

Sample &

Buv

TPD1S514

SLVSCF6B - APRIL 2014 - REVISED SEPTEMBER 2014

Support &

Community

20

TPD1S514 USB Charger Over Voltage, Surge and ESD Protection for V_{BUS} PIN

Technical

Documents

1 Features

- Over Voltage Protection at V_{BUS CON} up to 30-V DC
- Precision OVP (< ± 1% Tolerance)
 - Factory programmable V_{OVP} of 5.6 V to 15 V
- Low R_{ON} nFET Switch Supports Host and Charging Mode
- Dedicated V_{BUS_POWER} pin offers flexible power up options under dead battery condition
- Transient Protection for V_{BUS} Line:
 - IEC 61000-4-2 Contact Discharge ±15 kV
 - IEC 61000-4-2 Air Gap Discharge ±15 kV
 - IEC 61000-4-5 Open Circuit Voltage 100 V
 - Precision Clamp circuit limits the V_{BUS SYS} Voltage < V_{OVP}
- Factory Programmable Startup and Soft Start delays
- **USB Inrush Current Compliant**
- Thermal Shutdown (TSD) Feature

Applications 2

- **Cell Phones**
- Tablets
- eBook
- Portable Media Players
- 5-V, 9-V, and 12-V Power Rails

TPD1S514 Circuit Protection Scheme

3 Description

Tools &

Software

The TPD1S514 is a single-chip protection solution for the USB V_{BUS} line or other power buses. The bidirectional nFET switch ensures safe current flow in both charging and host mode while protecting the internal system circuits from any over voltage condition at the $V_{BUS_{CON}}$ pin. On the $V_{BUS_{CON}}$ pin, this device can handle over voltage protection up to 30-V DC. After the EN pin toggles low, the TPD1S514 waits 20 ms before turning ON the nFET through a soft start delay. TPD1S514 can be factory programmed to multiple V_{OVP}, start up and soft start delay combinations. See the Device Comparison table.

Device Information⁽¹⁾

DEVICE NAME	PACKAGE	BODY SIZE (NOM)
TPD1S514	WCSP (12)	1.29 mm × 1.99 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

TPD1S514 Block Diagram

Application and Implementation 14

Table of Contents

8

9

13

11.1

1	Feat	ures 1
2	App	lications 1
3	Desc	cription 1
4	Revi	sion History 2
5	Devi	ce Comparison Table 3
6	Pin (Configuration and Functions 3
7	Spee	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	Handling Ratings 4
	7.3	Recommended Operating Conditions5
	7.4	Thermal Information 5
	7.5	Supply Current Consumption5
	7.6	Electrical Characteristics EN Pin
	7.7	Thermal Shutdown Feature 6
	7.8	Electrical Characteristics nFET Switch 6
	7.9	Electrical Characteristics OVP Circuit
	7.10	Electrical Characteristics V _{BUS_POWER} Circuit7
	7.11	Timing Requirements 8

4 Revision History

Changes from Revision A (July 2014) to Revision B	Page
Changed Body size to fix rounding error. Changes from Original (April 2014) to Revision A	
Changes from Original (April 2014) to Revision A	Page
Removed Preview status of TPD1S514-2	
Updated Device Comparison table.	
· Opdated Device Comparison table.	

ISTRUMENTS

EXAS

 8.1
 Overview
 11

 8.2
 Functional Block Diagram
 11

 8.3
 Feature Description
 11

 8.4
 Device Functional Modes
 13

9.1Application Information149.2Typical Application1410Power Supply Recommendations1711Layout18

 11.2
 Layout Example
 18

 12
 Device and Documentation Support
 19

 12.1
 Trademarks
 19

 12.2
 Electrostatic Discharge Caution
 19

 12.3
 Glossary
 19

Information 19

Mechanical, Packaging, and Orderable

Layout Guidelines 18

www.ti.com

5 Device Comparison Table

TPD1S514 Family	V _{OVP} (V)			V _{OVP_HYS} V _{BUS_POWER} (V) ⁽¹⁾		T_Startup delay (ms) options	T_Soft Start (ms) options	
	Min	Тур	Max	Тур	Min	Тур	Тур	Тур
TPD1S514-1	5.9	5.95	5.99	100	4.7	4.95		
TPD1S514-2	9.9	9.98	10.05	100	4.7	4.95		25
TPD1S514-3 (Preview)	13.2	13.32	13.4	100	4.7	4.95	- 20	3.5
TPD1S514-4	5.9	5.95	5.99	20	6.2	6.48		
TPD1S514-x		5.6 V – 15 V ⁽¹)	100	4.7	4.95	5, 20, 30, or 150 ⁽¹⁾⁽²⁾	0.1, 3.5, 4.9, or 6.7 ⁽¹⁾⁽²⁾

(1) With V_{BUS_CON} > 6.5V. See Sections V_{BUS_POWER}, TPD1S514-1, TPD1S514-2, TPD1S514-3 and V_{BUS_POWER}, TPD1S514 for full description.

(2) These parameters are factory programmable. See the *Manufacturer Programmable Internal Startup*, *SoftStart Delays*, *and OVP* section and contact your local sales representative.

TPD1S514 WCSP (YZ) PIN MAPPING

6 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
EN	A1	I	Enable Active-Low Input. Drive $\overline{\text{EN}}$ low to enable the switch. Drive $\overline{\text{EN}}$ high to disable the switch.
V _{BUS_POWER}	B1	0	5 V Power source controlled by V _{BUS_CON} .
V _{BUS_SYS}	A2, A3, B2	Ю	Connect to internal VBUS plane.
V _{BUS_CON}	B3, C2, C3	IO	Connect to USB connector VBUS pin; IEC61000-4-2 ESD protection IEC61000-4-5 Surge protection.
GND	A4, B4, C1, C4	G	Connect to PCB ground plane.

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{BUS_CON}	Supply voltage from USB connector		-0.3	30	V
V _{BUS_SYS}	Internal Supply DC voltage Rail on the PCB		-0.3	20	V
I _{BUS}	Continuous input current on V _{BUS_CON} pin ⁽³⁾			3.5	А
I _{OUT}	Continuous output current on V _{BUS_CON} pin ⁽³⁾			3.5	Α
I _{PEAK}	Peak Input and Output Current on V _{BUS_CON} , V _{BUS_SYS} p	in (10 ms)		8	А
I _{DIODE}	Continuous forward current through the FET body diode			1	А
IPOWER	Continuous Current through V _{BUS_POWER}		1	mA	
VEN	Voltage on Input pin (EN)			7	V
V_{BUS_POWER}	Continuous Voltage at V _{BUS_POWER}	TPD1S514-1		See ⁽⁴⁾	V
		TPD1S514-2		See ⁽⁴⁾	
		TPD1S514-3 (Preview)		See ⁽⁴⁾	
		TPD1S514-4		See ⁽⁴⁾	
T _{STG}	Storage temperature range		-65	150	°C
T _A	Operating Free Air Temperature		-40	85	°C
	IEC 61000-4-5 Peak Pulse Current (t _p = 8/20µs)	V _{BUS_CON} pin		30	А
	IEC 61000-4-5 Peak Pulse Power (t _p = 8/20µs)	V _{BUS_CON} pin		900	W
	IEC 61000-4-5 Open circuit voltage (t _p = 1.2/50 μs)	V _{BUS_CON} pin		100	V
C _{LOAD}	Output load capacitance	V _{BUS_SYS} pin	0.1	100	μF
C _{CON}	Input capacitance	V _{BUS_CON} pin	0.1	50	μF
C _{POW}	V _{BUS_POWER} Capacitance	V _{BUS_POWER} pin	0.1	4.7	μF

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

(3) Thermal limits and power dissipation limits must be observed.

(4) 6.9 V or V_{BUS_CON} + 0.3 V, whichever is smaller.

7.2 Handling Ratings

				MIN	MAX	UNIT
T _{stg}	Storage temperature ran	ge				°C
		Human body model (HBM), per ANS pins ⁽¹⁾	-2000	+2000	V	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per J C101, all pins ⁽²⁾	-500	500	V	
		IEC 61000-4-2 Contact Discharge	V _{BUS_CON} pin	-15	+15	kV
		IEC 61000-4-2 Air-gap Discharge V _{BUS_CON} pin		-15	+15	kV

 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as 2000 V may actually have higher performance.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 500 V may actually have higher performance.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	TYP	MAX	UNIT
V _{BUS_CON}	Supply voltage from USB connector	TPD1S514-1	3.5	5	5.9	V
		TPD1S514-2	3.5	9	9.9	
		TPD1S514-3 (Preview)	3.5	12	13.2	
		TPD1S514-4	3.5	5	5.9	
V _{BUS_SYS}	Internal Supply DC voltage Rail on the PCB	TPD1S514-1	3.9	5	5.9	V
		TPD1S514-2	3.9	9	9.9	
		TPD1S514-3 (Preview)	3.9	12	13.2	
		TPD1S514-4	3.9	5	5.9	
C _{LOAD}	Output load capacitance	V _{BUS_SYS} pin		2.2		μF
C _{CON}	Input capacitance	V _{BUS_CON} pin		1		μF
C _{POWER}	Capacitance on V _{BUS_POWER}	V _{BUS_POWER} pin		1		μF
T _A	Operating free-air temperature		-40		85	°C

7.4 Thermal Information

		TPD1S514	
	THERMAL METRIC ⁽¹⁾	YZ	UNIT
		12 PINS	
$R_{ extsf{ heta}JA}$	Junction-to-ambient thermal resistance	89	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	0.6	
$R_{\theta JB}$	Junction-to-board thermal resistance	16.3	°C/W
ΨJT	Junction-to-top characterization parameter	2.7	C/W
Ψ _{JB}	Junction-to-board characterization parameter	16.2	
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Supply Current Consumption

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	DEVICE NAME	TYP	MAX	UNIT
IVBUS_SLEEP			V _{BUS_CON} = 5 V	TPD1S514-1	150	245	
		Management at \/	V _{BUS_CON} = 9 V	TPD1S514-2	176	281	
	V _{BUS CON} Operating	$\frac{\text{Measured at V}_{\text{BUS}_\text{CON}} \text{ pin,}}{\text{EN} = 5 \text{ V}}$	V _{BUS_CON} = 12 V	TPD1S514-3 (Preview)	195	308	μA
			V _{BUS_CON} = 5 V	TPD1S514-4	150	245	
	Current Consumption		V _{BUS_CON} = 5 V	TPD1S514-1	228	354	
			V _{BUS_CON} = 9 V	TPD1S514-2	250	413	
I _{VBUS}		$\frac{Measured}{EN} = 0 \text{ V and no load}$	V _{BUS_CON} = 12 V	TPD1S514-3 (Preview)	337	456	μA
			V _{BUS_CON} = 5 V	TPD1S514-4	228	354	
	· ·	Measured at V _{BUS_SYS} pin, V _{BUS_CON} = Hi-Z, EN = 0 V	$V_{BUS_{SYS}} = 5 V$	TPD1S514-1	210	354	
	V Operating Current		V _{BUS_SYS} = 9 V	TPD1S514-2	250	424	
I _{VBUS_SYS}	V_{BUS_SYS} Operating Current Consumption		V _{BUS_SYS} = 12 V	TPD1S514-3 (Preview)	333	461	μA
			V _{BUS_SYS} = 5 V	TPD1S514-4	210	354	
			V _{BUS_SYS} = 5 V	TPD1S514-1	90	218	
	Linet Maria Linetana		V _{BUS_SYS} = 9 V	TPD1S514-2	290	491	
I _{HOST_LEAK}	Host Mode Leakage current	Measured at V_{BUS_SYS} pin, V_{BUS_CON} = Hi-Z, EN = 5 V	V _{BUS_SYS} = 12 V	TPD1S514-3 (Preview)	506	696	μA
			V _{BUS_SYS} = 5 V	TPD1S514-4	90	218	

Copyright © 2014, Texas Instruments Incorporated

SLVSCF6B-APRIL 2014-REVISED SEPTEMBER 2014

. . . .

7.6 Electrical Characteristics EN Pin

over operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VIH	High-level input voltage	EN	$V_{BUS_CON} = 5 V$	1.2		6	V
VIL	Low-level input voltage	EN	$V_{BUS_CON} = 5 V$	0		0.8	V
I_{IL}	Input Leakage Current	EN	$V_{\overline{EN}} = 0 V, V_{BUS_{CON}} = 5 V$			1	μA
I _{IH}	Input Leakage Current	ĒN	$V_{\overline{EN}} = 5 \text{ V}, V_{BUS_{CON}} = 5 \text{ V}$			10	μA

7.7 Thermal Shutdown Feature

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{SHDN}	Thermal Shutdown	$V_{BUS_{CON}} = 5 \text{ V}, \overline{EN} = 0 \text{ V}, \text{ Junction temperature}$ decreases from thermal shutdown level until the nFET switch turns off.		145		°C
	Thermal Shutdown Hysteresis	$V_{BUS_{CON}} = 5 \text{ V}, \overline{EN} = 0 \text{ V}, \text{ Junction temperature}$ decreases from thermal shutdown level until the nFET switch turns on.		25		°C

7.8 Electrical Characteristics nFET Switch

T =	25°C
-----	------

	PARAMETER	TEST COND	MIN	TYP	MAX	UNIT	
		$V_{BUS_CON} = 5 V, I_{OUT} = 1 A$	TPD1S514-1		39	50	
D	Switch ON Resistance V _{BUS_C}	$V_{BUS_CON} = 9 V, I_{OUT} = 1 A$	TPD1S514-2		39	50	
R _{ON}		$V_{BUS_CON} = 12 \text{ V}, \text{ I}_{OUT} = 1 \text{ A}$	TPD1S514-3 (Preview)		39	50	mΩ
		$V_{BUS_{CON}} = 5 \text{ V}, I_{OUT} = 1 \text{ A}$	TPD1S514-4		39	50	

7.9 Electrical Characteristics OVP Circuit

T = 25°C

	PARAMETER		TEST CO	ONDITIONS	MIN	TYP	MAX	UNIT	
				TPD1S514-1	5.90	5.95	5.99		
N/	Input voltage protection	V	V _{BUS CON} increasing	TPD1S514-2	9.9	9.98	10.05	V	
V _{OVP}	threshold	V _{BUS_CON}	from 0 V to 20 V	TPD1S514-3 (Preview)	13.5	13.75	14	v	
				TPD1S514-4	5.90	5.95	5.99		
				TPD1S514-1		100			
	Hysteresis on OVP	V _{BUS_CON}	V _{BUS_CON} decreasing from 20 V to 0 V	TPD1S514-2		100			
V _{HYS_OVP}				TPD1S514-3 (Preview)		100		mV	
				TPD1S514-4		20			
V _{UVLO}	Input under voltage lockout	V _{BUS_CON}	V _{BUS_CON} voltage rising	from 0 V to 5 V	2.7	3.1	3.5	V	
V _{HYS_UVLO}	Hysteresis on UVLO	V _{BUS_CON}	Difference between risir thresholds	ig and falling UVLO		80		mV	
V _{UVLO_FALLING}	Input under voltage lockout	V _{BUS_CON}	V _{BUS_CON} voltage falling	from 5 V to 0 V	2.6	3.0	3.4	V	
V _{UVLO_SYS}	V _{BUS_SYS} under voltage lockout	V _{BUS_SYS}	V _{BUS SYS} voltage rising from 0 V to 5 V		2.8	3.7	4.3	V	
V _{HYS_UVLO_SYS}	V _{BUS_SYS} UVLO Hysteresis	V _{BUS_SYS}	Difference between risin thresholds on V_{BUS_SYS}		500		mV		
V _{UVLO_SYS_FALLING}	V _{BUS_SYS} under voltage lockout	V _{BUS_SYS}	V _{BUS_SYS} voltage falling	from 5 V to 0 V	2.6	3.0	3.4	V	

7.10 Electrical Characteristics V_{BUS_POWER} Circuit

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TES	T CONDITIONS	MIN	TYP	MAX	UNIT
			TPD1S514-1		5.0	5.5	
V _{CLAMP}	Output Voltage on $V_{\text{BUS}_\text{POWER}}$ during OVP	V _{BUS_CON} = 20 V	TPD1S514-2		5.0	5.5	V
			TPD1S514-3 (Preview)		5.0	5.5	
			TPD1S514-4		6.48	6.68	
	Output Voltage on V _{BUS POWER} during normal	V _{BUS_CON} = 5 V,	TPD1S514-1	4.7	4.95		
			TPD1S514-2	4.7	4.95		N/
V _{BUS_POWER}	operation	$I_{BUS_{POWER}} = 1 \text{ mA};$	TPD1S514-3 (Preview)	4.7	4.95		V
			TPD1S514-4	4.7	4.98		
IBUS_POWER_MAX	Output Current on V _{BUS_POWER}	$V_{BUS_{CON}} = 5 V - 15 V$	1			3	mA

SLVSCF6B - APRIL 2014-REVISED SEPTEMBER 2014

www.ti.com

STRUMENTS

XAS

7.11 Timing Requirements

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
			TPD1S514-1				
	USB Charging Turn-ON	B Charging Turn-ON Measured from EN asserted LOW TPD1S514-2	TPD1S514-2		20		
t _{DELAY}	Delay	to nFET begins to Turn ON, excludes soft-start time	TPD1S514-3 (Preview)		20		ms
			TPD1S514-4				
			TPD1S514-1				
•	USB Charging rise time (Soft Start Delay)	Measure from V _{BUS_SYS} rises	TPD1S514-2	3.5			ms
t _{SS}		above 25% (with 1 MΩ load/ NO C _{LOAD})	TPD1S514-3 (Preview)	5.5			
			TPD1S514-4				
		Measured from EN asserted High	TPD1S514-1				
	USB Charging Turn-OFF	to $V_{BUS SYS}$ falling to 10% with	TPD1S514-2				
tOFF_DELAY	time	$R_{LOAD} = 10\Omega$ and No C_{LOAD} on	TPD1S514-3 (Preview)	5.5 			μs
		V _{BUS_SYS}	TPD1S514-4				
OVER VOLT	AGE PROTECTION						
t _{OVP_response}	OVP Response time	Measured from OVP Condition to F	ET Turn OFF ⁽¹⁾			100	ns

(1) Specified by design, not production tested

Figure 1. TPD1S514-1 Response to set EN low

7.12 TPD1S514-1 Typical Characteristics

8 Detailed Description

8.1 Overview

The TPD1S514 provides a single-chip ESD, surge, and over voltage protection solution for portable USB Charging and Host interfaces. It offers over voltage protection at the V_{BUS_CON} pin up to 30-V DC. The TPD1S514 offers an ESD and Precision Clamp for the V_{BUS_CON} pin, thus eliminating the need for external TVS clamp circuits in the application.

The TPD1S514 has an internal oscillator and charge pump which controls turning ON the internal nFET switch. The internal oscillator controls the timers which enable the charge pump. If V_{BUS_CON} is less than V_{OVP} , the internal charge pump is enabled. After a 20 ms internal delay, the charge-pump starts-up, and turns ON the internal nFET switch through a soft start. If at any time V_{BUS_CON} rises above V_{OVP} , the nFET switch is turned OFF within 100 ns.

The TPD1S514 also has a V_{BUS_POWER} pin which follows V_{BUS_CON} up to 4.9 V at 3 mA (except for TPD1S514, which follows V_{BUS_CON} up to 6.48 V, after which it is regulated to that voltage) to power the system from V_{BUS_CON}. In the case where the system battery state cannot power the system, voltage from an external charger can be provided to power the system. V_{BUS_POWER} is supplied by an always on LDO regulator supplied by V_{BUS_CON}. V_{BUS_POWER} output voltage remains regulated to 4.9 V (except for TPD1S514, which follows V_{BUS_CON} up to 6.48 V, after which it is regulated to that voltage) at up to 30-V DC on V_{BUS_CON} and during IEC61000-4-5 surge events of up to 100 V open circuit voltage on V_{BUS_CON}.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Over Voltage Protection on $V_{BUS_{CON}}$ up to 30 V DC

When the V_{BUS_CON} voltage rises above V_{OVP}, the internal nFET switch is turned OFF, removing power from the system side. V_{BUS_CON} can tolerate up to 30-V DC. The response to over voltage is very rapid, with the nFET switch turning off in less than 100 ns. When the V_{BUS_CON} voltage returns back to below V_{OVP} – V_{HYS_OVP}, the nFET switch is turned ON again after an internal delay of $t_{OVP,RECOV}$ (t_{DELAY}). This time delay ensures that the V_{BUS_CON} supply has stabilized before turning the switch back on. After t_{OVP_RECOV} , the TPD1S514 turns on the nFET through a soft start. Once the OVP condition is cleared the nFET is turned completely ON.

Copyright © 2014, Texas Instruments Incorporated

Feature Description (continued)

8.3.2 Precision OVP (< ±1% Tolerance)

1% OVP trip threshold accuracy allows use of the entire input charging range while protecting sensitive systemside components from overvoltage conditions.

8.3.3 Manufacturer Programmable Internal Startup, SoftStart Delays, and OVP

TPD1S514 with V_{BUS_POWER} = 4.95 V can be manufactured pre-programmed with the startup time, t_{DELAY} , ranging from 5 ms to 150 ms. Also, the SoftStart, t_{SS} , can be manufactured pre-programmed with a range of 0.1 ms to 6.7 ms. Also, OVP can be manufactured to protect at levels of 5.6 V – 15 V in 30 mV steps. Any of these three parameters can be configured independent of the others. In all cases V_{BUS POWER} = 4.95 V.

a. Factory programmable parameters:

i. t_{DELAY}: 5 ms, 20 ms, 30ms, or 150 ms

ii. t_{SS}: 0.1 ms, 3.5 ms, 4.9 ms, or 6.7 ms

iii. OVP: 5.6 V – 15 V in 30 mV steps

8.3.4 Low R_{ON} nFET Switch Supports Host and Charging Mode

The nFET switch has a total on resistance (R_{ON}) of 39 m Ω . This equates to a voltage drop of less than 140 mV when charging at the maximum 3.5 A current level. Such low RON helps provide maximum potential to the system as provided by an external charger or by the system when in Host Mode.

8.3.5 V_{BUS POWER}, TPD1S514-1, TPD1S514-2, TPD1S514-3

The V_{BUS_POWER} pin provides up to 3 mA and 5 V for powering the system using V_{BUS_CON}. V_{BUS_POWER} follows V_{BUS_CON} after 3.5 V and up to the regulated 5 V. In the case where the system battery state cannot power the system, voltage from an external charger can power the system. V_{BUS_POWER} is supplied by an always on LDO regulator supplied by V_{BUS_CON}. The V_{BUS_POWER} output voltage remains regulated to 5 V at up to 30-V DC on V_{BUS_CON} and during IEC61000-4-5 surge events of up to 100 V.

8.3.6 V_{BUS POWER}, TPD1S514

The V_{BUS_POWER} pin provides up to 3 mA and 6.48 V for powering the system using V_{BUS_CON}. V_{BUS_POWER} follows V_{BUS_CON} after 3.5 V and up to the regulated 6.48 V. In the case where the system battery state cannot power the system, voltage from an external charger can be provided to power the system. V_{BUS_POWER} is supplied by an always on LDO regulator supplied by V_{BUS_CON}. The V_{BUS_POWER} output voltage remains regulated to 6.48 V at up to 30-V DC on V_{BUS_CON} and during IEC61000-4-5 surge events of up to 100 V.

8.3.7 Powering the System When Battery is Discharged

There are two methods for powering the system under a dead battery condition. Case 1: The \overline{EN} pin can be tied to ground so that the nFET is always ON (when $V_{UVLO} < V_{BUS_CON} < V_{OVP}$) and an external charger can power VBUS. Case 2: If \overline{EN} is controlled by a Power Management Unit (PMIC) or other logic, V_{BUS_POWER} can be used to power the PMIC.

8.3.8 ±15 kV IEC61000-4-2 Level 4 ESD Protection

The V_{BUS_CON} pin can withstand ESD events up to ±15 kV Contact and Air-Gap. An ESD clamp diverts the current to ground.

8.3.9 100 V IEC61000-4-5 µs Surge Protection

The V_{BUS_CON} pin can withstand surge events up to 100 V open circuit voltage (V_{PP}), or 900 W. A Precision Clamp diverts the current to ground and active circuitry switches OFF the nFET earlier than 100 ns before an overvoltage can get through to V_{BYS_SYS}. The ultra-fast response time of TPD1S514 holds the voltage on V_{BUS_SYS} to less than V_{OVP} during surge events of up to 100 V_{PP}.

Feature Description (continued)

8.3.10 Startup and OVP Recovery Delay

Upon startup or recovering from an over voltage, TPD1S514 has a built in startup delay. An internal oscillator controls a charge pump to control the delay. Once a manufactured pre-programmed time, t_{DELAY} , has elapsed, the charge pump is enabled which turns ON the nFET. A manufactured pre-programmed soft start, t_{SS} , is used when turning ON the nFET. These start delays, t_{DELAY} + t_{SS} , work together to meet USB Inrush Current compliance.

8.3.11 Thermal Shutdown

TPD1S514 has an over-temperature protection circuit to protect against system faults or improper use. The basic function of the thermal shutdown (TSD) circuit is to sense when the junction temperature has exceeded the absolute maximum rating and shuts down the device until the junction temperature has cooled to a safe level.

8.4 Device Functional Modes

8.4.1 Operation With $V_{BUS CON} < 3.5 V$ (Minimum $V_{BUS CON}$)

TPD1S514 operates normally (nFET ON) with input voltages above 3.5 V. The maximum UVLO voltage is 3.5 V and the device will operate at input voltages above 3.5 V. The typical UVLO voltage is 3.1 V and the device may operate at input voltages above that point. The device may also operate at input voltages as low as 2.7 V, the minimum UVLO. At input voltages between 0.6 V and 1.2 V, the state of output pins may not be controlled internally.

8.4.2 Operation With V_{BUS_CON} > V_{OVP}

TPD1S514 operates normally (nFET ON) with input voltages below V_{OVP_min} . The typical OVP voltage is V_{OVP_TYP} and the device may operate at input voltages below that point. The device may also operate at input voltages as high as V_{OVP_MAX} .

Device Name	V _{OVP}							
	MIN	ТҮР	MAX					
TPD1S514-1	5.9	5.95	5.99					
TPD1S514-2	9.9	9.98	10.05					
TPD1S514-3 (Preview)	13.2	13.32	13.4					
TPD1S514-4	5.9	5.95	5.99					

8.4.3 OTG Mode

The TPD1S514 UVLO and OVP voltages are referenced to V_{BUS_CON} voltage. In OTG mode, V_{BUS_SYS} is driving the V_{BUS_CON} . Under this situation, initially V_{BUS_CON} is powered through the body diode of the nFET by V_{BUS_SYS} . Once the UVLO threshold on V_{BUS_CON} is met, the nFET turns ON. If there is a short to ground on V_{BUS_CON} the OTG supply is expected to limit the current.

TEXAS INSTRUMENTS

www.ti.com

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The devices offer V_{BUS} port protection implementing UVLO and OVP, with an LDO supplied V_{BUS_POWER} pin to regulate an output supply pin of 3 mA at 5 V (except for TPD1S514, which follows V_{BUS_CON} up to 6.48 V, after which it is regulated to that voltage). The V_{BUS_POWER} pin can be used to power the system from an external source on V_{BUS_CON} in case the system's battery state cannot power the system.

9.2 Typical Application

9.2.1 TPD1S514-1 USB 2.0/3.0 Case 1: Always Enabled

The \overline{EN} pin can be tied to ground so that the nFET is ON when $V_{UVLO} < V_{BUS_{CON}} < V_{OVP}$ and an external charger can power V_{BUS} . V_{BUS} power can be left floating.

9.2.1.1 Design Requirements

For this example, use the following table as input parameters:

Design Parameters	Example Value
Signal range on V _{BUS_CON}	3.5 V – 5.9 V
Signal range on V _{BUS_SYS}	3.9 V – 5.9 V
Signal on EN	Tie to system ground plane

9.2.1.2 Detailed Design Procedure

To begin the design process the designer needs to know the V_{BUS} voltage range.

9.2.1.2.1 V_{BUS} Voltage Range

The UVLO trip-point is a maximum 3.5 V and the OVP trip-point is a minimum 5.9 V. This provides some headroom for the USB 2.0 specified minimum 4.4 V (Low-power) or 4.75 V (Full-power) and 5.25 V maximum; or the USB 3.0 specified minimum 4.45 V and 5.25 V maximum.

9.2.1.2.2 Discharged Battery

Connecting \overline{EN} to ground sets the part active at all times. OVP and UVLO are always active, even when the system battery is fully discharged. In the case of a discharged system battery, $V_{BUS_{SYS}}$ can be used to power the system when a source with voltage between V_{UVLO} and V_{OVP} is attached to $V_{BUS_{CON}}$.

9.2.1.3 Application Curves

SLVSCF6B-APRIL 2014-REVISED SEPTEMBER 2014

9.2.2 TPD1S514-1 USB 2.0/3.0 Case 2: PMIC Controlled EN

TPD1S514 offers more flexibility to system designers to power up the system during a dead battery condition. Refer to Figure 12, the $V_{BUS_{POWER}}$ pin supplies 4.95 V and 3 mA to power the PMIC in a dead battery condition. Regardless of EN state, $V_{BUS_{POWER}}$ is available to the PMIC. Utilizing this power, the PMIC can enable TPD1S514 when the valid $V_{BUS_{CON}}$ voltage is present.

Figure 12. PMIC Controlled EN, TPD1S514-1

9.2.2.1 Design Requirements

For this example, use the following table as input parameters:

Design Parameters	Example Value
Signal range on V _{BUS_CON}	3.5 V – 5.9 V
Signal range on V _{BUS_SYS}	3.9 V – 5.9 V
Drive EN low (enabled)	0 V – 0.8 V
Drive EN high (disabled)	1.2 V – 6.0 V

9.2.2.2 Detailed Design Procedure

To begin the design process, some parameters must be decided upon. The designer needs to know the following:

- V_{BUS} voltage range
- PMIC power requirement

9.2.2.2.1 V_{BUS} Voltage Range

The UVLO trip-point is a maximum 3.5 V and the OVP trip-point is a minimum 5.9 V. This provides some headroom for the USB 2.0 specified minimum 4.4 V (Low-power) or 4.75 V (Full-power) and 5.25 V maximum; or the USB 3.0 specified minimum 4.45 V and 5.25 V maximum.

9.2.2.2.2 PMIC Power Requirement

The V_{BUS_POWER} pin can source up to 3 mA of current and maintain a minimum 4.8 V, 4.95 V typical. TPD1S514-1 design provides an LDO regulator supplied voltage source which can be used to provide power to a PMIC when its internal battery supplied power is unavailable. When selecting a matching PMIC, ensure its power requirement can be met by the V_{BUS_POWER} pin if designing for this scenario.

9.2.2.2.3 Discharged Battery

Powering the PMIC from $V_{BUS_{POWER}}$ allows logic control of the \overline{EN} pin to set TPD1S514-1 active and begin charging the battery and powering up the rest of the system.

9.2.2.3 Application Curves

10 Power Supply Recommendations

TPD1S514 Is designed to receive power from a USB 3.0 (or lower) V_{BUS} source. It can operate normally (nFET ON) between a minimum 3.5 V and a maximum V_{OVP_MIN} V. Thus, the power supply (with a ripple of V_{RIPPLE}) requirement for TPD1S514 to be able to switch the nFET ON is between 3.5 V + V_{RIPPLE} and $V_{OVP_MIN} - V_{RIPPLE}$, where V_{OVP_MIN} is:

Device Name	V _{OVP_MIN}
TPD1S514-1	5.90 V
TPD1S514-2	9.9 V
TPD1S514-3 (Preview)	13.2 V
TPD1S514-4	5.90 V

TPD1S514 SLVSCF6B – APRIL 2014 – REVISED SEPTEMBER 2014 TEXAS INSTRUMENTS

www.ti.com

11 Layout

11.1 Layout Guidelines

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer needs to minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- Route the protected traces as straight as possible.
- Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.

11.2 Layout Example

When designing layout for TPD1S514, note that V_{BUS_CON} and V_{BUS_SYS} pins allow extra wide traces for good power delivery. In the example shown, these pins are routed with 50 mil (1.27 mm) wide traces. Place the V_{BUS_CON} , V_{BUS_SYS} , and V_{BUS_POWER} capacitors as close to the pins as possible. Use external and internal ground planes and stitch them together with VIAs as close to the GND pins of TPD1S514 as possible. This allows for a low impedance path to ground so that the device can properly dissipate any surge or ESD events.

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

TPD1S514YZ (R-XBGA-N12)

DIE-SIZE BALL GRID ARRAY

C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

2-Sep-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPD1S514-1YZR	ACTIVE	DSBGA	ΥZ	12	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	RH5141	Samples
TPD1S514-2YZR	ACTIVE	DSBGA	ΥZ	12	3000	Green (RoHS & no Sb/Br)	Call TI SNAGCU	Level-1-260C-UNLIM	-40 to 85	RH5142	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

2-Sep-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*/	All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TPD1S514-1YZR	DSBGA	ΥZ	12	3000	180.0	8.4	1.39	2.09	0.75	4.0	8.0	Q2
	TPD1S514-2YZR	DSBGA	ΥZ	12	3000	180.0	8.4	1.39	2.09	0.75	4.0	8.0	Q2
	TPD1S514-2YZR	DSBGA	ΥZ	12	3000	178.0	9.2	1.42	2.1	0.76	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-Nov-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPD1S514-1YZR	DSBGA	YZ	12	3000	182.0	182.0	17.0
TPD1S514-2YZR	DSBGA	YZ	12	3000	182.0	182.0	17.0
TPD1S514-2YZR	DSBGA	ΥZ	12	3000	220.0	220.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.