74AVC4T3144

4-bit dual-supply buffer/level translator; 3-state

Rev. 2 — 24 July 2018

Product data sheet

1. General description

The 74AVC4T3144 is a 4-bit, dual-supply level translating buffer with 3-state outputs. It features four data inputs (An and B4), four data outputs (YBn and YA4), and an output enable input (\overline{OE}). The device is configured to translate three inputs from V_{CC(A)} to V_{CC(B)} and one input from V_{CC(B)} to V_{CC(A)}. \overline{OE} , An and YA4 are referenced to V_{CC(A)} and YBn and B4 are referenced to V_{CC(B)}. A HIGH on \overline{OE} causes the outputs to assume a high-impedance OFF-state.

The device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables outputs, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, all outputs are in the high-impedance OFF-state.

2. Features and benefits

- Wide supply voltage range:
 - V_{CC(A)}: 0.8 V to 3.6 V
 - V_{CC(B)}: 0.8 V to 3.6 V
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114E Class 3B exceeds 8000 V
 - CDM JESD22-C101C exceeds 1000 V
- Maximum data rates:
 - 380 Mbit/s (≥ 1.8 V to 3.3 V translation)
 - 200 Mbit/s (≥ 1.1 V to 3.3 V translation)
 - 200 Mbit/s (≥ 1.1 V to 2.5 V translation)
 - 200 Mbit/s (≥ 1.1 V to 1.8 V translation)
 - 150 Mbit/s (≥ 1.1 V to 1.5 V translation)
 - 100 Mbit/s (≥ 1.1 V to 1.2 V translation)
- Suspend mode
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- I_{OFF} circuitry provides partial Power-down mode operation
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

ne<mark>x</mark>peria

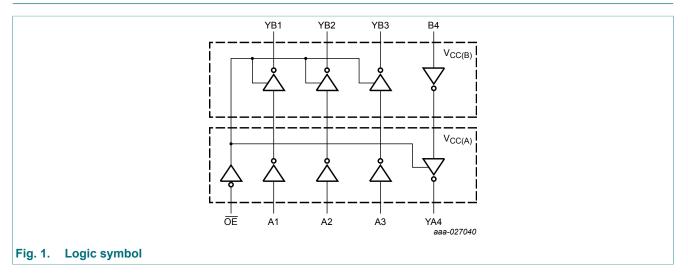
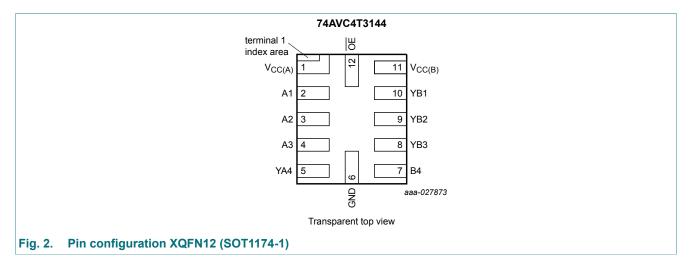

3. Ordering information

Table 1. Ordering information								
Type number Package								
	Temperature range	Name	Description	Version				
74AVC4T3144GU12	-40 °C to +125 °C	XQFN12	plastic, extremely thin quad flat package; no leads; 12 terminals; body 1.70 x 2.0 x 0.50 mm	SOT1174-1				

4. Marking


Table 2. Marking codes	
Type number	Marking code
74AVC4T3144GU12	Bd

5. Functional diagram

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 3. Pin description		
Symbol	Pin	Description
V _{CC(A)}	1	supply voltage A (A1, A2, A3, YA4 and $\overline{\text{OE}}$ pins are referenced to $V_{CC(A)})$
A1, A2, A3, B4	2, 3, 4, 7	data input
GND	6	ground (0 V)
YB1, YB2, YB3, YA4	10, 9, 8, 5	data output
ŌĒ	12	output enable input (active LOW)
V _{CC(B)}	11	supply voltage B (YB1, YB2, YB3 and B4 pins are referenced to $V_{CC(B)})$

7. Functional description

Table 4. Function table [1] [2]								
Supply voltage	Input	Input	Output					
V _{CC(A)} , V _{CC(B)}	OE	An, B4	YBn, YA4					
0.8 V to 3.6 V	L	L	L					
0.8 V to 3.6 V	L	Н	Н					
0.8 V to 3.6 V	Н	Х	Z					
GND [3]	Х	Z	Z					

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

[2] The A1, A2, A3, YA4 and \overline{OE} pins are referenced to V_{CC(A)}; The YB1, YB2, YB3 and B4 pins are referenced to V_{CC(B)}.

[3] If at least one of $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC(A)}	supply voltage A			-0.5	+4.6	V
V _{CC(B)}	supply voltage B			-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
V _O	output voltage	Active mode	[1] [2] [3]	-0.5	V _{CCO} + 0.5	V
		Suspend or 3-state mode	[1]	-0.5	+4.6	V
lo	output current	V_{O} = 0 V to V_{CCO}	[2]	-	±50	mA
I _{CC}	supply current	I _{CC(A)} or I _{CC(B)}		-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C		-	250	mW

[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] V_{CCO} is the supply voltage associated with the output port.

[3] V_{CCO} + 0.5 V should not exceed 4.6 V.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions		Min	Мах	Unit
V _{CC(A)}	supply voltage A			0.8	3.6	V
V _{CC(B)}	supply voltage B			0.8	3.6	V
VI	input voltage			0	3.6	V
Vo	output voltage	Active mode	[1]	0	V _{CCO}	V
		Suspend or 3-state mode		0	3.6	V
T _{amb}	ambient temperature			-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CCI} =0.8 V to 3.6 V	[2]	-	10	ns/V

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the input port.

10. Static characteristics

Table 7. Typical static characteristics at T_{amb} = 25 °C [1] [2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$				
	output voltage	I_{O} = -1.5 mA; $V_{CC(A)}$ = $V_{CC(B)}$ = 0.8 V	-	0.69	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$				
	output voltage	I_{O} = 1.5 mA; $V_{CC(A)}$ = $V_{CC(B)}$ = 0.8 V	-	0.07	-	V
I	input leakage current		-	±0.025	±0.25	μA
I _{OZ}	OFF-state output current	A or B port; $V_O = 0 V$ or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 3.6 V$	-	±0.5	±2.5	μA
		suspend mode A port; V _O = 0 V or V _{CCO} ; V _{CC(A)} = 3.6 V; V _{CC(B)} = 0 V	-	±0.5	±2.5	μA
		suspend mode B port; $V_O = 0 V$ or V_{CCO} ; $V_{CC(A)} = 0 V$; $V_{CC(B)} = 3.6 V$	-	±0.5	±2.5	μA
I _{OFF}	power-off leakage current	A port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0.8 V to 3.6 V	-	±0.1	±1	μA
		B port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0.8 V to 3.6 V	-	±0.1	±1	μA
CI	input capacitance	$ \overline{OE} \text{ input; } V_{I} = 0 \text{ V or } 3.3 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V} $	-	2.0	-	pF
C _{I/O}	input/output capacitance	A and B port; $V_0 = 3.3 \text{ V or } 0 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$	-	4.0	-	pF

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the data input port.

Table 8. Static characteristics [1] [2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40 °C to	-40 °C to	Unit		
			Min	Max	Min	Мах	
V _{IH}	HIGH-level	data input					
	input voltage	V _{CCI} = 0.8 V	0.70V _{CCI}	-	0.70V _{CCI}	-	V
		V _{CCI} = 1.1 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	V
		V _{CCI} = 2.3 V to 2.7 V	1.6	-	1.6	-	V
		V _{CCI} = 3.0 V to 3.6 V	2	-	2	-	V
		OE input					
		V _{CC(A)} = 0.8 V	0.70V _{CC(A)}	-	0.70V _{CC(A)}	-	V
		V _{CC(A)} = 1.1 V to 1.95 V	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		V _{CC(A)} = 2.3 V to 2.7 V	1.6	-	1.6	-	V
		V _{CC(A)} = 3.0 V to 3.6 V	2	-	2	-	V

Symbol	Parameter	Conditions	-40 °C t	o +85 °C	-40 °C to	o +125 °C	Unit
			Min	Max	Min	Max	
V _{IL}	LOW-level	data input					
	input voltage	V _{CCI} = 0.8 V	-	0.30V _{CCI}	-	0.30V _{CCI}	V
		V _{CCI} = 1.1 V to 1.95 V	-	0.35V _{CCI}	-	0.35V _{CCI}	V
		V _{CCI} = 2.3 V to 2.7 V	Min Max Min Max put - 0.30V _{CCI} - 0.30V _{CCI} i = 0.8 V - 0.30V _{CCI} - 0.35V _{CCI} i = 1.1 V to 1.95 V - 0.35V _{CCI} - 0.35V _{CCI} i = 3.0 V to 3.6 V - 0.8 - 0.8 ut - 0.30V _{CC(A} - 0.30V _{CC(A} (A) = 0.8 V - 0.30V _{CC(A} - 0.30V _{CC(A} (A) = 2.3 V to 2.7 V - 0.35V _{CC(A} - 0.30V _{CC(A} (A) = 2.3 V to 3.6 V - 0.35V _{CC(A} - 0.35V _{CC(A} (A) = 2.3 V to 3.6 V - 0.85 - 0.7 (A) = Vol(B) = 0.8 V to 3.6 V - 0.85 - 0.85 (A) = Voc(B) = 1.1 V 0.85 - 0.85 - - (A) = Voc(B) = 1.4 V 1.05 - 1.2 - - (A) = Voc(B) = 1.65 V - 1.75 - 1.2 - (A) = Voc(B) = 3	0.7	V		
		V _{CCI} = 3.0 V to 3.6 V	-	Max Min Max 0.30V _{CCI} - 0.30V _{CCI} 0.35V _{CCI} - 0.35V _{CCI} 0.7 - 0.7 0.8 - 0.8 0.30V _{CC(A)} - 0.30V _{CC(A)} 0.30V _{CC(A)} - 0.30V _{CC(A)} 0.30V _{CC(A)} - 0.30V _{CC(A)} 0.35V _{CC(A)} - 0.35V _{CC(A)} 0.7 - 0.7 0.35V _{CC(A)} - 0.7 0.7 1.05 - 1.05 - - 1.05 - - 1.105 - - 1.12 1.1 - 0.1 - 0.1 0.25 - 0.25 0.35 - 0.5 <	V		
		$\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $					
		V _{CC(A)} = 0.8 V	-	0.30V _{CC(A)}	-	0.30V _{CC(A)}	V
		V _{CC(A)} = 1.1 V to 1.95 V	-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	V
		V _{CC(A)} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		V _{CC(A)} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$					
	output voltage		V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	V
			0.85	-	0.85	-	V
			1.05	-	1.05	-	V
			1.2	-	1.2	-	V
			1.75	-	1.75	-	V
			2.3	-	2.3	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$					
	output voltage		-	0.1	-	0.1	V
			-	0.25	-	0.25	V
			-	0.35	-	0.35	V
			-	0.45	-	0.45	V
			-	0.55	-	0.55	V
			-	0.7	-	0.7	V
lı	input leakage current		-	±1	-	±5	μA
l _{oz}	OFF-state output current	A or B port; $V_O = 0 V \text{ or } V_{CCO};$ $V_{CC(A)} = V_{CC(B)} = 3.6 V$	-	±5	±5 - ±3		μA
		suspend mode A port; $V_O = 0 V \text{ or } V_{CCO};$ $V_{CC(A)} = 3.6 V; V_{CC(B)} = 0 V$	-	±5	-	±30	μA
		suspend mode B port; $V_O = 0 V \text{ or } V_{CCO};$ $V_{CC(A)} = 0 V; V_{CC(B)} = 3.6 V$	-	±5	-	±30	μA

Symbol	Parameter	Conditions	-40 °C t	o +85 °C	-40 °C to	o +125 ℃	Unit
			Min	Max	Min	Max	
I _{OFF}	power-off leakage	A port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0.8 V to 3.6 V	-	±5	-	±30	μA
	current	B port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0.8 V to 3.6 V	-	±5	-	±30	μA
I _{CC}	supply current	A port; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A					
		V _{CC(A)} = 0.8 V to 3.6 V; V _{CC(B)} = 0.8 V to 3.6 V	-	10	-	55	μA
		$V_{CC(A)} = 1.1 V \text{ to } 3.6 V;$ $V_{CC(B)} = 1.1 V \text{ to } 3.6 V$	-	8	-	50	μA
		V _{CC(A)} = 3.6 V; V _{CC(B)} = 0 V	-	8	-	50	μA
		V _{CC(A)} = 0 V; V _{CC(B)} = 3.6 V	-2	-	-12	-	μA
		B port; $V_1 = 0$ V or V_{CCI} ; $I_0 = 0$ A					
		$V_{CC(A)} = 0.8 V \text{ to } 3.6 V;$ $V_{CC(B)} = 0.8 V \text{ to } 3.6 V$	-	10	-	55	μA
		$V_{CC(A)} = 1.1 V \text{ to } 3.6 V;$ $V_{CC(B)} = 1.1 V \text{ to } 3.6 V$	-	8	-	50	μA
		V _{CC(A)} = 3.6 V; V _{CC(B)} = 0 V	-2	-	-12	-	μA
		V _{CC(A)} = 0 V; V _{CC(B)} = 3.6 V	-	8	-	50	μA
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0 A$; $V_I = 0 V \text{ or } V_{CCI}$; $V_{CC(A)} = 0.8 V \text{ to } 3.6 V$; $V_{CC(B)} = 0.8 V \text{ to } 3.6 V$	-	20	-	70	μA
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0 A$; $V_I = 0 V \text{ or } V_{CCI}$; $V_{CC(A)} = 1.1 V \text{ to } 3.6 V$; $V_{CC(B)} = 1.1 V \text{ to } 3.6 V$	-	16	-	65	μA
ΔI _{CC}	additional supply current	V_{I} = 3.0 V; $V_{CC(A)}$ = $V_{CC(B)}$ = 3.6 V	-	500	-	650	μA

 $V_{\rm CCO}$ is the supply voltage associated with the output port. $V_{\rm CCI}$ is the supply voltage associated with the data input port. [1] [2]

Table 9. Typical total supply current (I_{CC(A)} + I_{CC(B)})

V _{CC(A)}	V _{CC(B)}							
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
0 V	0	0.1	0.1	0.1	0.1	0.1	0.1	μA
0.8 V	0.1	0.1	0.1	0.1	0.1	0.3	1.6	μA
1.2 V	0.1	0.1	0.1	0.1	0.1	0.1	0.8	μA
1.5 V	0.1	0.1	0.1	0.1	0.1	0.1	0.4	μA
1.8 V	0.1	0.1	0.1	0.1	0.1	0.1	0.2	μA
2.5 V	0.1	0.3	0.1	0.1	0.1	0.1	0.1	μA
3.3 V	0.1	1.6	0.8	0.4	0.2	0.1	0.1	μA

11. Dynamic characteristics

Table 10. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \ ^{\circ}C \ [1] \ [2]$

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		$V_{CC(A)} = V_{CC(B)}$					
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
C _{PD}	C _{PD} power dissipation	inputs An, B4	0.2	0.2	0.2	0.2	0.3	0.5	pF
	capacitance	outputs YBn, YA4	9.3	9.5	9.6	9.7	9.9	11.2	pF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of the outputs.}$

[2] $f_i = 10 \text{ MHz}$; $V_i = \text{GND}$ to V_{CC} ; $t_r = t_f = 1 \text{ ns}$; $C_L = 0 \text{ pF}$; $R_L = \infty \Omega$.

Table 11. Typical dynamic characteristics at $V_{CC(A)}$ = 0.8 V and T_{amb} = 25 °C [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see $\underline{Fig. 5}$; for wave forms see $\underline{Fig. 3}$ and $\underline{Fig. 4}$

Symbol	Parameter	Conditions	V _{CC(B)}							
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V		
t _{pd}	propagation delay	An to YBn	14.5	7.3	6.5	6.2	5.9	6.0	ns	
		B4 to YA4	14.5	12.7	12.4	12.3	12.1	12.0	ns	
t _{dis}	disable time	OE to YBn	14.3	14.3	14.3	14.3	14.3	14.3	ns	
		OE to YA4	17.0	9.9	9.0	9.4	9.0	9.7	ns	
t _{en}	enable time	OE to YBn	18.2	18.2	18.2	18.2	18.2	18.2	ns	
		OE to YA4	19.2	10.7	9.8	9.6	9.7	10.2	ns	

 $[1] \quad t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}; \ t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}; \ t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}.$

Table 12. Typical dynamic characteristics at $V_{CC(B)} = 0.8$ V and $T_{amb} = 25$ °C [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 5; for wave forms see Fig. 3 and Fig. 4

Parameter	Conditions	V _{CC(A)}						
		0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t _{pd} propagation	An to YBn	14.5	12.7	12.4	12.3	12.1	12.0	ns
delay	B4 to YA4	14.5	7.3	6.5	6.2	5.9	6.0	ns
disable time	OE to YBn	14.3	5.5	4.1	4.0	3.0	3.5	ns
	OE to YA4	17.0	13.8	13.4	13.1	12.9	12.7	ns
enable time	OE to YBn	18.2	5.6	4.0	3.2	2.4	2.2	ns
	OE to YA4	19.2	14.6	14.1	13.9	13.7	13.6	ns
_	propagation delay disable time	propagation delayAn to YBn B4 to YA4disable timeOE to YBn OE to YA4enable timeOE to YBn	propagation delayAn to YBn14.5B4 to YA414.5disable timeOE to YBn14.3OE to YA417.0enable timeOE to YBn18.2	Image: Distribution of the second system 0.8 V 1.2 V propagation delay An to YBn 14.5 12.7 B4 to YA4 14.5 7.3 disable time OE to YBn 14.3 5.5 OE to YA4 17.0 13.8 enable time OE to YBn 18.2 5.6	Image: boot boot boot boot boot boot boot boo	Image: Normal system Image: No	Image: Note of the system Im	Image: Note of the system Im

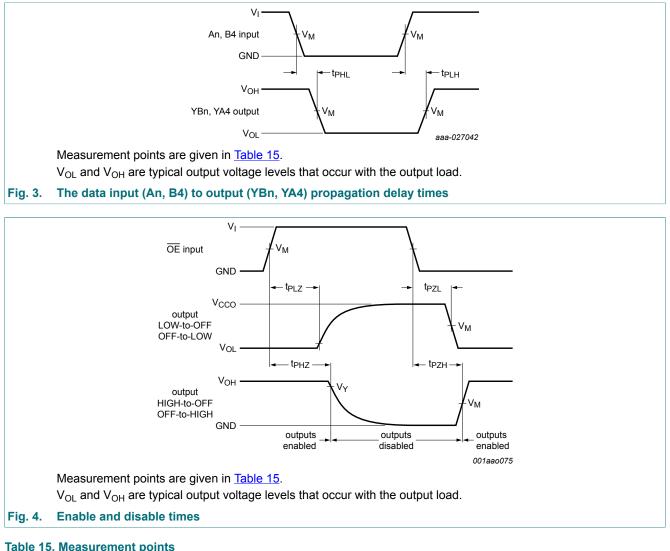
[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 13. Dynamic characteristics for temperature range -40 °C to +85 °C [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 5; for wave forms see Fig. 3 and Fig. 4

Symbol	Parameter	Conditions	V _{CC(B)}										Unit
			1.2 V ±0.1 V		1.5 V ±0.1 V		1.8 V ±0.15 V		2.5 V ±0.2 V		3.3 V ±0.3 V]
			Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	_
V _{CC(A)} =	1.1 V to 1.3 V												
t _{pd}	propagation	An to YBn	2.0	10.5	1.3	7.8	1.2	6.9	1.0	5.9	0.8	5.7	ns
	delay	B4 to YA4	2.0	10.5	1.5	9.9	1.5	9.7	1.4	9.4	1.4	9.3	ns
t _{dis}	disable time	OE to YBn	2.0	10.0	2.0	10.0	2.0	10.0	2.0	10.0	2.0	10.0	ns
		OE to YA4	2.0	11.1	2.0	8.6	1.0	8.0	0.7	7.0	1.0	8.0	ns
t _{en}	enable time	OE to YBn	2.0	13.5	2.0	13.5	2.0	13.5	2.0	13.5	2.0	13.5	ns
		OE to YA4	2.0	15.0	2.0	11.0	2.0	9.4	1.0	7.8	1.0	7.4	ns
V _{CC(A)} =	1.4 V to 1.6 V												
t _{pd}	propagation	An to YBn	1.5	9.9	1.0	7.1	1.0	6.0	0.5	4.8	0.5	4.3	ns
	delay	B4 to YA4	1.3	7.8	1.0	7.1	0.9	6.9	0.8	6.6	0.6	6.5	ns
t _{dis}	disable time	OE to YBn	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	ns
		OE to YA4	2.0	10.2	1.5	7.5	0.9	7.2	0.4	6.2	0.4	6.1	ns
t _{en}	enable time	OE to YBn	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	ns
		OE to YA4	2.0	14.4	1.4	7.9	1.3	7.7	1.1	6.4	1.1	5.6	ns
V _{CC(A)} =	1.65 V to 1.95	v			1		1				1		1
t _{pd}	propagation delay	An to YBn	1.5	9.7	0.9	6.9	0.8	5.7	0.5	4.5	0.3	4.0	ns
		B4 to YA4	1.2	6.9	1.0	6.0	0.8	5.7	0.5	5.5	0.5	5.3	ns
t _{dis}	disable time	OE to YBn	0.5	5.7	0.5	5.7	0.5	5.7	0.5	5.7	0.5	5.7	ns
		OE to YA4	2.0	9.9	1.5	7.0	0.8	6.9	0.2	5.8	0.2	5.9	ns
t _{en}	enable time	OE to YBn	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	ns
		OE to YA4	1.5	13.9	1.2	7.2	1.2	6.9	0.8	5.4	0.6	5.0	ns
$V_{CC(A)} =$	2.3 V to 2.7 V	-											
t _{pd}	propagation	An to YBn	1.4	9.4	0.8	6.6	0.5	5.5	0.4	4.2	0.2	3.7	ns
	delay	B4 to YA4	1.0	5.9	0.5	4.8	0.5	4.5	0.4	4.2	0.3	3.9	ns
t _{dis}	disable time	OE to YBn	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	ns
		OE to YA4	2.0	9.3	1.5	6.7	0.7	6.3	0.2	5.0	0.2	5.7	ns
t _{en}	enable time	OE to YBn	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	ns
		OE to YA4	1.5	13.6	1.0	6.8	1.0	6.0	0.8	4.6	0.6	4.2	ns
$V_{CC(A)} =$	3.0 V to 3.6 V	1		1	1	1				1	1		
t _{pd}	propagation	An to YBn	1.4	9.3	0.6	6.5	0.5	5.3	0.3	3.9	0.2	3.5	ns
	delay	B4 to YA4	0.8	5.7	0.5	4.3	0.3	4.0	0.2	3.7	0.2	3.5	ns
t _{dis}	disable time	OE to YBn	0.2	4.5	0.2	4.5	0.2	4.5	0.2	4.5	0.2	4.5	ns
		OE to YA4	2.0	9.0	1.5	6.4	0.7	6.1	0.2	4.8	0.2	5.6	ns
t _{en}	enable time	OE to YBn	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	ns
		OE to YA4	1.5	13.4	1.0	6.7	1.0	5.9	0.7	4.4	0.5	4.0	ns

 $[1] \quad t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}; \ t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}; \ t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}.$

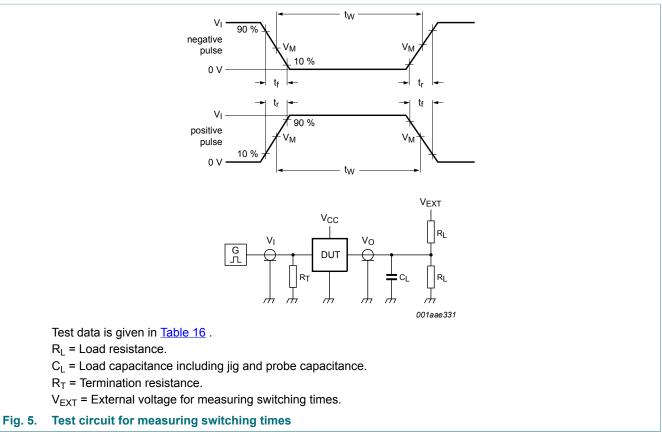

Table 14. Dynamic characteristics for temperature range -40 °C to +125 °C [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 5; for wave forms see Fig. 3 and Fig. 4

Symbol	Parameter	Conditions	V _{CC(B)}										Unit
			1.2 V ±0.1 V		1.5 V ±0.1 V		1.8 V ±0.15 V		2.5 V ±0.2 V		3.3 V ±0.3 V		
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	-
$V_{CC(A)} = $	1.1 V to 1.3 V												
t _{pd}	propagation	An to YBn	2.0	12.1	1.3	9.0	1.2	8.0	1.0	6.8	0.8	6.6	ns
	delay	B4 to YA4	2.0	12.1	1.5	11.4	1.5	11.2	1.4	10.9	1.4	10.7	ns
t _{dis}	disable time	OE to YBn	2.0	11.5	2.0	11.5	2.0	11.5	2.0	11.5	2.0	11.5	ns
		OE to YA4	2.0	12.8	2.0	9.9	1.0	9.2	0.7	8.1	1.0	9.2	ns
t _{en}	enable time	OE to YBn	2.0	15.6	2.0	15.6	2.0	15.6	2.0	15.6	2.0	15.6	ns
		OE to YA4	2.0	17.3	2.0	12.7	2.0	10.9	1.0	9.0	1.0	8.6	ns
$V_{CC(A)} = $	1.4 V to 1.6 V		·										
t _{pd}	propagation	An to YBn	1.5	11.4	1.0	8.2	1.0	6.9	0.5	5.6	0.5	5.0	ns
	delay	B4 to YA4	1.3	9.0	1.0	8.2	0.9	8.0	0.8	7.6	0.6	7.5	ns
t _{dis}	disable time	OE to YBn	1.0	6.9	1.0	6.9	1.0	6.9	1.0	6.9	1.0	6.9	ns
		OE to YA4	2.0	11.8	1.5	8.7	0.9	8.3	0.4	7.2	0.4	7.1	ns
t _{en}	enable time	OE to YBn	1.0	8.7	1.0	8.7	1.0	8.7	1.0	8.7	1.0	8.7	ns
		OE to YA4	2.0	16.6	1.4	9.1	1.3	8.9	1.1	7.4	1.1	6.5	ns
$V_{CC(A)} = $	1.65 V to 1.95	v											
t _{pd}	propagation	An to YBn	1.5	11.2	0.9	8.0	0.8	6.6	0.5	5.2	0.3	4.6	ns
	delay	B4 to YA4	1.2	8.0	1.0	6.9	0.8	6.6	0.5	6.4	0.5	6.1	ns
t _{dis}	disable time	OE to YBn	0.5	6.6	0.5	6.6	0.5	6.6	0.5	6.6	0.5	6.6	ns
		OE to YA4	2.0	11.4	1.5	8.1	0.8	8.0	0.2	6.7	0.2	6.8	ns
t _{en}	enable time	OE to YBn	1.0	7.8	1.0	7.8	1.0	7.8	1.0	7.8	1.0	7.8	ns
		OE to YA4	1.5	16.0	1.2	8.3	1.2	8.0	0.8	6.3	0.6	5.8	ns
$V_{CC(A)} = 2$	2.3 V to 2.7 V												
t _{pd}	propagation	An to YBn	1.4	10.9	0.8	7.6	0.5	6.4	0.4	4.9	0.2	4.3	ns
	delay	B4 to YA4	1.0	6.8	0.5	5.6	0.5	5.2	0.4	4.9	0.3	4.5	ns
t _{dis}	disable time	OE to YBn	0.2	4.6	0.2	4.6	0.2	4.6	0.2	4.6	0.2	4.6	ns
		OE to YA4	2.0	10.7	1.5	7.8	0.7	7.3	0.2	5.8	0.2	6.6	ns
t _{en}	enable time	OE to YBn	0.6	5.2	0.6	5.2	0.6	5.2	0.6	5.2	0.6	5.2	ns
		OE to YA4	1.5	15.7	1.0	7.9	1.0	6.9	0.8	5.3	0.6	4.9	ns
$V_{CC(A)} = 3$	3.0 V to 3.6 V												
t _{pd}	propagation	An to YBn	1.4	10.7	0.6	7.5	0.5	6.1	0.3	4.5	0.2	4.1	ns
	delay	B4 to YA4	0.8	6.6	0.5	5.0	0.3	4.6	0.2	4.3	0.2	4.1	ns
t _{dis}	disable time	OE to YBn	0.2	5.2	0.2	5.2	0.2	5.2	0.2	5.2	0.2	5.2	ns
		OE to YA4	2.0	10.4	1.5	7.4	0.7	7.1	0.2	5.6	0.2	6.5	ns
t _{en}	enable time	OE to YBn	0.5	4.6	0.5	4.6	0.5	4.6	0.5	4.6	0.5	4.6	ns
		OE to YA4	1.5	15.5	1.0	7.8	1.0	6.8	0.7	5.1	0.5	4.6	ns

 $[1] \quad t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}; \ t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}; \ t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}.$

11.1. Waveforms and test circuit


Supply voltage	Input [1]	Output [2]	Output [2]					
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y				
0.8 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} - 0.1 V				
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} - 0.15 V				
3.0 V to 3.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} - 0.3 V				

[1] V_{CCI} is the supply voltage associated with the data input port.

[2] V_{CCO} is the supply voltage associated with the output port.

74AVC4T3144

4-bit dual-supply buffer/level translator; 3-state

Table 16. Test data

Supply voltage	Input		Load		V _{EXT}			
$V_{CC(A)}, V_{CC(B)}$	V _I [1]	Δt/ΔV [2]	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]	
0.8 V to 1.6 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
1.65 V to 2.7 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
3.0 V to 3.6 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	

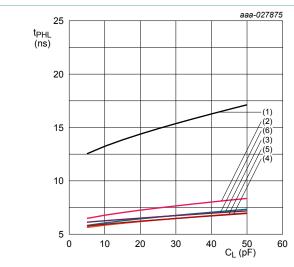
[1] V_{CCI} is the supply voltage associated with the data input port.

[2] dV/dt ≥ 1.0 V/ns

[3] V_{CCO} is the supply voltage associated with the output port.

aaa-027876

·(1)


(2) (3)

/(3) /(4) /(5)

(6)

60

4-bit dual-supply buffer/level translator; 3-state

11.2. Typical propagation delay characteristics

25

20

15

10

5

25

20

15

10

5

0

t_{PLH} (ns) 0

10

20

20

d. LOW to HIGH propagation delay (B4 to YA4)

30

40

50 C_I (pF)

10

b. LOW to HIGH propagation delay (An to YBn)

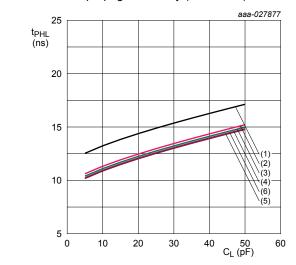
30

40

50 C_L (pF)

aaa-027878

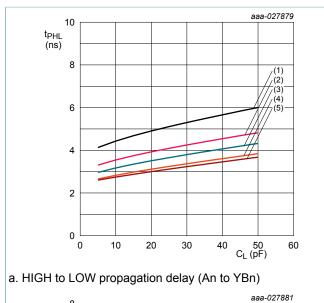
(1) (2) (3) (3)

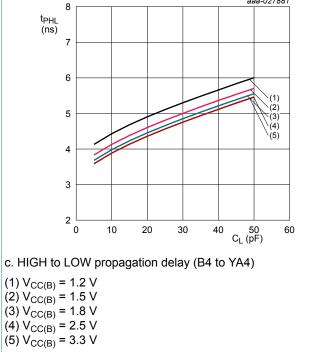

(5)

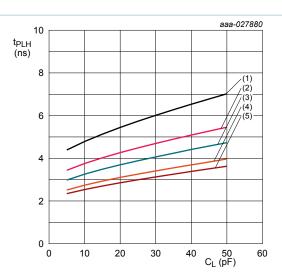
(6

60

t_{PLH} (ns)


c. HIGH to LOW propagation delay (B4 to YA4)


(1) V_{CC(B)} = 0.8 V


(2) $V_{CC(B)} = 1.2 V$

- (3) $V_{CC(B)} = 1.5 V$
- (4) $V_{CC(B)} = 1.8 V$ (5) $V_{CC(B)} = 2.5 V$
- (6) $V_{CC(B)} = 3.3 V$

b. LOW to HIGH propagation delay (An to YBn)

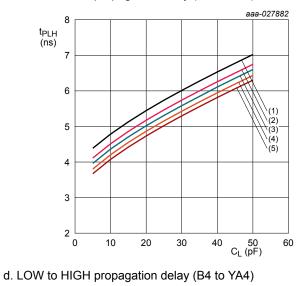
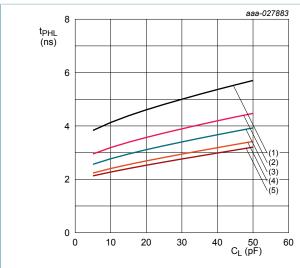
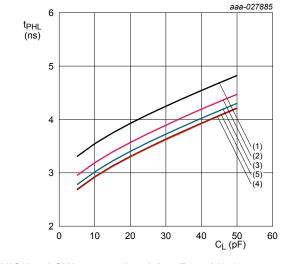
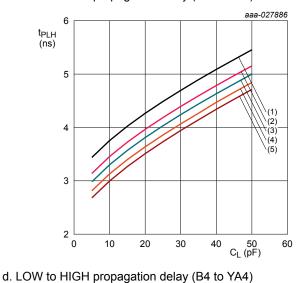
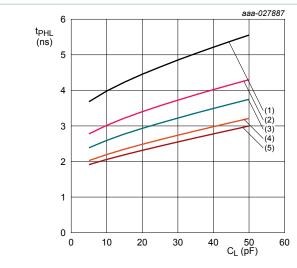
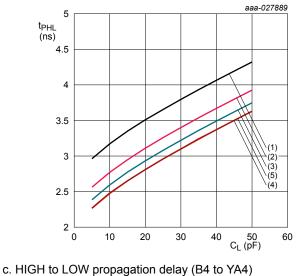




Fig. 7. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; $V_{CC(A)}$ = 1.2 V

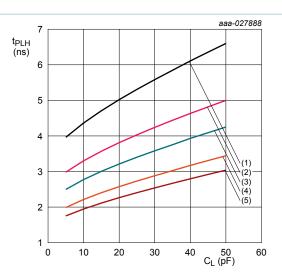
a. HIGH to LOW propagation delay (An to YBn)


c. HIGH to LOW propagation delay (B4 to YA4)

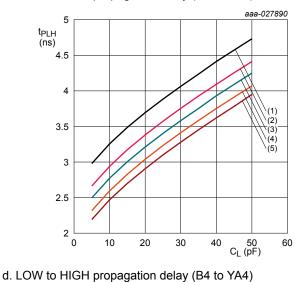

 $\begin{array}{l} (1) \ V_{CC(B)} = 1.2 \ V \\ (2) \ V_{CC(B)} = 1.5 \ V \\ (3) \ V_{CC(B)} = 1.8 \ V \\ (4) \ V_{CC(B)} = 2.5 \ V \\ (5) \ V_{CC(B)} = 3.3 \ V \end{array}$

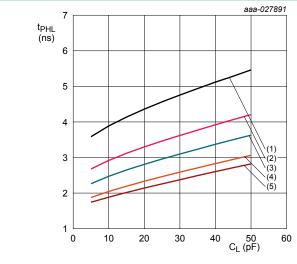

aaa-027884 8 t_{PLH} (ns) 6 4 (2) (3) (4) 2 (5) 0 10 20 30 60 0 40 50 C_L (pF)

b. LOW to HIGH propagation delay (An to YBn)



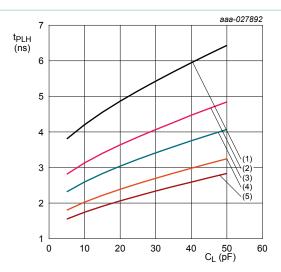
a. HIGH to LOW propagation delay (An to YBn)




- $\begin{array}{l} (1) \ V_{CC(B)} = 1.2 \ V \\ (2) \ V_{CC(B)} = 1.5 \ V \\ (3) \ V_{CC(B)} = 1.8 \ V \\ (4) \ V_{CC(B)} = 2.5 \ V \\ (5) \ V_{CC(B)} = 3.3 \ V \end{array}$

b. LOW to HIGH propagation delay (An to YBn)

a. HIGH to LOW propagation delay (An to YBn)


c. HIGH to LOW propagation delay (B4 to YA4)

 $\begin{array}{l} (1) \ V_{CC(B)} = 1.2 \ V \\ (2) \ V_{CC(B)} = 1.5 \ V \\ (3) \ V_{CC(B)} = 1.8 \ V \\ (4) \ V_{CC(B)} = 2.5 \ V \\ (5) \ V_{CC(B)} = 3.3 \ V \end{array}$


Fig. 10. Typical propagation delay versus load capacitance; T_{amb} = 25 °C; V_{CC(A)} = 2.5 V

74AVC4T3144

17 / 22

b. LOW to HIGH propagation delay (An to YBn)

aaa-027896

(1) (1) (2) (3) (4) (5)

60

50 C_L (pF)

aaa-027898

(1) (2)

(3) (4)

`(5)

60

40

4-bit dual-supply buffer/level translator; 3-state

7 t_{PLH} (ns)

6

5

4

3

2

1

5

4

3

2

1

0

10

20

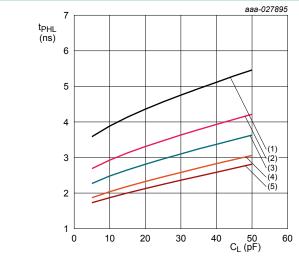
d. LOW to HIGH propagation delay (B4 to YA4)

30

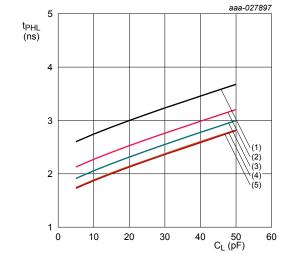
40

50 C_L (pF)

t_{PLH} (ns)


0

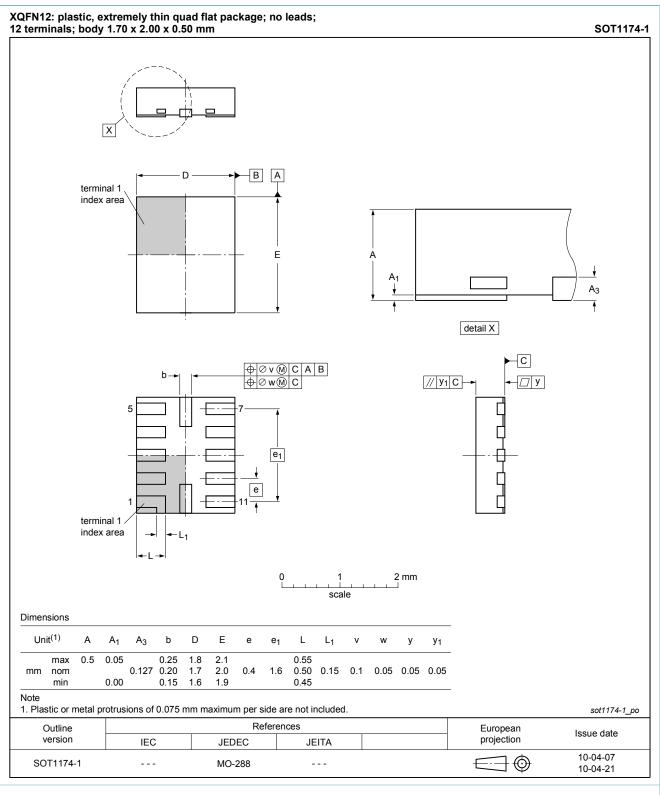
10


20

b. LOW to HIGH propagation delay (An to YBn)

30

a. HIGH to LOW propagation delay (An to YBn)



c. HIGH to LOW propagation delay (B4 to YA4)

 $\begin{array}{l} (1) \ V_{CC(B)} = 1.2 \ V \\ (2) \ V_{CC(B)} = 1.5 \ V \\ (3) \ V_{CC(B)} = 1.8 \ V \\ (4) \ V_{CC(B)} = 2.5 \ V \\ (5) \ V_{CC(B)} = 3.3 \ V \end{array}$

12. Package outline

Fig. 12. Package outline SOT1174-1 (XQFN12)

13. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

14. Revision history

Table 18. Revision history **Document ID Release date** Data sheet status Change notice Supersedes 74AVC4T3144 v.2 20180724 Product data sheet 74AVC4T3144 v.1 _ Modifications: • <u>Table 3</u>: pin number corrected for GND pin. 74AVC4T3144 v.1 20171218 Product data sheet -_

74AVC4T3144

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

4-bit dual-supply buffer/level translator; 3-state

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Marking	2
5. Functional diagram	2
6. Pinning information	3
6.1. Pinning	3
6.2. Pin description	3
7. Functional description	3
8. Limiting values	4
9. Recommended operating conditions	4
10. Static characteristics	5
11. Dynamic characteristics	8
11.1. Waveforms and test circuit	11
11.2. Typical propagation delay characteristics	
12. Package outline	19
13. Abbreviations	
14. Revision history	20
15. Legal information	21

© Nexperia B.V. 2018. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 24 July 2018

74AVC4T3144

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.