block length, n_block , is read from the internal
CTRL data FIFO.

• The number of check symbols in the new block is independent of the block length, so
varying n_block also changes the block number of data symbols, k_block , by the same
amount.

• The n parameter must be set to 2(Symbol_Width)-1, and the k parameter should be set
such that (n-k) equals the number of check symbols required.

• For multichannel implementations, n_block is the same for all channels.

• The value sampled on N_IN must be in the range given for n_block in Table 3-1,
page 21.

For full details on the variable block code settings n_block and k_block, see Block Code
Settings, page 20.

Symbol Width

This is the width of the N_IN, DATA_IN and DATA_OUT f ields.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=25

Reed-Solomon Encoder v9.0 www.xilinx.com 26
PG025 November 18, 2015

Chapter 4: Design Flow Steps

Field Polynomial

This is used to generate the Galois f ield for the code. It is entered as a decimal number
where the bits of the binary equivalent correspond to the polynomial coeff icients. For
example,

x8 + x4 + x3 + x2 + 1 => 100011101 => 285

A value of zero causes the default polynomial for the given Symbol Width to be selected. If
Field Polynomial is not primitive, the core Vivado IDE highlights it in red. Table 4-1 shows
the default f ield polynomial.

Scaling Factor (h)

The scaling factor for the generator polynomial root index. Normally, h is 1.

To ensure correct operation of the Reed-Solomon encoder, the value of h must be chosen so
that the greatest common divisor of h and 2(Symbol_Width)-1 is 1, that is, h and
2(Symbol_Width)-1 must be relative primes.

GeneratorStart

This is the Galois f ield logarithm of the f irst root of the generator polynomial.

Normally, GeneratorStart is 0 or 1; however, it can be any positive integer up to 1023.

Table 4-1: Default Polynomials

Symbol Width Default Polynomial Decimal Representation

3 x3+x+1 11

4 x4+x+1 19

5 x5+x2+1 37

6 x6+x+1 67

7 x7+x3+1 137

8 x8+x4+x3+x2+1 285

9 x9+x4+1 529

10 x10+x3+1 1033

11 x11+x2+1 2053

12 x12+x6+x4+x+1 4179

g x() x αh GeneratorStart i+()×
–()

i 0=

n k– 1–

∏=

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=26

Reed-Solomon Encoder v9.0 www.xilinx.com 27
PG025 November 18, 2015

Chapter 4: Design Flow Steps

Symbols per Block (n)

The number of symbols in a f ixed length code block. If this is a shortened code, n should be
the shortened number.

When a variable block length is required, the n parameter is defaulted to 2(Symbol_Width)-1
and the block length, n_block, is set to the value sampled on the N_IN f ield.

Data symbols (k)

The number of information or data symbols in a f ixed length code block.

When a variable block length and a fixed number of check symbols are required, the block
number of data symbols, k_block, is set to the value sampled on N_IN minus parameter
(n-k).

When a variable number of check symbols is required, the block number of data symbols,
k_block, is set to the value sampled on N_IN minus the value sampled on the R_IN f ield.

Check Symbol Generator Optimization

If a variable number of check symbols is not required, then Check Symbol Generator
Optimization must be set to Fixed Architecture.

• Fixed Architecture – The check symbol generator is implemented using a highly
eff icient f ixed architecture.

If a variable number of check symbols is required, the Check Symbol Generator
Optimization must be set to one of the following:

• Optimized for Flexibility – The check symbol generator implementation is optimized to
maximize the range of input f ield, N_IN.

• Optimized for Area – The check symbol generator implementation is optimized for area
and speed eff iciency. The range of input f ield, N_IN, is reduced.

Memory Style

If the target device architecture supports block memory, the following options are available:

• Distributed – Core should not use any block memories if possible. This is useful if they
are required elsewhere in the design.

• Block – Core should use block memories wherever possible. This keeps the number of
CLBs used to a minimum, but might use block memory wastefully.

• Automatic – This allows the core to use the most appropriate style of memory for each
case, based on required memory depth.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=27

Reed-Solomon Encoder v9.0 www.xilinx.com 28
PG025 November 18, 2015

Chapter 4: Design Flow Steps

Number of Channels

The core can process multiple input channels simultaneously with only a small increase in
area. This is much more eff icient than instantiating multiple RS Encoder cores.

When a new block is started for one channel, a new block is started for all the other
channels as well. The code settings n_block , k_block and r_block are the same for all
channels. The multichannel configuration is not available when a variable number of check
symbols is required.

The latency is increased by 1 for each additional channel.

With multiple channels, there is still only one DATA_IN port. Incoming symbols for the
channels are interlaced so the core samples the f irst symbol of channel 1 on the f irst rising
clock edge, then the f irst symbol of channel 2 on the second rising clock edge, and so on.
Symbols (both information and check) are output on DATA_OUT in the same sequence. An
example with three channels is shown in Figure 4-2.

A new block is started for all three channels when s_axis_input_tvalid is asserted. A1,
B1 and C1 are the f irst symbols of the new block for channels A, B and C.
s_axis_input_tvalid can be deasserted at any time. For example, no value is sampled
at the start of clock cycle 8.

Symbols on m_axis_output_tdata are interlaced in the same way as symbols on
s_axis_input_tdata.

X-Ref Target - Figure 4-2

Figure 4-2: Multi-Channel Operation

aclk

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tdata

m_axis_output_tvalid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A1 B1 C1 A2 B2 C2

A1 B1 C1 A2 B2 C2

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=28

Reed-Solomon Encoder v9.0 www.xilinx.com 29
PG025 November 18, 2015

Chapter 4: Design Flow Steps

User Parameters
Table 4-2 shows the relationship between the GUI f ields in the Vivado IDE and the User
Parameters (which can be viewed in the Tcl console). All parameters are available in the IP
integrator and none are set automatically.

System Generator for DSP Graphical User Interface
The Reed-Solomon Encoder core is available through Xilinx System Generator, a DSP design
tool that enables the use of The Mathworks model-based design environment Simulink®
for FPGA design. The Reed-Solomon Encoder core is one of the DSP building blocks
provided in the Xilinx blockset for Simulink. The core can be found in the Xilinx Blockset in
the Communication section. The block is called ‘Reed-Solomon Encoder 9.0.’ See the System
Generator for DSP User Guide (UG640) [Ref 6] for more information.

Table 4-2: GUI Parameter to User Parameter Relationship

GUI Parameter/Value(1) User Parameter/Value(1) Default Value

Code Specification code_specification Custom

Variable Number of Check Symbols variable_number_of_check_symbols False

Variable Block Length variable_block_length False

Symbol Width symbol_width 8

Field Polynomial field_polynomial 0

Scaling Factor scaling_factor 1

Generator Start generator_start 0

Symbols Per Block (n) symbol_per_block 255

Data Symbols (k) data_symbols 239

Check Symbols Generator Optimization check_symbol_generator Fixed_Architecture

Area Optimized_For_Area

Fixed_Architecture Fixed_Architecture

Flexibility Optimized_For_Flexibility

Memory Style memory_style Automatic

Number of Channels number_of_channels 1

Clock Enable aclken False

Synchronous Reset aresetn False

M_axis_output_tready output_has_tready False

Info Bit info False

Marker Bits marker_bits False

Number of Marker Bits number_of_marker_bits 1

Notes:
1. Parameter values are listed in the table where the GUI parameter value differs from the user parameter value. Such

values are shown in this table as indented below the associated parameter.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/sysgen_user.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=29

Reed-Solomon Encoder v9.0 www.xilinx.com 30
PG025 November 18, 2015

Chapter 4: Design Flow Steps

The controls in the System Generator GUI work identically to those in the Vivado Integrated
Design Environment, although the layout has changed slightly.

Output Generation
Several f iles are produced when a core is generated, and customized instantiation
templates for Verilog and VHDL design flows are provided in the .veo and .vho files
respectively.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4].

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraint
There are no required constraints.

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
It is recommended that the core aclk input is constrained to the required operating
frequency.

Clock Management
This section is not applicable for this IP core.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=30

Reed-Solomon Encoder v9.0 www.xilinx.com 31
PG025 November 18, 2015

Chapter 4: Design Flow Steps

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
This section is not applicable for this IP core.

Simulation
For comprehensive information about Vivado simulation components, as well as
information about using supported third-party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 7].

Synthesis and Implementation
For details about synthesis and implementation, see “Synthesizing IP” and “Implementing
IP” in the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4].

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=31

Reed-Solomon Encoder v9.0 www.xilinx.com 32
PG025 November 18, 2015

Chapter 5

Test Bench
This chapter contains information about the provided test bench in the Vivado® Design
Suite.

Demonstration Test Bench
When the core is generated using the Vivado IDE, a demonstration test bench is created.
This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL f ile:
demo_tb/ tb_<component_name>.vhd in the Vivado output directory. The source code
is comprehensively commented.

Using the Demonstration Test Bench
Compile the netlist and the demonstration test bench into the work library (see your
simulator documentation for more information on how to do this). Then simulate the
demonstration test bench. View the test bench signals in your simulator waveform viewer to
see the operations of the test bench.

The Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiates the core

• Generates an input codeblock consisting of a sinusoid

• Generates a clock signal

• Drives the core input signals to demonstrate core features

• Checks that the core output signals obey AXI protocol rules (data values are not
checked to keep the test bench simple)

• Provides signals showing the separate fields of AXI TDATA and TUSER signals

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=32

Reed-Solomon Encoder v9.0 www.xilinx.com 33
PG025 November 18, 2015

Chapter 5: Test Bench

The demonstration test bench drives the core input signals to demonstrate the features and
modes of operation of the core. The operations performed by the demonstration test bench
are appropriate for the configuration of the generated core and are a subset of the
following operations:

1. An initial phase where the core is initialized and no operations are performed.

2. Encode a codeblock.

3. Use a different codeblock configuration, with fewer symbols and fewer check symbols,
as appropriate to the core.

4. Encode 20 codeblocks, streaming data continuously as fast as the core can process it.

5. Encode 10 more codeblocks which demonstrating the AXI control signals’ use and
effects.

6. If clock enable is present: Demonstrate the effect of toggling aclken.

7. If reset is present: Demonstrate the effect of asserting aresetn.

Customizing the Demonstration Test Bench
It is possible to modify the demonstration test bench to use different codeblock data or
different control information.

Input data is pre-generated in the create_ip_table function and stored in the IP_DATA
constant. Data from this constant is driven into the core by the drive_input_codeblock
procedure.

For cores with an S_AXIS_CTRL control channel, control information is generated and driven
into the core by the ctrl_stimuli process. Ensure that control information is provided
for each data codeblock to prevent the core stalling.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

Simulation
To simulate the core, generate the core simulation model and demonstration test bench.
Ensure that the demonstration test bench is the top level entity in the simulation options.
Then select ‘Run Simulation’ in the Vivado IDE.

For full instructions on simulating your core, see the Vivado Design Suite User Guide: Logic
Simulation (UG900) [Ref 7].

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=33

Reed-Solomon Encoder v9.0 www.xilinx.com 34
PG025 November 18, 2015

Appendix A

Migrating and Upgrading
This appendix contains information about upgrading to a more recent version of the IP
core.

Migrating to the Vivado Design Suite
For information about migrating to the Vivado Design Suite, see the ISE to Vivado Design
Suite Migration Guide (UG911) [Ref 8].

Upgrading in the Vivado Design Suite
There are no changes compared to the previous Vivado version, because v9.0 was the f irst
Vivado version.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=34

Reed-Solomon Encoder v9.0 www.xilinx.com 35
PG025 November 18, 2015

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

TIP: If the IP generation halts with an error, there might be a license issue. See License Checkers in
Chapter 1 for more details.

Finding Help on Xilinx.com
To help in the design and debug process when using the Reed-Solomon Encoder core, the
Xilinx Support web page contains key resources such as product documentation, release
notes, answer records, information about known issues, and links for obtaining further
product support.

Documentation
This product guide is the main document associated with the Reed-Solomon Encoder core.
This guide, along with documentation related to all products that aid in the design process,
can be found on the Xilinx Support web page or by using the Xilinx Documentation
Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/download.html
http://www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=35

Reed-Solomon Encoder v9.0 www.xilinx.com 36
PG025 November 18, 2015

Appendix B: Debugging

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Reed-Solomon Encoder core

AR: 54510

Technical Support
Xilinx provides technical support in the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/answers/54510.htm
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=36

Reed-Solomon Encoder v9.0 www.xilinx.com 37
PG025 November 18, 2015

Appendix B: Debugging

Debug Tools
There are many tools available to address Reed-Solomon Encoder core design issues. It is
important to know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature represents the functionality in the Vivado IDE that is used for logic
debugging and validation of a design running in Xilinx devices in hardware.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores,
including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

See Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 9].

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=37

Reed-Solomon Encoder v9.0 www.xilinx.com 38
PG025 November 18, 2015

Appendix B: Debugging

Simulation Debug
The simulation debug flow for Questa® SIM is illustrated in Figure B-1. A similar approach
can be used with other simulators.

X-Ref Target - Figure B-1

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=38

Reed-Solomon Encoder v9.0 www.xilinx.com 39
PG025 November 18, 2015

Appendix B: Debugging

AXI4-Stream Interface Debug
If data is not being transmitted or received, check the following conditions:

• If transmit m_axi_output_tready is stuck Low following the
<interface_name>_tvalid input being asserted, the core cannot send data.

• If the receive s_axi_input_tvalid or s_axi_ctrl_tvalid is stuck Low, the core
is not receiving data.

• Check that the ACLK inputs are connected and toggling.

• Check that the AXI4-Stream waveforms are being followed as shown in the diagrams in
Chapter 2, Product Specification and Chapter 3, Designing with the Core.

• Check core configuration.

• Check that none of the event outputs have been asserted. These indicate incorrect input
signal timing or invalid control data.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=39

Reed-Solomon Encoder v9.0 www.xilinx.com 40
PG025 November 18, 2015

Appendix C

Additional Resources and Legal Notices
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

References
Unless otherwise noted, IP references are for the product documentation page.

1. AMBA® AXI4-Stream Protocol Specification (ARM® IHI 0051A)

2. Xilinx Vivado AXI Reference Guide (UG1037)

3. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

4. Vivado Design Suite User Guide: Designing with IP (UG896)

5. Vivado Design Suite User Guide: Getting Started ((UG910)

6. System Generator for DSP User Guide (UG640)

7. Vivado Design Suite User Guide: Logic Simulation (UG900)

8. ISE to Vivado Design Suite Migration Guide (UG911)

9. Vivado Design Suite User Guide: Programming and Debugging (UG908)

10. Synthesis and Simulation Design Guide (UG626)

Send Feedback

http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest+ise;d=sim.pdf
http://www.xilinx.com/support/documentation/sw_manuals_j/xilinx2013_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest+ise;d=sysgen_user.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=40

Reed-Solomon Encoder v9.0 www.xilinx.com 41
PG025 November 18, 2015

Appendix C: Additional Resources and Legal Notices

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2012–2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. Simulink is a registered trademark of The
MathWorks, Inc. AMBA, AMBA Designer, ARM, ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU
and other countries. All other trademarks are the property of their respective owners.

Date Version Revision

11/18/2015 9.0 • Added support for UltraScale+ families.
• Updated link to resource utilization data.

04/02/2014 9.0 • Added link to resource utilization figures
• Updated template

12/18/2013 9.0 Beginning in this release, the document revision number has been changed
to match the core version number.
Added UltraScale™ architecture support.

03/20/2013 2.0 Removed all ISE® and CORE Generator™ tool material. Also removed material
related to devices not supported in Vivado.

01/18/2012 1.0 Initial Xilinx release. Previous data sheet for this core (non-AXI) is DS251.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG025&Title=Reed-Solomon%20Encoder%20v9.0%20LogiCORE%20IP%20Product%20Guide%20%28PG025%29&releaseVersion=9.0&docPage=41

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при
поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

 Оперативные поставки широкого спектра электронных компонентов отечественного и
импортного производства напрямую от производителей и с крупнейших мировых
складов;

 Поставка более 17-ти миллионов наименований электронных компонентов;

 Поставка сложных, дефицитных, либо снятых с производства позиций;

 Оперативные сроки поставки под заказ (от 5 рабочих дней);

 Экспресс доставка в любую точку России;

 Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;

 Система менеджмента качества сертифицирована по Международному стандарту ISO
9001;

 Лицензия ФСБ на осуществление работ с использованием сведений, составляющих
государственную тайну;

 Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление
«Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

 Подбор оптимального решения, техническое обоснование при выборе компонента;

 Подбор аналогов;

 Консультации по применению компонента;

 Поставка образцов и прототипов;

 Техническая поддержка проекта;

 Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)
Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.

mailto:org@eplast1.ru

