

ENCLOSURE SHIELDING SOLUTIONS

The Leading Edge in EMI Shielding Technology

SHIELDING SELECTION CONSIDERATIONS

Consider these important factors in the selection of appropriate shielding products for your design:

- Operating Frequency
- Materials Compatibility
- Load/Forces
- Corrosive Considerations
- Commercial or Military Worldwide Compliance
- Operating Environment
- Cycle Life
- Cost
- Material Thickness/Alloy
- Attenuation Performance
- Fastening/Mounting
 Methods
- Storage Environment
- Nuclear, Biological, Chemical (NBC)
- Shielding/Grounding/Other
- Electrical Requirements
- Space/Weight Considerations
- Product Safety
- Recyclability

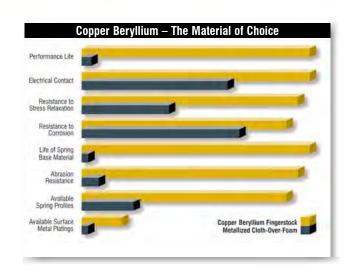
QUICK REFERENCE	CE PRODUCT SELEC	CTION CHART					
PARAMETERS	TechSIL ELASTOMER SHEETS	TechSIL ELASTOMER GASKETS	CuBe METAL GASKETS	FSG FABRIC SHIELDING GASKETS	CFS CONDUCTIVE FOAM	TechMESH KNITTED WIRE	TechMESH COMBO STRIP
High Cycling	Good	Good	Excellent	Very Good	Fair	Good	Good
Wiping Applications	N/A	Good	Excellent	Good	N/A	Fair	Fair
Dust Protection	Excellent	Excellent	N/A	Very Good	Very Good	Fair	Excellent
Moisture Protection	Excellent	Excellent	N/A	N/A	N/A	N/A	Excellent
Deflection %	10-20%	15-50%	15-85%	30-50%	30-60%	20-50%	20-50%
Design Flexibility	Excellent	Excellent	Very Good	Excellent	Excellent	Good	Very Good
Finish Options	Very Good	Very Good	Excellent	Good	Fair	Good	Good
I/O Applications	Excellent	Fair	Fair	Very Good	Excellent	Fair	Fair
Shield Effectiveness	Excellent	Excellent	Excellent	Excellent	Very Good	Excellent	Excellent
Tooling/NRE	Low	None	None	None/Low	Low	None	Low
Part Cost	SSS	\$\$\$	SSS	\$	\$\$	\$	\$\$
Lead Times	Very Good	Very Good	Excellent	Excellent	Very Good	Very Good	Good

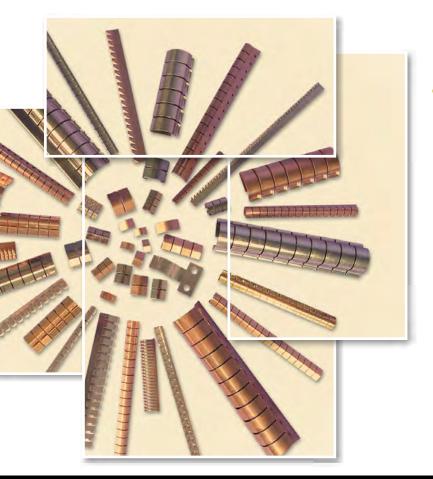
Notice:

Leader Tech cannot guarantee that the same test data as described herein will be obtained. Thus, it is recommended that each user make their own tests to confirm laboratory test data and determine suitability of products for their particular application.

The products described in this catalog shall be standard quality, however, the products in this catalog are sold without warranty of fitness for a particular purpose, either expressed or implied, except to the extent expressly stated on Leader Tech's quotation or order acknowledgment. Leader Tech does not warrant that devices incorporating one or more of the products described in this catalog will be free of conflict with existing or future patents of third parties. All risks of lack of fitness, patent infringement, and the like are assumed by the user. Furthermore, nothing contained herein shall be construed as a recommendation to make, use, or sell any product or process in conflict with existing or future patents.

TABLE OF CONTENTS


4	Application of Fingerstock Gaskets	
5	Compression/Deflection Performance and EMI Shielding Effectiveness	
6	Ordering Information & Adhesive Mounting Instructions	
7	Metals Galvanic Compatibility Chart	
8	BeCu Low Profile Series	
8	BeCu PCI Series	
9	BeCu Adhesive Mount Series	
9	BeCu Dome Top Series	
10	BeCu Slot Mount Series	5
12	BeCu Folded Series	Off.
14	BeCu Twist Series	
16	BeCu Clip-On Series	
18	BeCu Grounding Series	A STATE OF THE STA
19	BeCu Contact Series	A DOWN
22	Metal D-Subs	
23	Precision Metal Stampings	
2 4	TechSIL Conductive Elastomers	
25	TechSIL Oriented Wire	F
26	TechMESH Knitted Wire	
27	TechMESH Elastomer Core Wire	
28	TechMESH Combo Strip	
29	TechMESH Tape	(6-4 ms)
30	FSG Fabric Shielding Gaskets	
35	Shielding Fabrics & Conductive Tapes	
36	CFS Conductive Foam Shielding Material	
37	Custom and Die-Cut Shielding Gaskets	
39	Products and Literature	0001


APPLICATION OF FINGERSTOCK GASKETS

EMI designers know and trust the consistent performance of Fingerstock (CuBe) gaskets. To date, CuBe yields the best electrical spring contact available in this industry. The copper beryllium mills have well established techniques and for decades have produced CuBe alloys per ASTM, SAE, JIS, and DIN specifications.

Leader Tech uses only proven technology in creating copper beryllium springs, contacts and gaskets. Beginning with Alloy 25 (1/4 hard) BeCu, we stamp, form, and post heat-treat to a hardness of 340 to 390 DPH. This process is preferred in the EMI shielding industry because it has proven to produce the best electrical spring contacts. Leader Tech CuBe EMI shielding gaskets are the most reliable in the industry.

Leader Tech manufactures a wide variety of standard styles and sizes of CuBe gaskets. These gaskets operate in spaces from .010 inches up to .410 inches. Using CuBe materials as thin as .002 inch, we also offer many styles as soft gaskets that provide the low compression force needed in many applications. Leader Tech also designs and manufactures custom spring contacts and gaskets.

FINGERSTOCK GASKETS DO TWO THINGS VERY WELL:

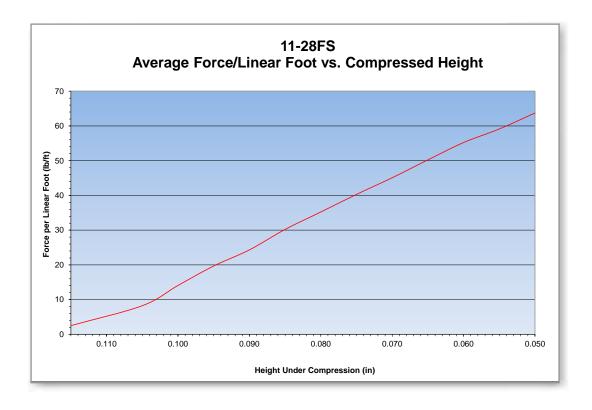
- Their mechanical spring characteristics far surpass all other gaskets in the industry.
- 2. They offer the highest EMI shielding effectiveness.

Leader Tech has been designing and manufacturing
Fingerstock Gaskets since the early days of the computer
and electronics industries. We combine these years of
manufacturing and EMI experience with one key ingredient
– the needs of the customer.

Our innovative Fingerstock Gasket designs are a direct result of our experience and customer input. Our Compact PCI line of EMI Gaskets is an example of a design that was driven by the needs of a customer and evolved into a line of gaskets that meet all the requirements for Compact PCI faceplate standards while providing superior mechanical and shielding performance.

Leader Tech offers many standard off-the-shelf Fingerstock Gaskets as well as the engineering and custom manufacturing experience to help you solve your application. Whether you need one prototype or a large quantity order, our team at Leader Tech is available to respond to your needs.

4


Phone: 866.832.4364 Fax: 813.855.3291 Web: www.leadertechinc.com

COMPRESSION/DEFLECTION PERFORMANCE

Leader Tech. Part No.	Design Compressed Height	Compression Force (lbs./linear ft.)
3-23T	0.018 (0.46)	25
6-34T	0.049 (1.24)	33
6-50T2	0.049 (1.24)	43
9-19UD	0.072 (1.83)	30
11-32RH	0.035 (0.89)	34
11-45C	0.090 (2.29)	19

Leader Tech. Part No.	Design Compressed Height	Compression Force (lbs./linear ff.)
14-45DT	0.098 (2.49)	24
22-60AH	0.140 (3.56)	25
22-60RH	0.070 (1.78)	48
23-76FSC	0.130 (3.30)	34
25-109C	0.140 (3.56)	36
25-78FS	0.150 (3.81)	36

The data presented is based on testing and to our knowledge is accurate and true. Since applications, test methods, and test procedures may vary, we recommend that users of our products perform their own test to assure the suitability of these specific applications. We offer no product warranty, either expressed or implied, except that any product proven defective will be replaced. Freedom from present or future patent infringement cannot be guaranteed, nor can the suitability of our products for specific applications.

ORDERING INFORMATION

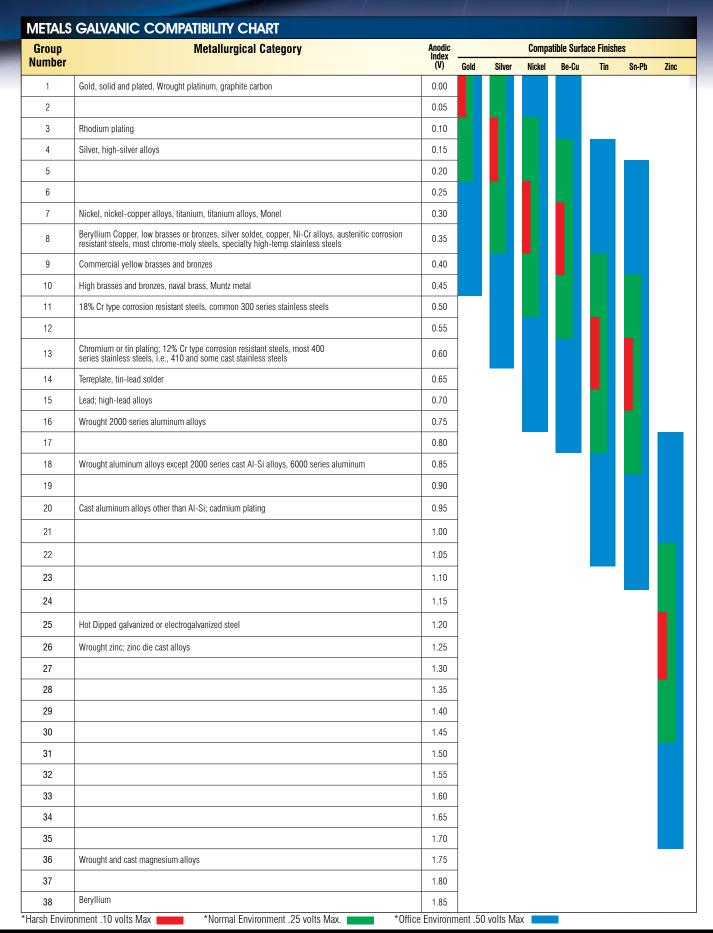
When placing an order or requesting a quotation, please give part number, your required finish I.D. from the chart below, and required length.

PART NUMBER EXAMPLE:			
Stock Item	Finish Code	Length	
11-S-32RH	– SN –	16	

The above example is the "Slot Mount Series" gasket shown on page 11. The height is .11 inch and the width is .32 inch. The "-S-" indicates a soft gasket. The "SN" indicates a bright tin finish. See list below for available finishes. This part is available in lengths of 16 inches. Consult factory for custom lengths or for availability in 25' coils.

	Available Plating Finishes:	
Finish Type	Applicable Specifications	Leader Tech Finish Code
Bright Finish		BD
Bright Tin	ASTM B-545, CLASS A	SN
Satin/Matte Tin	ASTM B-545, CLASS A	ST
Tin Lead	ASTM B-579, SC2	SNpb
Electro-less Nickel RoHS	ASTM B-733, SC 1, CLASS 1	NI
Zinc/Chromate Clear	ASTM B-633, SC1, TYPE III	Zinc
Zinc/Chromate Yellow	ASTM B-633, SC1, TYPE II	ZincY
Clear Cadmium Chromate	ASTM B-766, CLASS 5, TYPE III	CDC
Yellow Cadmium Chromate	ASTM B-766,CLASS 5, TYPE II	CDY
Bright Silver	ASTM B-700, TYPE 2, GRADE B, CLASS N	AG
Satin/Matte Silver	ASTM B-700, TYPE 2, GRADE A, CLASS N	MAG
Gold	ASTM B-488, TYPE I, CODE C, CLASS 1.25	AU
Solderable Unplated		SU

Standard plating finish is .0001 inch (.0025 mm) minimum.
Plating processes and thicknesses may be varied to meet customer needs.
Standard plating finish for gold is 0.00005 inches. See adjacent list of available finishes and consult factory for additional options.


ADHESIVE MOUNTING OF FINGERSTOCK GASKETS

Leader Tech tape mounted CuBe gaskets offer pressure-sensitive, double-sided adhesive for strong bonding to a wide variety of surface conditions. Ideal for all-purpose contact strips used in metal cabinets and electronic enclosures and is unaffected by temperatures from -67 to $+250^{\circ}$ F (-55 to 121° C)

Simply follow these four easy steps:

- Remove all grease and oily residue with a solvent such as isopropyl alcohol/water mixture (rubbing alcohol) or heptane. Dry and smooth the mounting surface with emery cloth if necessary.
- 2. Peal off the protective paper backing from the pressure sensitive adhesive tape.
- 3. Place the gasket in correct position. Press firmly to ensure a good bond to surface. Avoid repositioning, which might impair the effectiveness of the adhesive or may bend or kink the strip. NOTE: On strips where fingers cover the solid portion of the gasket, pressure may be applied by inserting a mandrel in the strip and pressing down.
- 4. At room temperature approximately 50% of the ultimate strength will be achieved after 20 minutes, 90% after 24 hours, and 100% after 72 hours. In some cases, bond strength can be increased and ultimate bond strength can be achieved more quickly by exposure of the bond to elevated temperature, e.g., 150°F (66°C) for 1 hour.

Phone: 866.832.4364 Fax: 813.855.3291 Web: www.leadertechinc.com

LOW PROFILE SERIES



LPH Low Profile Hook

The low profile series gaskets incorporate design features that allow for some of the lowest compression forces in the industry, while achieving high performance shielding effectiveness. These gaskets are ideally suited for small aperture applications.

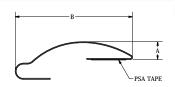
XX - Select material/finish (see page 6)

16 406

PART NUMBER

6-45LPH-060-XX-16

6-S-45LPH-060-XX-16


1.52

1.52

0.45 11.43 0.100 2.54

0.06

XX - Select material/finish (see page 6)

128

0.060

0.145

PCI SERIES

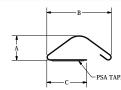
High performance Compact PCI Gaskets designed for easy card insertion in rack mount applications. This gasket is available in two different sizes to accommodate different customer extrusions. They are available in both Copper Beryllium and Stainless Steel.

3.18

0.003

0.125

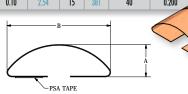
PART NUMBER		A	1	В		С	ı	D	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS
7-19PCI-XX-4.6	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	4.60	117	23
7-19PCI-XX-9.0	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	9.00	229	45
7-19PCI-XX-14.4	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	14.40	366	72
7-19PCI-SS-4.6	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	4.60	117	23
7-19PCI-SS-9.0	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	9.00	229	45
7-19PCI-SS-14.4	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	14.40	366	72
8-19PCI-XX-4.6	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	4.60	117	23
8-19PCI-XX-9.0	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	9.00	229	45
8-19PCI-XX-14.4	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	14.40	366	72
8-19PCI-SS-4.6	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	4.60	117	23
8-19PCI-SS-9.0	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	9.00	229	45
8-19PCI-SS-14.4	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	14.40	366	72


ADHESIVE MOUNT SERIES

AH Adhesi	ve Mo	ount												Blo	ack = ind	ches Blu	ıe = m	m Co	omp = Con	npressed
PART NUMBER	1	4	ı	В	(С	FIN	GER	PIT	СН	MAT.	THICK	COMP	WIDTH	COMP	HEIGHT	LEN	GTH	FINGERS	TAPE
11-32AH-XX-16	0.11	2.79	0.32	8.13	0.20	5.08	0.170	4.32	0.187	4.75	0.003	0.076	0.39	9.91	0.04	1.02	16	406	86	0.145
11-S-32AH-XX-16	0.11	2.79	0.32	8.13	0.20	5.08	0.170	4.32	0.187	4.75	0.002	0.051	0.39	9.91	0.04	1.02	16	406	86	0.145
13-37AH-XX-16	0.13	3.30	0.37	9.40	0.21	5.33	0.225	5.72	0.250	6.35	0.003	0.076	0.51	12.95	0.05	1.27	16	406	64	0.145
13-S-37AH-XX-16	0.13	3.30	0.37	9.40	0.21	5.33	0.225	5.72	0.250	6.35	0.002	0.051	0.51	12.95	0.05	1.27	16	406	64	0.145
14-38AH-XX-16	0.14	3.56	0.38	9.65	0.20	5.08	0.343	8.71	0.375	9.53	0.004	0.102	0.53	13.46	0.05	1.27	16	406	43	0.145
22-60AH-XX-16	0.22	5.59	0.60	15.24	0.28	7.11	0.344	8.74	0.375	9.53	0.005	0.127	0.73	18.54	0.09	2.29	16	406	43	0.200
22-S-60AH-XX-16	0.22	5.59	0.60	15.24	0.28	7.11	0.344	8.74	0.375	9.53	0.003	0.076	0.73	18.54	0.09	2.29	16	406	43	0.200
32-78AH-XX-16	0.32	8.13	0.78	19.81	0.45	11.43	0.344	8.74	0.375	9.53	0.004	0.102	0.98	24.89	0.12	3.05	16	406	43	0.375
32-S-78AH-XX-16	0.32	8.13	0.78	19.81	0.45	11.43	0.344	8.74	0.375	9.53	0.003	0.076	0.98	24.89	0.12	3.05	16	406	43	0.375

MOUNTING OPTIONS Tape The AH series gaskets are adhesive mounted general-purpose gaskets used in both compression and wiping applications. Sizes range from .11" (2.8mm) to .32" (8.1 mm) in height. Applications include electronic enclosures, shielded cabinets, and MRI chamber doors.

XX - Select material/finish (see page 6)


The Dome Top Gaskets are known for their large surface area for electrical contact and smooth wiping action. Also available in a solid top profile allowing for omni-directional wiping. Together with the Slot Mount Series, the Dome Top Gaskets are a mainstay in the enclosure/chassis industries. Commonly mounted with adhesive tape.

MOUNTING OPTIONS Tape The Dome Top gaskets have fully independent fingers that are adhesive mounted. Their smooth curve provides a large area for electrical contact and smooth wiping action.

XX - Select material/finish (see page 6)

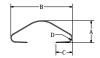
DTS Dome Top Solid Black = inches Blue = mm															npressed		
-	4		В	FIN	GER	PIT	СН	MAT.	THICK	COMP	WIDTH	СОМР	HEIGHT	LEN	GTH	FINGERS	TAPE
0.11	2.79	0.35	8.89	0.169	4.29	0.187	4.75	0.003	0.076	0.38	9.65	0.06	1.52	15	381	80	0.100
0.11	2.79	0.35	8.89	0.169	4.29	0.187	4.75	0.002	0.051	0.38	9.65	0.06	1.52	15	381	80	0.100
0.14	3.56	0.45	11.43	0.250	6.35	0.250	6.35	0.003	0.076	0.51	12.95	0.07	1.78	15	381	60	0.100
0.14	3.56	0.45	11.43	0.250	6.35	0.250	6.35	0.002	0.051	0.51	12.95	0.07	1.78	15	381	60	0.100
0.22	5.59	0.62	15.75	0.345	8.76	0.375	9.53	0.004	0.102	0.76	19.30	0.10	2.54	15	381	40	0.200
0.22	5.59	0.62	15.75	0.345	8.76	0.375	9.53	0.003	0.076	0.76	19.30	0.10	2.54	15	381	40	0.200
	0.11 0.11 0.14 0.14 0.22	0.11 2.79 0.11 2.79 0.14 3.56 0.14 3.56 0.22 5.59	A I 0.11 2.79 0.35 0.11 2.79 0.35 0.14 3.56 0.45 0.14 3.56 0.45 0.22 5.59 0.62	A B 0.11 2.79 0.35 8.89 0.11 2.79 0.35 8.89 0.14 3.56 0.45 11.43 0.14 3.56 0.45 11.43 0.22 5.59 0.62 15.75	A B FINO 0.11 2.79 0.35 8.89 0.169 0.11 2.79 0.35 8.89 0.169 0.14 3.56 0.45 11.43 0.250 0.14 3.56 0.45 11.43 0.250 0.22 5.59 0.62 15.75 0.345	A B FINGER 0.11 2.79 0.35 8.89 0.169 4.29 0.11 2.79 0.35 8.89 0.169 4.29 0.14 3.56 0.45 11.43 0.250 6.35 0.14 3.56 0.45 11.43 0.250 6.35 0.22 5.59 0.62 15.75 0.345 8.76	A B FINGER PIT 0.11 2.79 0.35 8.89 0.169 4.29 0.187 0.11 2.79 0.35 8.89 0.169 4.29 0.187 0.14 3.56 0.45 11.43 0.250 6.35 0.250 0.14 3.56 0.45 11.43 0.250 6.35 0.250 0.22 5.59 0.62 15.75 0.345 8.76 0.375	A B FINGER PITCH 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.22 5.59 0.62 15.75 0.345 8.76 0.375 9.53	A B FINGER PITCH MAT. 0.111 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.111 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.22 5.59 0.62 15.75 0.345 8.76 0.375 9.53 0.004	A B FINGER PITCH MAT. THICK 0.111 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.111 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.22 5.59 0.62 15.75 0.345 8.76 0.375 9.53 0.004 0.102	A B FINGER PITCH MAT. THICK COMP 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.38 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.51 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 0.22 5.59 0.62 15.75 0.345 8.76 0.375 9.53 0.004 0.102 0.76	A B FINGER PITCH MAT. THICK COMP WIDTH 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.38 9.65 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 9.65 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.51 12.95 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 12.95 0.22 5.59 0.62 15.75 0.345 8.76 0.375 9.53 0.004 0.102 0.76 19.30	A B FINGER PITCH MAT. THICK COMP WIDTH COMP 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.38 9.65 0.06 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 9.65 0.06 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.51 12.95 0.07 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 12.95 0.07 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 12.95 0.07 0.22 5.59 0.62 15.75 0.345 8.76 0.375 9.53 0.004 0.102 0.76 19.30 0.10	A B FINGER PITCH MAT. THICK COMP WIDTH COMP HEIGHT 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.38 9.65 0.06 1.52 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 9.65 0.06 1.52 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.51 12.95 0.07 1.78 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 12.95 0.07 1.78 0.02 5.59 0.62 15.75 0.345 8.76 0.375 9.53 0.004 0.102 0.76 19.30 0.10 2.54	A B FINGER PITCH MAT. THICK COMP WIDTH COMP HEIGHT LEN 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.38 9.65 0.06 1.52 15 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 9.65 0.06 1.52 15 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.51 12.95 0.07 1.78 15 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 12.95 0.07 1.78 15 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 12.95 0.07 1.78 15 0.22 5.59 0.62 <td>A B FINGER PITCH MAT. THCK COMP WIDTH COMP HEIGHT LENGTH 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.38 9.65 0.06 1.52 15 381 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 9.65 0.06 1.52 15 381 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.51 12.95 0.07 1.78 15 381 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 12.95 0.07 1.78 15 381 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 12.95 0.07 1.78 15<!--</td--><td>LING B FINGER PITCH MAT. THICK COMP WIDTH COMP HEIGHT LENGTH FINGERS 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.38 9.65 0.06 1.52 15 381 80 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 9.65 0.06 1.52 15 381 80 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.51 12.95 0.07 1.78 15 381 60 0.14 3.56 0.45 11.43 0.250 6.35 0.202 0.051 0.51 12.95 0.07 1.78 15 381 60 0.14 3.56 0.45 11.43 0.250 6.35 0.202 0.051 0.51 12.95 0.07 1.78</td></td>	A B FINGER PITCH MAT. THCK COMP WIDTH COMP HEIGHT LENGTH 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.38 9.65 0.06 1.52 15 381 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 9.65 0.06 1.52 15 381 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.51 12.95 0.07 1.78 15 381 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 12.95 0.07 1.78 15 381 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.002 0.051 0.51 12.95 0.07 1.78 15 </td <td>LING B FINGER PITCH MAT. THICK COMP WIDTH COMP HEIGHT LENGTH FINGERS 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.38 9.65 0.06 1.52 15 381 80 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 9.65 0.06 1.52 15 381 80 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.51 12.95 0.07 1.78 15 381 60 0.14 3.56 0.45 11.43 0.250 6.35 0.202 0.051 0.51 12.95 0.07 1.78 15 381 60 0.14 3.56 0.45 11.43 0.250 6.35 0.202 0.051 0.51 12.95 0.07 1.78</td>	LING B FINGER PITCH MAT. THICK COMP WIDTH COMP HEIGHT LENGTH FINGERS 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.003 0.076 0.38 9.65 0.06 1.52 15 381 80 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 9.65 0.06 1.52 15 381 80 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.003 0.076 0.51 12.95 0.07 1.78 15 381 60 0.14 3.56 0.45 11.43 0.250 6.35 0.202 0.051 0.51 12.95 0.07 1.78 15 381 60 0.14 3.56 0.45 11.43 0.250 6.35 0.202 0.051 0.51 12.95 0.07 1.78

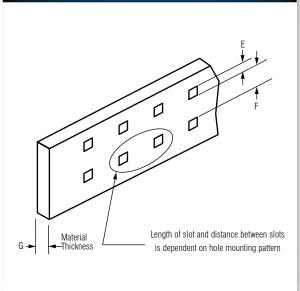
MOUNTING OPTIONS Tape The Dome Top "Solid" Series gaskets have a strip that connects each finger along the top. This allows for unique angular wiping action without snagging. Other features are the same as the Dome Top Series.

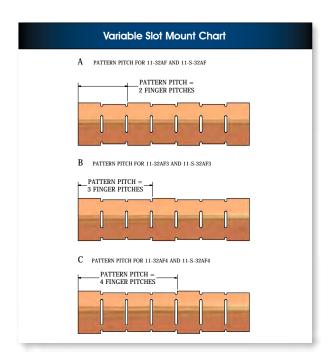
XX - Select material/finish (see page 6)

SLOT MOUNT SERIES

Slot mount gaskets are a standard in the electronic enclosure industry. These gaskets are used in shorter lengths as ESD contacts and longer lengths as EMI gaskets, which clip into slots or slide onto mounted tracks.


AF Alterna	te Fin	ger S	lot M	ount																Black	= incl	hes Bl	ue = mm
PART NUMBER	1	4	ı	В	(0	I)	Recom	E mended	Recom	F mended	* Recomi	G mended	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS
11-32AF-XX-16	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.004	0.102	16	406	85
11-32AF3-XX-16	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.004	0.102	16	406	85
11-32AF4-XX-16	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.004	0.102	16	406	85
11-S-32AF-XX-16	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.002	0.051	16	406	85
11-S-32AF3-XX-16	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.002	0.051	16	406	85
11-S-32AF4-XX-16	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.002	0.051	16	406	85
22-60AF-XX-16	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.07	1.78	0.250	6.35	0.282	7.16	0.005	0.127	16	406	57
22-60AF3-XX-16	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.07	1.78	0.250	6.35	0.282	7.16	0.005	0.127	16	406	58
22-S-60AF-XX-16	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.07	1.78	0.250	6.35	0.282	7.16	0.003	0.076	16	406	57
22-S-60AF3-XX-16	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.07	1.78	0.250	6.35	0.282	7.16	0.003	0.076	16	406	58

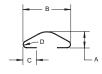

MOUNTING OPTIONS Slot

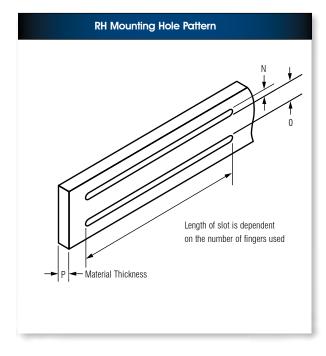

*May vary depending on application

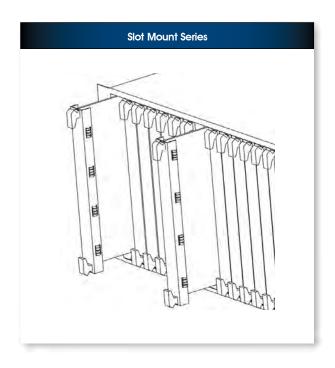
XX - Select material/finish (see page 6)

Phone: 866.832.4364 Fax: 813.855.3291 Web: www.leadertechinc.com

SLOT MOUNT SERIES CONT.


RH Slot Mo	ount																			Black	= incl	hes Bl	ue = mm
PART NUMBER	,	4	ı	В	(3	ı)	* Recom	N mended	* Recom	O mended		P mended	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS
11-28RH-XX-16	0.11	2.79	0.28	7.11	0.08	2.03	0.02	0.51	0.09	2.29	0.22	5.59	0.04	1.02	0.169	4.29	0.187	4.75	0.003	0.076	16	406	86
11-S-28RH-XX-16	0.11	2.79	0.28	7.11	0.08	2.03	0.02	0.51	0.09	2.29	0.22	5.59	0.04	1.02	0.169	4.29	0.187	4.75	0.002	0.054	16	406	86
11-32RH-XX-16	0.11	2.79	0.32	8.13	0.09	2.29	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.003	0.076	16	406	86
11-S-32RH-XX-16	0.11	2.79	0.32	8.13	0.09	2.29	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.002	0.054	16	406	86
13-30RH-XX-16	0.13	3.30	0.30	7.62	0.09	2.29	0.03	0.76	0.09	2.29	0.25	6.35	0.05	1.27	0.169	4.29	0.187	4.75	0.004	0.102	16	406	86
13-37RH-XX-16	0.13	3.30	0.37	9.40	0.09	2.29	0.02	0.51	0.09	2.29	0.31	7.87	0.04	1.02	0.225	5.72	0.250	6.35	0.003	0.076	16	406	64
13-S-37RH-XX-16	0.13	3.30	0.37	9.40	0.09	2.29	0.02	0.51	0.09	2.29	0.31	7.87	0.04	1.02	0.225	5.72	0.250	6.35	0.002	0.054	16	406	64
22-60RH-XX-16	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.06	1.52	0.250	6.23	0.282	7.16	0.005	0.127	16	406	57
22-S-60RH-XX-16	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.06	1.52	0.250	6.35	0.282	7.16	0.003	0.076	16	406	57 🚄



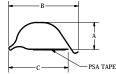

MOUNTING OPTIONS

*May vary depending on application

XX - Select material/finish (see page 6)

FOLDED SERIES

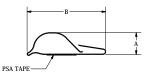
Leader Tech's Folded Gasket series are industry standard, general-purpose gaskets that allow a large range of deflection and compression forces. These gaskets are available with or without tape for alternate attachment methods. Also available in a snag-free version where, under compression, the leading edge of the gasket slides into an extended and folded base which prevents possible damage to the gasket.

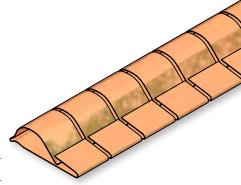

FS Folded													- 1	Black =	= inche	es Blu	e = m	m Co	omp = Con	npressed
PART NUMBER		4		В	(2	FIN	GER	PIT	СН	MAT.	THICK		MP GTH	CC	MP GHT	LEN	GTH	FINGERS	TAPE
11-28FS-XX-16	0.11	2.79	0.28	7.11	0.24	6.10	0.170	4.32	0.188	4.78	0.003	0.076	0.37	9.40	0.07	1.78	16	406	85	0.145
11-28FS-XX-300	0.11	2.79	0.28	7.11	0.24	6.10	0.170	4.32	0.188	4.78	0.003	0.076	0.37	9.40	0.07	1.78	300	7620	1596	0.145
11-S-28FS-XX-16	0.11	2.79	0.28	7.11	0.24	6.10	0.170	4.32	0.188	4.78	0.002	0.051	0.37	9.40	0.07	1.78	16	406	85	0.145
11-S-28FS-XX-300	0.11	2.79	0.28	7.11	0.24	6.10	0.170	4.32	0.188	4.78	0.002	0.051	0.37	9.40	0.07	1.78	300	7620	1596	0.145
14-37FS-XX-16	0.14	3.56	0.37	9.40	0.32	8.13	0.228	5.79	0.250	6.35	0.003	0.076	0.50	12.70	0.10	2.54	16	406	64	0.200
14-37FS-XX-300	0.14	3.56	0.37	9.40	0.32	8.13	0.228	5.79	0.250	6.35	0.003	0.076	0.50	12.70	0.10	2.54	300	7620	1200	0.200
14-S-37FS-XX-16	0.14	3.56	0.37	9.40	0.31	7.87	0.228	5.79	0.250	6.35	0.002	0.051	0.50	12.70	0.10	2.54	16	406	64	0.200
23-60FS-XX-24	0.23	5.84	0.60	15.24	0.50	12.70	0.343	8.71	0.375	9.53	0.004	0.102	0.77	19.56	0.12	3.05	24	610	64	0.250
23-60FS-XX-300	0.23	5.84	0.60	15.24	0.50	12.70	0.343	8.71	0.375	9.53	0.004	0.102	0.77	19.56	0.12	3.05	300	7620	800	0.250
25-78FS-XX-24	0.25	6.35	0.78	19.81	0.53	13.46	0.335	8.51	0.375	9.53	0.005	0.127	0.94	23.88	0.15	3.81	24	610	64	0.375
25-78FS-XX-300	0.25	6.35	0.78	19.81	0.53	13.46	0.340	8.64	0.375	9.53	0.005	0.127	0.94	23.88	0.15	3.81	300	7620	800	0.375
25-S-78FS-XX-24	0.25	6.35	0.78	19.81	0.53	13.46	0.335	8.51	0.375	9.53	0.003	0.076	0.94	23.88	0.15	3.81	24	610	64	0.375
25-S-78FS-XX-300	0.25	6.35	0.78	19.81	0.53	13.46	0.335	8.51	0.375	9.53	0.003	0.076	0.94	23.88	0.15	3.81	300	7620	800	0.375
41-113FS-XX-12	0.41	10.41	1.13	28.70	0.80	20.32	0.460	11.68	0.500	12.70	0.007	0.178	1.94	49.28	0.23	5.84	12	305	24	0.375

MOUNTING OPTIONS

■ Tape ■ Solder The Leader Tech FS gaskets are industry standard, general-purpose gaskets that allow a large range of deflection and compression forces. These gaskets are available without tape for alternate attachment methods. Consult factory for information.

XX - Select material/finish (see page 6)




MOUNTING OPTIONS

Tape
Solder

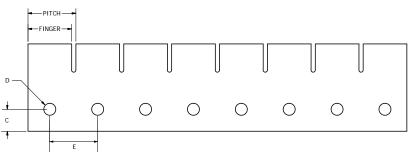
The FSC was created to provide snag free gaskets with FS gasket features. The base of the gasket is extended from the mounting area and then folded up, over, down, and then comes to rest over the leading edge of the formed spring. Under compression, the leading edge of the gasket slides under and is "captured." This "no snag" feature is also used to prevent possible gasket damage.

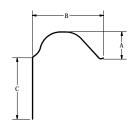
XX - Select material/finish (see page 6)

12

Phone: 866.832.4364 Fax: 813.855.3291 Web: www.leadertechinc.com

FOLDED SERIES CONT.


FSV Folded																Blac	k = in	ches	Blue =	mm	Comp	= Co	mpressed
PART NUMBER	A	4	ı	В	(С	I	D	I	E	FIN	GER	PIT	СН	MAT.	THICK	CC	MP DTH	CC	MP GHT	LEN	GTH	FINGERS
11-28FSV23-XX-16	0.11	2.79	0.28	7.11	0.24	6.10	0.06	1.52	0.188	4.78	0.170	4.32	0.188	4.78	0.003	0.076	0.37	9.40	0.07	1.78	16	406	85
11-S-28FSV23-XX-16	0.11	2.79	0.28	7.11	0.24	6.10	0.06	1.52	0.188	4.78	0.170	4.32	0.188	4.78	0.002	0.051	0.37	9.40	0.07	1.78	16	406	85
14-37FSV30-XX-16	0.14	3.66	0.37	9.40	0.32	8.13	0.06	1.52	0.250	6.35	0.228	5.79	0.250	6.35	0.003	0.076	0.50	12.70	0.10	2.54	16	406	64
14-S-37FSV30-XX-16	0.14	3.66	0.37	9.40	0.32	8.13	0.06	1.52	0.250	6.35	0.228	5.79	0.250	6.35	0.002	0.051	0.50	12.70	0.10	2.54	16	406	64
23-60FSV50-XX-24	0.23	5.84	0.60	15.24	0.50	12.70	0.08	2.03	0.375	9.53	0.343	8.71	0.375	9.50	0.004	0.102	0.77	19.56	0.12	3.05	24	610	64
25-78FSV50-XX-24	0.25	6.35	0.78	19.81	0.50	12.70	0.14	3.56	0.375	9.53	0.335	8.51	0.375	9.50	0.005	0.127	0.94	23.88	0.15	3.81	24	610	64
25-S-78FSV50-XX-24	0.25	6.35	0.78	19.81	0.50	12.70	0.14	3.56	0.375	9.53	0.335	8.51	0.375	9.50	0.003	0.076	0.94	23.88	0.15	3.81	24	610	64
41-113FSV-XX-12	0.41	10.41	1.13	28.70	0.80	20.32	0.14	3.56	0.500	12.70	0.460	11.68	0.500	12.70	0.007	0.178	1.94	49.28	0.23	5.84	12	305	24

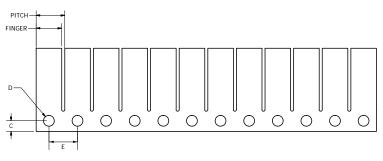


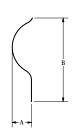
MOUNTING OPTIONS

The FSV is an FS gasket that has the base bent at a right angle to the curve of the spring form, with all the other features of the FS gasket maintained. Tape optional - please consult factory.

XX - Select material/finish (see page 6)

FSDS Folded																Blac	k = inc	ches	Blue =	mm	Comp	= Co	mpressed
PART NUMBER	1	4		В	(2)		E	FIN	GER	PIT	СН		MP OTH		MP GHT		ERIAL ICK	LEN	IGTH	FINGERS
25-109FSDS-XX-24	0.25	6.35	1.09	27.69	0.16	4.06	0.14	3.56	0.38	9.65	0.335	8.51	0.375	9.53	1.27	32.26	0.15	3.81	0.005	0.127	24	610	64
25-109FSDS-XX-300	0.25	6.35	1.09	27.69	0.16	4.06	0.14	3.56	0.38	9.65	0.335	8.51	0.375	9.53	1.27	32.26	0.15	3.81	0.005	0.127	300	7620	800
25-S-109FSDS-XX-24	0.25	6.35	1.09	27.69	0.16	4.06	0.14	3.56	0.38	9.65	0.335	8.51	0.375	9.53	1.27	32.26	0.15	3.81	0.003	0.076	24	610	64
25-S-109FSDS-XX-300	0.25	6.35	1.09	27.69	0.16	4.06	0.14	3.56	0.38	9.65	0.335	8.51	0.375	9.53	1.27	32.26	0.15	3.81	0.003	0.076	300	7620	800
41-163FSDS-XX-24	0.41	10.41	1.63	41.40	0.19	4.83	0.14	3.56	0.50	12.70	0.460	11.68	0.500	12.70	1.90	48.26	0.23	5.84	0.007	0.178	24	610	48
41-163FSDS-XX-300	0.41	10.41	1.63	41.40	0.19	4.83	0.14	3.56	0.50	12.70	0.460	11.68	0.500	12.70	1.90	48.26	0.23	5.84	0.007	0.178	300	7620	600




MOUNTING
OPTIONS
Tape
Rivet

Solder

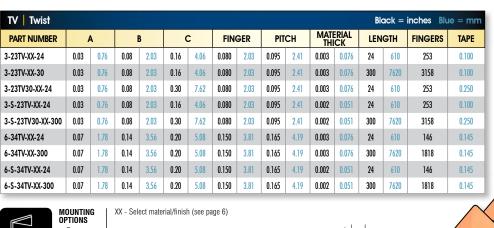
The FSDS is an FS gasket with its base lying on the same plane as the curve in the spring form, with the mounting area shortened. This mounting is often modified for custom applications.

XX - Select material/finish (see page 6)

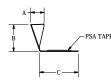
TWIST SERIES

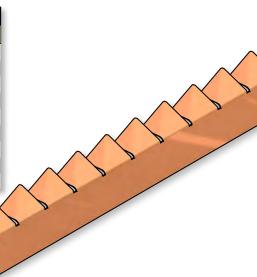
The Twist series gaskets are designed for demanding compression applications. This series can compress to material thickness and provide excellent shielding performance. Profiles include standard flat, right angle, double twist, and clip-on.

T Twist										Black =	= inche	es Blu	e = m	m Co	omp = Con	presse
PART NUMBER	-	4	ı	3	(2	FIN	GER	PIT	СН		ERIAL CK	LEN	GTH	FINGERS	TAPE
3-20T-XX-24	0.03	0.76	0.20	5.08	0.11	2.79	0.080	2.03	0.095	2.41	0.003	0.076	24	610	253	0.100
3-20T-XX-300	0.03	0.76	0.20	5.08	0.11	2.79	0.080	2.03	0.095	2.41	0.003	0.076	300	7620	3158	0.100
3-23T-XX-24	0.03	0.76	0.23	5.84	0.14	3.56	0.080	2.03	0.095	2.41	0.003	0.076	24	610	253	0.100
3-23T-XX-300	0.03	0.76	0.23	5.84	0.14	3.56	0.080	2.03	0.095	2.41	0.003	0.076	300	7620	3158	0.100
3-S-23T-XX-24	0.03	0.76	0.23	5.84	0.14	3.56	0.080	2.03	0.095	2.41	0.002	0.051	24	610	253	0.100
3-S-23T-XX-300	0.03	0.76	0.23	5.84	0.14	3.56	0.080	2.03	0.095	2.41	0.002	0.051	300	7620	3158	0.100
6-30T-XX-24	0.07	1.78	0.30	7.62	0.15	3.81	0.150	3.81	0.165	4.19	0.003	0.076	24	610	146	0.100
6-30T-XX-300	0.07	1.78	0.30	7.62	0.15	3.81	0.150	3.81	0.165	4.19	0.003	0.076	300	7620	1818	0.100
6-S-30T-XX-24	0.07	1.78	0.30	7.62	0.15	3.81	0.150	3.81	0.165	4.19	0.002	0.051	24	610	146	0.145
6-S-30T-XX-300	0.07	1.78	0.30	7.62	0.15	3.81	0.150	3.81	0.165	4.19	0.002	0.051	300	7620	1818	0.145
6-34T-XX-24	0.07	1.78	0.34	8.64	0.18	4.57	0.150	3.81	0.165	4.19	0.003	0.076	24	610	146	0.145
6-34T-XX-300	0.07	1.78	0.34	8.64	0.18	4.57	0.150	3.81	0.165	4.19	0.003	0.076	300	7620	1818	0.145
6-S-34T-XX-24	0.07	1.78	0.34	8.64	0.18	4.57	0.150	3.81	0.165	4.19	0.002	0.051	24	610	146	0.145
6-S-34T-XX-300	0.07	1.78	0.34	8.64	0.18	4.57	0.150	3.81	0.165	4.19	0.002	0.051	300	7620	1818	0.145

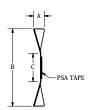


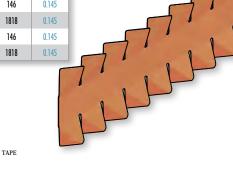
XX - Select material/finish (see page 6)





Tape Solder




TWIST SERIES CONT.

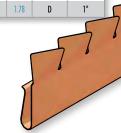
T2 Twist													Blo	ack =	inches Blu	ie = mm
PART NUMBER	ı	4	ı	В	(;	FIN	GER	PIT	СН	MATI THI	RIAL CK	LEN	GTH	FINGERS	TAPE
6-50T2-XX-24	0.07	1.78	0.50	12.70	0.18	4.57	0.150	3.81	0.165	4.19	0.003	0.076	24	610	146	0.145
6-50T2-XX-300	0.07	1.78	0.50	12.70	0.18	4.57	0.150	3.81	0.165	4.19	0.003	0.076	300	7620	1818	0.145
6-S-50T2-XX-24	0.07	1.78	0.50	12.70	0.18	4.57	0.150	3.81	0.165	4.19	0.002	0.051	24	610	146	0.145
6-S-50T2-XX-300	0.07	1.78	0.50	12.70	0.18	4.57	0.150	3.81	0.165	4.19	0.002	0.051	300	7620	1818	0.145

MOUNTING OPTIONS Tape XX - Select material/finish (see page 6)

UT Twist														Blac	ck = ir	nches Blu	ue = mm
PART NUMBER	1	4	ı	В	FIN	GER	PIT	СН	MATI TH	RIAL CK	LEN	GTH	FINGERS	CLII	D	LANCE	LANCE PITCH
3-23UT-040-XX-16	0.03	0.76	0.15	3.81	0.080	2.03	0.095	2.41	0.003	0.076	16	406	168	0.04	1.02	n/a	n/a
3-23UT-070-XX-16	0.03	0.76	0.15	3.81	0.080	2.03	0.095	2.41	0.003	0.076	16	406	168	0.07	1.78	n/a	n/a
3-23UT-070-DL-XX-16	0.03	0.76	0.15	3.81	0.080	2.03	0.095	2.41	0.003	0.076	16	406	168	0.07	1.78	D	1″
6-34UT-040-XX-16	0.07	1.78	0.22	5.59	0.150	3.81	0.165	4.19	0.003	0.076	16	406	97	0.04	1.02	n/a	n/a
6-34UT-070-XX-16	0.07	1.78	0.22	5.59	0.150	3.81	0.165	4.19	0.003	0.076	16	406	97	0.07	1.78	n/a	n/a
6-34UT-070-DL-XX-16	0.07	1.78	0.22	5.59	0.150	3.81	0.165	4.19	0.003	0.076	16	406	97	0.07	1.78	D	1"

MOUNTING OPTIONS Clip XX - Select material/finish (see page 6)

UT3 Twist																Bla	ck = ir	nches Blu	ie = mm
PART NUMBER	1	4	ı	В	(•	FIN	GER	PIT	СН	MATI THI	RIAL CK	LEN	GTH	FINGERS	CLI	P ID	LANCE	LANCE PITCH
6-34UT3-050-XX-16	0.07	1.78	0.38	9.65	0.22	5.59	0.150	3.81	0.165	4.19	0.003	0.076	16	406	97	0.05	1.27	n/a	n/a
6-34UT3-050-DL-XX-16	0.07	1.78	0.38	9.65	0.22	5.59	0.150	3.81	0.165	4.19	0.003	0.076	16	406	97	0.05	1.27	D	1"
6-34UT3-070-XX-16	0.07	1.78	0.38	9.65	0.22	5.59	0.150	3.81	0.165	4.19	0.003	0.076	16	406	97	0.07	1.78	n/a	n/a
6-34UT3-070-DL-XX-16	0.07	1.78	0.38	9.65	0.22	5.59	0.150	3.81	0.165	4.19	0.003	0.076	16	406	97	0.07	1.78	D	1"



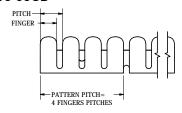
MOUNTING OPTIONS

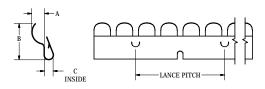
Clip

XX - Select material/finish (see page 6)

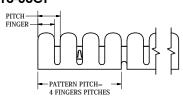
CLIP-ON SERIES

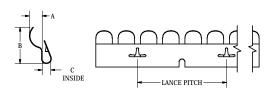
The Clip-On Gaskets are used in enclosures, shielded cabinets, and on circuit cards as ESD contacts and EMI gaskets. For edge mount applications, close attention must be given to clip size, lance requirements, deflection parameters and finger configuration. Leader Tech provides application assistance in the development of specifications.

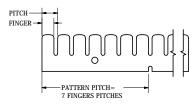

C Clip-On															E	slack =	= inche	es Blu	e = m	ım C	omp = Co	mpressed
PART NUMBER	,	4	ı	В	(2	FIN	GER	PIT	СН	MATE THI			OMP DTH	CC	MP GHT	LAN STA	ICE Art	LAN PIT	NCE CH	FINGERS	LANCE
10-30CD-XX-16	0.10	2.54	0.30	7.62	0.07	1.78	0.135	3.43	0.182	4.62	0.005	0.127	0.33	8.38	0.05	1.27	0.341	8.66	0.728	18.49	88	D
10-30CT-XX-16	0.10	2.54	0.30	7.62	0.07	1.78	0.135	3.43	0.182	4.62	0.005	0.127	0.33	8.38	0.05	1.27	0.341	8.66	0.728	18.49	88	T
11-45CD-XX-16	0.11	2.79	0.45	11.43	0.07	1.78	0.147	3.73	0.193	4.90	0.005	0.127	0.47	11.94	0.06	1.52	0.267	6.78	0.748	19.00	84	D
11-45CT-XX-16	0.11	2.79	0.45	11.43	0.07	1.78	0.147	3.73	0.193	4.90	0.005	0.127	0.47	11.94	0.06	1.52	0.651	16.54	1.352	34.34	84	T

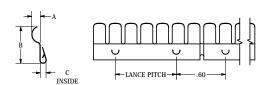


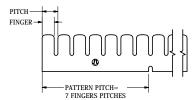
Clip


XX - Select material/finish (see page 6)

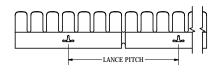

10-30CD

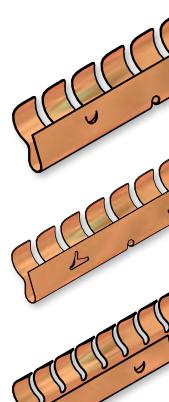



10-30CT

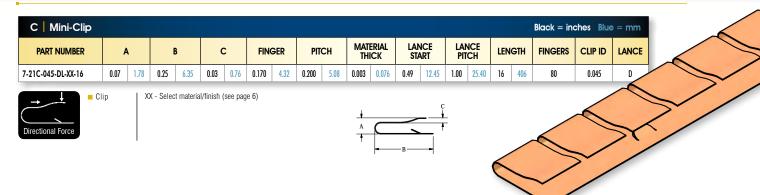


11-45CD

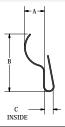


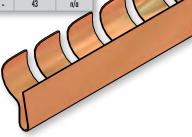


11-45CT



CLIP-ON SERIES CONT.


C Clip-On															Black	= inc	hes	Blue :	= mn	ı Co	mp = Com	pressed
PART NUMBER	A	١	ı	3	(;	FIN	GER	PIT	СН	MATI THI	ERIAL CK		MP DTH	CC	MP GHT	LAN ST/	NCE ART		NCE CH	FINGERS	LANCE
10-30C-045-XX-16	0.10	2.54	0.30	7.62	0.045	1.14	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	-	-	-	-	86	n/a
10-30C-050-XX-16	0.10	2.54	0.30	7.62	0.050	1.27	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	-	-	-	-	86	n/a
10-30C-065-XX-16	0.10	2.54	0.30	7.62	0.065	1.65	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	-	-	-	-	86	n/a
10-30C-070-XX-16	0.10	2.54	0.30	7.62	0.070	1.78	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	-	-	-	-	86	n/a
10-30C-045-DL-XX-16	0.10	2.54	0.30	7.62	0.045	1.14	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	0.5	12.7	1	25.4	86	D
10-30C-050-DL-XX-16	0.10	2.54	0.30	7.62	0.050	1.27	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	0.5	12.7	1	25.4	86	D
10-30C-065-DL-XX-16	0.10	2.54	0.30	7.62	0.065	1.65	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	0.5	12.7	1	25.4	86	D
10-30C-070-DL-XX-16	0.10	2.54	0.30	7.62	0.070	1.78	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	0.5	12.7	1	25.4	86	D
11-45C-045-XX-16	0.11	2.79	0.45	11.43	0.045	1.14	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	-	-	-	-	86	n/a
11-45C-050-XX-16	0.11	2.79	0.45	11.43	0.050	1.27	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	-	-	-	-	86	n/a
11-45C-065-XX-16	0.11	2.79	0.45	11.43	0.065	1.65	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	-	-	-	-	86	n/a
11-45C-070-XX-16	0.11	2.79	0.45	11.43	0.070	1.78	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	-	-	-	-	86	n/a
11-45C-045-DL-XX-16	0.11	2.79	0.45	11.43	0.045	1.14	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	0.5	12.7	1	25.4	86	D
11-45C-050-DL-XX-16	0.11	2.79	0.45	11.43	0.050	1.27	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	0.5	12.7	1	25.4	86	D
11-45C-065-DL-XX-16	0.11	2.79	0.45	11.43	0.065	1.65	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	0.5	12.7	1	25.4	86	D
11-45C-070-DL-XX-16	0.11	2.79	0.45	11.43	0.070	1.78	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	0.5	12.7	1	25.4	86	D
25-109C-070-XX-16	0.25	6.35	1.09	27.69	0.070	1.78	0.340	8.64	0.375	9.53	0.005	0.127	1.27	32.26	0.08	2.03	-	-	-	-	43	n/a
25-109C-070-DL-XX-16	0.25	6.35	1.09	27.69	0.070	1.78	0.340	8.64	0.375	9.53	0.005	0.127	1.27	32.26	0.08	2.03	0.5	12.7	1	25.4	43	D
25-S-109C-070-XX-16	0.25	6.35	1.09	27.69	0.070	1.78	0.340	8.64	0.375	9.53	0.003	0.076	1.27	32.26	0.08	2.03	-	-	-	-	43	n/a
25-S-109C-070-DL-XX-16	0.25	6.35	1.09	27.69	0.070	1.78	0.340	8.64	0.375	9.53	0.003	0.076	1.27	32.26	0.08	2.03	0.5	12.7	1	25.4	43	D
25-109C-120-XX-16	0.25	6.35	1.09	27.69	0.120	3.05	0.340	8.64	0.375	9.53	0.005	0.127	1.27	32.26	0.08	2.03	-	-	-	-	43	n/a
25-109C-130-XX-16	0.25	6.35	1.09	27.69	0.130	3.30	0.340	8.64	0.375	9.53	0.005	0.127	1.27	32.26	0.08	2.03	-	-	-	-	43	n/a



Clip

Consult factory for optional clip sizes and optional lance features.

XX - Select material/finish (see page 6)



CLIP-ON SERIES CONT.

CPS Clip-On													Blac	ck = i	nches Blue	e = mm
PART NUMBER	A	١	E	3	C	•	FIN	GER	PIT	СН		ERIAL ICK	LEN	GTH	FINGERS/ STRIP	LANCE
25-55CPS-XX-16	0.25	6.35	0.55	13.97	0.04	1.02	0.220	5.59	0.250	6.35	0.004	0.102	16	406	64	D

XX - Select material/finish (see page 6)

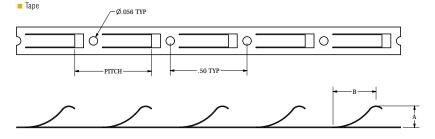
- Perpendicular Shielding Gaskets
 Finger design allows for continuous contact across the length of the strip
- "D" lance provides superior retention of gasket to the mounting surface
- 0.80 D-clip is retained with .100 D-hole

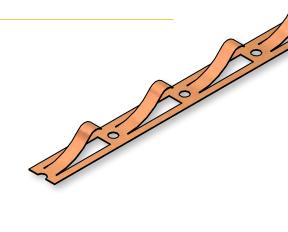
CPG Clip-On													Blac	ck = i	nches Blue	= mm
PART NUMBER	A	\	ı	В	c	;	FIN	GER	PIT	СН	MATI THI	ERIAL ICK	LEN	GTH	FINGERS/ STRIP	LANCE
6-31CPG-XX-12	0.06	1.52	0.31	7.87	0.04	1.02	0.500	12.70	0.545	13.84	0.004	0.102	12	305	22	D
6-31CPG-XX-16	0.06	1.52	0.31	7.87	0.04	1.02	0.500	12.70	0.545	13.84	0.004	0.102	16	406	29	D

XX - Select material/finish (see page 6)

Perpendicular Electrical Grounding Strips

- Finger extension provides grounding from card or PCB to a backplane housing surface
- Wide clip-on area with "D" lance offers reliable retention .0035 material offers significant resiliency

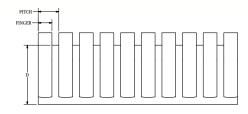


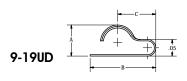

GROUNDING SERIES

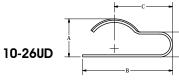
ML Gasket										Black	= incl	nes Bl	ue = mm
PART NUMBER	A	\	ı	В	c	•	FIN	SER	PIT	СН		ERIAL ICK	FINGERS
14-18ML-XX-16	0.14	3.56	0.28	7.11	0.18	4.57	0.080	2.03	0.500	12.70	0.005	0.127	32
14-18ML-XX-24	0.14	3.56	0.28	7.11	0.18	4.57	0.080	2.03	0.500	12.70	0.005	0.127	48

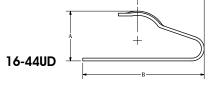
XX - Select material/finish (see page 6)

MOUNTING OPTIONS



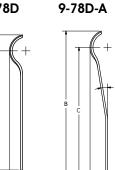


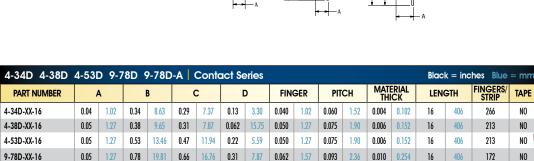



CONTACT SERIES

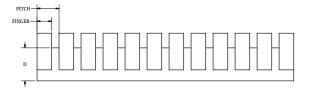
Contact gaskets are primarily used for grounding and shielding in high frequency applications. These gaskets provide engineers and designers with flexibility to solve their shielding and grounding issues. They are available in a variety of different lengths, widths and profiles. Standard factory length for Contact Series strips is 16". Individual contacts available in tape & reel packaging. Adhesive tape is optional - please consult factory.

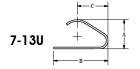
9-19UD 10-2	6UD	16-44	UD C	Conta	ct Seri	ies										В	lack = inches Bl	ue = mm
PART NUMBER	,	4	ı	В	(2	ı	D	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/STRIP	TAPE
9-19UD-XX-16	0.09	2.29	0.19	4.83	0.11	2.79	0.13	3.30	0.040	1.02	0.060	1.52	0.004	0.102	16	406	266	NO
10-26UD-XX-16	0.11	2.79	0.26	6.60	0.17	4.32	0.22	5.59	0.050	1.27	0.075	1.90	0.006	0.152	16	406	213	NO
16-44UD-XX-16	0.16	4.06	0.44	11.18	0.24	6.10	0.33	8.38	0.062	1.57	0.093	2.36	0.010	0.254	16	406	172	NO_

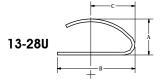

XX - Select material/finish (see page 6)

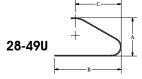


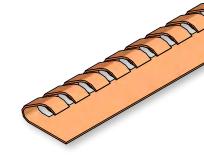
XX - Select material/finish (see page 6)

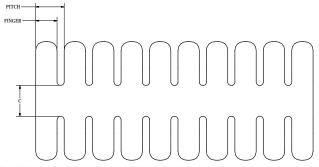

0.09 | 2.29 | 0.78 | 19.81 | 0.66 | 16.76 | 0.31 | 7.87 | 0.062 | 1.57 | 0.093


9-78D-A-XX-16

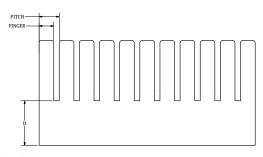

0.010 0.254


172

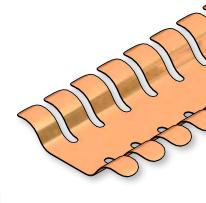

CONTACT SERIES CONT.

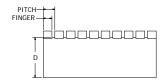


7-13U 13-2	8U 28	3-49U	Con	ntact S	eries											В	ack = inches Bl	ue = mm
PART NUMBER	-	4	ı	В	(•	ı)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/STRIP	TAPE
7-13U-XX-16	0.07	1.78	0.13	3.30	0.07	1.78	0.09	2.29	0.040	1.02	0.060	1.52	0.004	0.102	16	406	266	NO
13-28U-XX-16	0.13	3.30	0.28	7.11	0.16	4.06	0.23	5.84	0.095	2.41	0.135	3.43	0.010	0.254	16	406	118	NO
28-49U-XX-16	0.28	7.11	0.49	12.45	0.34	8.64	0.38	9.65	0.125	3.17	0.187	4.75	0.006	0.152	16	406	85	NO


XX - Select material/finish (see page 6)

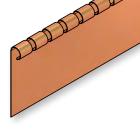
11-78R2 Co	ontac	t Serie	es											В	ack = inches Bl	ue = mm
PART NUMBER	A	4	ı	В	(:	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/STRIP	TAPE
11-78R2-XX-16	0.13	3.30	0.78	19.81	0.20	5.08	0.140	3.56	0.187	4.75	0.005	0.127	16	406	86	NO


XX - Select material/finish (see page 6)

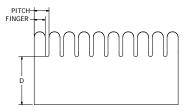

В	C	_+
	-	A
ak – inah	Dl	- mm

11-905 Cor	ntact	Serie	S											Bla	ck = ir	ches	Blue = mm
PART NUMBER	1	4		В	(2	[)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP
11-90S-XX-16	0.11	2.79	0.90	22.86	0.66	16.76	0.38	9.65	0.125	3.17	0.172	4.37	0.010	0.254	16	406	93

XX - Select material/finish (see page 6)



CONTACT SERIES CONT.



12-75RS Co	ontac	t Seri	es												Blac	k = inc	hes Blue :	= mm
PART NUMBER	1	4	ı	В	(0)	FING	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
12-75RS-XX-16	0.12	3.05	0.75	19.05	0.12	3.05	0.65	16.51	0.140	3.56	0.187	4.75	0.005	0.127	16	406	85	YES

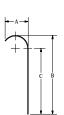
XX - Select material/finish (see page 6)

8-92RB Cor	ntact	Serie	s												Bla	ck = ir	nches Blue :	= mm
PART NUMBER	-	4	ı	В	([)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
8-92RB-XX-16	0.09	2.29	0.92	23.37	0.30	7.62	0.61	15.49	0.140	3.56	0.187	4.75	0.005	0.127	16	406	85	NO

XX - Select material/finish (see page 6)

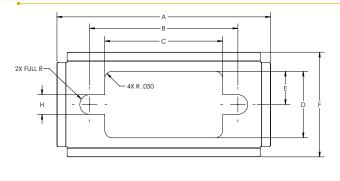
8-92RC Co	ntact	Serie	es												Bla	ck = ir	nches Blue :	= mm
PART NUMBER	,	4	ı	В	(•)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
8-92RC-XX-16	0.09	2.29	0.92	23.37	0.30	7.62	0.63	16.00	0.140	3.56	0.187	4.75	0.005	0.127	16	406	85	NO

XX - Select material/finish (see page 6)


11-89RA Co	ontac	t Seri	es												Bla	ck = ir	nches Blue :	= mm
PART NUMBER	ŀ	١	ı	3	(•	[)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
11-89RA-XX-16	0.13	3.30	0.89	22.61	0.81	20.57	0.60	15.24	0.140	3.56	0.187	4.75	0.005	0.127	16	406	85	NO

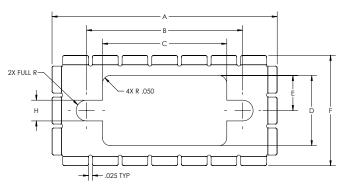
XX - Select material/finish (see page 6)

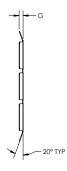
22-77RR Co	ontac	t Seri	es												Bla	ck = ir	nches Blue :	= mm
PART NUMBER	ı	4	ı	В		С	ı	D	FING	SER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
22-77RR-XX-16	0.23	5.84	0.77	19.56	0.64	16.26	0.62	15.75	0.140	3.56	0.187	4.75	0.005	0.127	16	406	85	NO


XX - Select material/finish (see page 6)

Metal Shielding Gaskets

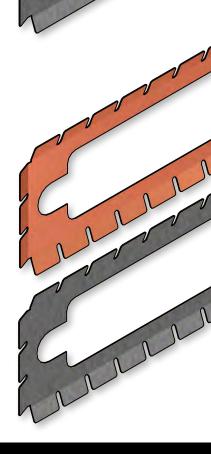
METAL D-SUBS





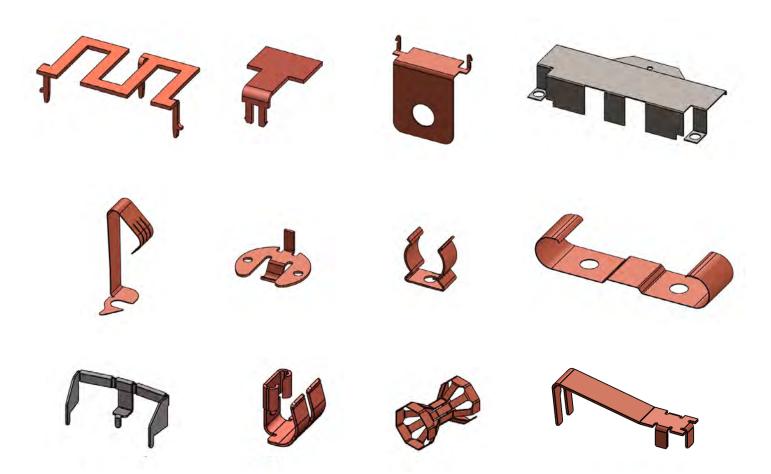
Standard Finish and Pla	iting Options	
FINISH TYPE	SPECIFICATIONS	LEADER TECH FINISH CODE
BRIGHT FINISH	As Heat Treated	BD (Standard)
BRIGHT TIN	ASTM B-545	SN
SATIN TIN/MATTE TIN	ASTM B-545	ST
ELECTROLESS BRIGHT NICKEL ROHS	ASTM B 733	NI

D-Sub Miniato	ure - Solid												Bla	ck = ir	nches	Blue :	= mm
PART NUMBER	TYPE	-	4		В	()	ı)	ı	E		F	(€	ı	1
09D-110-XX	9 Pin	1.41	35.81	0.98	24.89	0.78	19.81	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
09D-100-SS	9 Pin	1.41	35.81	0.98	24.89	0.78	19.81	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
15D-110-XX	15 Pin	1.74	44.20	1.31	33.27	1.11	28.19	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
15D-100-SS	15 Pin	1.74	44.20	1.31	33.27	1.11	28.19	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
25D-110-XX	25 Pin	2.28	57.91	1.85	46.99	1.65	41.91	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
25D-100-SS	25 Pin	2.28	57.91	1.85	46.99	1.65	41.91	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
37D-110-XX	37 Pin	2.93	74.42	2.50	63.50	2.29	58.17	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
37D-100-SS	37 Pin	2.93	74.42	2.50	63.50	2.29	58.17	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
50D-110-XX	50 Pin	2.84	72.14	2.41	61.21	2.11	53.59	0.55	13.97	0.28	7.11	0.80	20.32	0.025	0.63	0.24	6.10
50D-100-SS	50 Pin	2.84	72.14	2.41	61.21	2.11	53.59	0.55	13.97	0.28	7.11	0.80	20.32	0.025	0.63	0.24	6.10



D-Sub Miniatu	ire - 510116	ea											Bla	ck = ir	iches	Blue :	= mn
PART NUMBER	TYPE	1	4		В	(С	1	0		E	ı	F	(€	ı	Н
09D-210-XX	9 Pin	1.41	35.81	0.98	24.89	0.78	19.81	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
09D-200-SS	9 Pin	1.41	35.81	0.98	24.89	0.78	19.81	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
15D-210-XX	15 Pin	1.74	44.20	1.31	33.27	1.11	28.19	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
15D-200-SS	15 Pin	1.74	44.20	1.31	33.27	1.11	28.19	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
25D-210-XX	25 Pin	2.28	57.91	1.85	46.99	1.65	41.91	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
25D-200-SS	25 Pin	2.28	57.91	1.85	46.99	1.65	41.91	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
37D-210-XX	37 Pin	2.93	74.42	2.50	63.50	2.29	58.17	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
37D-200-SS	37 Pin	2.93	74.42	2.50	63.50	2.29	58.17	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
50D-210-XX	50 Pin	2.84	72.14	2.41	61.21	2.11	53.59	0.55	13.97	0.28	7.11	0.80	20.32	0.025	0.63	0.24	6.10
50D-200-SS	50 Pin	2.84	72.14	2.41	61.21	2.11	53.59	0.55	13.97	0.28	7.11	0.80	20.32	0.025	0.63	0.24	6.10

XX - Denotes the availability of finish/plating options. See chart above. Example: 09D-210-BD SS - Denotes stainless steel.


 $^{^{}st}$ For fabric option - See page 34.

Precision Metal Stampings

THIN GAUGE CUSTOM MECHANICAL SPRINGS & STAMPINGS

For over 30 years, Leader Tech has been supplying customers with high quality precision custom prototypes, short run and high volume stampings. Our in-house tool & die design and build expertise, combined with our extensive manufacturing capabilities, allow us to manufacture custom precision components for many applications. Our expertise is not limited to just the stamping portion of the application but can include value added operations such as the addition of insulating materials, hardware and other required features. From prototype to high volume production runs, Leader Tech can meet your custom needs with the shortest and most reliable lead times in the industry.

From prototypes within days to long production runs, your Leader Tech Team is ready to assist you. Please call us at 813-855-6921 or email us at sales@leadertechinc.com with your requirements.

CONDUCTIVE ELASTOMER EMI SHIELDING GASKETS FOR ELECTRONIC ENCLOSURES

Leader Tech's complete line of TechSIL Conductive Elastomer compounds is QPL certification by the Defense Logistics Agency. This unrivaled commitment to excellence distinguishes our company as the only MIL-SPEC approved & certified manufacturer of all 12 conductive elastomer formulations. This prestigious designation authorizes us to formulate, extrude and mold conductive elastomers to stringent MIL-DTL-83528D specifications.

Leader Tech's high-performance TechSIL gaskets are manufactured using proprietary base formulations of silicone, fluorosilicone and EPDM rubber that are embedded with highly conductive fillers including: Silver, Silver/Copper, Silver/ Aluminum, Silver/Nickel, Silver/Glass, and Nickel Coated Graphite. We offer numerous standard gasket profiles as well as unlimited variations of extruded, molded, sheet stock, and die-cut finishes.

TechSIL Conductive Elastomers provide engineers with a highly customizable gasketing solution that delivers a shielding effectiveness of up to 110 dB across wide temperature variations and environmental conditions. An onsite applications engineer is also available to help formulate materials to meet your custom requirements. To learn more about this product line and our capabilities, make sure to request or download the complete TechSIL Conductive Elastomer catalog from our website.

MATERIAL TYPES & PROFILES

Sheet Material

Extrusions

Rectangle

Hollow Round

Hollow D

Hollow P

Molded

O-Rings

O-Rings D Cross Section

Rectangle D Cross Section

Rectangle O Cross Section

Waveguide A Waveguide B

Die Cut

Flange Mount

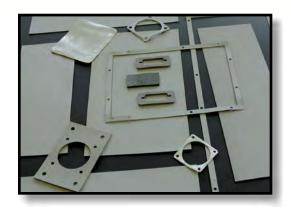
Flat Circular Washer

Specials

Get your catalog today!

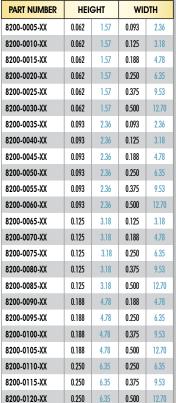
Download from our website.

The Only MIL-SPEC Approved & Certified Manufacturer of All 12 Conductive Elastomer Compounds!


MIL-DTL-83528 Approved

ORIENTED WIRE SERIES

Leader Tech's TechSIL 8000 Oriented Wire gasketing is designed for use in suppressing EMI/RFI up to 100 dB in the E-Field/up to 50 dB in the H-Field, while offering an effective environmental seal between mating surfaces. This material is comprised of monel or aluminum wire oriented perpendicular to the mating surfaces and embedded in solid or sponge silicone elastomer. The wires are crimped for additional resiliency and to optimize the mechanical performance of the gasket. The silicone based TechSIL has 700-900 wires per sq./ in. and is capable of withstanding temperatures from -80 $^{\circ}$ to a maximum of 500° F (-62° to 260°C). TechSIL Oriented Wire materials are available in strip or sheet form and can easily be die cut into complex shapes or fabricated into custom frame gaskets. All TechSIL 8000 materials meet the DESC drawing 90046.


TechSIL® S	heet				1
PART NUMBER	HEI	GHT	WII	DTH	H
8100-0005-XX	0.032*	0.81	3.00	76.20	1 w 3
8100-0010-XX	0.032*	0.81	4.50	114.30	- 0.559 H 7
8100-0015-XX	0.032*	0.81	6.00	152.40	
8100-0020-XX	0.062	1.57	3.00	76.20	
8100-0025-XX	0.062	1.57	4.50	114.30	
8100-0030-XX	0.062	1.57	6.00	152.40	
8100-0035-XX	0.093	2.36	3.00	76.20	
8100-0040-XX	0.093	2.36	4.50	114.30	
8100-0045-XX	0.093	2.36	6.00	152.40	
8100-0050-XX	0.125	3.18	3.00	76.20	
8100-0055-XX	0.125	3.18	4.50	114.30	
8100-0060-XX	0.125	3.18	6.00	152.40	
8100-0065-XX	0.188	4.78	3.00	76.20	
8100-0070-XX	0.188	4.78	4.50	114.30	
8100-0075-XX	0.188	4.78	6.00	152.40	
8100-0080-XX	0.250	6.35	3.00	76.20	
8100-0085-XX	0.250	6.35	4.50	114.30	Black = inches
8100-0090-XX	0.250	6.35	6.00	152.40	Blue = mm

000" thickness is only	available in	Cilicana Co	d:d	

Material Code	Wire Specification	Elastomer
-81	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281	Silicone Sponge Per AMS 3195
-82	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281	Silicone Solid ZZR765, Class 2B, Grade 40
-83	Aluminum Wire - 0.005 Dia. (0.13) Alloy 5056	Silicone Sponge Per AMS 3195
-84	Aluminum Wire - 0.005 Dia. (0.13) Alloy 5056	Silicone Solid ZZR765, Class 2B, Grade 40

PAKI NUIVIDEK	ПСІ	ЭПІ	WIL	חוכ
8200-0005-XX	0.062	1.57	0.093	2.36
8200-0010-XX	0.062	1.57	0.125	3.18
8200-0015-XX	0.062	1.57	0.188	4.78
8200-0020-XX	0.062	1.57	0.250	6.35
8200-0025-XX	0.062	1.57	0.375	9.53
8200-0030-XX	0.062	1.57	0.500	12.70
8200-0035-XX	0.093	2.36	0.093	2.36
8200-0040-XX	0.093	2.36	0.125	3.18
8200-0045-XX	0.093	2.36	0.188	4.78
8200-0050-XX	0.093	2.36	0.250	6.35
8200-0055-XX	0.093	2.36	0.375	9.53
8200-0060-XX	0.093	2.36	0.500	12.70
8200-0065-XX	0.125	3.18	0.125	3.18
8200-0070-XX	0.125	3.18	0.188	4.78
8200-0075-XX	0.125	3.18	0.250	6.35
8200-0080-XX	0.125	3.18	0.375	9.53
8200-0085-XX	0.125	3.18	0.500	12.70
8200-0090-XX	0 188	4 78	0 188	4 78

TechSIL® | Strip

Black = inches

Part Number Example 8 X X X ΧХ **Profile Style** 9 if tape required Assigned by Leader Tech Material Code

All materials available with tape.

The data presented is accurate and true to our knowledge. Since applications, test methods and test procedures may vary, we recommend that users perform their own tests to assure suitability for specific applications. We offer no product warranty, either expressed or implied, except we will replace any product found to be defective.

TECHMESH KNITTED WIRE

Leader Tech's TechMESH Knitted Wire gaskets are designed to provide EMI/RFI Shielding of joints and seams of electronic enclosures. The unique construction of the TechMESH Knitted Wire consists of many interlocking loops that act as small springs which provide for a resilient all-metal conductive gasket with high attenuation characteristics. TechMESH provides shielding effectiveness up to 130 dB in the E-Field and up to 80 dB in the H-Field. The standard wire materials are Tin Plated Copper Clad Steel, Monel and Aluminum in cross-sections of rectangular, round, round-with-fin, and double-round-with-fin. All cross-sections are available in both ALL Mesh or Elastomer Core configurations. The TechMESH Knitted Wire gaskets are supplied on spools of 25 ft. or cut to our customers specification.

Additional wire options are available upon request

Round All Mesh			
PART NUMBER	DIAMETER		
7000-0005-XX	0.062	1.57	
7000-0010-XX	0.093	2.36	
7000-0015-XX	0.125	3.18	
7000-0020-XX	0.156	3.96	
7000-0025-XX	0.188	4.78	
7000-0030-XX	0.250	6.35	
7000-0035-XX	0.312	7.92	
7000-0040-XX	0.375	9.53	
7000-0055-XX	0.500	12.70	

Black = inchesBlue = mm

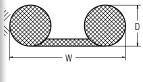
Tape is not available.

Rectangular All Mesh					
PART NUMBER	HEI	GHT	WII	HTC	
7200-0005-XX	0.062	1.57	0.062	1.57	
7200-0010-XX	0.062	1.57	0.125	3.18	
7200-0015-XX	0.062	1.57	0.250	6.35	
7200-0020-XX	0.093	2.36	0.093	2.36	
7200-0025-XX	0.093	2.36	0.125	3.18	
7200-0030-XX	0.093	2.36	0.250	6.35	
7200-0035-XX	0.125	3.18	0.125	3.18	
7200-0040-XX	0.125	3.18	0.250	6.35	
7200-0045-XX	0.125	3.18	0.500	12.70	
7200-0050-XX	0.188	4.78	0.188	4.78	
7200-0055-XX	0.188	4.78	0.500	12.70	
7200-0060-XX	0.250	6.35	0.250	6.35	
7200-0065-XX	0.250	6.35	0.500	12.70	

½ .\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H
- W	

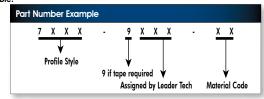
Black = inch	e
Blue = mm	

Round All Mesh with Fin					
PART NUMBER	DIAN	IETER	WIDTH		
7100-0005-XX	0.062	1.57	0.375	9.53	
7100-0010-XX	0.062	1.57	0.500	12.70	
7100-0015-XX	0.093	2.36	0.375	9.53	
7100-0020-XX	0.093	2.36	0.500	12.70	
7100-0025-XX	0.125	3.18	0.375	9.53	
7100-0030-XX	0.125	3.18	0.500	12.70	
7100-0035-XX	0.188	4.78	0.500	12.70	
7100-0040-XX	0.188	4.78	0.750	19.05	
7100-0045-XX	0.250	6.35	0.500	12.70	
7100-0050-XX	0.250	6.35	0.750	19.05	
7100-0055-XX	0.312	7.92	0.875	22.23	
7100-0060-XX	0.375	9.53	0.750	19.05	
7100-0065-XX	0.500	12.70	0.750	19.05	



Black = inches

Tape is not available.


Material Code	Wire Specification
-71	Tin Plated Copper Clad Steel - 0.0045 Dia. (0.10) ASTM-B-520
-72	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281
-73	Aluminum Wire - 0.005 Dia. (0.13) Alloy 5056, Per AMS-4182

Black = inches

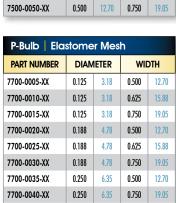
Tape is not available.

TECHMESH ELASTOMER CORE WIRE

Material Code	Wire Specification	Elastomer
-74	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Neoprene Sponge MIL-R-6130B, Type II, Grade A
-75	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Silicone Sponge Per AMS 3195
-76	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Silicone Solid Per ZZR765, Class 2B, Grade 40
-77	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Neoprene Sponge MIL-R-6130B, Type II, Grade A
-78	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Silicone Sponge Per AMS 3195
-79	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Silicone Solid Per ZZR765, Class 2B, Grade 40

Solid Elastomer Mesh				
PART NUMBER	DIAMETER			
7400-0005-XX	0.062	1.57		
7400-0010-XX	0.125	3.18		
7400-0015-XX	0.188	4.78		
7400-0020-XX	0.250	6.35		
7400-0025-XX	0.312	7.92		
7400-0030-XX	0.375	9.53		
7400-0035-XX	0.500	12.70		

Black = inches


Tape is not available.

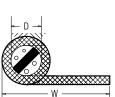
Hollow Elastomer Mesh				
PART NUMBER DIAMETER				
7600-0005-XX	0.188	4.78		
7600-0010-XX	0.250	6.35		
7600-0015-XX	0.375	9.53		
7600-0020-XX	0.500	12.70		

Black = inchesBlue = mm

Tape is not available. Not available in -75 or -78 material

0.250 6.35

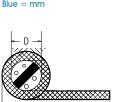
0.500


12.70

1.000

1.000

25.40


25.40

Black = inchesBlue = mm

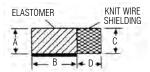
*********///,

Rectangular Elastomer Mesh						
PART NUMBER	HEI	GHT	WIE	OTH		
7500-0005-XX	0.125	3.18	0.125	3.18		
7500-0010-XX	0.125	3.18	0.188	4.78		
7500-0015-XX	0.125	3.18	0.250	6.35		
7500-0020-XX	0.188	4.78	0.188	4.78		
7500-0025-XX	0.250	6.35	0.250	6.35		
7500-0030-XX	0.250	6.35	0.375	9.53		
7500-0035-XX	0.250	6.35	0.500	12.70		
7500-0040-XX	0.375	9.53	0.500	12.70		
7500-0045-XX	0.500	12.70	0.500	12.70		
7500-0050-XX	0.500	12.70	0.750	19.05		

Black = inches

Part Number Example								
7 X X X		9 X	X	Χ	-	X X		
		T		Γ		\top		
Mesh Style		\forall						
	9 if	tape requir				\		
		Assigned	by L	eader	Tech	Material Code		

7700-0045-XX


7700-0050-XX

TECHMESH COMBO STRIP

Leader Tech's TechMesh Combo Strip & Gaskets are designed for use in applications requiring EMI/RFI shielding and environmental sealing. These materials are comprised of monel or tin plated copper clad steel knitted wire mesh which are bonded to neoprene sponge, silicone sponge or silicone solid elastomer strips. The wire mesh provides shielding performance up to 125 dB in the E-Field and up to 80 dB in the H-Field while the elastomer materials can withstand temperatures from -103° to a maximum of 500° F (-75° to 260°C). These materials have an optional pressure sensitive adhesive backing for ease of installation. The TechMesh Combo Strip & Gaskets are available in standard and custom strip configurations. Leader Tech can also fabricate custom frame gaskets to customers specification.

Additional wire options or metal compression stops are available upon request.

	KNITWIRE SHIELDING	
¢		¢ Ç
	- D → - B D →	
	ELASTOMER	

Single Mes	Single Mesh Combo Gasket									
PART NUMBER		ELASTOMER				MESH				
PART NUIVIBER	HEIG	HT (A)	WIDT	H (B)	HEIGI	HT (C)	WIDT	H (D)		
7800-0005-XX	0.062	1.57	0.250	6.35	0.062	1.57	0.125	3.18		
7800-0010-XX	0.062	1.57	0.375	9.53	0.062	1.57	0.125	3.18		
7800-0015-XX	0.062	1.57	0.500	12.70	0.062	1.57	0.125	3.18		
7800-0020-XX	0.093	2.36	0.250	6.35	0.093	2.36	0.125	3.18		
7800-0025-XX	0.093	2.36	0.375	9.53	0.093	2.36	0.125	3.18		
7800-0030-XX	0.093	2.36	0.500	12.70	0.093	2.36	0.125	3.18		
7800-0035-XX	0.125	3.18	0.250	6.35	0.125	3.18	0.125	3.18		
7800-0040-XX	0.125	3.18	0.375	9.53	0.125	3.18	0.125	3.18		
7800-0045-XX	0.125	3.18	0.500	12.70	0.125	3.18	0.125	3.18		
7800-0050-XX	0.125	3.18	0.750	19.05	0.125	3.18	0.125	3.18		
7800-0055-XX	0.188	4.78	0.375	9.53	0.188	4.78	0.125	3.18		
7800-0060-XX	0.188	4.78	0.500	12.70	0.188	4.78	0.125	3.18		
7800-0065-XX	0.188	4.78	0.750	19.05	0.188	4.78	0.125	3.18		
7800-0070-XX	0.250	6.35	0.500	12.70	0.250	6.35	0.125	3.18		
7800-0075-XX	0.250	6.35	0.750	19.05	0.250	6.35	0.125	3.18		

PART NUMBER		ELAST	OMER		MESH			
PART NUIVIDER	HEIG	HT (A)	WIDTH (B)		HEIGI	HEIGHT (C)		H (D)
7900-0005-XX	0.062	1.57	0.250	6.35	0.062	1.57	0.125	3.18
7900-0010-XX	0.062	1.57	0.500	12.70	0.062	1.57	0.125	3.18
7900-0015-XX	0.093	2.36	0.250	6.35	0.093	2.36	0.125	3.18
7900-0020-XX	0.093	2.36	0.500	12.70	0.093	2.36	0.125	3.18
7900-0025-XX	0.125	3.18	0.250	6.35	0.125	3.18	0.125	3.18
7900-0030-XX	0.125	3.18	0.375	9.53	0.125	3.18	0.125	3.18
7900-0035-XX	0.125	3.18	0.500	12.70	0.125	3.18	0.125	3.18
7900-0040-XX	0.188	4.78	0.250	6.35	0.188	4.78	0.125	3.18
7900-0045-XX	0.188	4.78	0.500	12.70	0.188	4.78	0.125	3.18

Black = inches Blue = mm

Black = inches

Part Number Example				
7 X X X Wesh Style	- 9	<u> </u>	<u>x x</u>	
	9 if tape required ₩ Assigned by Leader Tech			

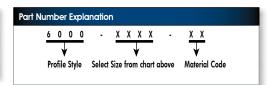
Material Code	Wire Specification	Elastomer
-74	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Neoprene Sponge MIL-R-6130B, Type II, Grade A
-75	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Silicone Sponge Per AMS 3195
-76	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Silicone Solid Per ZZR765, Class 2B, Grade 40
-77	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Neoprene Sponge MIL-R-6130B, Type II, Grade A
-78	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Silicone Sponge Per AMS 3195
-79	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Silicone Solid Per ZZR765, Class 2B, Grade 40

The data presented is accurate and true to our knowledge. Since applications, test methods and test procedures may vary, we recommend that users perform their own tests to assure suitability for specific applications. We offer no product warranty, either expressed or implied, except we will replace any product found to be defective.

28

TECHMESH TAPE

Leader Tech's *TechMESH Tape* has double layered strip of knitted wire mesh to provide effective EMI shielding and grounding for electric and electronic cable assemblies. This is particularly useful in applications where the need for EMI protection is determined after the cable assembly is complete and standard braided shielded cable cannot be used. The flexible structure of Leader *TechMESH Tape* permits it to conform to irregular surfaces and the cable contours during the wrapping process. *TechMESH Tape* is 0.020" (0,51mm) thick. It is available in tin plated copper clad steel (-71) or Monel (-72) width 10-12 openings per inch.


Performance Advantages

- Tin plated for excellent solderability
- Useful in both shielding and grounding applications for static discharge
- Tin plated copper clad steel wire provides greater strength and performance than other mesh tape materials
- Knit loop structure provides uniform coverage minimizing wrinkles and creases
- Available in other alloys and wire dimensions
- Supplied in 50 ft. (15,2mm) rolls (Note: When determining quantity needed, 50% overlap is recommended)

6000 Tape						
PART NUMBER	MBER WIDTH					
6000-0025-XX	0.250 +/- 0.40	6.4 +/- 1.0				
6000-0038-XX	0.380+/- 0.40	9.7 +/- 1.0				
6000-0050-XX	0.500+/- 0.60	12.7 +/- 1.5				
6000-0075-XX	0.750+/- 0.60	19.1 +/- 24.4				
6000-0100-XX	1.00+/- 0.60	25.4 +/- 1.5				
6000-0150-XX	1.50+/- 0.120	38.1 +/- 3.1				
6000-0175-XX	1.75+/- 0.120	44.5 +/- 3.1				
6000-0225-XX	2.25+/- 0.120	57. 2 +/- 4.8				

Black = inches Blue = mm

6000 Tape	
MATERIAL CODE	WIRE SPECIFICATION
-71	Tin Plated Copper Clad Steel - 0.0045 Dia. (0.10) ASTM-B-520
-72	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281

TECHNICAL DATA

Shielding gaskets are, very simply, connectors of two opposing metallic planes which make them appear as one continuous surface, by connecting across the openings. Depending on the frequencies involved, the openings must be reduced as closely as possible to a continuous seal.

Leader Tech's unique Fabric Shielding Gasket structure is a combination of a highly conductive nickel/copper ripstop fabric and a resilient polyurethane foam core. Leader Tech's FSG products have superior shielding properties and ensure long performance life all in a cost effective manner.

Leader Tech (FSG):

Fabric: Nickel/Copper RipStop Foam: Open Cell Polyurethane

Compression Set: <15% (ASTM D3574)

Temperature Range: -40°F to 158°F (-40°C to 70°C) (ASTM D746)

Surface Resistivity: $\leq 0.050 \Omega/\text{inch}^2$ (ASTM F390)

Flammability Rating: UL94V0

Shielding Effectiveness: >Up to 105 dB (MIL-DTL-83528C)

Pressure Sensitive Adhesive: Non-conductive, high peel strength

ROHS: Compliant REACH: Compliant

Tolerances:

TYPICAL CROSS SECTION TOLERANCES

 $\pm.010$ in. (0.25 mm) for all dimensions up to $\,$ 0.04 in. (1.02 mm) $\,$ $\pm.020$ in. (0.50 mm) for all dimensions above 0.04 in. (1.02 mm) (Detailed part drawings are available upon request)

TYPICAL LENGTH TOLERANCES

*Other sizes available. Consult factory.

Phone: 866.832.4364 Fax: 813.855.3291 Web: www.leadertechinc.com

FSG FOR ELECTRONIC ENCLOSURES

Square Shape								
PART NUMBER	HEI	GHT	WIE	OTH	LEN	GTH		
SG080080S	0.080	2.03	0.080	2.03	48	1219		
SG118118S	0.118	3.00	0.118	3.00	48	1219		
SG138138S	0.138	3.54	0.138	3.54	48	1219		
SG160160S	0.160	4.06	0.160	4.06	48	1219		
SG200200S	0.200	5.08	0.200	5.08	48	1219		
SG250250S	0.250	6.35	0.250	6.35	48	1219		
SG315315S	0.315	8.00	0.315	8.00	48	1219		
SG354354S	0.354	8.99	0.354	8.99	48	1219		
SG375375S	0.375	9.52	0.375	9.52	48	1219		
SG472472S	0.472	11.99	0.472	11.99	48	1219		
SG500500S	0.500	12.70	0.500	12.70	48	1219		
SG512512S	0.512	13.00	0.512	13.00	48	1219		
SG551551S	0.551	14.00	0.551	14.00	48	1219		
SG575575S	0.575	14.60	0.575	14.60	48	1219		
SG591591S	0.591	15.01	0.591	15.01	48	1219		
SG670670S	0.670	17.02	0.670	17.02	48	1219		
SG787787S	0.787	19.99	0.787	19.99	48	1219		

PART NUMBER	HEIGHT		WIDTH		LENGTH	
SG070180B	0.070	1.78	0.180	4.57	48	1219
SG090315B	0.090	2.29	0.315	8.00	48	1219
SG098299B	0.098	2.49	0.299	7.59	48	1219
SG100300B	0.100	2.54	0.300	7.62	48	1219
SG130256B	0.130	3.30	0.256	6.50	48	1219
SG157500B	0.157	3.99	0.500	12.70	48	1219
SG200500B	0.200	5.08	0.500	12.70	48	1219

Black = inches Blue = mm

T-Shape										
PART NUMBER	HEI	GHT	WIE	OTH	LEN	GTH				
SG152235T	0.152	3.86	0.235	5.97	48	1219				
SG157245T	0.157	3.99	0.245	6.22	48	1219				
SG175244T	0.175	4.44	0.244	6.20	48	1219				
SG244244T	0.244	6.20	0.244	6.20	48	1219				

Black = inches Blue = mm

C-Shape						
PART NUMBER	HEIGHT		WIDTH		LENGTH	
SG196325C	0.196	4.98	0.325	8.25	48	1219
SG196535C	0.196	4.98	0.535	13.59	48	1219
SG240415C	0.240	6.10	0.415	10.54	48	1219
SG252280C	0.252	6.40	0.280	7.11	48	1219
SG315315C	0.315	8.00	0.315	8.00	48	1219
SG347685C	0.347	8.81	0.685	17.40	48	1219
SG380420C	0.380	9.65	0.420	10.67	48	1219
SG385420C	0.385	9.78	0.420	10.67	48	1219
SG465420C	0.465	11.811	0.420	10.67	48	1219
SG550590C	0.550	13.97	0.590	14.99	48	1219
SG675580C	0.675	17.14	0.580	14.73	48	1219
SG675600C	0.675	17.14	0.600	15.24	48	1219

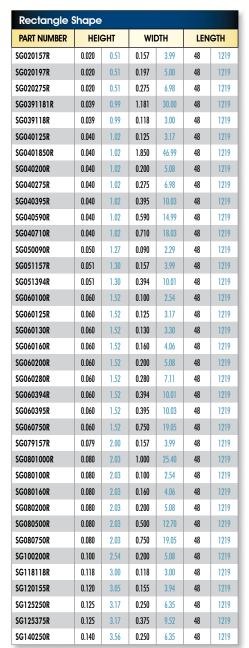
Black = inches

Black = inches

Typical Performance

Shielding Effectiveness 80 - 115dB

Frequency Range 20Mhz - 10GHz


Dura-Layer Construction
Polyurethane foam core with high-performance fabric

Recommended Compression 30-50% of gasket height

Ту	Typical Cross Section Tolerances										
$\pm .010$ in. (0.25 mm) for all dimensions up to 0.04 in. (1.02 mm)											
$\pm .020$ in.	0.04 in.	(1.02 mm)									
	Detailed part drawings are available upon request.										
	Typical Length Toler	ances									
0.20 to 6.0	0.20 to 6.00 in. (5 - 152 mm) ±.03 in. (0.76 mm)										
6.01 to 18.0	00 in. (153 - 457 mm)	±.06 in.	(1.52 mm)								
18.01 to 48.	00 in. (458 - 1219 mm)	±.08 in.	(2.03 mm)								

SG	X X X	ххх	Χ -	X X . X X
op	$\overline{}$	$\overline{}$	Į	$\overline{}$
#Start	Height	Width	Profile	Length .

FSG FOR ELECTRONIC ENCLOSURES CONT.

Rectangle Shape cont.										
PART NUMBER	HEI	GHT	WIDTH		LEN	GTH				
SG157590R	0.157	3.99	0.590	14.99	48	1219				
SG160354R	0.160	4.06	0.354	8.99	48	1219				
SG250375R	0.250	6.35	0.375	9.52	48	1219				
SG250500R	0.250	6.35	0.500	12.70	48	1219				
SG250600R	0.250	6.35	0.600	15.24	48	1219				
SG187375R	0.187	4.75	0.375	9.52	48	1219				
SG187750R	0.187	4.75	0.750	19.05	48	1219				
SG197315R	0.197	5.00	0.315	8.00	48	1219				
SG200200R	0.200	5.08	0.200	5.08	48	1219				
SG250250R	0.250	6.35	0.250	6.35	48	1219				
SG375500R	0.375	9.52	0.500	12.70	48	1219				
SG500500R	0.500	12.70	0.500	12.70	48	1219				
SG500750R	0.500	12.70	0.750	19.05	48	1219				
SG670670R	0.670	17.02	0.670	17.02	48	1219				
SG787787R	0.787	19.99	0.787	19.99	48	1219				

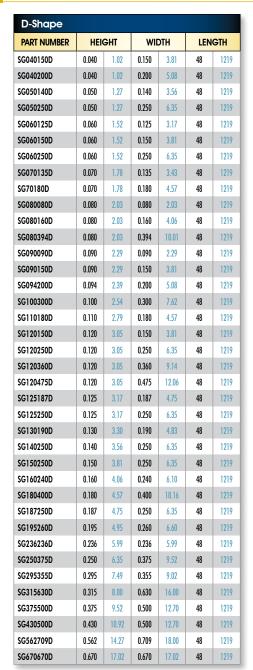
Black = inches Blue = mm

Knife Edge	Knife Edge											
PART NUMBER	HEIGHT		WIDTH		LENGTH							
SG070340K	0.070	1.78	0.340	8.64	48	1219						
SG106315K	0.106	2.69	0.315	8.00	48	1219						
SG106445K	0.106	2.69	0.445	11.30	48	1219						
SG106455K	0.106	2.69	0.455	11.56	48	1219						
SG-160600K	0.106	2.69	0.600	15.24	48	1219						
SG187236K	0.187	4.75	0.236	5.99	48	1219						
SG250750K	0.250	6.35	0.750	19.05	48	1219						
SG312707K	0.312	7.92	0.270	6.86	48	1219						
SG350750K	0.350	8.89	0.750	19.05	48	1219						

Black = inches

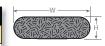
Round Shape									
PART NUMBER DIAMETER LENGTH									
SG100100Z	0.100	2.54	48	1219					
SG125125Z	0.125	3.17	48	1219					
SG160160Z	0.160	4.06	48	1219					
SG200200Z	0.200	5.08	48	1219					

Black = inches Blue = mm


Tape is not available.

Typical Cross Section Tolerances										
$\pm .010$ in. $$ (0.25 mm) for all dimensions up to $$ 0.04 in.										
\pm .020 in. (0.50 mm) for all dimensions above 0.04 in.										
0	Detailed part drav	vings are available upon	request.							
	Typical L	ength Tolerar	ices							
0.20 to 6	.00 in.	(5 - 152 mm)	±.03 in.	(0.76 mm)						
6.01 to 18.00 in. (153 - 457 mm) \pm .06 in.										
18.01 to 4	8.00 in.	(458 - 1219 mm)	±.08 in.	(2.03 mm)						

Part Number Explanation										
SG #Start	X X X Height	X X X Width	X T Profile	-)	(X . X X ↓ Length					
*Example: SG125250D-:	22.50: Gaske	t .125 tall, .:	250 wide	, D-Shaj	pe and 22.5" long					


Black = inches

FSG FOR ELECTRONIC ENCLOSURES CONT.

Oval Shape						
PART NUMBER	ЭНТ	WII	OTH	LEN	GTH	
SG140200E	0.140	3.56	0.200	5.08	48	1219
SG160790E	0.160	4.06	0.790	20.07	48	1219

Black = inches

Triangle Shape										
PART NUMBER HEIGHT WIDTH LENGTH										
SG098500TR	0.098	2.49	0.500	12.70	48	1219				
SG090394TR	0.090	2.29	0.394	10.01	48	1219				
SG100400TR	0.100	2.54	0.400	10.16	48	1219				
SG140390TR	0.140	3.56	0.390	9.91	48	1219				

Black = inches Blue = mm

P-Shape						
PART NUMBER	HEI	GHT	WIE	HTC	LEN	GTH
SG016195P	0.016	0.41	0.195	4.95	48	1219
SG060275P	0.060	1.52	0.275	6.98	48	1219
SG080200P	0.080	2.03	0.200	5.08	48	1219
SG125750P	0.125	3.17	0.750	19.05	48	1219
SG130520P	0.130	3.30	0.520	13.20	48	1219
SG145520P	0.145	3.68	0.520	13.21	48	1219
SG200395P	0.200	5.08	0.395	10.03	48	1219

Black = inches

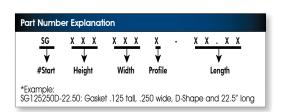
Typical Performance

Shielding Effectiveness 80 - 115dB

Frequency Range 20Mhz - 10GHz

Dura-Layer Construction
Polyurethane foam core with high-performance fabric

Recommended Compression 30-50% of gasket height

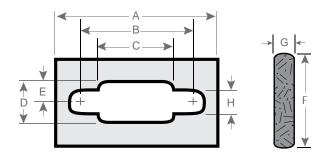

Black = inches Blue = mm

Туріс	cal Cross	Section Tole	erances	
±.010 in.	(0.25 mm) for al	l dimensions up to	0.04 in.	(1.02 mm)
±.020 in.	(0.50 mm) for a	ll dimensions above	0.04 in.	(1.02 mm)
De	tailed part drawir	ngs are available upon	request.	
	ypical Le	ngth Tolerar	ices	
0.20 to 6.0	0 in.	(5 - 152 mm)	±.03 in.	(0.76 mm)
6.01 to 18.	00 in.	(153 - 457 mm)	±.06 in.	(1.52 mm)

(458 - 1219 mm)

±.08 in.

(2.03 mm)



FSG FOR ELECTRONIC ENCLOSURES CONT.

D-SUB MINIATURE

very conformable to irregular surfaces.

- Eliminates any gap problem between connector and I/O surface plates. Compresses from .100" to .025" (2.5 to 0.6mm)
- Outside conductive surface is metalized CuNi fabric
- 9, 15, 25, 37 and 50 pin connector gaskets available in stock
- Available with adhesive tape. Please consult factory for ordering information
- Consult factory for custom profiles, thicknesses and sizes available
- For metal option see page 22

ure																
TYPE	1	4		В	(2)	ı	•		F	(3	ŀ	Н
9 Pin	1.40	35.56	0.98	24.89	0.78	19.81	0.44	11.18	0.22	5.59	0.7	17.78	0.1	2.54	0.15	3.81
15 Pin	1.75	44.45	1.31	33.27	1.11	28.19	0.44	11.18	0.22	5.59	0.7	17.78	0.1	2.54	0.15	3.81
25 Pin	2.28	57.91	1.85	46.99	1.65	41.91	0.44	11.18	0.22	5.59	0.7	17.78	0.1	2.54	0.15	3.81
37 Pin	2.93	74.42	2.50	63.54	2.29	58.17	0.44	11.18	0.22	5.59	0.7	17.78	0.1	2.54	0.15	3.81
50 Pin	2.84	72.14	2.41	61.21	2.20	55.88	0.55	13.97	0.28	7.11	0.8	20.32	0.1	2.54	0.15	3.81
	7YPE 9 Pin 15 Pin 25 Pin 37 Pin	TYPE 7 9 Pin 1.40 15 Pin 1.75 25 Pin 2.28 37 Pin 2.93	TYPE A 9 Pin 1.40 35.56 15 Pin 1.75 44.45 25 Pin 2.28 57.91 37 Pin 2.93 74.42	TYPE A 9 Pin 1.40 35.56 0.98 15 Pin 1.75 44.45 1.31 25 Pin 2.28 57.91 1.85 37 Pin 2.93 74.42 2.50	TYPE A B 9 Pin 1.40 35.56 0.98 24.89 15 Pin 1.75 44.45 1.31 33.27 25 Pin 2.28 57.91 1.85 46.99 37 Pin 2.93 74.42 2.50 63.54	TYPE A B C 9 Pin 1.40 35.56 0.98 24.89 0.78 15 Pin 1.75 44.45 1.31 33.27 1.11 25 Pin 2.28 57.91 1.85 46.99 1.65 37 Pin 2.93 74.42 2.50 63.54 2.29	TYPE A B C 9 Pin 1.40 35.56 0.98 24.89 0.78 19.81 15 Pin 1.75 44.45 1.31 33.27 1.11 28.19 25 Pin 2.28 57.91 1.85 46.99 1.65 41.91 37 Pin 2.93 74.42 2.50 63.54 2.29 58.17	TYPE A B C I 9 Pin 1.40 35.56 0.98 24.89 0.78 19.81 0.44 15 Pin 1.75 44.45 1.31 33.27 1.11 28.19 0.44 25 Pin 2.28 57.91 1.85 46.99 1.65 41.91 0.44 37 Pin 2.93 74.42 2.50 63.54 2.29 58.17 0.44	TYPE A B C D 9 Pin 1.40 35.56 0.98 24.89 0.78 19.81 0.44 11.18 15 Pin 1.75 44.45 1.31 33.27 1.11 28.19 0.44 11.18 25 Pin 2.28 57.91 1.85 46.99 1.65 41.91 0.44 11.18 37 Pin 2.93 74.42 2.50 63.54 2.29 58.17 0.44 11.18	TYPE A B C D I 9 Pin 1.40 35.56 0.98 24.89 0.78 19.81 0.44 11.18 0.22 15 Pin 1.75 44.45 1.31 33.27 1.11 28.19 0.44 11.18 0.22 25 Pin 2.28 57.91 1.85 46.99 1.65 41.91 0.44 11.18 0.22 37 Pin 2.93 74.42 2.50 63.54 2.29 58.17 0.44 11.18 0.22	TYPE A B C D E 9 Pin 1.40 35.56 0.98 24.89 0.78 19.81 0.44 11.18 0.22 5.59 15 Pin 1.75 44.45 1.31 33.27 1.11 28.19 0.44 11.18 0.22 5.59 25 Pin 2.28 57.91 1.85 46.99 1.65 41.91 0.44 11.18 0.22 5.59 37 Pin 2.93 74.42 2.50 63.54 2.29 58.17 0.44 11.18 0.22 5.59	TYPE A B C D E 9 Pin 1.40 35.56 0.98 24.89 0.78 19.81 0.44 11.18 0.22 5.59 0.7 15 Pin 1.75 44.45 1.31 33.27 1.11 28.19 0.44 11.18 0.22 5.59 0.7 25 Pin 2.28 57.91 1.85 46.99 1.65 41.91 0.44 11.18 0.22 5.59 0.7 37 Pin 2.93 74.42 2.50 63.54 2.29 58.17 0.44 11.18 0.22 5.59 0.7	TYPE A B C D E F 9 Pin 1.40 35.56 0.98 24.89 0.78 19.81 0.44 11.18 0.22 5.59 0.7 17.78 15 Pin 1.75 44.45 1.31 33.27 1.11 28.19 0.44 11.18 0.22 5.59 0.7 17.78 25 Pin 2.28 57.91 1.85 46.99 1.65 41.91 0.44 11.18 0.22 5.59 0.7 17.78 37 Pin 2.93 74.42 2.50 63.54 2.29 58.17 0.44 11.18 0.22 5.59 0.7 17.78	TYPE A B C D E F C 9 Pin 1.40 35.56 0.98 24.89 0.78 19.81 0.44 11.18 0.22 5.59 0.7 17.78 0.1 15 Pin 1.75 44.45 1.31 33.27 1.11 28.19 0.44 11.18 0.22 5.59 0.7 17.78 0.1 25 Pin 2.28 57.91 1.85 46.99 1.65 41.91 0.44 11.18 0.22 5.59 0.7 17.78 0.1 37 Pin 2.93 74.42 2.50 63.54 2.29 58.17 0.44 11.18 0.22 5.59 0.7 17.78 0.1	TYPE A B C D E F G 9 Pin 1.40 35.56 0.98 24.89 0.78 19.81 0.44 11.18 0.22 5.59 0.7 17.78 0.1 2.54 15 Pin 1.75 44.45 1.31 33.27 1.11 28.19 0.44 11.18 0.22 5.59 0.7 17.78 0.1 2.54 25 Pin 2.28 57.91 1.85 46.99 1.65 41.91 0.44 11.18 0.22 5.59 0.7 17.78 0.1 2.54 37 Pin 2.93 74.42 2.50 63.54 2.29 58.17 0.44 11.18 0.22 5.59 0.7 17.78 0.1 2.54	TYPE A B C D E F G I 9 Pin 1.40 35.56 0.98 24.89 0.78 19.81 0.44 11.18 0.22 5.59 0.7 17.78 0.1 2.54 0.15 15 Pin 1.75 44.45 13.1 33.27 1.11 28.19 0.44 11.18 0.22 5.59 0.7 17.78 0.1 2.54 0.15 25 Pin 2.28 57.91 1.85 46.99 1.65 41.91 0.44 11.18 0.22 5.59 0.7 17.78 0.1 2.54 0.15 37 Pin 2.93 74.42 250 63.54 2.29 58.17 0.44 11.18 0.22 5.59 0.7 17.78 0.1 2.54 0.15

Black = inches Blue = mm

Typical Performance

Shielding Effectiveness 80 - 115dB

Frequency Range 20Mhz - 10GHz

Dura-Layer Construction
Polyurethane foam core with high-performance fabric

Recommended Compression

30-50% of gasket height

Тур	ical Cross	Section Tol	erances	;					
$\pm .010$ in. (0.25 mm) for all dimensions up to 0.04 in. (1.02 mm									
±.020 in.	. ,	ıll dimensions above ngs are available upor	0.04 in. 1 request.	(1.02 mm)					
	Typical Le	ngth Tolerar	nces						
0.20 to 6	71	ngth Tolerar (5 - 152 mm)	10es ±.03 in.	(0.76 mm)					
	i.00 in.			(0.76 mm) (1.52 mm)					

Phone: 866.832.4364 Fax: 813.855.3291 Web: www.leadertechinc.com

SHIELDING FABRICS & CONDUCTIVE TAPES

Shielding Fabrics

Shielding effectiveness is determined by a combination of the reflection and absorption of RF signals. Absorption depends on the thickness of the shield material. However, reflection occurs at the shield surface and its effectiveness is independent of thickness. Reflection is the determining factor for all high frequency signal attenuation. (Note: When using these materials for conductive shielding gaskets, conductivity is the determinant.) Maximum reflection occurs with the highest conductivity materials – the best being copper, nickel and combinations of both.

Applications

Bonding or laminating to complex geometric shapes with optional hot melt or conductive adhesive.

- Large surface coverage with minimal seams due to 41" material width
- ESD/RFI-EMI shielding attenuation > 70dB up to 10 GHz for CuNi type
- Seal enclosure panels and frames, seams or joints
- Use for architectural shielding or shielded room wall and ceiling finishing

Options

- All materials are available in non-adhesive, hot melt or conductive adhesive backing
- Standard sheets are 41" x 36" (1041 x 914 mm)
- Longer lengths can be custom ordered please consult factory for information
- Full rolls are 325' (99M) long please consult factory for ordering information. Note: conductive adhesive versions are 164' (50M) long

Shielding Fab	rics													
PART NUMBER W/O ADHESIVE	W/HOT MELT ADHESIVE	W/CONDUCTIVE ADHESIVE	DESCRIPTION	WII	OTH	LEN	GTH	THICH	(NESS	SURFACE RESISTIVITY	500KHZ	100MHZ	300MHZ	1GHZ
SF005PCN	SF005PCN-HM	SF005PCN-CA	Conductive CuNi Cloth	41	1041	36	914	0.003	0.076	.005 ohm/mm2	79dB	81dB	86dB	82dB
SF030PCU	SF030PCU-HM	SF030PCU-CA	Conductive Cu Cloth	41	1041	36	914	0.003	0.076	.035 ohm/mm2	60dB	67dB	65dB	62dB
SF050PNI	SF050PNI-HM	SF050PNI-CA	Conductive Ni Cloth	41	1041	36	914	0.004	0.102	.050 ohm/mm2	60dB	72dB	67dB	63dB

Black = inches Blue = mm

Fabric Shielding Tapes

Applications

Cable shielding, enclosure seams, shielded room joints, PCB component shields, irregular surface/component shields, alternative to custom die-cut shielding gaskets or sections.

- Service Temperature: -40°F to 212°F (-40°C to 100°C)
- Adhesion: (peel) 50 oz/in. (54N/100mm)
- Material: CuNi metalized fabric and conductive acrylic adhesive backing w/release liner

Fabric Shieldi	Fabric Shielding Tapes											
PART NUMBER	WII	DTH	THICH	(NESS	LENG	FTH .	RESISTIVITY	IMPEDANCE				
ST005PCN25	0.25	6.35	0.005	0.13	85.0 ft. rolls	25.0m	0.03 - 0.05 ohms/inch	69dB@100MHz				
ST005PCN50	0.50	12.70	0.005	0.13	85.0 ft. rolls	25.0m	0.03 - 0.05 ohms/inch	69dB@100MHz				
ST005PCN75	0.75	19.05	0.005	0.13	85.0 ft. rolls	25.0m	0.03 - 0.05 ohms/inch	69dB@100MHz				
ST005PCN100	1.00	25.40	0.005	0.13	85.0 ft. rolls	25.0m	0.03 - 0.05 ohms/inch	69dB@100MHz				
ST005PCN200	2.00	50.80	0.005	0.13	85.0 ft. rolls	25.0m	0.03 - 0.05 ohms/inch	69dB@100MHz				

Black = inches

Conductive Foam Shielding Material

CFS CONDUCTIVE FOAM SHIELDING MATERIAL FOR DIE-CUT GASKETS

CFS Conductive Foam Shielding Material consists of resilient Nickel-Copper polyurethane foam which is layered between two pieces of conductive polyester fabric. This CFS Conductive Foam is ideal for applications that require low compression forces but excellent shielding effectiveness.

Performance

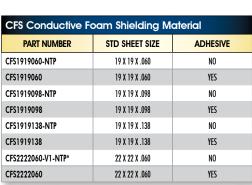
Operating Temperatures: -40F - +156F (-40C - +70C)

Surface Resistivity: <0.2 ohms/sq

Shielding Effectiveness: 60dB Typical 10MHz – 3GHz Flammability: UL94-HBF Unless otherwise noted UL94-V1*

Typical Compression Load: 2.1 PSI at recommended 30% compression

Availability


Sheets: Up to 1.0m x 1.0m (*Custom Sizes Available*) **Finishing:** Precision Die-Cut Forms & Shapes
Available with Conductive Adhesive

Material Characteristics

High Shielding Effectiveness Low Compression Low Surface Resistivity

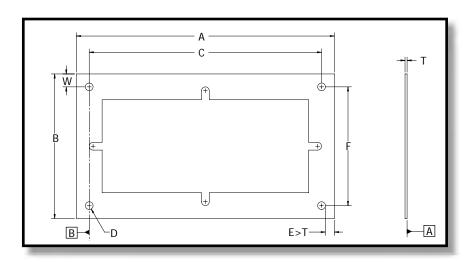
Applications

Intricate die cuts forms I/O panels Backplanes Connectors Access panels

^{*}Other sizes available.
Consult Applications Engineering.

Phone: 866.832.4364 Fax: 813.855.3291 Web: www.leadertechinc.com

Custom and Die-Cut Gaskets


CUSTOM AND DIE-CUT SHIELDING GASKETS

In addition to our large assortment of stock products, Leader Tech offers customers the ability to create custom and die-cut shielding gaskets using any of our conductive elastomer formulations or fabric shielding gasket materials. Our extensive manufacturing capabilities include extrusion, molding and precision die-cut shapes and sizes.

All of our high-performance custom shielding gaskets can be made from your choice of twelve MIL-DTL-83528 Conductive Elastomer compounds or from our Fabric Shielding Gasket material. Depending on your unique application requirements, our engineering team will work to develop a custom gasketing solution that exhibits superior shielding properties and ensures a long performance life in a cost effective manner.

Please review your application with our Material Specialist and Engineering Group to determine the best materials to use for your application.

Die Cut Gasket Design Recommendations and Tolerances

Tolerance Range									
FEATURE TYPE	Sample Dim.	0 - 4"	4.1 - 12"	12.1 - 24"					
Length/Width	A, B, W	+/020	+/030	+/040					
Hole Location	C, F	+/010	+/015	+/020					
Hole Diameter	D	+/020	+/030	+/040					

NOTES:

- 1. Minimum recommended flange width (W) is .125".
- 2. Hole diameter (D) must exceed material thickness (T).
- Distance edge of hole to edge of gasket (E) must exceed material thickness (T).
 - If not possible, then a slot is required.
- Recommend assign datum to hole C/L and not to edge of gasket.

ENGINEERS NOTES				
ENGINEERS NOTES				
ENGINEERS NOTES				
ENGINEERS NOTES				
	ENGINEERS NOTES			

PRODUCTS AND LITERATURE

We've Got You Covered

Reliable Board, Enclosure and Cable Shielding Solutions

Leader Tech is a world-leading innovator and US-based manufacturer of EMI shielding products for circuit boards, enclosures and cables. In addition to our best selling standard, modified standard and custom CBS shields, Leader Tech offers an expansive line of beryllium copper fingerstock gaskets, conductive elastomers, advanced RF absorber materials and EMI/RFI ferrites.

CBS Circuit Board Shielding Catalog

FerriShield Ferrite Catalog

TechSIL Conductive Elastomer Catalog

EA EMI Microwave Absorbers Catalog

LeaderTech Shielding Products

Board Level Shielding

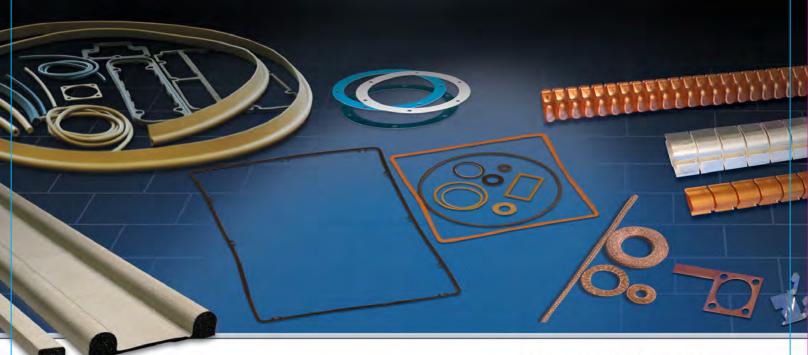
- Standard and Multi-Cavity CBS
- Modified Standard Options
- Custom Circuit Board Shields

FerriShield Ferrites

- Snap-On Bisected & Solid Bead Ferrites
- Round & Flat Styles for Cables, Wires and Flex Circuits
- Low, High, Microwave and Wideband Frequency-Specific Material

Enclosure Shielding

- BeCu Fingerstock Gaskets
- TechSIL 5000 Conductive Elastomers
- Conductive Fabric Shielding Gaskets
- TechSIL 8000 Oriented Wire Gaskets
- TechMESH Knitted Wire Gaskets
- TechMESH Combo Strip & Gaskets



Our sales engineers are waiting for your call: 866-TECH-EMI (866-832-4364)

Visit our web site today to browse our complete product line, download literature and find your local sales engineer or sales representative! www.leadertechinc.com

WWW.LEADERTECHINC.COM

A passion in all we do

12420 Race Track Rd., Tampa, Florida 33626 866.TECH.EMI (866.832.4364) +813.855.6921 f813.855.3291

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.