life.augmented

TS4962M

3 W filter-free class D audio power amplifier

Datasheet - production data

Features

- Operating from $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}$ to 5.5 V
- Standby mode active low
- Output power: 3 W into 4Ω and 1.75 W into 8 Ω with 10% THD+N max. and 5 V power supply
- Output power: 2.3 W @5 V or 0.75 W @ 3.0 V into 4Ω with 1% THD+N max.
- Output power: 1.4 W @5 V or 0.45 W @ 3.0 V into 8Ω with 1% THD+N max.
- Adjustable gain via external resistors
- Low current consumption 2 mA @ 3 V
- Efficiency: 88\% typ.
- Signal to noise ratio: 85 dB typ.
- PSRR: 63 dB typ. @ 217 Hz with 6 dB gain
- PWM base frequency: 250 kHz
- Low pop and click noise
- Thermal shutdown protection
- Available in Flip Chip $9 \times 300 \mu \mathrm{~m}$ (Pb-free)

Related products

- See TS2007 for further gain settings e.g. 6 or 12 dB
- See TS2012 for stereo settings

Applications

- Portable gaming consoles
- VR headsets
- Smart phones
- Tablets

Description

The TS4962M is a differential Class-D BTL power amplifier. It is able to drive up to 2.3 W into a 4Ω load and 1.4 W into a 8Ω load at 5 V . It achieves outstanding efficiency (88% typ.) compared to classical Class-AB audio amps.

The gain of the device can be controlled via two external gain-setting resistors. Pop and click reduction circuitry provides low on/off switch noise while allowing the device to start within 5 ms . A standby function (active low) allows the reduction of current consumption to 10 nA typ.

Contents

1 Block diagram and pinout 3
2 Application component information 4
3 Absolute maximum ratings 5
4 Electrical characteristics 6
5 Electrical characteristic curves 17
6 Application information 28
6.1 Differential configuration principle 28
6.2 Gain in typical application schematic 28
6.3 Common-mode feedback loop limitations 29
6.4 Low frequency response 29
6.5 Decoupling of the circuit 30
6.6 Wake-up time (t_{wu}) 30
6.7 Shutdown time ($\mathrm{t}_{\text {StBY }}$) 30
6.8 Consumption in shutdown mode 30
6.9 Single-ended input configuration 31
6.10 Output filter considerations 32
6.11 Different examples with summed inputs 33
7 Evaluation board 35
8 Package information 37
8.1 9-bump Flip Chip package information 37
$9 \quad$ Ordering information 39
10 Revision history 40

1

Block diagram and pinout

Figure 1. Block diagram

Figure 2. Pinout (top view)

1. Legend:

IN+ = positive differential input
N - = negative differential input
VDD = analog power supply
GND = power supply ground
STBY = standby pin (active low)
OUT $+=$ positive differential output
OUT- = negative differential output
2. Bumps are underneath, bump diameter $=300 \mu \mathrm{~m}$

2 Application component information

Table 1. Component information

Component	Functional description
C_{s}	Bypass supply capacitor. Install as close as possible to the TS4962M to minimize high-frequency ripple. A 100 nF ceramic capacitor should be added to enhance the power supply filtering at high frequency.
$\mathrm{R}_{\text {in }}$	Input resistor to program the TS4962M differential gain (gain $=300 \mathrm{k} \Omega / \mathrm{R}_{\text {in }}$ with $\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$).
Input capacitor	Due to common-mode feedback, these input capacitors are optional. However, they can be added to form with $\mathrm{R}_{\text {in }}$ a 1 st -3 dB cut-off frequency $=1 /\left(2^{*} \pi^{*} \mathrm{R}_{\text {in }}{ }^{*} \mathrm{C}_{\text {in }}\right)$.

Figure 3. Typical application schematics

3 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)(2)}$	6	V
$\mathrm{V}_{\text {in }}$	Input voltage ${ }^{(3)}$	GND to V_{CC}	
$\mathrm{T}_{\text {oper }}$	Operating free-air temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	
T_{j}	Maximum junction temperature	150	
$\mathrm{R}_{\text {thja }}$	Thermal resistance junction to ambient ${ }^{(4)}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{P}_{\text {diss }}$	Power dissipation	Internally limited ${ }^{(5)}$	
ESD	Human body model	2	kV
ESD	Machine model	200	V
Latch-up	Latch-up immunity	200	mA
$\mathrm{V}_{\text {STBY }}$	Standby pin voltage maximum voltage ${ }^{(6)}$	GND to V_{CC}	V
	Lead temperature (soldering, 10 s)	260	${ }^{\circ} \mathrm{C}$

1. Caution: this device is not protected in the event of abnormal operating conditions, such as for example, short-circuiting between any one output pin and ground, between any one output pin and V_{CC}, and between individual output pins.
2. All voltage values are measured with respect to the ground pin.
3. The magnitude of the input signal must never exceed $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} / \mathrm{GND}-0.3 \mathrm{~V}$.
4. The device is protected in case of over temperature by a thermal shutdown active @ $150{ }^{\circ} \mathrm{C}$.
5. Exceeding the power derating curves during a long period causes abnormal operation.
6. The magnitude of the standby signal must never exceed $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} / \mathrm{GND}-0.3 \mathrm{~V}$.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$	2.4 to 5.5	
$\mathrm{~V}_{\text {IC }}$	Common-mode input voltage range ${ }^{(2)}$	0.5 to $\mathrm{V}_{\mathrm{CC}}-0.8$	V
$\mathrm{~V}_{\mathrm{STBY}}$	Standby voltage input: ${ }^{(3)}$ Device ON Device OFF	$1.4 \leq \mathrm{V}_{\mathrm{STBY}} \leq \mathrm{V}_{\mathrm{CC}}$ $\mathrm{GND} \leq \mathrm{V}_{\mathrm{STBY}} \leq 0.4$	
R_{L}	Load resistor	≥ 4	Ω
$\mathrm{R}_{\text {thja }}$	Thermal resistance junction to ambient ${ }^{(5)}$	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. For V_{CC} from 2.4 V to 2.5 V , the operating temperature range is reduced to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 70^{\circ} \mathrm{C}$.
2. For V_{CC} from 2.4 V to 2.5 V , the common-mode input range must be set at $\mathrm{V}_{\mathrm{CC}} / 2$.
3. Without any signal on $\mathrm{V}_{\text {STBY }}$, the device is in standby.
4. Minimum current consumption is obtained when $\mathrm{V}_{\mathrm{STBY}}=\mathrm{GND}$.
5. With heat sink surface $=125 \mathrm{~mm}^{2}$.

4 Electrical characteristics

Table 4. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{CC}	Supply current	No input signal, no load		2.3	3.3	mA
$\mathrm{I}_{\text {StBy }}$	Standby current ${ }^{(1)}$	No input signal, $\mathrm{V}_{\text {STBY }}=\mathrm{GND}$		10	1000	nA
V_{OO}	Output offset voltage	No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3	25	mV
$P_{\text {out }}$	Output power	$\begin{aligned} & \mathrm{G}=6 \mathrm{~dB} \\ & \text { THD }=1 \% \max ., \mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=10 \% \max ., \mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=1 \% \max ., \mathrm{F}=1 \mathrm{kHz}, R_{\mathrm{L}}=8 \Omega \\ & \text { THD }=10 \% \max ., \mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{gathered} 2.3 \\ 3 \\ 1.4 \\ 1.75 \end{gathered}$		W
THD + N	Total harmonic distortion + noise	$\begin{aligned} & \mathrm{P}_{\text {out }}=900 \mathrm{~mW}_{\mathrm{RMS}}, \\ & \mathrm{G}=6 \mathrm{~dB}, 20 \mathrm{~Hz}<\mathrm{F}<20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \\ & \mathrm{P}_{\text {out }}=1 \mathrm{~W} \mathrm{WMS}_{\mathrm{R}}, \mathrm{G}=6 \mathrm{~dB}, \mathrm{~F}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 1 \\ 0.4 \end{gathered}$		\%
Efficiency	Efficiency	$\begin{aligned} & \mathrm{P}_{\text {out }}=2 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=4 \Omega+\geq 15 \mu \mathrm{H} \\ & \mathrm{P}_{\text {out }}=1.2 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+\geq 15 \mu \mathrm{H} \end{aligned}$		$\begin{aligned} & 78 \\ & 88 \end{aligned}$		\%
PSRR	Power supply rejection ratio with inputs grounded ${ }^{(2)}$	$\begin{aligned} & \mathrm{F}=21 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \mathrm{~V}_{\text {ripple }}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		63		dB
CMRR	Common-mode rejection ratio	$\begin{aligned} & \mathrm{F}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \Delta \mathrm{~V}_{\mathrm{icm}}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		57		dB
Gain	Gain value	$\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$	$\frac{273 k \Omega}{R_{i n}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
$\mathrm{R}_{\text {StBY }}$	Internal resistance from Standby to GND		273	300	327	k Ω
$\mathrm{F}_{\text {PWM }}$	Pulse width modulator base frequency		180	250	320	kHz
SNR	Signal to noise ratio	A-weighting, $\mathrm{P}_{\text {out }}=1.2 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		85		dB
$t_{\text {wu }}$	Wake-up time			5	10	ms
$\mathrm{t}_{\text {STBY }}$	Standby time			5	10	ms

Table 4. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{N}	Output voltage noise	$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB} \\ & \text { Unweighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { A-weighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$		$\begin{aligned} & 85 \\ & 60 \end{aligned}$		$\mu \mathrm{V}_{\text {RMS }}$
		Unweighted $R_{L}=8 \Omega$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega$		$\begin{aligned} & 86 \\ & 62 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $R_{L}=4 \Omega+15 \mu \mathrm{H}$		$\begin{aligned} & 83 \\ & 60 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$ A-weighted $R_{L}=4 \Omega+30 \mu \mathrm{H}$		$\begin{aligned} & 88 \\ & 64 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$		$\begin{aligned} & 78 \\ & 57 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ filter A-weighted $R_{L}=4 \Omega+$ filter		$\begin{aligned} & 87 \\ & 65 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ filter A-weighted $R_{L}=4 \Omega+$ filter		$\begin{aligned} & 82 \\ & 59 \end{aligned}$		

1. Standby mode is active when $\mathrm{V}_{\text {STBY }}$ is tied to GND.
2. Dynamic measurements $-20^{*} \log \left(\mathrm{rms}\left(\mathrm{V}_{\text {out }}\right) / \mathrm{rms}\left(\mathrm{V}_{\text {ripple }}\right)\right)$. $\mathrm{V}_{\text {ripple }}$ is the superimposed sinusoidal signal to $\mathrm{V}_{\mathrm{CC}} @$ $\mathrm{F}=217 \mathrm{~Hz}$.

Table 5. $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{CC}	Supply current	No input signal, no load		2.1	3	mA
$I_{\text {StBy }}$	Standby current (2)	No input signal, $\mathrm{V}_{\text {STBY }}=\mathrm{GND}$		10	1000	nA
V_{OO}	Output offset voltage	No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3	25	mV
$\mathrm{P}_{\text {out }}$	Output power	$\begin{aligned} & \mathrm{G}=6 \mathrm{~dB} \\ & \mathrm{THD}=1 \% \max , \mathrm{~F}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{THD}=10 \% \max , \mathrm{~F}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{THD}=1 \% \max , \mathrm{~F}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{THD}=10 \% \max , F=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{gathered} 1.6 \\ 2 \\ 0.95 \\ 1.2 \end{gathered}$		W
THD + N	Total harmonic distortion + noise	$\begin{aligned} & \mathrm{P}_{\text {out }}=600 \mathrm{~mW} \mathrm{R}_{\mathrm{RMS}}, \mathrm{G}=6 \mathrm{~dB}, \\ & 20 \mathrm{~Hz}<\mathrm{F}<20 \mathrm{k} \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \\ & \mathrm{P}_{\text {out }}=700 \mathrm{~mW} \mathrm{RMS}^{2}, \mathrm{G}=6 \mathrm{~dB}, \\ & \mathrm{~F}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 1 \\ 0.35 \end{gathered}$		\%
Efficiency	Efficiency	$\begin{aligned} & P_{\text {out }}=1.45 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=4 \Omega+ \\ & \geq 15 \mu \mathrm{H} \\ & \mathrm{P}_{\text {out }}=0.9 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+ \\ & \geq 15 \mu \mathrm{H} \end{aligned}$		$\begin{aligned} & 78 \\ & 88 \end{aligned}$		\%
PSRR	Power supply rejection ratio with inputs grounded ${ }^{(3)}$	$\begin{aligned} & \mathrm{F}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \mathrm{~V}_{\text {ripple }}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		63		dB
CMRR	Common-mode rejection ratio	$\begin{aligned} & \mathrm{F}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \Delta \mathrm{~V}_{\mathrm{icm}}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		57		dB
Gain	Gain value	$\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$	$\frac{273 \mathrm{k} \Omega}{R_{i n}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
$\mathrm{R}_{\text {STBY }}$	Internal resistance from Standby to GND		273	300	327	k Ω
$\mathrm{F}_{\text {PWM }}$	Pulse width modulator base frequency		180	250	320	kHz
SNR	Signal to noise ratio	$\begin{aligned} & \text { A-weighting, } \mathrm{P}_{\text {out }}=0.9 \mathrm{~W}, \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		85		dB
twu	Wake-uptime			5	10	ms
$\mathrm{t}_{\text {StBy }}$	Standby time			5	10	ms

Table 5. $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{N}	Output voltage noise	$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB} \\ & \text { Unweighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { A-weighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$		$\begin{aligned} & 85 \\ & 60 \end{aligned}$		$\mu \mathrm{V}_{\text {RMS }}$
		Unweighted $\mathrm{R}_{\mathrm{L}}=8 \Omega$ A-weighted $R_{L}=8 \Omega$		$\begin{aligned} & 86 \\ & 62 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$		$\begin{aligned} & 83 \\ & 60 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$		$\begin{aligned} & 88 \\ & 64 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$		$\begin{aligned} & 78 \\ & 57 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ filter A-weighted $R_{L}=4 \Omega+$ filter		$\begin{aligned} & 87 \\ & 65 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ filter A-weighted $R_{L}=4 \Omega+$ filter		$\begin{aligned} & 82 \\ & 59 \end{aligned}$		

1. All electrical values are guaranteed with correlation measurements at 2.5 V and 5 V .
2. Standby mode is active when $\mathrm{V}_{\text {STBY }}$ is tied to GND.
3. Dynamic measurements $-20^{*} \log \left(r m s\left(\mathrm{~V}_{\text {out }}\right) / r m s\left(\mathrm{~V}_{\text {ripple }}\right)\right)$. $\mathrm{V}_{\text {ripple }}$ is the superimposed sinusoidal signal to $\mathrm{V}_{\mathrm{CC}} @$ $F=217 \mathrm{~Hz}$.

Table 6. $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{CC}	Supply current	No input signal, no load		2	2.8	mA
IStBy	Standby current ${ }^{(2)}$	No input signal, $\mathrm{V}_{\text {STBY }}=\mathrm{GND}$		10	1000	nA
V_{OO}	Output offset voltage	No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3	25	mV
$\mathrm{P}_{\text {out }}$	Output power	$\begin{aligned} & \mathrm{G}=6 \mathrm{~dB} \\ & \text { THD }=1 \% \max ., \mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=10 \% \max ., \mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=1 \% \max ., \mathrm{F}=1 \mathrm{kHz}, R_{\mathrm{L}}=8 \Omega \\ & \text { THD }=10 \% \text { max., } \mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{gathered} 1.15 \\ 1.51 \\ 0.7 \\ 0.9 \end{gathered}$		W
THD + N	Total harmonic distortion + noise	$\begin{aligned} & \hline \mathrm{P}_{\text {out }}=500 \mathrm{~mW}_{\mathrm{RMS}}, \\ & \mathrm{G}=6 \mathrm{~dB}, 20 \mathrm{~Hz}<\mathrm{F}<20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \\ & \mathrm{P}_{\text {out }}=500 \mathrm{~mW} \mathrm{RMS}, \mathrm{G}=6 \mathrm{~dB}, \mathrm{~F}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 1 \\ 0.27 \end{gathered}$		\%
Efficiency	Efficiency	$\begin{aligned} & \mathrm{P}_{\text {out }}=1 \mathrm{~W}_{\text {RMS }}, \mathrm{R}_{\mathrm{L}}=4 \Omega+\geq 15 \mu \mathrm{H} \\ & \mathrm{P}_{\text {out }}=0.65 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+\geq 15 \mu \mathrm{H} \end{aligned}$		$\begin{aligned} & 78 \\ & 88 \end{aligned}$		\%
PSRR	Power supply rejection ratio with inputs grounded ${ }^{(3)}$	$\begin{aligned} & \mathrm{F}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \mathrm{~V}_{\text {ripple }}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		62		dB
CMRR	Common-mode rejection ratio	$\begin{aligned} & \mathrm{F}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \Delta \mathrm{~V}_{\mathrm{icm}}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		56		dB
Gain	Gain value	$\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$	$\frac{273 k \Omega}{R_{i n}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
$\mathrm{R}_{\text {STBY }}$	Internal resistance from Standby to GND		273	300	327	k Ω
$\mathrm{F}_{\text {PWM }}$	Pulse width modulator base frequency		180	250	320	kHz
SNR	Signal to noise ratio	A-weighting, $\mathrm{P}_{\text {out }}=0.6 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		83		dB
$\mathrm{t}_{\text {wu }}$	Wake-uptime			5	10	ms
$\mathrm{t}_{\text {StBy }}$	Standby time			5	10	ms

Table 6. $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{N}	Output voltage noise	$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB} \\ & \text { Unweighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { A-weighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \hline \end{aligned}$		$\begin{aligned} & 83 \\ & 57 \end{aligned}$		$\mu \mathrm{V}_{\text {RMS }}$
		Unweighted $R_{L}=8 \Omega$ A-weighted $R_{L}=8 \Omega$		$\begin{aligned} & 83 \\ & 61 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$		$\begin{aligned} & 81 \\ & 58 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$		87		
		$\begin{aligned} & \text { Unweighted } \mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H} \\ & \text { A-weighted } \mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H} \end{aligned}$		$\begin{aligned} & 77 \\ & 56 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ filter A-weighted $R_{L}=4 \Omega+$ filter		$\begin{aligned} & 85 \\ & 63 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ filter A-weighted $R_{L}=4 \Omega+$ filter		$\begin{aligned} & 80 \\ & 57 \end{aligned}$		

1. All electrical values are guaranteed with correlation measurements at 2.5 V and 5 V .
2. Standby mode is active when $V_{\text {STBY }}$ is tied to GND.
3. Dynamic measurements $-20^{*} \log \left(r m s\left(\mathrm{~V}_{\text {out }}\right) / \mathrm{rms}\left(\mathrm{V}_{\text {ripple }}\right)\right)$. $\mathrm{V}_{\text {ripple }}$ is the superimposed sinusoidal signal to $\mathrm{V}_{\mathrm{CC}} @ \mathrm{~F}=217 \mathrm{~Hz}$.

Table 7. $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{CC}	Supply current	No input signal, no load		1.9	2.7	mA
IStBy	Standby current ${ }^{(2)}$	No input signal, $\mathrm{V}_{\text {STBY }}=\mathrm{GND}$		10	1000	nA
V_{OO}	Output offset voltage	No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3	25	mV
$\mathrm{P}_{\text {out }}$	Output power	$\mathrm{G}=6 \mathrm{~dB}$ $\begin{aligned} & \text { THD }=1 \% \text { max., } \mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=10 \% \text { max., } \mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \mathrm{THD}=1 \% \text { max., } \mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \text { THD }=10 \% \text { max., } \mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{gathered} 0.75 \\ 1 \\ 0.5 \\ 0.6 \end{gathered}$		W
THD + N	Total harmonic distortion + noise	$\begin{aligned} & \mathrm{P}_{\text {out }}=350 \mathrm{~mW}_{\mathrm{RMS}}, \mathrm{G}=6 \mathrm{~dB}, \\ & 20 \mathrm{~Hz}<\mathrm{F}<20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \\ & \mathrm{P}_{\text {out }}=350 \mathrm{~mW} \mathrm{RMS}, \mathrm{G}=6 \mathrm{~dB}, \mathrm{~F}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 1 \\ 0.21 \end{gathered}$		\%
Efficiency	Efficiency	$\begin{aligned} & \mathrm{P}_{\text {out }}=0.7 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=4 \Omega+\geq 15 \mu \mathrm{H} \\ & \mathrm{P}_{\text {out }}=0.45 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+\geq 15 \mu \mathrm{H} \end{aligned}$		$\begin{aligned} & 78 \\ & 88 \end{aligned}$		\%
PSRR	Power supply rejection ratio with inputs grounded ${ }^{(3)}$	$\begin{aligned} & \mathrm{F}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \mathrm{~V}_{\text {ripple }}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		60		dB
CMRR	Common-mode rejection ratio	$\begin{aligned} & \mathrm{F}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \Delta \mathrm{~V}_{\mathrm{icm}}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		54		dB
Gain	Gain value	$\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$	$\frac{273 \mathrm{k} \Omega}{R_{i n}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
$\mathrm{R}_{\text {STBY }}$	Internal resistance from Standby to GND		273	300	327	k Ω
$\mathrm{F}_{\text {PWM }}$	Pulse width modulator base frequency		180	250	320	kHz
SNR	Signal to noise ratio	A-weighting, $\mathrm{P}_{\text {out }}=0.4 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		82		dB
$t_{\text {wu }}$	Wake-up time			5	10	ms
$\mathrm{t}_{\text {STBY }}$	Standby time			5	10	ms

Table 7. $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{N}	Output Voltage Noise	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB} \\ & \text { Unweighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { A-weighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \hline \end{aligned}$		$\begin{aligned} & 83 \\ & 57 \end{aligned}$		$\mu \mathrm{V}_{\text {RMS }}$
		Unweighted $R_{L}=8 \Omega$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega$		$\begin{aligned} & 83 \\ & 61 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $R_{L}=4 \Omega+15 \mu \mathrm{H}$		$\begin{aligned} & 81 \\ & 58 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$		$\begin{aligned} & 87 \\ & 62 \end{aligned}$		
		Unweighted $R_{L}=8 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$		$\begin{aligned} & 77 \\ & 56 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ filter A-weighted $R_{L}=4 \Omega+$ filter		$\begin{aligned} & 85 \\ & 63 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ filter A-weighted $R_{L}=4 \Omega+$ filter		$\begin{aligned} & 80 \\ & 57 \end{aligned}$		

1. All electrical values are guaranteed with correlation measurements at 2.5 V and 5 V .
2. Standby mode is active when $V_{\text {STBY }}$ is tied to GND.
3. Dynamic measurements $-20^{*} \log \left(r m s\left(\mathrm{~V}_{\text {out }}\right) / \mathrm{rms}\left(\mathrm{V}_{\text {ripple }}\right)\right)$. $\mathrm{V}_{\text {ripple }}$ is the superimposed sinusoidal signal to $\mathrm{V}_{\mathrm{CC}} @ \mathrm{~F}=217 \mathrm{~Hz}$.

Table 8. $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{CC}	Supply current	No input signal, no load		1.7	2.4	mA
IStBy	Standby current ${ }^{(1)}$	No input signal, $\mathrm{V}_{\text {STBY }}=\mathrm{GND}$		10	1000	nA
V_{OO}	Output offset voltage	No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3	25	mV
$\mathrm{P}_{\text {out }}$	Output power	$\mathrm{G}=6 \mathrm{~dB}$ THD $=1 \%$ max., $F=1 \mathrm{kHz}, R_{L}=4 \Omega$ THD $=10 \%$ max., $F=1 \mathrm{kHz}, R_{\mathrm{L}}=4 \Omega$ THD $=1 \%$ max., $F=1 \mathrm{kHz}, R_{\mathrm{L}}=8 \Omega$ THD $=10 \%$ max., $F=1 \mathrm{kHz}, R_{\mathrm{L}}=8 \Omega$		$\begin{aligned} & 0.52 \\ & 0.71 \\ & 0.33 \\ & 0.42 \end{aligned}$		W
THD + N	Total harmonic distortion + noise	$\begin{aligned} & \mathrm{P}_{\text {out }}=200 \mathrm{~mW} \mathrm{mMS}, \mathrm{G}=6 \mathrm{~dB}, 20 \mathrm{~Hz}<\mathrm{F}< \\ & 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \\ & \mathrm{P}_{\text {out }}=200 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{G}=6 \mathrm{~dB}, \mathrm{~F}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 1 \\ 0.19 \end{gathered}$		\%
Efficiency	Efficiency	$\begin{aligned} & \mathrm{P}_{\text {out }}=0.47 \mathrm{~W}_{\text {RMS }}, \mathrm{R}_{\mathrm{L}}=4 \Omega+\geq 15 \mu \mathrm{H} \\ & \mathrm{P}_{\text {out }}=0.3 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+\geq 15 \mu \mathrm{H} \end{aligned}$		$\begin{aligned} & 78 \\ & 88 \end{aligned}$		\%
PSRR	Power supply rejection ratio with inputs grounded ${ }^{(2)}$	$\begin{aligned} & \mathrm{F}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \mathrm{~V}_{\text {ripple }}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		60		dB
CMRR	Common-mode rejection ratio	$\begin{aligned} & \mathrm{F}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \Delta \mathrm{~V}_{\mathrm{icm}}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		54		dB
Gain	Gain value	$\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$	$\frac{273 k \Omega}{R_{i n}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
$\mathrm{R}_{\text {STBY }}$	Internal resistance from Standby to GND		273	300	327	k Ω
$\mathrm{F}_{\text {PWM }}$	Pulse width modulator base frequency		180	250	320	kHz
SNR	Signal to noise ratio	A-weighting, $\mathrm{P}_{\text {out }}=1.2 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		80		dB
$t_{\text {wu }}$	Wake-up time			5	10	ms
$\mathrm{t}_{\text {STBY }}$	Standby time			5	10	ms

Table 8. $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{N}	Output voltage noise	$\begin{aligned} & \hline \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB} \\ & \text { Unweighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { A-weighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \hline \end{aligned}$		$\begin{aligned} & 85 \\ & 60 \end{aligned}$		$\mu \mathrm{V}_{\text {RMS }}$
		Unweighted $\mathrm{R}_{\mathrm{L}}=8 \Omega$ A-weighted $R_{L}=8 \Omega$		$\begin{aligned} & 86 \\ & 62 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$		$\begin{aligned} & \hline 76 \\ & 56 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$		$\begin{aligned} & 82 \\ & 60 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$		$\begin{aligned} & \hline 67 \\ & 53 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ filter A-weighted $R_{L}=4 \Omega+$ filter		$\begin{aligned} & 78 \\ & 57 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ filter A-weighted $R_{L}=4 \Omega+$ filter		$\begin{aligned} & \hline 74 \\ & 54 \end{aligned}$		

1. Standby mode is active when $\mathrm{V}_{\text {STBY }}$ is tied to GND.
2. Dynamic measurements $-20^{*} \log \left(\mathrm{rms}\left(\mathrm{V}_{\text {out }}\right) / \mathrm{rms}\left(\mathrm{V}_{\text {ripple }}\right)\right)$. $\mathrm{V}_{\text {ripple }}$ is the superimposed sinusoidal signal to $\mathrm{V}_{\mathrm{CC}} @ \mathrm{~F}=217 \mathrm{~Hz}$.

Table 9. $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{CC}	Supply current	No input signal, no load		1.7		mA
$\mathrm{I}_{\text {StBy }}$	Standby current ${ }^{(1)}$	No input signal, $\mathrm{V}_{\text {STBY }}=\mathrm{GND}$		10		nA
V_{OO}	Output offset voltage	No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3		mV
$\mathrm{P}_{\text {out }}$	Output power	G=6dB THD $=1 \%$ max., $F=1 \mathrm{kHz}, R_{L}=4 \Omega$ THD $=10 \%$ max., $F=1 \mathrm{kHz}, R_{L}=4 \Omega$ THD $=1 \%$ max., $F=1 \mathrm{kHz}, R_{L}=8 \Omega$ THD $=10 \%$ max., $F=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		$\begin{gathered} 0.48 \\ 0.65 \\ 0.3 \\ 0.38 \end{gathered}$		W
THD + N	Total harmonic distortion + noise	$\begin{aligned} & \mathrm{P}_{\text {out }}=200 \mathrm{~mW} \\ & 20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB}, 20 \mathrm{~Hz}<\mathrm{F}< \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \end{aligned}$		1		\%
Efficiency	Efficiency	$\begin{aligned} & \mathrm{P}_{\text {out }}=0.38 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=4 \Omega+\geq 15 \mu \mathrm{H} \\ & \mathrm{P}_{\text {out }}=0.25 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+\geq 15 \mu \mathrm{H} \end{aligned}$		$\begin{aligned} & 77 \\ & 86 \end{aligned}$		\%
CMRR	Common-mode rejection ratio	$\begin{aligned} & \mathrm{F}=217 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{G}=6 \mathrm{~dB}, \\ & \Delta \mathrm{~V}_{\mathrm{icm}}=200 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$		54		dB
Gain	Gain value	$\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$	$\frac{273 k \Omega}{R_{i n}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
$\mathrm{R}_{\text {STBY }}$	Internal resistance from Standby to GND		273	300	327	k Ω
$\mathrm{F}_{\text {PWM }}$	Pulse width modulator base frequency			250		kHz
SNR	Signal to noise ratio	A Weighting, $\mathrm{P}_{\text {out }}=1.2 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		80		dB
$t_{\text {wu }}$	Wake-up time			5		ms
$\mathrm{t}_{\text {StBy }}$	Standby time			5		ms
V_{N}	Output voltage noise	$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB} \\ & \text { Unweighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { A-weighted } \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$		$\begin{aligned} & 85 \\ & 60 \end{aligned}$		$\mu \mathrm{V}_{\text {RMS }}$
		Unweighted $R_{L}=8 \Omega$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega$		$\begin{aligned} & 86 \\ & 62 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$		$\begin{aligned} & 76 \\ & 56 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$		$\begin{aligned} & 82 \\ & 60 \end{aligned}$		
		Unweighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$		$\begin{aligned} & 67 \\ & 53 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ Filter A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+$ Filter		$\begin{aligned} & 78 \\ & 57 \end{aligned}$		
		Unweighted $R_{L}=4 \Omega+$ Filter A-weighted $R_{L}=4 \Omega+$ Filter		$\begin{aligned} & 74 \\ & 54 \end{aligned}$		

[^0]
5 Electrical characteristic curves

The graphs included in this section use the following abbreviations:

- $R_{L}+15 \mu \mathrm{H}$ or $30 \mu \mathrm{H}=$ pure resistor + very low series resistance inductor
- \quad Filter $=L C$ output filter $(1 \mu \mathrm{~F}+30 \mu \mathrm{H}$ for 4Ω and $0.5 \mu \mathrm{~F}+60 \mu \mathrm{H}$ for $8 \Omega)$
- All measurements made with $\mathrm{C}_{\mathrm{s} 1}=1 \mu \mathrm{~F}$ and $\mathrm{C}_{\mathrm{s} 2}=100 \mathrm{nF}$ except for PSRR where Cs 1 is removed.

Figure 4. Test diagram for measurements

Figure 5. Test diagram for PSRR measurements

Figure 6. Current consumption vs. power supply voltage

Figure 8. Current consumption vs. standby voltage at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$

Figure 7. Current consumption vs. standby voltage at $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$

Figure 9. Output offset voltage vs. common-mode input voltage

Figure 10. Efficiency vs. output power at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=4 \Omega$

Figure 11. Efficiency vs. output power at

$$
\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} \text { and } \mathrm{R}_{\mathrm{L}}=4 \Omega
$$

Figure 12. Efficiency vs. output power at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=8 \Omega$

Figure 13. Efficiency vs. output power at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=8 \Omega$

Figure 14. Output power vs. power supply voltage at $R_{L}=4 \Omega$

Figure 15. Output power vs. power supply voltage at $R_{L}=8 \Omega$

Figure 16. PSRR vs. frequency at

$$
R_{L}=4 \Omega+15 \mu H
$$

Figure 17. PSRR vs. frequency at

$$
R_{L}=4 \Omega+30 \mu \mathrm{H}
$$

Figure 18. PSRR vs. frequency at

$$
R_{L}=4 \Omega+\text { filter }
$$

Figure 19. PSR R vs. frequency at

$$
R_{L}=8 \Omega+15 \mu H
$$

Figure 20. PSRR vs. frequency at $R_{L}=8 \Omega+30 \mu \mathrm{H}$

Figure 21. PSRR vs. frequency at $R_{L}=8 \Omega+$ filter

Figure 22. PSRR vs. common-mode input voltage

Figure 23. CMRR vs. frequency at $R_{L}=4 \Omega+15 \mu \mathrm{H}$

Figure 24. CMRR vs. frequency at $R_{L}=4 \Omega+30 \mu H$

Figure 25. CMRR vs. frequency at $R_{L}=4 \Omega+$ filter

Figure 26. CMRR vs. frequency at $R_{L}=8 \Omega+15 \mu \mathrm{H}$

Figure 27. CMRR vs. frequency at $R_{L}=8 \Omega+30 \mu \mathrm{H}$

Figure 28. CMRR vs. frequency at $R_{L}=8 \Omega+$ filter

Figure 29. CMRR vs. common-mode input voltage

Figure 30. THD+N vs. output power at $R_{L}=4 \Omega+15 \mu H, F=100 \mathrm{~Hz}$

Figure 32. THD+N vs. output power at $R_{L}=\mathbf{8} \Omega+15 \mu \mathrm{H}, \mathrm{F}=100 \mathrm{~Hz}$

Figure 31. THD+N vs. output power at $R_{L}=4 \Omega+30 \mu \mathrm{H}$ or filter, $F=100 \mathrm{~Hz}$

Figure 33. THD+N vs. output power at $R_{L}=8 \Omega+30 \mu \mathrm{H}$ or filter, $\mathrm{F}=\mathbf{1 0 0} \mathbf{~ H z}$

Figure 34. THD $+N$ vs. output power at $R_{L}=4 \Omega+15 \mu \mathrm{H}, \mathrm{F}=1 \mathrm{kHz}$

Figure 35. THD+N vs. output power at $R_{L}=4 \Omega+30 \mu \mathrm{H}$ or filter, $\mathrm{F}=\mathbf{1} \mathrm{kHz}$

Figure 36. THD+N vs. output power at

$$
R_{L}=8 \Omega+15 \mu \mathrm{H}, \mathrm{~F}=1 \mathrm{kHz}
$$

Figure 37. THD+N vs. output power at $R_{L}=8 \Omega+30 \mu \mathrm{H}$ or filter, $\mathrm{F}=1 \mathrm{kHz}$

Figure 38. THD $+N$ vs. frequency at $R_{L}=4 \Omega+15 \mu \mathrm{H}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Figure 39. THD+N vs. frequency at $R_{L}=4 \Omega+30 \mu \mathrm{H}$ or filter, $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$

Figure 40. THD +N vs. frequency at $R_{L}=4 \Omega+15 \mu \mathrm{H}, \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$

Figure 41. THD $+N$ vs. frequency at $R_{L}=4 \Omega+30 \mathrm{H}$ or filter, $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$

Figure 45. THD+N vs. frequency at $R_{L}=8 \mathbf{\Omega}+\mathbf{3 0} \mu \mathrm{H}$ or filter, $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$

Figure 46. THD +N vs. frequency at $R_{L}=8 \Omega+15 \mu \mathrm{H}, \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$

Figure 47. THD $+N$ vs. frequency at $R_{L}=8 \Omega+30 \mu \mathrm{H}$ or filter, $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$

Figure 50. Gain vs. frequency at $R_{L}=4 \Omega+15 \mu \mathrm{H}$

Figure 52. Gain vs. frequency at $R_{L}=4 \Omega+$ filter

Figure 51. Gain vs. frequency at $R_{L}=\mathbf{4} \Omega+\mathbf{3 0} \mu \mathrm{H}$

Figure 53. Gain vs. frequency at

$$
R_{L}=8 \Omega+15 \mu \mathrm{H}
$$

Figure 54. Gain vs. frequency at

$$
R_{L}=8 \Omega+30 \mu H
$$

Figure 55. Gain vs. frequency at

$$
R_{L}=8 \Omega+\text { filter }
$$

Figure 56. Gain vs. frequency at $R_{L}=$ no load

Figure 57. Startup and shutdown time $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{G}=6 \mathrm{~dB}, \mathrm{C}_{\mathrm{in}}=1 \mu \mathrm{~F}(5 \mathrm{~ms} / \mathrm{div})$

Figure 58. Startup and shutdown time $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \quad$ Figure 59. Startup and shutdown time $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{G}=6 \mathrm{~dB}, \mathrm{C}_{\mathrm{in}}=1 \mu \mathrm{~F}(5 \mathrm{~ms} / \mathrm{div})$ $\mathrm{G}=6 \mathrm{~dB}, \mathrm{C}_{\text {in }}=100 \mathrm{nF}(5 \mathrm{~ms} / \mathrm{div})$

Figure 60. Startup and shutdown time $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, Figure 61. Startup and shutdown time $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,
$\mathrm{G}=\mathbf{6 d B}, \mathrm{C}_{\mathrm{in}}=100 \mathrm{nF}(\mathbf{5} \mathrm{ms} / \mathrm{div})$

$G=6 \mathrm{~dB}$, No $\mathrm{C}_{\text {in }}(5 \mathrm{~ms} / \mathrm{div})$

Figure 62. Startup and shutdown time $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{G}=6 \mathrm{~dB}$, no $\mathrm{C}_{\text {in }}$ ($5 \mathrm{~ms} / \mathrm{div}$)

6 Application information

6.1 Differential configuration principle

The TS4962M is a monolithic fully-differential input/output class D power amplifier. The TS4962M also includes a common-mode feedback loop that controls the output bias value to average it at $\mathrm{V}_{\mathrm{CC}} / 2$ for any DC common-mode input voltage. This allows the device to always have a maximum output voltage swing, and by consequence, maximizes the output power. Moreover, as the load is connected differentially compared to a single-ended topology, the output is four times higher for the same power supply voltage.
The advantages of a full-differential amplifier are:

- High PSRR (power supply rejection ratio)
- High common-mode noise rejection
- Virtually zero pop without additional circuitry, giving a faster start-up time compared to conventional single-ended input amplifiers.
- Easier interfacing with differential output audio DAC
- No input coupling capacitors required due to common-mode feedback loop

The main disadvantage is:

- As the differential function is directly linked to external resistor mismatching, particular attention to this mismatching is mandatory to obtain the best performance from the amplifier.

6.2 Gain in typical application schematic

Typical differential applications are shown in Figure 3 on page 4.
In the flat region of the frequency-response curve (no input coupling capacitor effect), the differential gain is expressed by the relation:

$$
\mathrm{A}_{\mathrm{V}_{\text {diff }}}=\frac{\mathrm{Out}^{+}-\mathrm{Out}^{-}}{\mathrm{In}^{+}-\mathrm{In}^{-}}=\frac{300}{\mathrm{R}_{\mathrm{in}}}
$$

with $\mathrm{R}_{\text {in }}$ expressed in $k \Omega$.
Due to the tolerance of the internal $150 \mathrm{k} \Omega$ feedback resistor, the differential gain will be in the range (no tolerance on $\mathrm{R}_{\text {in }}$):

$$
\frac{273}{R_{\text {in }}} \leq A_{V_{\text {diff }}} \leq \frac{327}{R_{\text {in }}}
$$

6.3 Common-mode feedback loop limitations

The common-mode feedback loop allows the output DC bias voltage to be averaged at $\mathrm{V}_{\mathrm{CC}} / 2$ for any DC common-mode bias input voltage.

However, due to $\mathrm{V}_{\mathrm{icm}}$ limitation in the input stage (see Table 3: Operating conditions on page 5), the common-mode feedback loop can ensure its role only within a defined range. This range depends upon the values of V_{CC} and $\mathrm{R}_{\text {in }}$ ($A_{\text {Vdiff }}$). To have a good estimation of the $\mathrm{V}_{\mathrm{icm}}$ value, we can apply this formula (no tolerance on R_{in}):

$$
\begin{equation*}
\mathrm{V}_{\mathrm{icm}}=\frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{R}_{\mathrm{in}}+2 \times \mathrm{V}_{\mathrm{IC}} \times 150 \mathrm{k} \Omega}{2 \times\left(\mathrm{R}_{\mathrm{in}}+150 \mathrm{k} \Omega\right)} \tag{V}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{I C}=\frac{\operatorname{In}^{+}+\operatorname{In}^{-}}{2} \tag{V}
\end{equation*}
$$

and the result of the calculation must be in the range:

$$
0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{icm}} \leq \mathrm{V}_{\mathrm{Cc}}-0.8 \mathrm{~V}
$$

Due to the $\pm 9 \%$ tolerance on the $150 \mathrm{k} \Omega$ resistor, it is also important to check $\mathrm{V}_{\mathrm{icm}}$ in these conditions:

$$
\frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{R}_{\mathrm{in}}+2 \times \mathrm{V}_{\mathrm{IC}} \times 136.5 \mathrm{k} \Omega}{2 \times\left(\mathrm{R}_{\mathrm{in}}+136.5 \mathrm{k} \Omega\right)} \leq \mathrm{V}_{\mathrm{icm}} \leq \frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{R}_{\text {in }}+2 \times \mathrm{V}_{\mathrm{IC}} \times 163.5 \mathrm{k} \Omega}{2 \times\left(\mathrm{R}_{\text {in }}+163.5 \mathrm{k} \Omega\right)}
$$

If the result of the $\mathrm{V}_{\mathrm{icm}}$ calculation is not in the previous range, input coupling capacitors must be used (with V_{CC} from 2.4 V to 2.5 V , input coupling capacitors are mandatory).

Example

With $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{R}_{\text {in }}=150 \mathrm{k}$ and $\mathrm{V}_{\mathrm{IC}}=2.5 \mathrm{~V}$, we typically find $\mathrm{V}_{\mathrm{icm}}=2 \mathrm{~V}$ and this is lower than $3 \mathrm{~V}-0.8 \mathrm{~V}=2.2 \mathrm{~V}$. With $136.5 \mathrm{k} \Omega$ we find 1.97 V , and with $163.5 \mathrm{k} \Omega$ we have 2.02 V . So, no input coupling capacitors are required.

6.4 Low frequency response

If a low frequency bandwidth limitation is requested, it is possible to use input coupling capacitors.

In the low frequency region, $\mathrm{C}_{\text {in }}$ (input coupling capacitor) starts to have an effect. $\mathrm{C}_{\text {in }}$ forms, with $R_{\text {in }}$, a first order high-pass filter with a -3dB cut-off frequency:

$$
\begin{equation*}
F_{C L}=\frac{1}{2 \pi \times R_{\text {in }} \times C_{\text {in }}} \tag{Hz}
\end{equation*}
$$

So, for a desired cut-off frequency we can calculate $\mathrm{C}_{\text {in }}$,

$$
\begin{equation*}
C_{\text {in }}=\frac{1}{2 \pi \times R_{\text {in }} \times F_{C L}} \tag{F}
\end{equation*}
$$

with $\mathrm{R}_{\text {in }}$ in Ω and F_{CL} in Hz .

6.5 Decoupling of the circuit

A power supply capacitor, referred to as C_{S}, is needed to correctly bypass the TS4962M.
The TS4962M has a typical switching frequency at 250 kHz and an output fall and rise time about 5 ns . Due to these very fast transients, careful decoupling is mandatory.

A $1 \mu \mathrm{~F}$ ceramic capacitor is enough, but it must be located very close to the TS4962M in order to avoid any extra parasitic inductance created by an overly long track wire. In relation with dl/dt, this parasitic inductance introduces an overvoltage that decreases the global efficiency and, if it is too high, may cause a breakdown of the device.

In addition, even if a ceramic capacitor has an adequate high-frequency ESR value, its current capability is also important. A 0603 size is a good compromise, particularly when a 4Ω load is used.

Another important parameter is the rated voltage of the capacitor. A $1 \mu \mathrm{~F} / 6.3 \mathrm{~V}$ capacitor used at 5 V , loses about 50% of its value. In fact, with a 5 V power supply voltage, the decoupling value is about $0.5 \mu \mathrm{~F}$ instead of $1 \mu \mathrm{~F}$. As C_{S} has particular influence on the THD +N in the medium-high frequency region, this capacitor variation becomes decisive. In addition, less decoupling means higher overshoots, which can be problematic if they reach the power supply AMR value (6 V).

6.6 Wake-up time (t_{wu})

When the standby is released to set the device ON, there is a wait of about 5 ms . The TS4962M has an internal digital delay that mutes the outputs and releases them after this time in order to avoid any pop noise.

6.7 Shutdown time ($\mathbf{t}_{\text {StBy }}$)

When the standby command is set, the time required to put the two output stages into high impedance and to put the internal circuitry in shutdown mode, is about 5 ms . This time is used to decrease the gain and avoid any pop noise during shutdown.

6.8 Consumption in shutdown mode

Between the shutdown pin and GND there is an internal $300 \mathrm{k} \Omega$ resistor. This resistor forces the TS4962M to be in standby mode when the standby input pin is left floating.

However, this resistor also introduces additional power consumption if the shutdown pin voltage is not 0 V .

For example, with a 0.4 V standby voltage pin, Table 3: Operating conditions on page 5, shows that you must add $0.4 \mathrm{~V} / 300 \mathrm{k} \Omega=1.3 \mu \mathrm{~A}$ in typical $(0.4 \mathrm{~V} / 273 \mathrm{k} \Omega=1.46 \mu \mathrm{~A}$ in maximum) to the shutdown current specified in Table 4 on page 6.

6.9 Single-ended input configuration

It is possible to use the TS4962M in a single-ended input configuration. However, input coupling capacitors are needed in this configuration. The schematic in Figure 63 shows a single-ended input typical application.

Figure 63. Single-ended input typical application

All formulas are identical except for the gain (with $R_{\text {in }}$ in $k \Omega$):

$$
A_{V_{\text {single }}}=\frac{V_{e}}{\text { Out }^{+}-\text {Out }^{-}}=\frac{300}{R_{\text {in }}}
$$

And, due to the internal resistor tolerance we have:

$$
\frac{273}{R_{\text {in }}} \leq A_{V_{\text {single }}} \leq \frac{327}{R_{\text {in }}}
$$

In the event that multiple single-ended inputs are summed, it is important that the impedance on both TS4962M inputs (In^{-}and In^{+}) are equal.

Figure 64. Typical application schematic with multiple single-ended inputs

We have the following equations:

$$
\begin{align*}
\text { Out }^{+}-\text {Out }^{-} & =V_{e 1} \times \frac{300}{R_{\text {in } 1}}+\ldots+V_{\text {ek }} \times \frac{300}{R_{\text {ink }}} \tag{V}\\
C_{e q} & =\sum_{j=1}^{k} C_{i n j} \\
C_{i n j} & =\frac{1}{2 \times \pi \times R_{i n j} \times F_{C L j}} \\
R_{\text {eq }} & =\frac{1}{\sum_{j=1}^{k} \frac{1}{R_{i n j}}}
\end{align*}
$$

In general, for mixed situations (single-ended and differential inputs), it is best to use the same rule, that is, to equalize impedance on both TS4962M inputs.

6.10 Output filter considerations

The TS4962M is designed to operate without an output filter. However, due to very sharp transients on the TS4962M output, EMI radiated emissions may cause some standard compliance issues.

These EMI standard compliance issues can appear if the distance between the TS4962M outputs and loudspeaker terminal is long (typically more than 50 mm , or 100 mm in both directions, to the speaker terminals). As the PCB layout and internal equipment device are different for each configuration, it is difficult to provide a one-size-fits-all solution.

However, to decrease the probability of EMI issues, there are several simple rules to follow:

- Reduce, as much as possible, the distance between the TS4962M output pins and the speaker terminals.
- Use ground planes for "shielding" sensitive wires
- Place, as close as possible to the TS4962M and in series with each output, a ferrite bead with a rated current at minimum 2 A and impedance greater than 50Ω at frequencies above 30 MHz . If, after testing, these ferrite beads are not necessary, replace them by a short-circuit. Murata BLM18EG221SN1 or BLM18EG121SN1 are possible examples of devices you can use.
- Allow enough of a footprint to place, if necessary, a capacitor to short perturbations to ground (see the schematics in Figure 65).

Figure 65. Method for shorting pertubations to ground

In the case where the distance between the TS4962M outputs and speaker terminals is high, it is possible to have low frequency EMI issues due to the fact that the typical operating frequency is 250 kHz . In this configuration, we recommend using an output filter (as shown in Figure 3: Typical application schematics on page 4). It should be placed as close as possible to the device.

6.11 Different examples with summed inputs

Example 1: Dual differential inputs

Figure 66. Typical application schematic with dual differential inputs

With (R_{i} in $k \Omega$):

$$
\begin{gathered}
A_{V_{1}}=\frac{\mathrm{Out}^{+}-\mathrm{Out}^{-}}{\mathrm{E}_{1}^{+}-\mathrm{E}_{1}^{-}}=\frac{300}{\mathrm{R}_{1}} \\
\mathrm{~A}_{\mathrm{V}_{2}}=\frac{\mathrm{Out}^{+}-\mathrm{Out}^{-}}{\mathrm{E}_{2}^{+}-\mathrm{E}_{2}^{-}}=\frac{300}{\mathrm{R}_{2}} \\
0.5 \mathrm{~V} \leq \frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{R}_{1} \times \mathrm{R}_{2}+300 \times\left(\mathrm{V}_{\mathrm{IC} 1} \times \mathrm{R}_{2}+\mathrm{V}_{\mathrm{IC} 2} \times R_{1}\right)}{300 \times\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)+2 \times \mathrm{R}_{1} \times \mathrm{R}_{2}} \leq \mathrm{V}_{\mathrm{CC}}-0.8 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{IC}_{1}}=\frac{\mathrm{E}_{1}^{+}+\mathrm{E}_{1}^{-}}{2} \text { and } \mathrm{V}_{\mathrm{IC}_{2}}=\frac{\mathrm{E}_{2}^{+}+\mathrm{E}_{2}^{-}}{2}
\end{gathered}
$$

Example 2: One differential input plus one single-ended input

Figure 67. Typical application schematic with one differential input plus one single-ended input

With $\left(R_{i}\right.$ in $\left.k \Omega\right)$:

$$
\begin{align*}
& A_{V_{1}}=\frac{\text { Out }^{+}-\text {Out }^{-}}{\mathrm{E}_{1}^{+}}=\frac{300}{\mathrm{R}_{1}} \\
& \mathrm{~A}_{\mathrm{V}_{2}}=\frac{\mathrm{Out}^{+}-\mathrm{Out}^{-}}{\mathrm{E}_{2}^{+}-\mathrm{E}_{2}^{-}}=\frac{300}{\mathrm{R}_{2}} \\
& \mathrm{C}_{1}=\frac{1}{2 \pi \times \mathrm{R}_{1} \times \mathrm{F}_{\mathrm{CL}}} \tag{F}
\end{align*}
$$

7 Evaluation board

An evaluation board for the TS4962M is available with a Flip Chip to DIP adapter. For more information about this board, refer to AN2134.

Figure 68. Schematic diagram of mono class D evaluation board for TS4962M

Figure 69. Diagram for Flip Chip to DIP adapter

Figure 70. Top view

Figure 71. Bottom layer

Figure 72. Top layer

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

8.1 9-bump Flip Chip package information

Figure 73. 9-bump Flip Chip package outline

Table 10. 9-bump Flip Chip mechanical data

Parameter	Dimensions
Die size	$1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm} \pm 30 \mu \mathrm{~m}$
Die height (including bumps)	$600 \mu \mathrm{~m}$
Bump diameter	$315 \mu \mathrm{~m} \pm 50 \mu \mathrm{~m}$
Bump diameter before re-flow	$300 \mu \mathrm{~m} \pm 10 \mu \mathrm{~m}$
Bump height	$250 \mu \mathrm{~m} \pm 40 \mu \mathrm{~m}$
Die height	$350 \mu \mathrm{~m} \pm 20 \mu \mathrm{~m}$
Pitch	$500 \mu \mathrm{~m} \pm 50 \mu \mathrm{~m}$
Coplanarity	$50 \mu \mathrm{~m} \mathrm{max}$.
Backside coating	$25 \mu \mathrm{~m} \pm 3 \mu \mathrm{~m}$
(optional, only for the TS4962MEIKJT)	

Figure 74. 9-bump Flip Chip marking (top view)

1. Legend:

ST logo
E = symbol for lead-free
First two "XX" = product code = 62
Third $\mathrm{X}=$ assembly code
Three-digit date code, $\mathrm{Y}=$ year, $\mathrm{WW}=$ week
Black dot is for marking pin A1
Figure 75. 9-bump Flip Chip recommended footprint

9 Ordering information

Table 11. Order code table

Part number	Temperature range	Package	Packing	Marking		
TS4962MEIJT	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Lead-free Flip Chip		Tape and reel	62L	TS4962MEIKJT
:---:						

10 Revision history

Table 12. Document revision history

Date	Revision	Changes
Oct. 2005	1	First release corresponding to the product preview version.
Nov. 2005	2	Electrical data updated for output voltage noise, see Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9 Formatting changes throughout.
Dec. 2005	3	Product in full production.
10-Jan-2007	4	Template update, no technical changes.
10-Oct-2016	5	Updated datasheet layout Added package silhouettes Added Related products Updated Applications Section 5: Electrical characteristic curves: updated titles of graphs which had same titles. Figure 73: 9-bump Flip Chip package outline: updated diagram to display the optional backside coating for order code TS4962MEIKJT. Added Table 10 to display package mechanical data as a separate table (with information concerning the optional backside coating for order code TS4962MEIKJT). Table 11: Order code table: updated marking of order code TS4962MEIJT, added order code TS4962MEIKJT.
15-Jan-2018	6	Updated Table 10: 9-bump Flip Chip mechanical data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics - All rights reserved

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

[^0]: 1. Standby mode is active when $\mathrm{V}_{\text {STBY }}$ is tied to GND
