ABCU-57xxxxZ Family

10/100/1000BASE-T 1.25 GBd Small Form Pluggable Low Voltage (3.3 V) Electrical Transceiver over Category 5 Cable

Data Sheet

Description

The ABCU-57xxxz family of electrical transceivers from Avago Technologies offer full-duplex throughput of 1000 Mbps by transporting data over shielded and unshielded twisted pair category 5 cable with 5-level PAM (Pulse Amplitude Modulation) signals.

The Avago Technologies 1000BASE-T module takes signals from both the twisted pair category 5 cable and the SerDes interface. Pin count overhead between the MAC and the PHY is minimized, and Gigabit Ethernet operation is achieved with maximum space savings.

Applications

- Switch to switch interface
- Switched backplane applications
- File server interface

Related Products

- AFBR-5710Z: Family of 850nm +3.3V SFP optical transceivers for Gigabit Ethernet
- AFCT-5710Z: Family of 1310nm +3.3V SFP optical transceivers for Gigabit Ethernet

Module Diagrams

Figure 1 illustrates the major functional components of the ABCU-57xxxxZ family of transceivers. The 20-pin connection diagram of module printed circuit board of the module is shown in Figure 2. Figure 3 depicts the pin assignment of the MDI (RJ45 jack).

Figure 6 depicts the external configuration and dimensions of the module.

Features

- RoHS-6 Compliant (see Table 1)
- Designed for Industry-Standard, Small Form Factor Pluggable (SFP) Ports
- Compliance with IEEE 802.3:2005
- Custom RJ-45 connector with integrated magnetics
- Link lengths at 1.25 Gbd: up to 100 m per IEEE802.3
- Low power, high performance 1.25 Gbd SerDes integrated in module
- Single +3.3 V power supply operation
- Auto-negotiation per IEEE 802.3:2005 Clause 28 (Twisted Pair) and Clause 37 (1000BASE-X)
- Compatible to both shielded and unshielded twisted pair category 5 cable
- Available in Commercial Temperature (-5~70 °C) and Industrial Temperature (-40~85 °C)
- 10/100/1000BASE-T operation available with SGMII host systems.
- Several configurations
 ABCU-5730RZ -5~70 RX_LOS enabled
 ABCU-5740RZ -5~70 RX_LOS disabled
 ABCU-5730GZ -5~70 RX_LOS enabled and Isolated ground
 ABCU-5730ARZ -40~85 RX_LOS enabled
 ABCU-5740ARZ -40~85 RX_LOS disabled
 ABCU-5731ARZ -40~85 SGMII RX_LOS enabled
 ABCU-5741ARZ -40~85 SGMII RX_LOS disabled
 ABCU-5741ARZ -5~70 SGMII RX_LOS enabled
 ABCU-5741RZ -5~70 SGMII RX_LOS disabled
 ABCU-5741RZ -5~70

Installation

The ABCU-57xxxz family can be installed in or removed from any MultiSource Agreement (MSA) compliant Small Form Pluggable port whether the host equipment is operating or not. The module is simply inserted, small end first, under finger-pressure. Controlled hot-plugging is ensured by design and by 3-stage pin sequencing at the electrical interface to the host board. The module housing makes initial contact with the host board EMI shield, mitigating potential damage due to ElectroStatic Discharge (ESD). The module pins sequentially contact the (1) Ground, (2) Power, and (3) Signal pins of the host board surface mount connector. This printed circuit board card-edge connector is depicted in Figure 2.

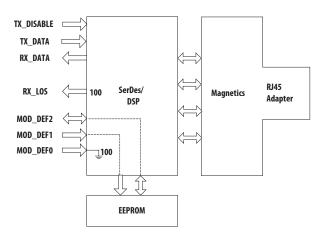
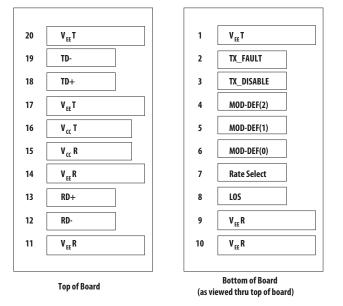


Figure 1. Transceiver Functional Diagram

Serial Identification (EEPROM)

The ABCU-57xxxxZ family complies with an industry standard MultiSource Agreement that defines the serial identification protocol. This protocol uses the 2-wire serial CMOS EEPROM protocol of the ATMEL AT24C01A or equivalent. The contents of the ABCU-57xxxxZ family serial ID memory are defined in Table 10 as specified in the SFP MSA.


Controller and Data I/O

Data I/Os are designed to accept industry standard differential signals. In order to reduce the number of passive components required on the customer's board, Avago Technologies has included the functionality of the transmitter bias resistors and coupling capacitors within the module. The transceiver is compatible with an "ac-coupled" configuration and is internally terminated. Figure 1 depicts the functional diagram of the ABCU-57xxxz family of transceivers. 100-ohm resistor shown at RX_LOS in Figure 1 refers to ABCU-573xxzZ configuration.

Caution should be taken into account for the proper interconnection between the supporting Physical Layer integrated circuits and the ABCU-57xxxzZ family of transceivers.

Figure 4 illustrates the recommended interface circuit.

Several control data signals and timing diagrams are implemented in the module and are depicted in Figure 6.

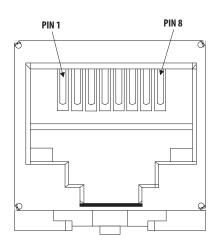


Figure 3. MDI (RJ 45 Jack) Pin Assignment

Note: LOS is only applicable for ABCU-573xxxZ models

Figure 2. 20-pin Connection Diagram of Module Printed Circuit Board

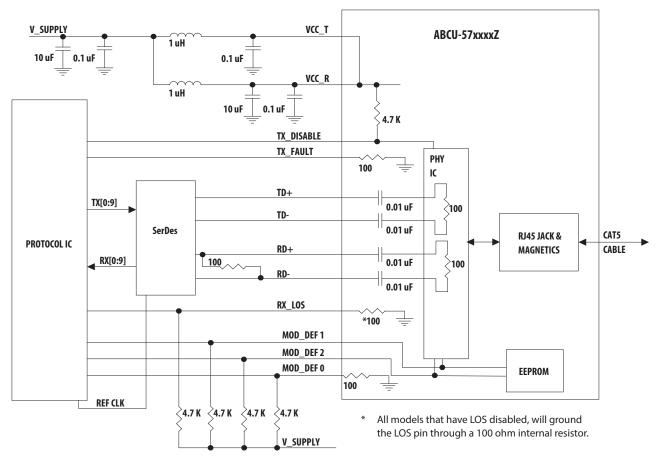
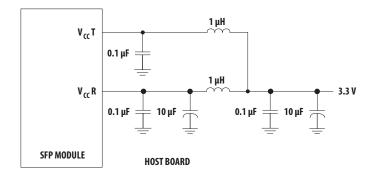



Figure 4. Typical Application Configuration for ABCU-57xxxxZ

Note: Inductors must have less than 10hm series resistance per MSA

Figure 5. MSA Recommended Power Supply Filter

Application Support

Evaluation Kit

To help you in your preliminary transceiver evaluation, Avago Technologies offers a 1.25 GBd Gigabit Ethernet evaluation board. This board will allow testing of the electrical parameters of transceiver. Please contact your local Field Sales representative for availability and ordering details.

Regulatory Compliance

See Table 1 for transceiver Regulatory Compliance performance. The overall equipment design will determine the certification level. The transceiver performance is offered as a figure of merit to assist the designer.

Immunity

Equipment hosting the ABCU-57xxxzZ modules will be subjected to radio-frequency electromagnetic fields in some environments. The transceivers have excellent immunity to such fields due to their shielded design.

Electrostatic Discharge (ESD)

There are two conditions in which immunity to ESD damage is important. Table 1 documents our immunity to both of these conditions. The first condition is during handling of the transceiver prior to insertion into the transceiver port. To protect the transceiver, it is important to use normal ESD handling precautions. These precautions include using grounded wrist straps, work benches, and floor mats in ESD controlled areas. The ESD sensitivity of the ABCU-57xxxxZ is compatible with typical industry production environments.

The second condition is static discharges to the exterior of the host equipment chassis after installation. To the extent that the RJ45 connector interface is exposed to the outside of the host equipment chassis, it may be subject to system-level ESD requirements. The ESD performance of the ABCU-57xxxxZ exceeds typical industry standards.

Table 1. Regulatory Compliance

Feature	Test Method	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883C Method 3015.4 JEDEC/EIA JES022-A114-A	Class 2 (2000 Volts)
Electrostatic Discharge (ESD) to the RJ 45 Connector Receptacle	Variation of IEC 61000-4-2	Typically withstand 15 KV (Air Discharge), 8 KV (Contact) without damage when the RJ 45 connector receptacle is contacted by a Human Body Model probe.
Electromagnetic Interference (EMI)	FCC Part 15 Class B CENELEC EN55022 Class B (CISPR 22A)VCCI Class 1	System margins are dependent on customer board and chassis design.
Radiated Immunity	Variation of IEC 61000-4-3	Typically shows a negligible effect from a 10 V/m field swept from 80 to 1000 MHz applied to the transceiver without a chassis enclosure.
Component Recognition	Underwriters Laboratories and Canadian Standards Association Joint Component Recognition for Information Technology Equipment Including Electrical Business Equipment	UL File # E173874
Grounding Configuration	DC short between signal and chassis grounds	 Meets all regulatory requirements as listed above. Compliant with system boards using multi-point grounding scheme
ROHS Compliance	Chemical composition analysis	Less than 0.1% lead, mercury, hexavalent chromium, polybrominated biphenyls, and polybrominated biphenyl ethers by weight of homogeneous material. Exemption for lead in high melting temperature solder applied to module connector. Less than 0.01% cadmium by weight of homogeneous material.

Electromagnetic Interference (EMI)

Most equipment designs utilizing these high-speed transceivers from Avago Technologies will be required to meet the requirements of FCC in the United States, CENELEC EN55022 (CISPR 22A) in Europe and VCCI in Japan.

The metal housing and shielded design minimize the EMI challenge facing the host equipment designer. These transceivers provide superior EMI performance. This greatly assists the designer in the management of the overall system EMI performance.

Flammability

The ABCU-57xxxxZ electrical transceiver housing is made of metal and high strength, heat resistant, chemically resistant, and UL 94V-0 flame retardant plastic.

Caution

There are no user serviceable parts nor any maintenance required for the ABCU-57xxxxZ. Tampering with or modifying the performance will result in voided product warranty. It may also result in improper operation of the ABCU-57xxxxZ circuitry, and possible overstress of the RJ 45 connector. Device degradation or product failure may result. Connecting the module to a non-approved 1000BaseT module, operating above the recommended absolute maximum conditions or operating the ABCU-57xxxzZ in a manner inconsistent with its design and function may result in hazardous radiation exposure and may be considered an act of modifying or manufacturing an electrical module product.

Ordering Information

Please contact your local field sales engineer or one of Avago Technologies franchised distributors for ordering information. For technical information, please visit Avago Technologies web page at <u>www.avagotech.com</u> or contact Avago Technologies Customer Response Center. For information related to the MSA visit www.schelto.com/ SFP/index.html

Customer Manufacturing Processes

This module is pluggable and is not designed for aqueous wash, IR reflow or wave soldering processes.

Pin	Name	Function/Description	MSA Notes
1	V _{EE} T	Transmitter Ground	
2	TX Fault	Transmitter Fault Indication - High Indicates a Fault	Note 1
3	TX Disable	Transmitter Disable - Module disables on high or open	Note 2
4	MOD-DEF2	Module Definition 2 - Two wire serial ID interface	Note 3
5	MOD-DEF1	Module Definition 1 - Two wire serial ID interface	Note 3
6	MOD-DEF0	Module Definition 0 - Grounded in module	Note 3
7	Rate Select	Not Connected	
8	LOS	Loss of Signal - High Indicates Loss of Signal	Note 4
9	V _{EE} R	Receiver Ground	
10	V _{EE} R	Receiver Ground	
11	V _{EE} R	Receiver Ground	
12	RD-	Inverse Received Data Out	Note 5
13	RD+	Received Data Out	Note 5
14	V _{EE} R	Receiver Ground	
15	V _{CC} R	Receiver Power - 3.3 V +/- 5%	Note 6
16	V _{CC} T	Transmitter Power - 3.3 V +/- 5%	Note 6
17	V _{EE} T	Transmitter Ground	
18	TD+	Transmitter Data In	Note 7
19	TD-	Inverse Transmitter Data In	Note 7
20	V _{EE} T	Transmitter Ground	

Table 2. 20-pin Connection Diagram Description

Notes:

1. TX Fault is not used and is always tied to ground through a 100 ohm resistor.

2. TX Disable as described in the MSA is not applicable to the 1000BASE-T module, but is used for convenience as an input to reset the internal ASIC. This pin is pulled up within the module with a 4.7 K Ω resistor.

	Low (0 – 0.8 V):	Transceiver on
	Between (0.8 V and 2.0 V):	Undefined
	High (2.0 – 3.465 V):	Transceiver in reset state
	Open:	Transceiver in reset state
n n	Mad Def 0 1 2 These ave the	mandula definition nine T

3. Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7-10 K Ω resistor on the host board to a supply less than V_{CC}T + 0.3 V or V_{CC}R + 0.3 V.

Mod Def 0 is tied to ground through a 100 ohm resistor to indicate that the module is present.

Mod-Def 1 is clock line of two wire serial interface for optional serial ID

Mod-Def 2 is data line of two wire serial interface for optional serial ID

4. LOS (Loss of Signal) operation on the 1000BaseT SFP is different than for optical SFP applications. For models with RX_LOS enabled, RX_LOS signal is a 1000BASE-T linkup/link-down indicator and not a peak (AC) or voltage (DC) detector. For models where RX_LOS is disabled, RX_LOS is not used and is always tied to ground via 100-ohm resistor.

5. RD-/+: These are the differential receiver outputs. They are ac coupled 100 Ω differential lines which should be terminated with 100 Ω differential at the user SerDes. The ac coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 2000 mV differential (185 – 1000 mV single ended) when properly terminated. These levels are compatible with CML and LVPECL voltage swings.

6. V_{CC}R and V_{CC}T are the receiver and transmitter power supplies. They are defined as 3.3 V ± 5% at the SFP connector pin. The maximum supply current is 317 mA and the associated in-rush current will typically be no more than 30 mA above steady state after 500 nanoseconds.

 TD-/+: These are the differential transmitter inputs. They are ac coupled differential lines with 100 Ω differential termination inside the module. The ac coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 500 – 2400 mV (250 – 1200 mV single ended), though it is recommended that values between 500 and 1200 mV differential (250 – 600 mV single ended) be used for best EMI performance. These levels are compatible with CML and LVPECL voltage swings.

Absolute Maximum Ratings

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Storage Temperature	Τs	-40		+85	°C	Note 1
Case Temperature	T _C	-40		+85	°C	Note 1 ,2
Relative Humidity	RH	5		95	%	Note 1
Module Supply Voltage	V _{CC} T,R	-0.5		3.6	V	Note 1, 2
Data/Control Input Voltage	VI	-0.5		V _{CC}	V	Note 1
Sense Output Current - LOS	ID			NA	mA	Note 1
Sense Output Current - MOD-DEF2				5.0	mA	

Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Case Temperature	T _C	-5 -40		70 85	°C °C	Note 3
Module Supply Voltage	V _{CC} T,R	3.135	3.3	3.465	V	Note 3
Data Rate			1.25		Gb/s	Note 3

Transceiver Electrical Characteristics

 $(T_{C} = -5 \degree C \text{ to } +70 \degree C, V_{CC}T, R = 3.3 \text{ V} \pm 5\%)$ $(T_{C} = -40 \degree C \text{ to } +85 \degree C, V_{CC}T, R = 3.3 \text{ V} +/-5\%)$

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
AC Electrical Characteristics						
Power Supply Noise Rejection (peak-peak)	PSNR		100		mV	Note 4
DC Electrical Characteristics						
Module supply current ($T_C = -5 \text{ °C to } +70 \text{ °C}, V_{CC}T,R = 3.3 \text{ V} \pm 5\%$) ($T_C = -40 \text{ °C to } +85 \text{ °C}, V_{CC}T,R = 3.3 \text{ V} +/-5\%$)	I _{CC}			350 370	mA	
Power Dissipation ($T_C = -5 \text{ °C to } +70 \text{ °C}, V_{CC}T,R = 3.3 \text{ V} \pm 5\%$) ($T_C = -40 \text{ °C to } +85 \text{ °C}, V_{CC}T,R = 3.3 \text{ V} +/-5\%$)	P _{DISS}			1100 1150	mW	
Sense Outputs:	V _{OH}	2.0	3.05	V _{CC} T, R+ 0.3	V	Note 5
MOD-DEF2	V _{OL}					
Control Inputs:	VIH	2.0		V _{CC}	V	Note 6
Transmitter Disable(TX_DISABLE), MOD-DEF1, 2	VIL	0		0.8	V	

Notes:

1. Absolute Maximum Ratings are those values beyond which damage to the device may occur if these limits are exceeded for other than a short period of time. See Reliability Data Sheet for specific reliability performance.

2. Between Absolute Maximum Ratings and the Recommended Operating Conditions functional performance is not intended, device reliability is not implied, and damage to the device may occur over an extended period of time.

3. Operating conditions will vary, depending on model. Recommended Operating Conditions are those values outside of which functional performance is not intended, device reliability is not implied, and damage to the device may occur over an extended period of time. See Reliability Data Sheet for specific reliability performance later when it is ready.

4. MSA-specified filter is required on the host board to achieve PSNR performance over the frequency range 10 Hz to 2 MHz.

5. LVTTL, external 4.7-10 K Ω pull-Up resistor required.

6. LVTTL, external 4.7-10 K Ω pull-Up resistor required for MOD-DEF 1 and MOD-DEF 2.

Transmitter and Receiver Electrical Characteristics

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Data Input: Transmitter Differential Input Voltage (TD +/-)	VI	500		2400	mV	Note 1
Data Output: Receiver Differential Output Voltage (RD +/-)	V _O	370	735	2000	mV	Note 2
Receive Data Rise & Fall Times (Receiver)	Trf		100	250	ps	Note 3

Transceiver Timing Characteristics

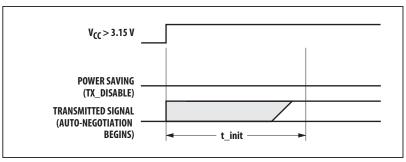
 $(T_{C} = -5 \degree C \text{ to } +70 \degree C, V_{CC}T, R = 3.3 \text{ V} \pm 5\%)$ $(T_{C} = -40 \degree C \text{ to } +85 \degree C, V_{CC}T, R = 3.3 \text{ V} +/-5\%)$

Symbol	Minimum	Typical	Maximum	Unit	Notes
t_off			NA		Note 4
t_on			NA		Note 4
t_off_rst			10	μs	Note 5
t_on_rst			300	ms	Note 6
t_init			300	ms	
t_fault			NA		Note 7
t_reset			NA		Note 7
t_loss_on			NA		Note 7
t_loss_off			NA		Note 7
t_ratesel			NA		Note 7
F_serial_clock			100	kHz	
	t_off t_on t_off_rst t_on_rst t_init t_fault t_reset t_loss_on t_loss_off t_ratesel	t_off t_on t_off_rst t_on_rst t_init t_fault t_reset t_loss_on t_loss_off t_ratesel	t_off t_on t_off_rst t_on_rst t_init t_fault t_reset t_loss_on t_loss_off t_ratesel	t_off NA t_off NA t_off_rst 10 t_on_rst 300 t_init 300 t_fault NA t_reset NA t_loss_on NA t_ratesel NA	t_offNAt_offNAt_off_rst10μst_on_rst300t_init300t_faultNAt_resetNAt_loss_onNAt_rateselNA

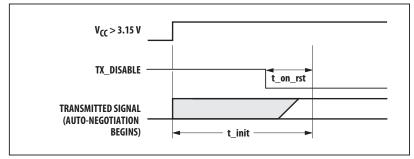
Notes:

1. Internally ac coupled and terminated (100 Ohm differential). These levels are compatible with CML and LVPECL voltage swings.

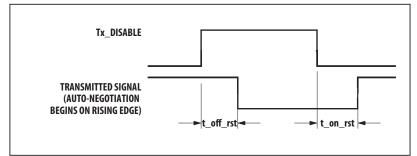
2. Internally ac coupled with an external 100 ohm differential load termination.


3. 20%-80% rise and fall times measured with a 500 MHz signal utilizing a 1010 pattern.

4. Tx Disable function as described in the SFP MSA is not used in the 1000BASE-T module.


5. Time from rising edge of Tx Disable until link comes down.

6. Time from falling edge of Tx Disable until auto-negotiation starts.


7. Not used in the 1000BASE-T module

t-init: MODULE HOT-PLUGGED OR VOLTAGE APPLIED AFTER INSERTION, WHEN TX_DISABLE IS NEGATED

t-init: VOLTAGE APPLIED WHEN TX_DISABLE IS ASSERTED

t_off_rst & t_on_rst: TX_DISABLE (RESET) ASSERTED THEN DE-ASSERTED

Figure 6. Transceiver Timing Diagrams (Module Installed Except Where Noted)

Addr	Hex	ASCII	Addr	Hex	ASCII	Addr	Hex	ASCII	Addr	Hex	ASCII
0	03		40	41	А	68	Note 3		96	Note 5	
1	04		41	42	В	69	Note 3		97	Note 5	
2	00		42	43	С	70	Note 3		98	Note 5	
3	00		43	55	U	71	Note 3		99	Note 5	
4	00		44	2D	-	72	Note 3		100	Note 5	
5	00		45	35	5	73	Note 3		101	Note 5	
6	08		46	37	7	74	Note 3		102	Note 5	
7	00		47	Note 1		75	Note 3		103	Note 5	
8	00		48	Note 1		76	Note 3		104	Note 5	
9	00		49	Note 1		77	Note 3		105	Note 5	
10	00		50	Note 1		78	Note 3		106	Note 5	
11	01		51	Note 1		79	Note 3		107	Note 5	
12	0D		52	20		80	Note 3		108	Note 5	
13	00		53	20		81	Note 3		109	Note 5	
14	00		54	20		82	Note 3		110	Note 5	
15	00		55	20		83	Note 3		111	Note 5	
16	00		56	20		84	Note 4		112	Note 5	
17	00		57	20		85	Note 4		113	Note 5	
18	64		58	20		86	Note 4		114	Note 5	
19	00		59	20		87	Note 4		115	Note 5	
20	41	А	60	00		88	Note 4		116	Note 5	
21	56	V	61	00		89	Note 4		117	Note 5	
22	41	А	62	00		90	Note 4		118	Note 5	
23	47	G	63	Note 2		91	Note 4		119	Note 5	
24	4F	0	64	00		92	00		120	Note 5	
25	20		65	Note 1		93	00		121	Note 5	
26	20		66	00		94	00		122	Note 5	
27	20		67	00		95	Note 2		123	Note 5	
28	20								124	Note 5	
29	20								125	Note 5	
30	20								126	Note 5	
31	20								127	Note 5	
32	20										
33	20										
34	20										
35	20										
36	01										
37	00										
38	17										
39	6A										

Table 3. EEPROM Serial ID Memory Contents at address A0

Notes:

1. The contents of these registers will change dependent on model number.

2. Addresses 63 and 95 are check sums. Address 63 is the check sum for bytes 0-62 and address 95 is the check sum for bytes 64-94.

3. Address 68-83 specify a unique identifier.

4. Address 84-91 specify the date code.

5. These fields are reserved for optional use by Avago Technologies.

Internal ASIC Registers

The ASIC (or "PHY", for Physical Layer IC) in the transceiver module contains 32 registers. Each register contains 16 bits. The registers are summarized in table 11 and detailed in table 12 through 28. Each bit is either Read Only (RO) or Read/Write (R/W). Some bits are also described as Latch High (LH) or Latch Low (LL) and/or Self Clearing (SC). The registers are accessible through the 2-wire serial CMOS EEPROM protocol of the ATMEL AT24C01A or equivalent. The address of the PHY is 1010110x, where x is the R/W bit. Each register's address is 000yyyyy, where yyyyy is the binary equivalent of the register number. Write and read operations must send or receive 16 bits of data, so the "multi-page" access protocol must be used.

0	Control
1	Status
2-3	N/A for SFP Module
4	Auto-Negotiation Advertisement
5	Auto-Negotiation Link Partner Ability
6	Auto-Negotiation Expansion
7	Auto-Negotiation Next Page Transmit
8	Auto-Negotiation Link Partner Received Next Page
9	MASTER-SLAVE Control Register
10	MASTER-SLAVE Status Register
11-15	N/A for SFP Module
16	Extended Control 1
17	Extended Status 1
18-19	N/A for SFP Module
20	Extended Control 2
21	Receive Error Counter
22	Cable Diagnostic 1
23-25	N/A for SFP Module
26	Extended Control 3
27	Extended Status 2
28	Cable Diagnostic 2
29-31	N/A for SFP Module

Table 4. Summary of Internal IC Registers

Table 5. Register 0 (Control)

Bit	Name	Description	Hardware Reset	Software Reset	Details
0.15R/W	Reset	1 = PHY reset 0 = Normal Operation	0	self-clearing	Performs software reset
0.14R/W	Loopback	1 = Enable 0 = Disable	0	0	Serial data in on RD+/- is deserial- ized, then reserialized and sent out on TD+/-
0.13R/W	Speed Selection (LSB)	0 = 1000 Mb/s	0	Update	Paired with bit 0.6. Module may function at speeds other than 1000 MB/s depending on model This bit is only meaningful if bit 0.12 is 0.
0.12R/W	Auto-Negotiation Enable	1 = Enable 0 = Disable	1	Update	Changes to this bit take effect after software reset.
0.11R/W	Power Down	1 = Power Down 0 = Normal Operation	0	0	
0.10R/W	Isolate	1 = Isolate 0 = Normal Operation	0	0	
0.9R/W/SC	Restart Auto- Negotiation	1 = Restart Auto-Nego- tiation Process 0 = normal operation	0	Self-clearing	
0.8R/W	Duplex Mode	1 = Full Duplex 0 = Half Duplex	1	Update	This bit is only meaningful if 0.12 is 0.
0.7R/W	Collision Test	1 = enable COL signal test 0 = disable COL signal test	0	0	
0.6R/W	Speed Selection (MSB)	1 = 1000 Mb/s	1	Update	Paired with bit 0.13. Module may function at speeds other than 1000 MB/s depending on model This bit is only meaningful if bit 0.12 is 0.
0.5:0R/W	N/A to SFP Module		000000	000000	

Table 6. Register 1 (Status)

Bit	Name	Description	Hardware Reset	Software Reset	Details
1.15:9 RO	N/A to SFP Module	· ·	0000000	0000000	
1.8 RO	Extended Status	1 = Extended status information in register 15	1	1	Always 1
1.7 RO	N/A to SFP Module		0	0	
1.6 RO	MF Preamble Suppression	1 = PHY will accept management frames with preamble suppressed.	1	1	Always 1
1.5 RO	Auto-Negotiation Complete	1 = Auto-Negotiation Process Completed 0 = Auto-Negotiation Process Not Com- pleted	0	0	
1.4 RO/LH	Remote Fault	1 = remote fault condition detected 0 - no remote fault condition detected	0	0	
1.3 RO	Auto-Negotiation Ability	1 = module is able to perform Auto-Nego- tiation 0 = module is unable to perform Auto- Negotiation	1	1	
1.2 RO/LL	Link Status	1 = link is up 0 = link is down	0	0	
1.1 RO/LH	Jabber Detect	1 = jabber condition detected 0 = no jabber condition detected	0	0	
1.0 RO	Extended Capability	1 = extended register capabilities	1	1	Always 1

Hardware Software Bit Name Description Reset Reset Details 4.15:14 N/A to SFP Module 10 10 When writing to register 4, be R/W sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module. 4.13 **Remote Fault** 1 = Remote fault bit is set 0 Retain This bit takes effect after auto-R/W 0 = No remote faultnegotiation is restarted, either via bit 0.9 or because the link aoes down. 4.12 0 N/A to SFP Module Retain R/W 11 = Both Asymmetric 4.11:10 **PAUSE Encoding** 00 Retain This bit takes effect after auto-R/W PAUSE and Symmetric negotiation is restarted, either PAUSE toward local device via bit 0.9 or because the link 10 = Asymmetric PAUSE goes down. toward link partner 01 = Symmetric PAUSE 00 = No PAUSE4.9 N/A to SFP Module 0 0 R/W 4.8 100BASE-TX Full 1 = Advertise PHY is 1 (for ABCU-This bit takes effect auto-negoti-Retain 57x1-XXX) R/W Duplex 100BASE-TX full duplex ation is restarted via bit 0.9 capable 0 (for ABCU-0 = Advertise PHY is not 57x0-XXX) 100BASE-TX full duplex capable 4.7 100BASE-TX Half 1 = Advertise PHY is 1 (for ABCU-This bit takes effect auto-negoti-Retain R/W 100BASE-TX half duplex 57x1-XXX) ation is restarted via bit 0.9 Duplex 0 (for ABCUcapable 0 =Advertise PHY is not 57x0-XXX) 100BASE-TX half duplex capable 4.6 10BASE-T Full-1 = Advertise PHY is 1 (for ABCU-This bit takes effect auto-negoti-Retain R/W Duplex 10BASE-T full duplex 57x1-XXX) ation is restarted via bit 0.9 capable 0 (for ABCU-0 =Advertise PHY is not 57x0-XXX) 10BASE-T full duplex capable 4.5 10BASE-T Half-1 = Advertise PHY is1 (for ABCU-Retain This bit takes effect auto-negoti-R/W ation is restarted via bit 0.9 Duplex 10BASE-T half duplex 57x1-XXX) 0 (for ABCUcapable 0 = Advertise PHY is not 57x0-XXX) 10BASE-T half duplex capable 4.4:0 IEEE 802.3 Selector Set per IEEE standard. 00001 00001 RO Field

Table 7. Register 4 (Auto-Negotiation Advertisement)

Bit	Name	Description	Hardware Reset	Software Reset	Details
5.15 RO	Next Page	1 = Link partner advertises next page ability 0 = Link partner does not advertise next page ability	0	0	
5.14 RO	Acknowledge	1 = Link partner acknowledges receiv- ing link code word from module 0 = Link partner does not acknowledge receiving link code word from module	0	0	
5.13 RO	Remote Fault	1 = Link partner has a remote fault 0 = Link partner does not have a remote fault	0	0	
5.12 RO	N/A to SFP Module		0	0	
5.11:10 RO	PAUSE Encoding	 11 = Asymmetric PAUSE and Symmetric PAUSE toward local device 10 = Asymmetric PAUSE toward link partner 01 = Symmetric PAUSE 00 = No PAUSE 	00	00	
5.9:5 RO	N/A to SFP Module		00000	00000	
5.4:0 RO	IEEE 802.3 Selector Field		00000	00000	Set per IEEE standard.

Table 9. Register 6 (Auto-Negotiation Expansion)

Bit	Name	Description	Hardware Reset	Software Reset	Details
6.15:5 RO	N/A to SFP Module		00000000000	00000000000	
6.4 RO	Parallel Detection Fault	1 = A fault has been detected via the Parallel Detection function 0 = A fault has not been detected via the Parallel Detection function	0	0	This register is not valid until auto- negotiation is com- plete, as indicated by bit 1.5.
6.3 RO	Link Partner Next Page Able	1 = Link partner is next page able 0 = Link partner is not next page able	0	0	See note in bit 6.4.
6.2 RO	Next Page Able	1 = Local device is next page able 0 = Local device is not next page able	1	1	See note in bit 6.4.
6.1 RO/LH	Page Received	1 = A new page has been received 0 = A new page has not been received	0	0	See note in bit 6.4.
6.0 RO	Link Partner Auto- Negotiation Able	1 = Link partner is auto-negotia- tion able 0 = Link partner is not auto-nego- tiation able	0	0	See note in bit 6.4.

Table 10.	Register 7	(Auto-Negotiation	Next Page Transmi	it Register)

			Hardware	Software	
Bit	Name	Description	Reset	Reset	Details
7.15 R/W	Next Page	1 = Additional next pages to follow 0 = Last page	0	0	
7.14 RO	N/A to SFP Module		0	0	
7.13 R/W	Message Page	1 = Message page 0 = Unformatted page	1	1	
7.12 R/W	Acknowledge 2	1 = Will comply with message 0 = Will not comply with message	0	0	
7.11 RO	Toggle	1 = previous value of the toggle bit was0 0 = previous value of the toggle bit was 1	0	0	
7.10:0 R/W	Message/Unformatted Code Field		00000000001	00000000001	

Table 11. Register 8 (Auto-Negotiation Link Partner Received Next Page)

			Hardware	Software	
Bit	Name	Description	Reset	Reset	Details
8.15 RO	Next Page	1 = Additional next pages to follow 0 = Last page	0	0	
8.14 RO	Acknowledge		0	0	
8.13 RO	Message Page	1 = Message page 0 = Unformatted page	0	0	
8.12 RO	Acknowledge 2	1 = Will comply with mes- sage 0 = Will not comply with message	0	0	
8.11 RO	Toggle	1 = previous value of the toggle bit was 0 0 = previous value of the toggle bit was 1	0	0	
8.10:0 RO	Message/Unformatted Code Field		00000000000	00000000000	

Table 12. Register 9 (MASTER-SLAVE Control)

				Software	
Bit	Name	Description	Hardware Reset	Reset	Details
9.15:13 R/W	Transmitter Test Mode	000 = Normal Operation 001 = Transmit Waveform Test 010 = Transmit Jitter Test in MASTER Mode 011 = Transmit Jitter Test in SLAVE Mode	000	000	The module enters test modes when MDI crossover is first disabled via bits 16.6:5.
9.12 R/W	MASTER-SLAVE Manual Config Enable	1 = Enable MASTER-SLAVE Manual configuration value in register 9.11 0 = Disable MASTER-SLAVE Manual configuration value in register 9.11	0	Retain	This bit takes effect after auto- negotiation is restarted via bit 0.9.
9.11 R/W	MASTER-SLAVE Config Value	1 = Configure PHY as MAS- TER during MASTER-SLAVE negotiation 0 = Configure PHY as SLAVE during MASTER-SLAVE nego- tiation	1	Retain	This bit takes effect after auto- negotiation is restarted via bit 0.9. This bit is ignored unless bit 9.12 is 1.
9.10 R/W	Port Type	1 = Prefer PHY as MASTER (multiport) 0 = Prefer PHY as SLAVE (single port)	1	Retain	This bit takes effect after auto- negotiation is restarted via bit 0.9. This bit is ignored unless bit 9.12 is 0.
9.9 R/W	1000BASE-T Full Duplex	1 = Advertise PHY is 1000BA- SET-T full duplex capable 0 = Advertise PHY is not 1000BASE-T full duplex capable	1	Retain	This bit takes effect after auto- negotiation is restarted via bit 0.9.
9.8 R/W	1000BASE-T Half Duplex	1 = Advertise PHY is 100BASE- TX full duplex capable 0 = Advertise PHY is not 100BASE-TX full duplex capable	1 (for ABCU- 57x1-XXX) 0 (for ABCU- 57x0-XXX)0	Retain	This bit takes effect auto- negotiation is restarted via bit 0.9
9.7:0RO	N/A to SFP Module		0000000	00000000	

Table 13. Register 10 (MASTER-SLAVE Status)

Bit	Name	Description	Hardware Reset	Software Reset	Details
10.15 RO/LH/SC	MASTER-SLAVE Configuration Fault	1 = MASTER-SLAVE con- figuration fault detected 0 = No MASTER-SLAVE configuration fault de- tected	0	0	This bit is cleared each time that this register is read. This bit clears on Auto-Negotiation enable or Auto-Negotiation complete. This bit is set if the number of failed MASTER-SLAVE resolutions reaches 7. This bit is set if both PHYs are forced to MASTER or SLAVE at the same time using bits 9.12 and 9.11.
10.14 RO	MASTER-SLAVE Configuration Resolution	1 = Local PHY configuration resolved to MASTER 0 = Local PHY configuration resolved to SLAVE	0	0	
10.13 RO	Local Receiver Status	1 = Local Receiver OK 0 = Local Receiver not OK	0	0	
10.12 RO	Remote Receiver Status	1 = Remote Receiver OK 0 = Remote Receiver not OK	0	0	
10.11 RO	Link Partner Full Duplex	1 = Link Partner is capable of 1000BASE-T full duplex 0 = Link Parnter is not capable of 1000BASE-T full duplex	0	0	This bit is valid only when the Page Received bit (6.1) is set to 1.
10.10 RO	Link Partner Half Duplex	1 = Link Partner is capable of 1000BASE-T half duplex 0 = Link Parnter is not capable of 1000BASE-T half duplex	0	0	This bit is valid only when the Page Received bit (6.1) is set to 1.
10.9:8	N/A to SFP Module		00	00	
10.7:0 RO/SC	Idle Error Count	Counts errors when receiving idle patterns.	00000000	00000000	These bits do not roll over when they are all ones.

Bit	Name	Description	Hardware Reset	Software Reset	Details
16.15:7 R/W	N/A to SFP Module		00000000	Retain (15:10, 7) or Update (9:8)	When writing to register 16, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module.
16.6:5 R/W	MDI Crossover Mode	00 = Manual MDI configuration 01 = Manual MDIX configuration 10 = N/A to SFP module 11 = Enable automatic crossover	11	Update	Changes to this bit take effect after software reset.
16.4:0 R/W	N/A to SFP Module		11000	Retain (2:0) or Update (4:3)	When writing to register 16, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module.

Table 14. Register 16 (Extended Control 1)

Table 15. Register 17 (Extended Status 1)

Bit	Name	Description	Hardware Reset	Software Reset	Details
17.15:14 RO	Speed	10 = 1000 Mbps 01 = 100 Mbps 00 = 10 Mbps	0	Retain	This bit is only valid after bit 17.11 is set.
17.13 RO	Duplex	1 = Full duplex 0 = Half duplex	0	Retain	This bit is only valid after bit 17.11 is set.
17.12 RO/LH	Page Received	1 = Page received 0 = Page not received	0	0	
17.11 RO	Speed and Duplex Resolved	1 = Resolved 0 = Speed not resolved	0	0	This bit is set when auto-nego- tiation is either completed or disabled.
17.10 RO	Link	1 = Link up 0 = Link down	0	0	
17.9:7 RO	Cable Length	000 = < 50 m 001 = 50 - 80 m 010 = 80 - 110 m 011 = 110 - 140 m 100 = > 140 m	000	000	
17.6 RO	MDI Crossover Status	1 = Crossover 0 = No crossover	0	0	Crossover means that pairs A+/- (pins 1 & 2 on the RJ45 jack) and B+/- (pins 3 & 6) are interchanged and C+/- (pins 4 &5) and D+/- (pins 7 & 8) are interchanged. This bit is only valid after bit 17.11 is set.
17.5:4 RO	N/A to SFP Module		00	00	
17.3 RO	MAC Transmit Pause Enabled	1 = Transmit pause enabled 0 = Transmit pause disabled	0	0	This bit reflects the capability of the MAC to which the module is con- nected on the serial side. This bit is only valid after bit 17.11 is set.
17.2 RO	MAC Receive Pause Enabled	1 = Receive pause enabled 0 = Receive pause disabled	0	0	This bit reflects the capability of the MAC to which the module is con- nected on the serial side. This bit is only valid after bit 17.11 is set.
17.1 RO	Polarity	1 = Polarity reversed 0 = Polarity not reversed	0	0	This bit is set if any of the four twisted pairs have the + and - wires reversed.
17.0 RO	Jabber	1 = Jabber detected 0 = No jabber detected	0		

Table 16. Register 20 (Extended Control 2)

Bit	Name	Description	Hardware Reset	Software Reset	Details
20.15 RO	Link down on no idles	1 = Link lock lost 0 = Link lock intact	0	0	If idle patterns are not seen within 1 ms, link lock is lost and link is brought down.
20.14:4 R/W	N/A to SFP Module		00011000110	0001100110	When writing to register 20, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module.
20.3	Reserved N/A to SFP module				This bit must be read and left R/W unchanged when per- forming a write.
20.2:0R/W	N/A to SFP Module		000	000	When writing to register 20, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module.

Table 17. Register 21 (Receive Error Counter)

Bit	Name	Description	Hardware Reset	Software Reset	Details
21.15:0 RO/SC	Receive errors	Counts errors received on the 1000BASE-T side	0	0	These bits do not roll over when they are all ones.

Table 18. Register 22 (Cable Diagnostic 1)

Bit	Name	Description	Hardware Reset	Software Reset	Details
22.15:2 RO	N/A to SFP Module				
22.1:0 R/W	MDI Pair Select	00 = Pins 1 & 2 (Channel A) 01 = Pins 3 & 6 (Channel B) 10 = Pins 4 & 5 (Channel C) 11 = Pins 7 & 8 (Channel D)			For VCT results, choose the twisted pair on which register 28 will dsiplay.

Table 19. Register 26 (Extended Control 3)

Bit	Name	Description	Hardware Reset	Software Reset	Details
26.15:8 RO	N/A to SFP Module		0000000	Retain	
26.7:3 R/W	N/A to SFP Module		00001	Update	When writing to register 26, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module.
26.2:0 R/W	RD+/- Output Amplitude	000=0.50V 001=0.60V 010=0.70V 011=0.80V 100=0.90V 101=1.00V 110=1.10V 111=1.20V	010	Retain	All voltages measured peak-to- peak into a 100-ohm load.

Table 20. Register 27 (Extended Status 2)

				Software	
Bit	Name	Description	Hardware Reset	Reset	Details
27.15:13 RO/SC	N/A to SFP Module		100	Update (27.15), Retain (27.14:13)	When writing to register 27, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module.
27.12 R/W	1000BASE-X Auto-negotiation Bypass Enable	1 = Enabled 0 = Disabled	1	Update	If enabled, BASE-X link will come up after 200 ms even if BASE-X auto-negotiation fails. When writing to register 27, be sure to preserve the values of this bit. Changes to this value can interrupt the normal operation of the SFP module.
27.11 RO	1000BASE-X Auto-negotiation Bypass Status	1 = BASE-X auto-negotia- tion failed and BASE-X link came up becase bypass mode timer expired 0 = BASE-X link came up because regular BASE-X auto-negotiation was completed	0	Retain	See bit 27.12.
27.10:0 R/W	N/A to SFP Module		0000001000 (ABCU-57x0xxZ) 0000000100 (ABCU-57x1xxZ)	Update	When writing to register 27, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module.

Table 21. Register 28 (Cable Diagnostic 2)

Bit	Name	Description	Hardware Reset	Software Reset	Details
28.15 R/W	Enable Cable Diagnostic Test	1 = Enable test 0 = disable test	0	0	The test can only be performed when the link is down. If the link partner is trying to auto-negotiate or if the link partner is sending out idle link pulses, the test will proceed.
28.14:13 RO	Status	11 = Test fail 10 = Open detected in twisted pair 01 = Short detected in twisted pair 00 = No short or open detected in twisted pair	00	00	The twisted pair under test is specified in register 22.
28.12:8 RO	Reflected Magnitude	11111 = 1 V 10000 = 0 V 00000= -1 V	00000	00000	The twisted pair under test is specified in register 22.
28.7:0 RO	Distance	Distance to the short or open	0000000	0000000	The distance is given in meters by 13/16 * (decimal equivalent of 28.7:0) + 32 .The twisted pair under test is specified in register 22. If no short or open is detected, these bits are 0s.

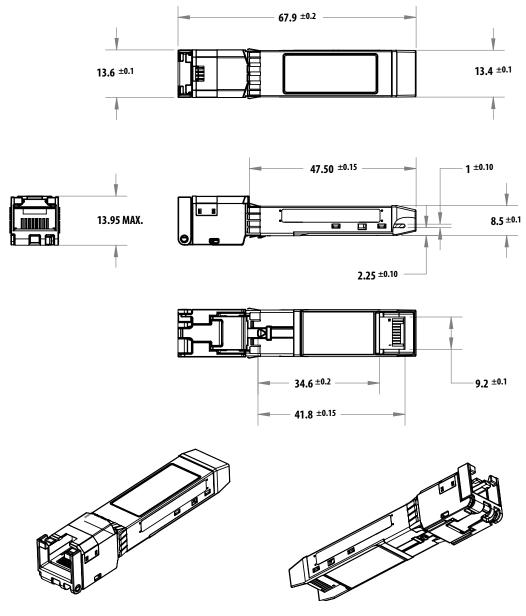
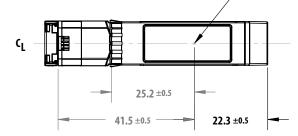



Figure 7. Module Drawing

NOTES:

1. IT IS ACCEPTABLE TO MEASURE THE TEMPERATURE OF THE HOUSING THROUGH THE LABEL. THE LABEL IS THIN AND MAKES LITTLE DIFFERENCE TO THE TEMPERATURE MEASURED.

Figure 8. Temperature Measurement Point

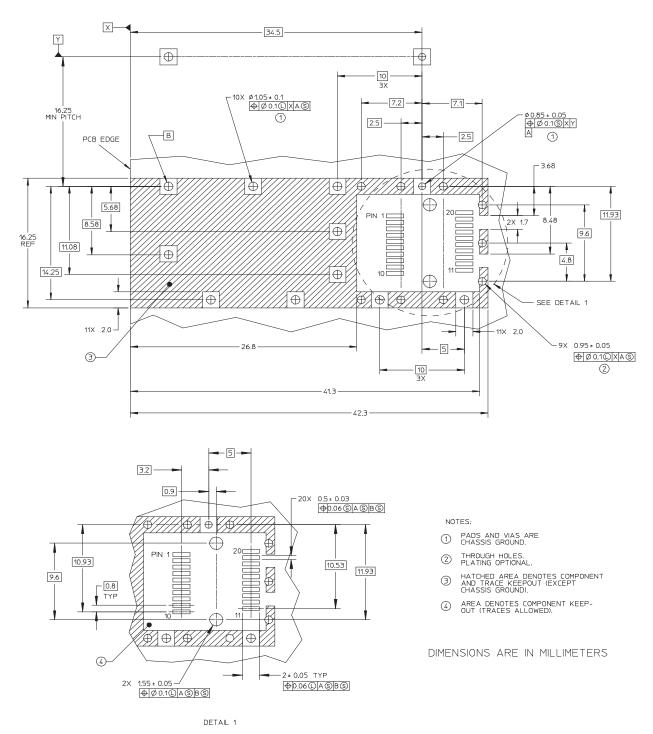


Figure 9. SFP Host Board Mechanical Layout

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes AV01-0165EN AV02-3410EN - August 16, 2013

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.