
⚠Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefo sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications

Chip Monolithic Ceramic Capacitors

Innovator in Electronics

Murata Manufacturing Co., Ltd.

Cat.No.C02E-14

CONTENTS

Part Numbering	:
Selection Guide	
1 for General Purpose GRM Series (Temperature Compensating Type	e)
2 for General Purpose GRM Series (High Dielectric Constant Type) -	17
1 . 2 Specifications and Test Methods	23
GRM Series Data	32
3 Capacitor Array GNM Series	34
3 Specifications and Test Methods	30
4 Low ESL LLL/LLA/LLM Series	42
4 Specifications and Test Methods	45
5 High-Q Type GJM Series	49
5 Specifications and Test Methods	52
6 High Frequency GQM Series	5
GQM Series Data	57
6 Specifications and Test Methods	58
7 High Frequency Type ERB Series	6 [.]
7 Specifications and Test Methods	63
ERB Series Data	66
8 Monolithic Microchip GMA Series	68
8 Specifications and Test Methods	69
9 for Bonding GMD Series	73
9 Specifications and Test Methods	7
10 for Ultrasonic Sensors GRM Series	79
10 Specifications and Test Methods	80
Package	
Notice	9 [.]
Reference Data	90
11 Medium Voltage Low Dissipation Factor	103

12	Medium Voltage High Capacitance for General Use	107
13	Only for LCD Backlight Inverters Circuit	112
14	Only for Information Devices/Tip & Ring	115
15	Only for Camera Flash Circuit	119
16	AC250V (r.m.s.) Type (Which Meet Japanese Law)	123
17	Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)	127
18	Safety Standard Recognized Type GD (IEC60384-14 Class Y3)	128
19	Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)	129
20	Safety Standard Recognized Type GB (IEC60384-14 Class X2)	131
GA	3 Series Specifications and Test Methods	132
GRI	M/GR4/GR7/GA2/GA3 Series Data (Typical Example)	136
Pac	kage	138
۵C	aution	141
Not	ice	149
ISO	9001 Certifications	152

• Please refer to "Specifications and Test Methods" at the end of each chapter of 11 - 16 .

for EU RoHS Compliant · All the products in this catalog comply with EU RoHS. · EU RoHS is "the European Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment". · For more details, please refer to our website 'Murata's Approach for EU RoHS' (http://www.murata.com/info/rohs.html).

• Pa	art Numbering	g			
Cł	nip Monolithic	: Ceramic Ca	pacitors		
(P	art Number)	GR M	18 8 B1 1H 102 K A01 3 4 5 6 9 3 9	ĸ	
0	Product ID				
2	Series				
	Product ID	Code	Series		
		Μ	Tin Plated Layer		
	GR	4	Only for Information Devices / Tip & Ring		
		7	Only for Camera Flash Circuit		
	ER	В	High Frequency Type		
	GQ	Μ	High Frequency for Flow/Reflow Soldering		
	GM	Α	Monolithic Microchip		
	GW	D	for Bonding		
	GN	М	Capacitor Array		
		L	Low ESL Wide Width Type		
	LL	Α	Eight-termination Low ESL Type		
		Μ	Ten-termination Low ESL Type		
_	GJ	Μ	High Frequency Low Loss Type		
	GA	2	for AC250V (r.m.s.)		
_	UA .	3	Safety Standard Recognized Type		

3 Dimension (LXW)

Code	Dimension (L×W)	EIA
02	0.4×0.2mm	01005
03	0.6×0.3mm	0201
05	0.5×0.5mm	0202
08	0.8×0.8mm	0303
0D	0.38×0.38mm	015015
OM	0.9×0.6mm	0302
11	1.25×1.0mm	0504
15	1.0×0.5mm	0402
18	1.6×0.8mm	0603
1M	1.37×1.0mm	0504
21	2.0×1.25mm 0805	
22	2.8×2.8mm	1111
31	3.2×1.6mm	1206
32	3.2×2.5mm	1210
42	4.5×2.0mm	1808
43	4.5×3.2mm 1812	
52	5.7×2.8mm	2211
55	5.7×5.0mm	2220

0.1	
Code	Dimension (T)
2	0.2mm
2	2-elements (Array Type)
3	0.3mm
4	4-elements (Array Type)
5	0.5mm
6	0.6mm
7	0.7mm
8	0.8mm
9	0.85mm
A	1.0mm
В	1.25mm
С	1.6mm
D	2.0mm
E	2.5mm
F	3.2mm
м	1.15mm
N	1.35mm
Q	1.5mm
R	1.8mm
S	2.8mm
X	Depends on individual standards.

With the array type GNM series, "Dimension(T)" indicates the number of elements.

Continued on the following page.

Continued from the preceding page.

5Temperature Characteristics

Temperature Characteristic Codes							
Code	Public STD	Code	Referance Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Range	
1X	SL *1	JIS	20°C	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C	
2C	CH *1	JIS	20°C	20 to 125°C	0±60ppm/°C	-55 to 125°C	
2P	PH *1	JIS	20°C	20 to 85°C	-150±60ppm/°C	-25 to 85°C	
2R	RH *1	JIS	20°C	20 to 85°C	-220±60ppm/°C	-25 to 85°C	
2S	SH *1	JIS	20°C	20 to 85°C	-330±60ppm/°C	-25 to 85°C	
2T	TH *1	JIS	20°C	20 to 85°C	-470±60ppm/°C	-25 to 85°C	
3C	CJ *1	JIS	20°C	20 to 125°C	0±120ppm/°C	-55 to 125°C	
3P	PJ *1	JIS	20°C	20 to 85°C	-150±120ppm/°C	-25 to 85°C	
3R	RJ *1	JIS	20°C	20 to 85°C	-220±120ppm/°C	-25 to 85°C	
3S	SJ *1	JIS	20°C	20 to 85°C	-330±120ppm/°C	-25 to 85°C	
3T	TJ *1	JIS	20°C	20 to 85°C	-470±120ppm/°C	-25 to 85°C	
3U	UJ *1	JIS	20°C	20 to 85°C	-750±120ppm/°C	-25 to 85°C	
4C	CK *1	JIS	20°C	20 to 125°C	0±250ppm/°C	-55 to 125°C	
5C	C0G *1	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C	
5G	X8G *1	EIA	25°C	25 to 150°C	0±30ppm/°C	-55 to 150°C	
6C	C0H *1	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C	
6P	P2H *1	EIA	25°C	25 to 85°C	-150±60ppm/°C	-55 to 125°C	
6R	R2H *1	EIA	25°C	25 to 85°C	-220±60ppm/°C	-55 to 125°C	
6S	S2H *1	EIA	25°C	25 to 85°C	-330±60ppm/°C	-55 to 125°C	
6T	T2H *1	EIA	25°C	25 to 85°C	-470±60ppm/°C	-55 to 125°C	
7U	U2J *1	EIA	25°C	25 to 125°C	-750±120ppm/°C	-55 to 125°C	
B1	B *2	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
B3	В	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
C7	X7S	EIA	25°C	-55 to 125°C	±22%	-55 to 125°C	
C8	X6S	EIA	25°C	-55 to 105°C	±22%	-55 to 105°C	
D7	X7T	EIA	25°C	-55 to 125°C	+22, -33%	-55 to 125°C	
D8	X6T	EIA	25°C	-55 to 105°C	+22, -33%	-55 to 105°C	
E7	X7U	EIA	25°C	-55 to 125°C	+22, -56%	-55 to 125°C	
F1	F *2	JIS	20°C	-25 to 85°C	+30, -80%	-25 to 85°C	
F5	Y5V	EIA	25°C	-30 to 85°C	+22, -82%	-30 to 85°C	
L8	X8L	EIA	25°C	-55 to 150°C	+15, -40%	-55 to 150°C	
R1	R *2	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R3	R	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R6	X5R	EIA	25°C	-55 to 85°C	±15%	-55 to 85°C	
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C	
R9	X8R	EIA	25°C	-55 to 150°C	±15%	-55 to 150°C	
		+0	0000	-25 to 20°C	-4700+1000/-2500ppm/°C	05 1 0500	
9E	ZLM	*3	20°C	20 to 85°C	-4700+500/-1000ppm/°C	-25 to 85°C	
14/0			0540	FF 1 49500	±10% *4		
W0	-	-	25°C	-55 to 125°C	+22, -33% *5	-55 to 125°C	

*1 Please refer to table for Capacitance Change under reference temperature.

*2 Capacitance change is specified with 50% rated voltage applied.

*3,*4 Murata Temperature Characteristic Code.

*4 Apply DC350V bias. *5 No DC bias.

Continued on the following page.

Continued from the preceding page.

•Capacitance Change from each temperature

JIS Code

	Capacitance Change from 20°C (%)					
Murata Code	-5!	5°C	-2!	–25°C		0°C
	Max.	Min.	Max.	Min.	Max.	Min.
1X	-	-	-	-	-	-
2C	0.82	-0.45	0.49	-0.27	0.33	-0.18
2P	-	-	1.32	0.41	0.88	0.27
2R	-	-	1.70	0.72	1.13	0.48
2\$	-	-	2.30	1.22	1.54	0.81
2T	-	-	3.07	1.85	2.05	1.23
3C	1.37	-0.90	0.82	-0.54	0.55	-0.36
3P	-	-	1.65	0.14	1.10	0.09
3R	-	-	2.03	0.45	1.35	0.30
3S	-	-	2.63	0.95	1.76	0.63
3Т	-	-	3.40	1.58	2.27	1.05
3U	-	-	4.94	2.84	3.29	1.89
4C	2.56	-1.88	1.54	-1.13	1.02	-0.75

EIA Code

	Capacitance Change from 25°C (%)					
Murata Code	–55°C		–30°C		–10°C	
	Max.	Min.	Max.	Min.	Max.	Min.
5C/5G	0.58	-0.24	0.40	-0.17	0.25	-0.11
6C	0.87	-0.48	0.59	-0.33	0.38	-0.21
6P	2.33	0.72	1.61	0.50	1.02	0.32
6R	3.02	1.28	2.08	0.88	1.32	0.56
6S	4.09	2.16	2.81	1.49	1.79	0.95
6Т	5.46	3.28	3.75	2.26	2.39	1.44
7U	8.78	5.04	6.04	3.47	3.84	2.21

6 Rated Voltage

Code	Rated Voltage		
0G	DC4V		
0J	DC6.3V		
1A	DC10V		
1C	DC16V		
1E	DC25V		
1H	DC50V		
2A	DC100V		
2D	DC200V		
2E	DC250V		
YD	DC300V		
2H	DC500V		
2J	DC630V		
3A	DC1kV		
3D	DC2kV		
3F	DC3.15kV		
BB	DC350V (for Camera Flash Circuit)		
E2	AC250V		
GB	X2; AC250V (Safety Standard Recognized Type GB)		
GC	X1/Y2; AC250V (Safety Standard Recognized Type GC)		
GD	Y3; AC250V (Safety Standard Recognized Type GD)		
GF	Y2, X1/Y2; AC250V (Safety Standard Recognized Type GF)		

Capacitance

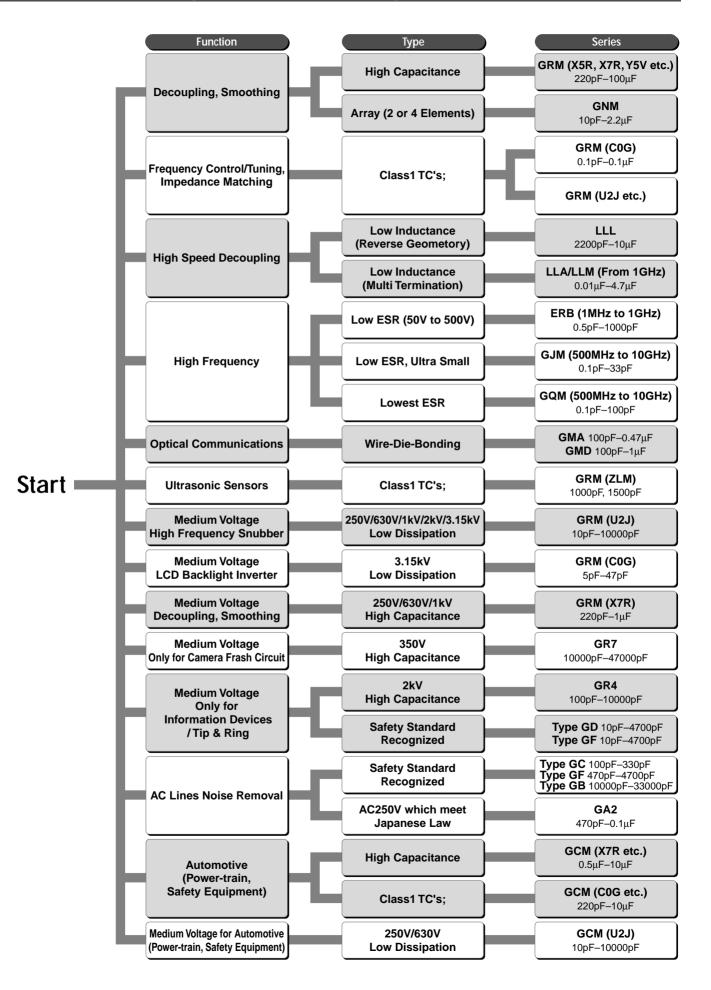
Expressed by three-digit alphanumerics. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter " \mathbf{R} ". In this case, all figures are significant digits.

Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

Continued on the following page.

Code	Capacitance Tolerance	TC	Series	Capac	itance Step	
w	±0.05pF	СД	GRM/GJM	≦9.9pF	0.1pF	
			GRM/GJM	≦9.9pF	0.1pF	
в	10.1mF	СД	GQM	≦1pF	0.1pF	
в	±0.1pF		GOM	1.1 to 9.9pF	1pF and E24 Serie	
			ERB	≦9.9pF	1pF and E24 Serie	
		СΔ	GRM/GJM	≦9.9pF	0.1pF	
		except C∆	GRM	≦5pF	* 1pF	
С	±0.25pF		ERB	≦9.9pF	1pF and E24 Serie	
		СΔ	GQM	≦1pF	0.1pF	
			GQM	1.1 to 9.9pF	1pF and E24 Serie	
		СΔ	GRM/GJM	5.1 to 9.9pF	0.1pF	
D	±0.5pF	except C∆	GRM	5.1 to 9.9pF	* 1pF	
		СΔ	ERB/GQM	5.1 to 9.9pF	1pF and E24 Serie	
G	±2%	СΔ	GJM	≧10pF	E12 Series	
G	±2 %	СΔ	GQM/ERB	≧10pF	E24 Series	
J	±5%	CA-SL	GRM/GA3	≧10pF	E12 Series	
J	I3 %	СΔ	ERB/GQM/GJM	≧10pF	E24 Series	
		B, R, X7R, X5R, ZLM	GRM/GR7/GA3	Eć	Series	
к	±10%	COG	GNM	Εć	5 Series	
		B, R, X7R, X5R, ZLM	GR4, GMD	E1	2 Series	
		B, R, X7R, X7S	GRM/GMA	Εć	5 Series	
м	1200/	X5R, X7R, X7S	GNM	E	3 Series	
м	±20%	X7R	GA2	E	3 Series	
		X5R, X7R, X7S, X6S	LLL/LLA/LLM	E	3 Series	
Z	+80%, -20%	F, Y5V	GRM	E	E3 Series	
R		Depends on individual standards.				

* E24 series is also available.


Individual Specification Code Expressed by three figures.

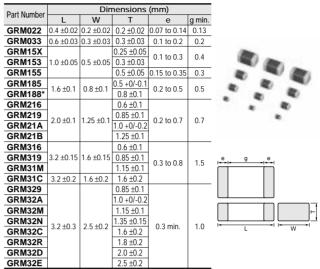
Packaging

Code	Packaging	
L	ø180mm Embossed Taping	
D	ø180mm Paper Taping	
E	ø180mm Paper Taping (LLL15)	
к	ø330mm Embossed Taping	
J	ø330mm Paper Taping	
F	ø330mm Paper Taping (LLL15)	
В	Bulk	
С	Bulk Case	
т	Bulk Tray	

Selection Guide of Chip Monolithic Ceramic Capacitors

Mote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 • Other Subject Content of the specification of the spe

Chip Monolithic Ceramic Capacitors


for General Purpose GRM Series (Temperature Compensating Type)

Features

- Highter resistance of solder-leaching due to the Ni-barriered termination, applicable for reflow-soldering, and flow-soldering (GRM18/21/31 type only).
- 2. The GRM series is lead free product.
- 3. Smaller size and higher capacitance value.
- 4. High reliability and no polarity.
- 5. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.
- The GRM series is available in paper or embossed tape and reel packaging for automatic placement. Bulk case packaging is also available for GRM15/18/21(T=0.6,1.25).
- 7. Ta replacement.

Applications

General electronic equipment

* Bulk Case : 1.6 ±0.07(L)×0.8 ±0.07(W)×0.8 ±0.07(T)

Temperature Compensating Type C0G(5C) Characteristics

Part Number		GRM02		GRM03	GRM15
L x W [EIA]		0.4x0.2 [01	005]	0.6x0.3 [0201]	1.0x0.5 [0402]
Rated Volt.		16 (1C)	6.3 (0J)	50 (1H)	50 (1H)
тс		C0G (5C)	C0G (5C)	C0G (5C)	C0G (5C)
Capacitance, Ca	apacitance	Tolerance and T Dimension			
0.10pF(R10)	W, B			0.3 (3)	0.5 (5)
0.20pF(R20)	W, B	0.2(2)		0.3(3)	0.5 (5)
0.30pF(R30)	W, B	0.2(2)		0.3(3)	0.5 (5)
0.40pF(R40)	W, B	0.2(2)		0.3(3)	0.5 (5)
0.50pF(R50)	W, B	0.2(2)		0.3(3)	0.5 (5)
0.60pF(R60)	W, B	0.2(2)		0.3 (3)	0.5 (5)
0.70pF(R70)	W, B	0.2(2)		0.3 (3)	0.5 (5)
0.80pF(R80)	W, B	0.2(2)		0.3 (3)	0.5 (5)
0.90pF(R90)	W, B	0.2(2)		0.3 (3)	0.5 (5)
1.0pF(1R0)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)
1.1pF(1R1)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)
1.2pF(1R2)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
1.3pF(1R3)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)
1.4pF(1R4)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)
1.5pF(1R5)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)
1.6pF(1R6)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)
1.7pF(1R7)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
1.8pF(1R8)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
1.9pF(1R9)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
2.0pF(2R0)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
2.1pF(2R1)	W, B, C	0.2(2)		0.3(3)	0.5 (5)
2.2pF(2R2)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)

The part numbering code is shown in $% \left({\left({{{{\bf{n}}_{\rm{s}}}} \right)} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

1

Part Number		GRM0	2	GRM03	GRM15 1.0x0.5 [0402]	
L x W [EIA]		0.4x0.2 [0	1005]	0.6x0.3 [0201]		
Rated Volt.		16 (1C)	6.3 (0J)	50 (1H)	50 (1H)	
тс		C0G (5C)	C0G (5C)	C0G (5C)	C0G (5C)	
Capacitance, Ca	apacitance Tole	erance and T Dimension				
2.3pF(2R3)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
2.4pF(2R4)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
2.5pF(2R5)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
2.6pF(2R6)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
2.7pF(2R7)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
2.8pF(2R8)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
2.9pF(2R9)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
3.0pF(3R0)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
3.1pF(3R1)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
3.2pF(3R2)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
3.3pF(3R3)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
3.4pF(3R4)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
3.5pF(3R5)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
3.6pF(3R6)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
3.7pF(3R7)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
3.8pF(3R8)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
3.9pF(3R9)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
4.0pF(4R0)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
4.1pF(4R1)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
4.2pF(4R2)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
4.3pF(4R3)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
4.4pF(4R4)	W, B, C	0.2(2)		0.3(3)	0.5(5)	
4.5pF(4R5)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
4.6pF(4R6)	W, B, C	0.2(2)		0.3(3)	0.5(5)	
4.7pF(4R7)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
4.8pF(4R8)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
4.9pF(4R9)	W, B, C	0.2(2)		0.3 (3)	0.5 (5)	
5.0pF(5R0)	W, B, C	0.2(2)		0.3(3)	0.5 (5)	
5.1pF(5R1)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
5.2pF(5R2)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
5.3pF(5R3)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
5.4pF(5R4)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
5.5pF(5R5)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
5.6pF(5R6)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
5.7pF(5R7)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
5.8pF(5R8)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
5.9pF(5R9)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
6.0pF(6R0)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
6.1pF(6R1)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
6.2pF(6R2)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
6.3pF(6R3)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
6.4pF(6R4)	W, B, C, D	0.2(2)		0.3 (3)	0.5(5)	
6.5pF(6R5)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
6.6pF(6R6)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
6.7pF(6R7)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
6.8pF(6R8)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
6.9pF(6R9)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
7.0pF(7R0)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
7.1pF(7R1)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
7.2pF(7R2)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	

The part numbering code is shown in $% \left({\left. {{{\bf{n}}_{\rm{s}}}} \right)_{\rm{s}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

C02E.pdf 08.9.1

Note
• This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
• This PDF catalog has only typical specifications are subjected for product specifications before ordering.
• This PDF catalog has only typical specifications are subjected for product specifications before ordering.
• This PDF catalog has only typical specifications are subjected for product specifications before ordering.
• This PDF catalog has only typical specifications are subjected for product specifications before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications.
• Therefore, please approve our product specifications or transact the approval sheet for product specifications because the specifications because the specifications because the specification or transact the approval specification or transact the approval specification or transact the approval specification or transact the specification or transact the

Part Number		GRM02		GRM03	GRM15	
L x W [EIA]		0.4x0.2 [010	005]	0.6x0.3 [0201]	1.0x0.5 [0402]	
Rated Volt.		16 (1C)	6.3 (0J)	50 (1H)	50 (1H)	
тс		C0G (5C)	C0G (5C)	C0G (5C)	C0G (5C)	
Capacitance, Ca	apacitance T	olerance and T Dimension			·	
7.3pF(7R3)	W, B, C, D	0.2(2)		0.3 (3)	0.5 (5)	
7.4pF(7R4)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
7.5pF(7R5)	W, B, C, D	0.2(2)		0.3 (3)	0.5 (5)	
7.6pF(7R6)	W, B, C, D	0.2 (2)		0.3 (3)	0.5 (5)	
7.7pF(7R7)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
7.8pF(7R8)	W, B, C, D	0.2(2)		0.3 (3)	0.5 (5)	
7.9pF(7R9)	W, B, C, D	0.2(2)		0.3 (3)	0.5 (5)	
8.0pF(8R0)	W, B, C, D	0.2(2)		0.3 (3)	0.5 (5)	
8.1pF(8R1)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
8.2pF(8R2)	W, B, C, D	0.2(2)		0.3(3)	0.5 (5)	
8.3pF(8R3)	W, B, C, D	0.2(2)		0.3 (3)	0.5(5)	
8.4pF(8R4)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
8.5pF(8R5)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
8.6pF(8R6)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
8.7pF(8R7)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
8.8pF(8R8)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
8.9pF(8R9)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
9.0pF(9R0)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
9.1pF(9R1)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
9.2pF(9R2)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
9.3pF(9R3)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
9.4pF(9R4)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
9.5pF(9R5)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
9.6pF(9R6)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
9.7pF(9R7)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
9.8pF(9R8)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
9.9pF(9R9)	W, B, C, D	0.2(2)		0.3(3)	0.5(5)	
10pF(100)	J	0.2(2)		0.3(3)	0.5 (5)	
12pF(120)	J	0.2(2)		0.3(3)	0.5(5)	
15pF(150)	J	0.2(2)		0.3(3)	0.5 (5)	
18pF(180)	J	0.2(2)		0.3(3)	0.5(5)	
22pF(220)	J	0.2(2)		0.3(3)	0.5(5)	
27pF(270)	J	0.2(2)		0.3(3)	0.5(5)	
33pF(330)	J	0.2(2)		0.3(3)	0.5(5)	
39pF(390)	J	0.2(2)		0.3(3)	0.5(5)	
47pF(470)	J	0.2(2)		0.3(3)	0.5(5)	
56pF(560)	J		0.2(2)	0.3(3)	0.5(5)	
68pF(680)	J		0.2(2)	0.3(3)	0.5(5)	
82pF(820)	J		0.2(2)	0.3(3)	0.5(5)	
100pF(101)	J		0.2(2)	0.3(3)	0.5(5)	
120pF(121)	J				0.5(5)	
150pF(151)	J				0.5(5)	
180pF(181)	J				0.5(5)	
220pF(221)	J				0.5(5)	
270pF(271)	J				0.5(5)	
330pF(331)	J				0.5(5)	
390pF(391)	J				0.5(5)	
470pF(471)	J				0.5(5)	
560pF(561)	J				0.5(5)	
680pF(681)	J				0.5(5)	

The part numbering code is shown in $% \left({\left. {{{\bf{n}}_{\rm{s}}}} \right)_{\rm{s}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

1

Continued from the preceding page.

Part Number		GRM02		GRM03	GRM15	
L x W [EIA]		0.4x0.2 [010	005]	0.6x0.3 [0201]	1.0x0.5 [0402]	
Rated Volt.		16 (1C)	6.3 (0J)	50 (1H)	50 (1H)	
тс		C0G (5C)	C0G (5C)	C0G (5C)	C0G (5C)	
Capacitance, Ca	pacitanc	e Tolerance and T Dimension				
820pF(821)	J				0.5 (5)	
1000pF(102)	J				0.5(5)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Part Number		GR	M18	GR	M21	GRI	M31
L x W [EIA]		1.6x0.8	3 [0603]	2.0 x1.2	25 [0805]	3.2x1.6	[1206]
Rated Volt.		100 (2A)	50 (1H)	100 (2A)	50 (1H)	100 (2A)	50 (1H)
тс		C0G (5C)					
Capacitance, Ca	pacitance	Tolerance and T	Dimension				
0.10pF(R10)	В		0.8(8)				
0.20pF(R20)	В		0.8 (8)				
0.30pF(R30)	С		0.8 (8)				
0.40pF(R40)	С		0.8(8)				
0.50pF(R50)	С	0.8 (8)	0.8 (8)				
0.60pF(R60)	С	0.8 (8)	0.8(8)				
0.70pF(R70)	С	0.8 (8)	0.8(8)				
0.80pF(R80)	С	0.8 (8)	0.8(8)				
0.90pF(R90)	С	0.8(8)	0.8(8)				
1.0pF(1R0)	С	0.8(8)	0.8(8)				
2.0pF(2R0)	С	0.8(8)	0.8(8)				
3.0pF(3R0)	С	0.8(8)	0.8(8)				
4.0pF(4R0)	С	0.8(8)	0.8(8)				
5.0pF(5R0)	С	0.8(8)	0.8(8)				
6.0pF(6R0)	D	0.8 (8)	0.8(8)				
7.0pF(7R0)	D	0.8 (8)	0.8(8)				
8.0pF(8R0)	D	0.8 (8)	0.8(8)				
9.0pF(9R0)	D	0.8 (8)	0.8(8)				
10pF(100)	J	0.8 (8)	0.8(8)				
12pF(120)	J	0.8 (8)	0.8(8)				
15pF(150)	J	0.8 (8)	0.8(8)				
18pF(180)	J	0.8 (8)	0.8(8)				
22pF(220)	J	0.8 (8)	0.8(8)				
27pF(270)	J	0.8 (8)	0.8(8)				
33pF(330)	J	0.8 (8)	0.8(8)				
39pF(390)	J	0.8 (8)	0.8(8)				
47pF(470)	J	0.8 (8)	0.8(8)				
56pF(560)	J	0.8 (8)	0.8(8)				
68pF(680)	J	0.8 (8)	0.8(8)				
82pF(820)	J	0.8 (8)	0.8(8)				
100pF(101)	J	0.8 (8)	0.8(8)				
120pF(121)	J	0.8 (8)	0.8(8)				
150pF(151)	J	0.8 (8)	0.8(8)				
180pF(181)	J	0.8 (8)	0.8(8)				
220pF(221)	J	0.8 (8)	0.8(8)				
270pF(271)	J	0.8 (8)	0.8(8)				
330pF(331)	J	0.8(8)	0.8(8)				

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

10

Part Number		GR	M18	GR	M21	GRM	//31
L x W [EIA]		1.6x0.8	8 [0603]	2.0 x1.2	25 [0805]	3.2x1.6	[1206]
Rated Volt.	100 50 100 50 (2A) (1H) (2A) (1H)		50 (1H)	100 (2A)	50 (1H)		
тс		C0G (5C)	C0G (5C)	C0G (5C)	C0G (5C)	COG (5C)	C0G (5C)
Capacitance, Ca	pacitance	Tolerance and T D	imension	1	I		
390pF(391)	J	0.8(8)	0.8(8)				
470pF(471)	J	0.8(8)	0.8 (8)				
560pF(561)	J	0.8(8)	0.8 (8)				
680pF(681)	J	0.8 (8)	0.8(8)				
820pF(821)	J	0.8 (8)	0.8(8)				
1000pF(102)	J	0.8 (8)	0.8 (8)				
1200pF(122)	J	0.8 (8)	0.8 (8)				
1500pF(152)	J	0.8 (8)	0.8 (8)				
1800pF(182)	J		0.8 (8)	0.6(6)			
2200pF(222)	J		0.8 (8)	0.6 (6)			
2700pF(272)	J		0.8 (8)	0.6 (6)			
3300pF(332)	J		0.8 (8)	0.6 (6)			
3900pF(392)	J		0.8 (8)			0.85(9)	
4700pF(472)	J				0.6(6)	0.85(9)	
5600pF(562)	J				0.85 (9)	0.85(9)	
6800pF(682)	J				0.85 (9)	0.85(9)	
8200pF(822)	J				0.85 (9)	0.85(9)	
10000pF(103)	J				0.85 (9)	0.85(9)	
12000pF(123)	J				0.85 (9)		
15000pF(153)	J				0.85 (9)		
18000pF(183)	J				1.25(B)		
22000pF(223)	J				1.25(B)		
27000pF(273)	J						0.85(9)
33000pF(333)	J						0.85(9)
39000pF(393)	J						0.85(9)
47000pF(473)	J						1.15(M)
56000pF(563)	J						1.15(M)
68000pF(683)	J						1.6(C)
82000pF(823)	J						1.6(C)
0.10μF(104)	J						1.6(C)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type C0G(5C) Characteristics Low Profile

Part Number		GRM15
L x W [EIA]	A] 1.0x0.5 [0402]	
Rated Volt. 50 (1H)		
тс		C0G (5C)
Capacitance, Ca	pacitanc	e Tolerance and T Dimension
120pF(121)	J	0.3(3)
150pF(151)	J	0.3(3)
180pF(181)	J	0.3(3)
220pF(221)	J	0.3(3)
270pF(271)	J	0.3(3)
330pF(331)	J	0.3(3)
390pF(391)	J	0.3(3)

1

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Continued from the preceding page.

Part Number GRM15		GRM15	
L x W [EIA]		1.0x0.5 [0402]	
Rated Volt.		50 (1H)	
тс		C0G (5C)	
Capacitance, Capacitance Tolerance and T Dimension		e Tolerance and T Dimension	
470pF(471)	J	0.3 (3)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type U2J(7U) Characteristics

Part Number		GR	M03	GR	M15	GRM	/18	GR	M21	GRM31
L x W [EIA]		0.6x0.3	3 [0201]	1.0x0.5 [0402]		1.6x0.8 [0603]		2.0x1.2	5 [0805]	3.2x1.6 [1206]
Rated Volt.		50 (1H)	25 (1E)	50 (1H)	10 (1A)	50 (1H)	10 (1A)	50 (1H)	10 (1A)	50 (1H)
тс		U2J (7U)								
Capacitance, Ca	pacitan	ce Tolerance a	and T Dimens	ion						
1.0pF(1R0)	С	0.3(3)		0.5(5)		0.8 (8)				
2.0pF(2R0)	С	0.3(3)		0.5(5)		0.8 (8)				
3.0pF(3R0)	С	0.3(3)		0.5(5)		0.8 (8)				
4.0pF(4R0)	С	0.3(3)		0.5(5)		0.8 (8)				
5.0pF(5R0)	С	0.3(3)		0.5(5)		0.8 (8)				
6.0pF(6R0)	D	0.3(3)		0.5(5)		0.8 (8)				
7.0pF(7R0)	D	0.3(3)		0.5(5)		0.8 (8)				
8.0pF(8R0)	D	0.3(3)		0.5(5)		0.8 (8)				
9.0pF(9R0)	D	0.3(3)		0.5(5)		0.8 (8)				
10pF(100)	J	0.3(3)		0.5(5)		0.8 (8)				
12pF(120)	J	0.3(3)		0.5(5)		0.8(8)				
15pF(150)	J	0.3(3)		0.5(5)		0.8(8)				
18pF(180)	J		0.3(3)	0.5(5)		0.8(8)				
22pF(220)	J		0.3(3)	0.5(5)		0.8(8)				
27pF(270)	J		0.3(3)	0.5(5)		0.8(8)				
33pF(330)	J		0.3(3)	0.5(5)		0.8 (8)				
39pF(390)	J		0.3(3)	0.5(5)		0.8 (8)				
47pF(470)	J		0.3(3)	0.5(5)		0.8(8)				
56pF(560)	J		0.3(3)	0.5(5)		0.8(8)				
68pF(680)	J		0.3(3)	0.5(5)		0.8(8)				
82pF(820)	J		0.3(3)	0.5(5)		0.8(8)				
100pF(101)	J		0.3(3)	0.5(5)		0.8(8)				
120pF(121)	J			0.5(5)		0.8 (8)				
150pF(151)	J			0.5(5)		0.8 (8)				
180pF(181)	J			0.5(5)		0.8 (8)				
220pF(221)	J					0.8 (8)				
270pF(271)	J					0.8(8)				
330pF(331)	J					0.8(8)				
390pF(391)	J					0.8(8)				
470pF(471)	J					0.8(8)				
560pF(561)	J					0.8(8)				
680pF(681)	J					0.8 (8)				
1000pF(102)	J					0.8(8)				
1200pF(122)	J				0.5(5)	0.8(8)				
1500pF(152)	J				0.5(5)	0.8(8)				
1800pF(182)	J				0.5(5)	0.8(8)				

The part numbering code is shown in ().

12

Dimensions are shown in mm and Rated Voltage in Vdc.

Note
• This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. C02E.pdf 08.9.1

Part Number		GR	M03	GR	M15	GR	M18	GR	M21	GRM31
L x W [EIA]		0.6x0.3	3 [0201]	1.0x0.	1.0x0.5 [0402]		1.6x0.8 [0603]		5 [0805]	3.2x1.6 [1206]
Rated Volt.		50 (1H)	25 (1E)	50 (1H)	10 (1A)	50 (1H)	10 (1A)	50 (1H)	10 (1A)	50 (1H)
тс		U2J (7U)								
Capacitance, Ca	pacitanc	e Tolerance a	and T Dimensi	ion						
2200pF(222)	J				0.5(5)	0.8(8)				
2700pF(272)	J				0.5(5)	0.8(8)				
3300pF(332)	J				0.5(5)	0.8(8)				
3900pF(392)	L				0.5(5)	0.8(8)				
4700pF(472)	L				0.5(5)	0.8(8)				
5600pF(562)	L					0.8(8)				
6800pF(682)	J					0.8(8)				
8200pF(822)	J					0.8(8)				
10000pF(103)	J					0.8(8)				
12000pF(123)	J						0.8(8)	0.6(6)		
15000pF(153)	J						0.8(8)	0.6(6)		
18000pF(183)	J						0.8(8)	0.6(6)		
22000pF(223)	J						0.8(8)	0.85(9)		
27000pF(273)	J							0.85(9)		
33000pF(333)	J							1.0(A)		
39000pF(393)	J							1.25(B)		
47000pF(473)	J							1.25(B)		
56000pF(563)	J								0.85(9)	0.85(9)
68000pF(683)	J								1.25(B)	1.15(M)
82000pF(823)	J								1.25(B)	1.15(M)
0.10μF(104)	J								1.25(B)	1.15(M)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type P2H(6P) Characteristics

Part Number		GRM15	GRM18
L x W [EIA]		1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.	ated Volt. 50 (1H)		50 (1 H)
тс		P2H (6P)	P2H (6P)
Capacitance, Ca	pacitanc	e Tolerance and T Dimension	
1.0pF(1R0)	С	0.5 (5)	0.8 (8)
2.0pF(2R0)	С	0.5 (5)	0.8(8)
3.0pF(3R0)	С	0.5 (5)	0.8(8)
4.0pF(4R0)	С	0.5 (5)	0.8 (8)
5.0pF(5R0)	С	0.5 (5)	0.8 (8)
6.0pF(6R0)	D	0.5 (5)	0.8 (8)
7.0pF(7R0)	D	0.5 (5)	0.8(8)
8.0pF(8R0)	D	0.5 (5)	0.8 (8)
9.0pF(9R0)	D	0.5 (5)	0.8 (8)
10pF(100)	J	0.5 (5)	0.8 (8)
12pF(120)	J	0.5 (5)	0.8 (8)
15pF(150)	J	0.5 (5)	0.8 (8)
18pF(180)	J	0.5 (5)	0.8 (8)
22pF(220)	J	0.5 (5)	0.8 (8)
27pF(270)	J	0.5 (5)	0.8 (8)
33pF(330)	J		0.8(8)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

1

Continued from the preceding page.

Part Number		GRM15	GRM18
L x W [EIA]		1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.		50 (1H)	50 (1H)
тс		P2H (6P)	P2H (6P)
Capacitance, Ca	pacitand	ce Tolerance and T Dimension	
39pF(390)	J		0.8(8)
47pF(470)	J		0.8(8)
56pF(560)	J		0.8(8)
68pF(680)	J		0.8(8)
82pF(820)	J		0.8(8)
100pF(101)	J		0.8(8)
120pF(121)	J		0.8(8)
150pF(151)	J		0.8(8)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type R2H(6R) Characteristics

Part Number		GRM03	GRM15	GRM18
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.		25 (1E)	50 (1H)	50 (1H)
тс		R2H (6R)	R2H (6R)	R2H (6R)
Capacitance, Ca	pacitance To	plerance and T Dimension		
1.0pF(1R0)	С	0.3 (3)	0.5 (5)	0.8 (8)
2.0pF(2R0)	С	0.3 (3)	0.5 (5)	0.8 (8)
3.0pF(3R0)	С	0.3 (3)	0.5 (5)	0.8 (8)
4.0pF(4R0)	С	0.3 (3)	0.5 (5)	0.8 (8)
5.0pF(5R0)	С	0.3 (3)	0.5 (5)	0.8 (8)
6.0pF(6R0)	D	0.3 (3)	0.5 (5)	0.8 (8)
7.0pF(7R0)	D	0.3 (3)	0.5 (5)	0.8 (8)
8.0pF(8R0)	D	0.3 (3)	0.5 (5)	0.8 (8)
9.0pF(9R0)	D	0.3 (3)	0.5 (5)	0.8 (8)
10pF(100)	J	0.3 (3)	0.5 (5)	0.8 (8)
12pF(120)	J	0.3 (3)	0.5 (5)	0.8 (8)
15pF(150)	J	0.3 (3)	0.5 (5)	0.8 (8)
18pF(180)	J	0.3 (3)	0.5 (5)	0.8 (8)
22pF(220)	J	0.3 (3)	0.5 (5)	0.8 (8)
27pF(270)	J	0.3 (3)	0.5 (5)	0.8 (8)
33pF(330)	J	0.3 (3)	0.5 (5)	0.8 (8)
39pF(390)	J	0.3 (3)		0.8 (8)
47pF(470)	J	0.3 (3)		0.8 (8)
56pF(560)	J	0.3 (3)		0.8 (8)
68pF(680)	J	0.3 (3)		0.8 (8)
82pF(820)	J	0.3 (3)		0.8 (8)
100pF(101)	J	0.3 (3)		0.8(8)
120pF(121)	J			0.8 (8)
150pF(151)	J			0.8 (8)
180pF(181)	J			0.8 (8)

The part numbering code is shown in ().

14

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type S2H(6S) Characteristics

Part Number		GRM03	GRM15	GRM18
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.		25 (1E)	50 (1H)	50 (1H)
тс		S2H (6S)	S2H (6S)	S2H (6S)
Capacitance, Ca	pacitance To	lerance and T Dimension		
1.0pF(1R0)	С	0.3 (3)	0.5 (5)	0.8 (8)
2.0pF(2R0)	С	0.3 (3)	0.5 (5)	0.8 (8)
3.0pF(3R0)	С	0.3 (3)	0.5(5)	0.8 (8)
4.0pF(4R0)	С	0.3 (3)	0.5(5)	0.8 (8)
5.0pF(5R0)	С	0.3 (3)	0.5(5)	0.8 (8)
6.0pF(6R0)	D	0.3 (3)	0.5(5)	0.8(8)
7.0pF(7R0)	D	0.3 (3)	0.5(5)	0.8 (8)
8.0pF(8R0)	D	0.3 (3)	0.5 (5)	0.8 (8)
9.0pF(9R0)	D	0.3 (3)	0.5 (5)	0.8 (8)
10pF(100)	J	0.3 (3)	0.5 (5)	0.8 (8)
12pF(120)	J	0.3 (3)	0.5 (5)	0.8 (8)
15pF(150)	J	0.3 (3)	0.5 (5)	0.8 (8)
18pF(180)	J	0.3 (3)	0.5 (5)	0.8 (8)
22pF(220)	J	0.3 (3)	0.5 (5)	0.8 (8)
27pF(270)	J	0.3 (3)	0.5(5)	0.8 (8)
33pF(330)	J	0.3 (3)	0.5(5)	0.8 (8)
39pF(390)	J	0.3 (3)	0.5(5)	0.8 (8)
47pF(470)	J	0.3 (3)		0.8 (8)
56pF(560)	J	0.3 (3)		0.8 (8)
68pF(680)	J	0.3 (3)		0.8 (8)
82pF(820)	J	0.3 (3)		0.8 (8)
100pF(101)	J	0.3 (3)		0.8 (8)
120pF(121)	J			0.8 (8)
150pF(151)	J			0.8 (8)
180pF(181)	J			0.8(8)
220pF(221)	J			0.8 (8)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type T2H(6T) Characteristics

Part Number		GRM03	GRM15	GRM18
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.		25 (1E)	50 (1H)	50 (1H)
тс		Т2Н (6Т)	Т2Н (6Т)	T2H (6T)
Capacitance, Ca	pacitanc	e Tolerance and T Dimension		
1.0pF(1R0)	С	0.3(3)	0.5 (5)	0.8(8)
2.0pF(2R0)	С	0.3(3)	0.5 (5)	0.8(8)
3.0pF(3R0)	С	0.3(3)	0.5 (5)	0.8(8)
4.0pF(4R0)	С	0.3(3)	0.5 (5)	0.8(8)
5.0pF(5R0)	С	0.3(3)	0.5 (5)	0.8(8)
6.0pF(6R0)	D	0.3(3)	0.5 (5)	0.8(8)
7.0pF(7R0)	D	0.3(3)	0.5 (5)	0.8(8)
8.0pF(8R0)	D	0.3(3)	0.5(5)	0.8(8)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

1

Continued from the preceding page

1

Part Number		GRM03	GRM15	GRM18
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]	1.6x0.8 [0603]
Rated Volt.		25 (1E)	50 (1H)	50 (1H)
тс		Т2Н (6Т)	Т2Н (6Т)	T2H (6T)
Capacitance, Ca	pacitance Tol	erance and T Dimension		
9.0pF(9R0)	D	0.3(3)	0.5(5)	0.8 (8)
10pF(100)	J	0.3(3)	0.5(5)	0.8(8)
12pF(120)	J	0.3(3)	0.5(5)	0.8(8)
15pF(150)	J	0.3(3)	0.5(5)	0.8(8)
18pF(180)	J	0.3(3)	0.5(5)	0.8(8)
22pF(220)	J	0.3(3)	0.5(5)	0.8(8)
27pF(270)	J	0.3(3)	0.5(5)	0.8 (8)
33pF(330)	J	0.3(3)	0.5(5)	0.8(8)
39pF(390)	J	0.3(3)	0.5(5)	0.8 (8)
47pF(470)	J	0.3(3)	0.5(5)	0.8 (8)
56pF(560)	J	0.3(3)	0.5(5)	0.8 (8)
68pF(680)	J	0.3(3)	0.5(5)	0.8 (8)
82pF(820)	J	0.3(3)	0.5(5)	0.8 (8)
100pF(101)	J	0.3(3)	0.5(5)	0.8 (8)
120pF(121)	J			0.8 (8)
150pF(151)	J			0.8 (8)
180pF(181)	J			0.8 (8)
220pF(221)	J			0.8(8)
270pF(271)	J			0.8(8)
330pF(331)	J			0.8(8)
390pF(391)	J			0.8(8)
470pF(471)	J			0.8(8)

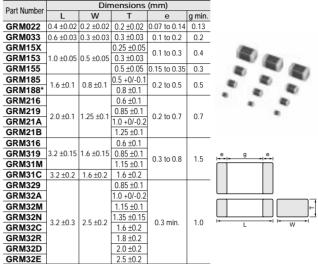
The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

16

Chip Monolithic Ceramic Capacitors

for General Purpose GRM Series (High Dielectric Constant Type)


2

Features

- Highter resistance of solder-leaching due to the Ni-barriered termination, applicable for reflow-soldering, and flow-soldering (GRM18/21/31 type only).
- 2. The GRM series is lead free product.
- 3. Smaller size and higher capacitance value.
- 4. High reliability and no polarity.
- 5. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.
- The GRM series is available in paper or embossed tape and reel packaging for automatic placement. Bulk case packaging is also available for GRM15/18/21(T=0.6,1.25).
- 7. Ta replacement.

Applications

General electronic equipment

* Bulk Case : 1.6 ±0.07(L)×0.8 ±0.07(W)×0.8 ±0.07(T)

High Dielectric Constant Type X5R(R6) Characteristics

Part Number		GR	M02	GR	M03	0	GRM1	5		C	GRM1	8		(GRM2	1		GR	M31		GR	M32
L x W [EIA]		0.4x0.2	[01005]	0.6x0.3	3 [0201]	1.0x	0.5 [0	402]		1.6x	0.8 [0	603]		2.0x ²	1.25 [0	0805]	3	.2x1.6	[120	6]	3.2x2.5	5 [1210]
Rated Volt.		10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	50 (1H)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	6.3 (0J)	25 (1E)	16 (1C)
тс		X5R (R6)	X5R (R6)		X5R (R6)	X5R (R6)			X5R (R6)				X5R (R6)		X5R (R6)	X5R (R6)		X5R (R6)			X5R (R6)	
Capacitance, Ca	pacitan	ce Tole	erance	and	T Dim	ensior	ו		1			1	1	1	1	1	1	1	1	1	1	1
68pF (680)	к	0.2 (2)																				
100pF (101)	к	0.2 (2)																				
150pF (151)	к	0.2 (2)																				
220pF (221)	к	0.2 (2)																				
330pF (331)	к	0.2 (2)																				
470pF (471)	к	0.2 (2)																				
680pF (681)	к		0.2* (2)																			
1000pF (102)	к		0.2* (2)			0.5 (5)			0.8 (8)													
1500pF (152)	к		0.2* (2)	0.3 (3)																		

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.29).

**: In case of Rated Volt.6.3V, Capacitance Tolerance should be M.

GRM21B Series 6.3V/22µF (L: 2.0±0.15, W: 1.25±0.15, T: 1.25±0.15mm)

GRM31C Series 6.3V/100µF (L: 3.2±0.3, W: 1.6±0.3, T: 1.6±0.3mm)

2

Part Number		GR	M02	GR	M03	0	GRM1	5		0	SRM1	В		C	SRM2	1		GRI	M 31		GRI	M 32
_ x W [EIA]		0.4x0.2	[01005]	0.6x0.3	8 [0201]	1.0x	0.5 [0	402]		1.6x	0.8 [0	603]		2.0x1	1.25 [0	805]	3	.2x1.6	[120	6]	3.2x2.5	i [121
Rated Volt.		10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	50 (1H)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	6.3 (0J)	25 (1E)	1 (1
гс		X5R (R6)	X5R (R6)	X5R (R6)	X5R (R6)	X5R (R6)	X5R (R6)	X5R (R6)	X5R (R6)	X5 (R												
Capacitance, Ca	pacitanc	ce Tole	erance	and	T Dim	ensior	י	1														
2200pF (222)	к		0.2* (2)	0.3 (3)		0.5 (5)			0.8 (8)													
3300pF (332)	к		0.2* (2)	0.3 (3)																		
4700pF (472)	к		0.2* (2)	0.3 (3)		0.5 (5)			0.8 (8)													
6800pF (682)	к		0.2* (2)	0.3 (3)																		
10000pF (103)	к		0.2* (2)	0.3 (3)			0.5 (5)		0.8 (8)													
15000pF (153)	к				0.3* (3)																	
22000pF (223)	к				0.3* (3)		0.5 (5)		0.8 (8)													
33000pF (333)	к				0.3* (3)		0.5 (5)															
47000pF (473)	к				0.3* (3)		0.5 (5)															
68000pF (683)	к				0.3* (3)		0.5 (5)															
0.10μF (104)	к				0.3* (3)		0.5 (5)			0.8 (8)												
0.15µF (154)	к							0.5* (5)				0.8 (8)										
0.22µF (224)	к							0.5* (5)		0.8 (8)												
0.33µF (334)	к							0.5* (5)		/												
0.47µF (474)	к							0.5* (5)		0.8* (8)												
0.68µF (684)	к							0.5* (5)		(-)												
1μF (105)	к							0.5* (5)		0.8* (8)												
2.2µF (225)	к							/		/	0.8* (8)			1.25* (B)			1.6 (C)					
4.7μF (475)	к										. /		0.8* (8)	(=) 1.25* (B)			. /					
10μF (106)	K, M**												0.8* (8)	. ,	1.25* (B)			1.6* (C)				
22µF (226)	м												/			1.25* (B)		/	1.6* (C)		2.5* (E)	
47μF (476)	м															()			(-)	1.6* (C)	()	2. (I
100μF (107)	м																			(c) 1.6* (C)		,

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.29).

**: In case of Rated Volt.6.3V, Capacitance Tolerance should be M.

GRM21B Series 6.3V/22µF (L: 2.0 \pm 0.15, W: 1.25 \pm 0.15, T: 1.25 \pm 0.15mm)

GRM31C Series 6.3V/100µF (L: 3.2±0.3, W: 1.6±0.3, T: 1.6±0.3mm)

High Dielectric Constant Type X6S/X6T(C8/D8) Characteristics

Part Number		GR	M03	GR	M15	GR	M18		GRM21			GRM31		GR	M32
L x W [EIA]		0.6x0.3	8 [0201]	1.0x0.5	5 [0402]	1.6x0.8	3 [0603]	2.0	x1.25 [08	305]	3.2	2x1.6 [12	06]	3.2x2.5	5 [1210]
Rated Volt.		6.3 (0J)	4 (0G)	6.3 (0J)	4 (0G)	10 (1A)	4 (0G)	25 (1E)	10 (1A)	4 (0G)	10 (1A)		4 G)	10 (1A)	6.3 (0J)
тс		X6S (C8)	X6T (D8)	X6S (C8)	X6S (C8)										
Capacitance, Ca	pacitan	ce Tolera	nce and	T Dimens	sion	<u> </u>	1	1	<u> </u>	1	1			1	1
15000pF(153)	К	0.3*(3)													
22000pF(223)	К	0.3*(3)													
33000pF(333)	К	0.3*(3)													
47000pF(473)	К	0.3*(3)													
0.10μF(104)	К		0.3*(3)												
0.15μF(154)	К			0.5*(5)											
0.22µF(224)	К			0.5*(5)											
0.33µF(334)	К			0.5* (5)											
0.47µF(474)	К			0.5* (5)											
0.68µF(684)	К				0.5* (5)										
1.0μF(105)	К				0.5* (5)										
2.2μF(225)	К					0.8*(8)									
4.7μF(475)	К						0.8*(8)	1.25*(B)							
10μF(106)	К								1.25*(B)						
22µF(226)	М									1.25*(B)	1.6*(C)				
47μF(476)	М											1.6*(C)		2.5*(E)	
100μF(107)	м												1.6*(C)		2.5*(E)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.29).

GRM21B Series 4V/22 μ F (L: 2.0±0.15, W: 1.25±0.15, T: 1.25±0.15mm)

GRM31C Series 4V/100µF (L: 3.2±0.3, W: 1.6±0.3, T: 1.6±0.3mm)

High Dielectric Constant Type X7R/X7T/X7U(R7/D7/E7) Characteristics

Part Number		GRM 02		RM			-	M15			G	RM	8				GR	M21				G	RM3	31			G	RM	32	
L x W [EIA]		0.4x0.2 [01005]	0.6x	0.3 [0)201]	1.0	x0.5	5 [04	02]	1	.6x0).8 [0603	3]		2.0	x1.2	5 [08	305]		3	3.2x1	.6 [1206	5]	3	3.2x2	2.5 [1210)]
Rated Volt.		10 (1A)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	4 (0G)	100 (2A)	50 (1H)	25 (1E)	10 (1A)	4 (0G)	100 (2A)	50 (1H)	10 (1A)	6.3 (0J)	4 (0G)
тс		X7R (R7)	X7U (E7)	X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7U (E7)	X7R (R7)	X7R (R7)	X7R (R7)	X7T (D7)	X7U (E7)																	
Capacitance, Ca	pacitan	ce To	olera	nce	and	T Di	imen	ision	Ì																					
68pF (680)	к	0.2 (2)																												
100pF (101)	к	0.2 (2)	0.3 (3)																											
150pF (151)	к	0.2 (2)	0.3 (3)																											
220pF (221)	к	0.2 (2)	0.3 (3)			0.5 (5)	0.5 (5)			0.8 (8)	0.8 (8)																			
330pF (331)	к	0.2 (2)	0.3 (3)			0.5 (5)	0.5 (5)			0.8 (8)	0.8 (8)																			
470pF (471)	к	0.2 (2)	0.3 (3)			0.5 (5)	0.5 (5)			0.8 (8)	0.8 (8)																			

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.29).

GRM21B Series 100V/0.47µF, 25V/2.2µF, 16V/4.7µF, 10V/10µF, 4V/22µF (L: 2.0±0.15, W: 1.25±0.15, T: 1.25±0.15mm)

GRM31M Series 100V/0.68µF, 25V/2.2µF (L: 3.2±0.2, W: 1.6±0.2, T: 1.15±0.15mm)

⚠Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our C02E.pdf

16 100 50 25 16

0.8 0.8

(8) (8)

0.8 0.8

(8) (8)

0.8 0.8

(8)

0.8 0.8

(8) (8)

0.8

(8) (8)

0.8 0.8

(8) (8)

0.8 0.8

(8) (8)

0.8 0.8

(8) (8)

0.8

(8)

0.8

(8)

0.8

(8)

0.8

(8)

0.8

(8)

0.8

(8)

0.8

(8)

0.8*

(8)

0.8

(8)

0.8

(8)

0.8 0.8

(8) (8)

(8)

0.8

10 100 50

0.5 0.5

(5) (5)

0.5 0.5

(5) (5)

0.5 0.5

(5)

0.5 0.5

(5) (5)

0.5 0.5

(5) (5)

(5)

(5)

0.5

(5)

0.5

(5)

05

(5)

0.5

(5)

0.5

(5)

0.5

(5)

0.5

(5)

0.5

(5)

0.3 0.5 0.5

(3)

0.3

(3)

0.3

(3)

(5)

10 25 16

Capacitance, Capacitance Tolerance and T Dimension

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

Κ

κ

κ

κ

κ

κ

0.3

(3)

0.3

(3)

0.3

(3)

0.3

(3)

0.3

(3)

25

s PDF catalog has only typical	specifications becau	use there is no sp	bace for detailed specifica	tions. Therefore, please approve	our product specifications or transact t	he approval sheet for product spe	ecifications before ordering.
Part Number	lenul	GRM03	GRM15	GRM18	GRM21	GRM31	GRM32
L x W [EIA]		6x0.3 [0201]	1.0x0.5 [0402]	1.6x0.8 [0603]	2.0x1.25 [0805]	3.2x1.6 [1206]	3.2x2.5 [1210]

16 10

4

100 50

1.15

(M)

1.15

(M)

1.15 1.15

1.15

(M)

1.6

(C)

1.6*

(**C**)

1.6

(**C**)

(M) (M)

1.6

(C)

10 100 50 25

1 25

(**B**)

1 25

(**B**)

1 25

(B)

1.25

(**B**)

1.25

(**B**)

1.0 1.25

1.0 0.85

1.25 1.25

0.85

(9)

1.25

(**B**)

1.25'

(**B**)

.25*

(**B**)

1.25

(**B**)

1.25

(**B**)

(**A**) (**B**)

(**A**) (9)

(**B**) (**B**)

0.8

(8)

0.8

(8)

25

10

4 100 50

10 6.3

Δ

4.7μF (475)	к					
10μF (106)	к					
22µF						

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Μ

*: Please refer to GRM Series Specifications and Test Methods (2) (P.29).

GRM21B Series 100V/0.47µF, 25V/2.2µF, 16V/4.7µF, 10V/10µF, 4V/22µF (L: 2.0±0.15, W: 1.25±0.15, T: 1.25±0.15mm)

GRM31M Series 100V/0.68µF, 25V/2.2µF (L: 3.2 \pm 0.2, W: 1.6 \pm 0.2, T: 1.15 \pm 0.15mm)

2.5

(E)

2.5

(E)

1.35

(N)

Rated Volt.

680pF

1000pF

1500pF

2200pF

3300pF

4700pF

6800pF

10000pF

15000pF

22000pF

33000pF

(681)

(102)

(152)

(222)

(332)

(472)

(682)

(103)

(153)

(223)

(333)47000pF

(473) 68000pF

> (683) 0.10µF

> (104) 0.15µF

> > (154)

(224)

(334)

(474)

(684)

1.0µF

(105)

2.2µF

(225)

(226)

0.22µF

0.33µF

0.47µF

0.68µF

TC

Continued from the preceding page.

Part Number		GRM		RM	02			M15		1		RM	0				CP	M21			<u> </u>		RM:	24				RM		
Part Number		02	e				GR	WI I S					0				GR					G		51					<u> </u>	
L x W [EIA]		0.4x0.2 [01005	0.6)	(0.3 [0201]	1.0)x0.5	5 [04	02]	1	.6x().8 [0603	3]		2.0	x1.2	5 [08	305]		3	3.2x1	1.6 [1206	5]	3	3.2x2	2.5 [1210)]
Rated Volt.		10 (1A)	25 (1E)	16 (1C	10) (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	4 (0G)	100 (2A)	50 (1H)	25 (1E)	10 (1A)	4 (0G)	100 (2A)	50 (1H)	10 (1A)	6.3 (0J)	4 (0G)
тс		X7R (R7)	2 X7F (R7	2X7F (R7)	RX7R) (R7)	X7R (R7)	X7U (E7)	X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7U (E7)	X7R (R7)	X7R (R7)	X7R (R7)	X7T (D7)	X7U (E7)													
Capacitance, Ca	pacitan	ce To	olera	ince	and	ΤD	imer	sion	1																					
47μF (476)	м																								1.6* (C)			2.5* (E)		
100µF	м																													2.5*

The part numbering code is shown in ().

(107)

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.29).

 $GRM21B \; Series\; 100V/0.47 \mu F,\; 25V/2.2 \mu F,\; 16V/4.7 \mu F,\; 10V/10 \mu F,\; 4V/22 \mu F\; (L:\; 2.0 \pm 0.15,\; W:\; 1.25 \pm 0.15,\; T:\; 1.25 \pm 0.15 mm)$

GRM31M Series 100V/0.68µF, 25V/2.2µF (L: 3.2 \pm 0.2, W: 1.6 \pm 0.2, T: 1.15 \pm 0.15mm)

High Dielectric Constant Type Y5V(F5) Characteristics

Part Number			GR	M15		GR	M18	GRM21	GRM31	GRM32
L x W [EIA]			1.0x0.5	5 [0402]		1.6x0.	8 [0603]	2.0x1.25 [0805]	3.2x1.6 [1206]	3.2x2.5 [1210]
Rated Volt.		50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	50 (1H)	6.3 (0J)	100 (2A)
тс		Y5V (F5)								
Capacitance, Ca	pacitanc	e Tolerance a	and T Dimensi	ion	1	1		-	1	
1000pF(102)	z	0.5(5)				0.8(8)				
2200pF(222)	z	0.5(5)				0.8(8)				
4700pF(472)	z	0.5(5)				0.8(8)				
10000pF(103)	z	0.5(5)				0.8(8)				
22000pF(223)	z		0.5(5)			0.8(8)				
47000pF(473)	z		0.5(5)			0.8(8)				
0.10μF(104)	z		0.5(5)			0.8(8)				1.35(N)
0.22µF(224)	z			0.5(5)		0.8(8)				
0.47µF(474)	Z			0.5(5)			0.8(8)	0.85(9)		
1.0μF(105)	Z				0.5*(5)					
100μF(107)	z								1.6*(C)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.29).

High Dielectric Constant Type X5R(R6) Characteristics Low Profile

Part Number		GRM15	GRI	GRM18		GRM21	GR	M31	
L x W [EIA]	A] 1.0x0.5 [0402] 1.6x0.8 [0603] 2.0x1.25 [0805]]	3.2x1.6 [1206]				
Rated Volt.		4 (0G)	16 (1C)	6.3 (0J)	25 (1E)	16 (1C)	10 (1A)	25 (1E)	16 (1C)
тс		X5R (R6)							
Capacitance, Ca	apacitanc	e Tolerance and	d T Dimension						
1.0μF(105)	K, M**	0.3*(3)	0.5*(5)		0.6*(6)		0.85(9)		
2.2μF(225)	к			0.5*(5)	0.85*(9)			0.6*(6)	
4.7μF(475)	к					0.85*(9)		0.85*(9)	
10μF(106)	к						0.85*(9)		0.85*(9)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.29).

**: In case of Rated Volt.4V, Capacitance Tolerance should be M.

GRM219 Series 10V/10 μ F (L: 2.0±0.2, W: 1.25±0.2, T: 0.85±0.1mm)

(E)

High Dielectric Constant Type X6S(C8) Characteristics Low Profile

Part Number		GR	M18		GRM21		GRM31
L x W [EIA]		1.6x0.8	[0603]			3.2x1.6 [1206]	
Rated Volt.		10 (1A)	4 (0G)	16 (1C)			16 (1C)
тс		X6S (C8)					
Capacitance, Ca	pacitanc	e Tolerance and T D	imension	1			
1.0μF(105)	К	0.5*(5)		0.6*(6)			
2.2μF(225)	к		0.5*(5)	0.85*(9)			0.6*(6)
4.7μF(475)	к				0.85*(9)		0.85*(9)
10μF(106)	к					0.85*(9)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.29).

GRM219 Series 6.3V/10 μF (L: 2.0 $\pm 0.2,$ W: 1.25 $\pm 0.2,$ T: 0.85 $\pm 0.1 mm$)

High Dielectric Constant Type X7R/X7T(R7/D7) Characteristics Low Profile

Part Number			GRM15		GRM18	GRM21
L x W [EIA]			1.0x0.5 [0402]		1.6x0.8 [0603]	2.0x1.25 [0805]
Rated Volt.		50 (1H)	25 (1E)	16 (1C)	10 (1A)	25 (1E)
тс		X7R (R7)	X7R (R7)	X7R (R7)	X7T (D7)	X7R (R7)
Capacitance, Ca	pacitanc	e Tolerance and T Dime	ension			1
220pF(221)	к	0.25(X)				
330pF(331)	к	0.25(X)				
470pF(471)	к	0.25(X)				
680pF(681)	к	0.25(X)				
1000pF(102)	к	0.25(X)				
1500pF(152)	к	0.25(X)				
2200pF(222)	к		0.25(X)			
3300pF(332)	к			0.25(X)		
4700pF(472)	к			0.25(X)		
6800pF(682)	к			0.25(X)		
10000pF(103)	к			0.25(X)		
1.0μF(105)	к				0.5*(5)	0.85(9)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.29).

GRM Series Specifications and Test Methods (1)

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.29).

			cations	ter to GRM Series Specifications and Test Methods (2) (P.29).			
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method			
1	Operating Temperature Range	−55 to +125℃	B1, B3, F1: −25 to +85°C R1, R7: −55 to +125°C R6: −55 to +85°C C8: −55 to +105°C E4: +10 to +85°C F5: −30 to +85°C	Reference temperature: 25℃ (2Δ, 3Δ, 4Δ, B1, B3, F1, R1: 20℃)			
2	Rated Voltage	See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearance	No defects or abnormalities		Visual inspection			
4	Dimensions	Within the specified dimensions	1	Using calipers (GRM02 size is based on Microscope)			
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when 300%* of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V			
6	Insulation Resistance	C≦0.047μF: More than 10,000M C>0.047μF: More than 500Ω ⋅ N		The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25° and 75%RH max. and within 2 minutes of charging, provided the charge/ discharge current is less than 50mA.			
7	Capacitance	Within the specified tolerance					
8	Q/ Dissipation Factor (D.F.)	30pF and over: Q≧1000 30pF and below: Q≧400+20C C: Nominal Capacitance (pF)	$ \begin{array}{l} [{\rm R6, R7, C8}] \\ {\rm W.V.: 100V} \\ : 0.025 \mbox{ max. } (C{<}0.068\mu{\rm F}) \\ : 0.05 \mbox{ max. } (C{\geq}0.068\mu{\rm F}) \\ {\rm W.V.: 50/25V:} \\ : 0.025 \mbox{ max. } (C{<}10\mu{\rm F}) \\ : 0.035 \mbox{ max. } (C{\geq}10\mu{\rm F}) \\ {\rm W.V.: 16/10V: } 0.035 \mbox{ max. } \\ {\rm W.V.: 6.3/4V} \\ : 0.05 \mbox{ max. } (C{<}3.3\mu{\rm F}) \\ : 0.1 \mbox{ max. } (C{\geq}3.3\mu{\rm F}) \\ [{\rm E4}] \\ {\rm W.V.: 25Vmin: } 0.025 \mbox{ max. } \\ [{\rm F1, F5}] \\ {\rm W.V.: 25Vmin: 0.025 \mbox{ max. } } \\ \end{array} $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			
			W.V.: 25V min. : 0.05 max. (C<0.1µF) : 0.09 max. (C≧0.1µF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.				

Continued on the following page.

GRM Series Specifications and Test Methods (1)

	Continued fr	om the prece	Below GRM eding page. In case "*" is added	I Series Specifications and Test in capacitance table, please rest.	at Methods (1 efer to GRM :	l) are ap Series S	plied to Non pecifications	"*" PNs and Tes	in capao st Metho	titance table. ds (2) (P.29).
				cations						
No.	lte	em	Temperature Compensating Type	High Dielectric Type			Test Me	ethod		
		No bias	Within the specified tolerance (Table A-1)	B1, B3: Within $\pm 10\%$ (-25 to +85°C) R1, R7: Within $\pm 15\%$ (-55 to +125°C) R6: Within $\pm 15\%$ (-55 to +85°C) E4: Within $\pm 22/-56\%$ (+10 to +85°C) F1: Within +30/-80% (-25 to +85°C) F5: Within $\pm 22/-82\%$ (-30 to +85°C) C8: Within $\pm 22\%$ (-55 to +105°C)	each speci (1)Tempera The temper capacitance When cycli 5 (5C: +25 +25 to +88 the specific capacitance The capaci between th step 1, 3 ar	fied temp ature Cor rature co e measur ng the te to +125 $^{\circ}C$ +20 t e change tance dri e maxim nd 5 by th	mpensating T efficient is de- red in step 3 a mperature se $C/\Delta C$: +20 to o +85°C) the o nee for the ten e as Table A-1 ft is calculate um and minim ne cap. value	ype termined as a refe quentiall +125°C: capacitan nperature I. d by divid num mea in step 3	I using the rence. y from st other te nce shou e coeffici ding the asured va 3.	ep 1 through mp. coeffs.: Ild be within ent and differences
			/	(Ste	•		emperat	ture (°C) nperature	a +2
		50% of the Rated		B1: Within +10/–30% R1: Within +15/–40%	2		-55±3 (fo -30±3	r ∆C to 7 (for F5),	•	6/R7/C8) or E4)
		Voltage		F1: Within +30/–95%	3	3			nperature	
					4	t I	125±3 (fo 85), 105±3 other TC)	
	Capacitance				5	5	Refere	ence Ten	nperature	e ±2
9	Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.) ⊁Do not apply to 1X/25∨	*Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/–10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.	The ranges value over be within th In case of a measured a	s of capae the temp he specifi applying vafter 1 mm n of each -55± -25± -30±3 (Referen 25± -30±3 (Referen -2: Referen -2: Referen 1	constant Type citance change erature range ed ranges.* voltage, the cc ore min. with n temp. stage. mce Temperature (°C nce Temperat 3 (for R1, R7 3 (for B1, B3 for F5)/10 \pm 3 (for R1, R7 3 (for R1, R7 3 (for R1, R7 5 \pm 3 (for R1, R7 5))	ge compass shown apacitan applying <u>)</u> ture ±2 , R6) , F1) (for E4) ture ±2 R7)/ , R6 ture ±2)/ F1) ture ±2)/	Applyin	able should ge should be
10	0 Adhesive Strength of Termination		No removal of the terminations of terminations		Fig. 1a usir parallel with The solderi reflow meth soldering is	ng an eut h the test ing shoul hod and s s uniform 02), 2N (pe 2 3 5 5 3 1 1 1 2 2 3 3 1 1 2 3 3	to the test jig ectic solder. $$ jig for 10 ± 1 s d be done eith should be con and free of d GRM03), 5N a 0.2 0.3 0.4 1.0 1.2 2.2 2.2 3.5 4.5	Then app sec. her with iducted v efects su	an iron o with care uch as he 5, GRM18	r using the so that the eat shock.

Continued on the following page.

GRM Series Specifications and Test Methods (1)

			Specif	ications				
No.	lte	em	Temperature Compensating Type	High Dielectric Type	-	Test Me	ethod	
		Appearance	No defects or abnormalities					
		Capacitance	Within the specified tolerance		-			
11	Vibration Resistance	Q/D.F.	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	$ \begin{array}{l} [B1, B3, R6, R7, C8] \\ W.V.: 100V \\ &: 0.025 \mbox{max.} (C < 0.068 \mu F) \\ &: 0.05 \mbox{max.} (C \geq 0.068 \mu F) \\ W.V.: 50/25V: \\ &: 0.025 \mbox{max.} (C \geq 10 \mu F) \\ &: 0.035 \mbox{max.} (C \geq 10 \mu F) \\ W.V.: 16/10V: 0.035 \mbox{max.} \\ W.V.: 6.3/4V \\ &: 0.05 \mbox{max.} (C \geq 3.3 \mu F) \\ &: 0.1 \mbox{max.} (C \geq 3.3 \mu F) \\ [E4] \\ W.V.: 25V \mbox{min.} \\ &: 0.05 \mbox{max.} (C < 0.1 \mu F) \\ &: 0.09 \mbox{max.} (C \geq 0.1 \mu F) \\ &: 0.09 \mbox{max.} (C \geq 0.1 \mu F) \\ W.V.: 16/10V: 0.125 \mbox{max.} \\ W.V.: 6.3V: 0.15 \mbox{max.} \\ \end{array} $	Solder the capacitor on the test jig (glass epoxy board) ir same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic having a total amplitude of 1.5mm, the frequency being v uniformly between the approximate limits of 10 and 55Hz frequency range, from 10 to 55Hz and return to 10Hz, sh be traversed in approximately 1 minute. This motion sho applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).			
12	2 Deflection		No crack or marked defect show	0 Pressurizing speed : 1.0mm/sec. Pressurize Flexure : ≤1	Solder the capacit in Fig. 2a using an direction shown in done by the reflow so that the solderin shock.	eutectic solde Fig. 3a for 5± method and s	of, Then apply a transformed sector of defendence of defen	a force in the dering should be ucted with care icts such as heat
13	Solderabi Terminati		75% of the terminations are to l continuously.	be soldered evenly and	Immerse the capa rosin (JIS-K-5902) Preheat at 80 to 12 After preheating, in 2±0.5 seconds at for 2±0.5 seconds	(25% rosin in 20℃ for 10 to 3 mmerse in an e 230±5℃ or Sn	weight proport 30 seconds. eutectic solder	JIS-K-8101) and ion) .

Continued on the following page. \square

GRM Series Specifications and Test Methods (1)

			Specif	cations					
0.	Ite	m	Temperature Compensating Type	High Dielectric Type	-	Test Me	ethod		
			The measured and observed ch specifications in the following ta	•					
		Appearance	No defects or abnormalities						
		Capacitance Change	Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4: Within ±20%					
4	Resistance to Soldering Heat	Q/D.F.	30pF and over: Q≧1000 30pF and below: Q≧400+20C	$\begin{array}{l} [\text{B1, B3, R6, R7, C8]} \\ \text{W.V.: 100V} \\ &: 0.025 \text{ max. } (\text{C}{<}0.068\mu\text{F}) \\ &: 0.05 \text{ max. } (\text{C}{\geq}0.068\mu\text{F}) \\ \text{W.V.: 50/25V:} \\ &: 0.025 \text{ max. } (\text{C}{<}10\mu\text{F}) \\ &: 0.035 \text{ max. } (\text{C}{\geq}10\mu\text{F}) \\ \text{W.V.: 16/10V: } 0.035 \text{ max.} \\ \text{W.V.: 6.3/4V} \\ &: 0.05 \text{ max. } (\text{C}{<}3.3\mu\text{F}) \\ &: 0.1 \text{ max. } (\text{C}{\geq}3.3\mu\text{F}) \end{array}$	Initial measurement for high dielectric constant type			it room	
			C: Nominal Capacitance (pF)	[E4] W.V.: 25Vmin: 0.025 max. [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≧0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Step 1 2	Temperatur 100 to 120% 170 to 200%	ĉ	Tim 1 mi 1 mi	n.
		I.R.	More than 10,000M\Omega or 500 Ω -	F (Whichever is smaller)					
	[Dielectric Strength	No defects						
			The measured and observed ch specifications in the following ta						
		Appearance	No defects or abnormalities						
		Capacitance Change	Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4: Within ±20%	Fix the capacit	or to the supporting	na iia ir	n the same	
	Temperature Cycle	Q/D.F.	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	$ \begin{bmatrix} B1, B3, R6, R7, C8 \end{bmatrix} \\ \hline W.V.: 100V \\ : 0.025 max. (C<0.068 \mu F) \\ : 0.05 max. (C\geq0.068 \mu F) \\ \hline W.V.: 50/25V: \\ : 0.025 max. (C\geq10 \mu F) \\ : 0.035 max. (C\geq10 \mu F) \\ \hline W.V.: 16/10V: 0.035 max. \\ \hline W.V.: 6.3/4V \\ : 0.05 max. (C<3.3 \mu F) \\ : 0.1 max. (C\geq3.3 \mu F) \\ \hline E4 \end{bmatrix} \\ \hline W.V.: 25V min: 0.05 max. \\ \begin{bmatrix} F1, F5 \end{bmatrix} \\ \hline W.V.: 25V min. \\ : 0.05 max. (C<0.1 \mu F) \\ : 0.09 max. (C\geq0.1 \mu F) \\ \hline W.V.: 16/10V: 0.125 max. \\ \hline W.V.: 6.3V: 0.15 max. \\ \hline F. (ME abaves is compliant) \\ \hline \end{bmatrix} $	Perform the fiv shown in the fo Set for 24±2 h Temp. (°C) Time (min.) •Initial measur Perform a heat then set at room	ours at room temp 1 Min. Operating Temp. +0/-3 Reference Temp. +0/-3	g to the perature 2 0 oom 0 oo	e four heat trea re, then measu Max. Operating Temp. +3/-0 30±3 constant type 0°C for one hom	re. 4 Room Temp. 2 to 3
		I.R.	More than 10,000M Ω or 500 Ω						
		I.K.		-					

Continued on the following page.

GRM Series Specifications and Test Methods (1)

			Specif	ications	
0.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed ch specifications in the following ta		
		Appearance	No defects or abnormalities	1	
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30%	
16	Humidity (Steady State)	Q/D.F. Q/D.F. Q/D.F. Q/D.F. Q/D.F. Q≥275+2.5C 10pF and below: Q≥275+2.5C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)		$\begin{array}{l} [R6, R7, C8] \\ W.V.: 100V \\ &: 0.05 \mbox{max.} (C{<}0.068\muF) \\ &: 0.075 \mbox{max.} (C{\geq}0.068\muF) \\ W.V.: 50/25/16/10V \\ &: 0.025 \mbox{max.} \\ W.V.: 6.3/4V \\ &: 0.075 \mbox{max.} (C{<}3.3\muF) \\ &: 0.125 \mbox{max.} (C{\leq}3.3\muF) \\ &: 0.125 \mbox{max.} (C{\geq}3.3\muF) \\ [E4] \\ W.V.: 25Vmin: 0.05 \mbox{max.} \\ [F1, F5] \\ W.V.: 25Vmin. \\ &: 0.075 \mbox{max.} (C{<}0.1\muF) \\ &: 0.125 \mbox{max.} (C{\geq}0.1\muF) \\ &: 0.125 \mbox{max.} (C{\geq}0.1\muF) \\ &: 0.125 \mbox{max.} (C{\geq}0.1\muF) \\ &: W.V.: 16/10V: 0.15 \mbox{max.} \\ \\ W.V.: 6.3V: 0.2 \mbox{max.} \\ \end{array}$	Set the capacitor at 40±2°C and in 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure.
		I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$	(Whichever is smaller)	
			The measured and observed ch specifications in the following ta		
		Appearance	No defects or abnormalities	1	
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10V max.] F1, F5: Within +30/-40%	
17	Humidity Load	Q/D.F.	30pF and over: Q≥200 30pF and below: Q≥100+10C/3 C: Nominal Capacitance (pF)	$ \begin{array}{l} [B1, B3, R6, R7, C8] \\ W.V.: 100V \\ &: 0.05 \mbox{ max. } (C<0.068 \mu F) \\ &: 0.075 \mbox{ max. } (C \ge 0.068 \mu F) \\ W.V.: 50/25/16/10V \\ &: 0.05 \mbox{ max. } \\ W.V.: 6.3/4V \\ &: 0.075 \mbox{ max. } (C < 3.3 \mu F) \\ &: 0.125 \mbox{ max. } (C \ge 3.3 \mu F) \\ [E4] \\ W.V.: 25V \mbox{ min. } \\ &: 0.075 \mbox{ max. } (C < 0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.075 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.075 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.075 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.075 \mbox{ max. } \\ &: 0.075 \mbox{ max. } (C \ge 0.1 \mu F) \\ &: 0.0125 \mbox{ max. } \\ &: 0.0125 \$	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 24±2 hours at room temperature. Perform initial measurement.
			W.V.: 6.3V: 0.2 max. More than 500MΩ or 25Ω · F (Whichever is smaller)		

Continued on the following page.

GRM Series Specifications and Test Methods (1)

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.29).

			Specif	ications	
No.	lte	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed characteristics should satisfy the specifications in the following table.		
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [Except 10V max. and. C≥1.0μF] F1, F5: Within +30/−40% [10V max. and C≥1.0μF]	Apply 200% (GRM21BR71H105, GRM21BR72A474, GRM31CR71H475: 150% of the rated voltage) of the rated
18	High Temperature Load	Q/D.F.	30pF and over: Q≧350 10pF and over 30pF and below: Q≧275+2.5C 10pF and below: Q≧200+10C C: Nominal Capacitance (pF)	$\label{eq:constraint} \begin{array}{l} [B1, B3, R6, R7, C8] \\ W.V.: 100V \\ &: 0.05 \mbox{ max. } (C{<}0.068 \mu F) \\ &: 0.075 \mbox{ max. } (C{\geq}0.068 \mu F) \\ W.V.: 50/25/16/10V \\ &: 0.05 \mbox{ max. } (C{\geq}3.3 \mu F) \\ &: 0.125 \mbox{ max. } (C{<}3.3 \mu F) \\ &: 0.125 \mbox{ max. } (C{<}3.3 \mu F) \\ [E4] \\ W.V.: 25V \mbox{ min. } \\ &: 0.075 \mbox{ max. } (C{<}0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C{<}0.1 \mu F) \\ &: 0.125 \mbox{ max. } (C{\geq}0.1 \mu F) \\ &: W.V.: 16/10V: 0.15 \mbox{ max. } \\ W.V.: 6.3V: 0.2 \mbox{ max. } \\ \end{array}$	 voltage at the maximum operating temperature ±3°C for 1000±12 hours. Set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximum operating temperature ±3°C for one hour. Remove and set for 24±2 hours at room temperature. Perform initial measurement.
		I.R.	More than 1,000M Ω or 50 Ω \cdot F	(Whichever is smaller)	<u> </u>

Table A-1

(1)

		Capacitance Change from 25°C (%)							
Char.	Nominal Values (ppm/℃)*1	-55		-30		-10			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11		
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21		
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32		
6R	-220 ± 60	3.02	1.28	2.08	0.88	1.32	0.56		
6S	-330 ± 60	4.09	2.16	2.81	1.49	1.79	0.95		
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44		
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21		
1X	+350 to -1000	_	_	_	_	_	_		

*1: Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for ΔC)/85°C (for other TC).

(2)

			(Capacitance Cha	nge from 20℃ (%))	
Char.	Nominal Values (ppm/℃)*2	_	55	-25		_	10
		Max.	Min.	Max.	Min.	Max.	Min.
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	-0.18
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75
2P	-150± 60	_	_	1.32	0.41	0.88	0.27
3P	-150±120	_	—	1.65	0.14	1.10	0.09
4P	-150±250	_	_	2.36	-0.45	1.57	-0.30
2R	-220 ± 60	_	—	1.70	0.72	1.13	0.48
3R	-220±120	_	_	2.03	0.45	1.35	0.30
4R	-220±250	—	_	2.74	-0.14	1.83	-0.09
2S	-330 ± 60	_	_	2.30	1.22	1.54	0.81
3S	-330±120	_	-	2.63	0.95	1.76	0.63
4S	-330±250	_	_	3.35	0.36	2.23	0.24
2T	-470± 60	_	-	3.07	1.85	2.05	1.23
3T	-470±120	-	-	3.40	1.58	2.27	1.05
4T	-470±250	_	_	4.12	0.99	2.74	0.66
3U	-750±120	-	-	4.94	2.84	3.29	1.89
4U	-750±250	_	_	5.65	2.25	3.77	1.50

*2: Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for ΔC)/85°C (for other TC).

GRM Series Specifications and Test Methods (2)

Below GRM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. In case "*" is not added in capacitance table, please refer to GRM Series Specifications and Test Methods (1) (P.23).

No.	lte	em	Specifications		Test Method	
1	Operating Temperat Range		B1, B3, F1: -25 to +85°C R1, R7, C7, D7, E7: -55 to +125°C C6, R6: -55 to +85°C F5: -30 to +85°C C8, D8: -55 to +105°C,		nce temperature: 25°C 3, R1, F1: 20°C)	
2	Rated Vo	ltage	See the previous pages.	may be When A	ed voltage is defined as the maximum applied continuously to the capacitor. AC voltage is superimposed on DC volt ver is larger, should be maintained with a range.	age, V ^{P-P} or V ^{O-P} ,
3	Appearar	nce	No defects or abnormalities	Visual i	inspection	
4	Dimensio	ns	Within the specified dimensions	Using c	calipers	
5	Dielectric	Strength	No defects or abnormalities	is appli	ure should be observed when 250% of ed between the terminations for 1 to 5 ed the charge/discharge current is less	seconds,
6	Insulatior Resistanc		More than 50Ω · F	not exc 75%RH	ulation resistance should be measured eeding the rated voltage at reference te I max. and within 1 minutes of charging, /discharge current is less than 50mA.	mperature and
7	Capacitance		*Table 1 GRM155 B3/R6 1A 124 to 105 GRM185 B3/R6 1C/1A 105 GRM185 C8/D7 1A 105 GRM188 B3/R6 1C/1A 225 GRM188 B3/R6 1A 335 GRM219 B3/R6 1C/1A 475 GRM218 B3/R6 1C/1A 106 GRM218 R7/C8 1A 106 GRM218 R7/C8 1A 106 GRM219 C8 1A 475 GRM219 C8 1A 106 GRM218 R7/C8 1A 106 GRM319 B3/R6 1C/1A 106	tempera C C C	≦10µF (6.3V max.) 1±0.1kHz	wn in the table. Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms
8	Dissipatio (D.F.)	on Factor	B1, B3, R6* ² , R7* ³ , C7, C8, D8* ² : 0.1 max. F1, F5: 0.2 max.			
		No bias	B1, B3: Within ±10% (-25 to +85℃) F1 : Within ±30/-80% (-25 to +85℃) R6 : Within ±15% (-55 to +85℃) R1, R7: Within ±15% (-55 to +125℃) F5 : Within ±22/-82% (-30 to +85℃) C6 : Within ±22% (-55 to +85℃) C7 : Within ±22% (-55 to +125℃) C8 : Within ±22% (-55 to +125℃) D7 : Within ±22/-33% (-55 to +125℃) E7 : Within ±22/-56% (-55 to +125℃)	each sp The rar referen shown In case measur equilibr	pacitance change should be measured becified temp. stage. Inges of capacitance change compared ce temperature value over the tempera in the table should be within the specifi of applying voltage, the capacitance c red after 1 more min. with applying volt ration of each temp. stage.	with the ature ranges ied ranges.* hange should be age in
			$\begin{array}{c} 17 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\$	Step	, ,	Applying Voltage (V)
				1	25±2 (for R6, R7, C6, C7, C8, D7, D8, E7, F5)	11 3 6 6 17
0	Capacitance			2	20±2 (for B1, B3, F1, R1) -55±3 (for R1, R6, R7, C6, C7, C8, D7, D8, E7) -30±3 (for F5) -25±3 (for B1, B3, F1)	
9	Temperature Characteristics			3	25±2 (for R6, R7, C6, C7, C8, D7, D8, E7, F5) 20±2 (for B1, B3, F1, R1)	- No bias
		50% of	B1: Within +10/-30%	4	125±3 (for R1, R7, C7, D7, E7) 105±3 (for C8, D8) 85±3 (for B1, B3, F1, F5, R6, C6)	_
		the Rated	R1: Within +15/-40% F1: Within +30/-95%	5	20±2 (for B1, F1, R1)	
		Voltage	1 T. WILLINT TOU/ - 30 /0	6	-55±3 (for R1) -25±3 (for B1, F1)	500/ of the
				7	20±2 (for B1, F1, R1)	50% of the rated voltage
				8	125±3 (for R1)	
				Perform then se	85 ± 3 (for B1, F1) measurement for high dielectric consta n a heat treatment at 150 +0/-10°C fo et for 24±2 hours at room temperature. n the initial measurement.	• •

*2: GRM31CR60J107, GRM31CD80G107: 0.15 max.

*3: GRM31CR71E106: 0.125 max.

GRM Series Specifications and Test Methods (2)

	Ite	em	Specifications	Test Method				
			No removal of the terminations or other defects should occur.	Solder the capacitor on the test jig (glass epoxy board) show in Fig. 1a using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *1N: GRM02, 2N: GRM03, 5N: GRM15/GRM18				
	Adhesive	Strength		Туре	a	b	C 0.02	
)	of Termin	-		GRM02 GRM03	0.2	0.56	0.23	
				GRM15	0.3	1.5	0.5	
l			Solder resist	GRM18	1.0	3.0	1.2	
l			Baked electrode or	GRM21	1.2	4.0	1.65	
l			copper foil	GRM31	2.2	5.0	2.0	
			Fig. 1a	GRM32	2.2	5.0	2.9	
				GRM43	3.5	7.0	3.7	
				GRM55	4.5	8.0	5.6	
					1.0	0.0	0.0	
t		Appearance	No defects or abnormalities	Solder the capacit	or on the test ii		board) in the	
		Capacitance		Solder the capacitor on the test jig (glass epoxy board) same manner and under the same conditions as (10).				
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple			. ,	
	Vibration	D.F. C6: 0.12	B1, B3, R1, R6* ² , R7* ³ , C7, C8, E7, D7, D8* ² : 0.1 max. C6: 0.125 max. F1, F5: 0.2 max.	uniformly between frequency range, f be traversed in ap applied for a perio perpendicular dire	rom 10 to 55Hz proximately 1 r d of 2 hours in	z and return to ninute. This mo each of 3 mutu	10Hz, should otion should b	
			No cracking or marking defects should occur.	Solder the capacit in Fig. 2a using an direction shown in done by the reflow so that the solderin	eutectic solde Fig. 3a for 5± method and s	r. Then apply a l sec. The solo hould be condu	a force in the lering should l ucted with car	
	Deflection	n	20 50 Pressurizing speed : 1.0mm/sec. Pressurize R230 Flexure : ≤1	shock.	+ + + + 100 Fig. 2	04.5	t: 1.6mm	
					(GRM02/	03/15: t: 0.8mm)		
			E a	Туре	а	b	С	
			Fig.3a	GRM02	0.2	0.56	0.23	
				GRM03	0.3	0.9	0.3	
						1.5	0.5	
				GRM15	0.4		1.2	
				GRM18	1.0	3.0		
				GRM18 GRM21	1.0 1.2	4.0	1.65	
				GRM18 GRM21 GRM31	1.0 1.2 2.2	4.0 5.0	1.65 2.0	
				GRM18 GRM21 GRM31 GRM32	1.0 1.2 2.2 2.2	4.0 5.0 5.0	1.65 2.0 2.9	
				GRM18 GRM21 GRM31 GRM32 GRM43	1.0 1.2 2.2 2.2 3.5	4.0 5.0 5.0 7.0	1.65 2.0 2.9 3.7	
				GRM18 GRM21 GRM31 GRM32	1.0 1.2 2.2 2.2	4.0 5.0 5.0	1.65 2.0 2.9 3.7 5.6	
				GRM18 GRM21 GRM31 GRM32 GRM43	1.0 1.2 2.2 2.2 3.5	4.0 5.0 5.0 7.0	1.65 2.0 2.9 3.7	

*2: GRM31CR60J107, GRM31CD80G107: 0.15 max.

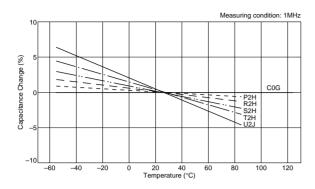
*3: GRM31CR71E106: 0.125 max.

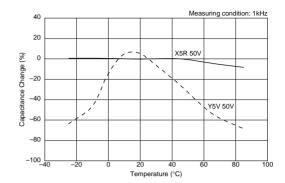
Continued on the following page.

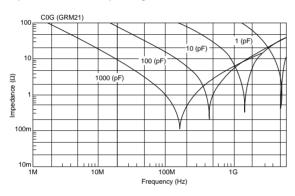
GRM Series Specifications and Test Methods (2)

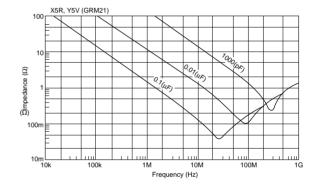
۱o.	Ite	m	eding page. In case "*" is not added in capacitance table, pleas Specifications		Test Method				
0.	ite								
		Appearance Capacitance Change	No defects or abnormalities B1, B3, R1, R6 ^{*4} , R7, C6, C7, C8, E7, D7, D8: Within ±7.5% F1, F5: Within ±20%	 Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0 solder solution at 270±5°C for 10±0.5 seconds. Set at roo temperature for 24±2 hours, then measure. 				0	
	Resistance	D.F.	B1, B3, R1, R6 ^{*2} , R7 ^{*3} , C7, C8, E7, D7, D8 ^{*2} : 0.1 max. C6: 0.125 max. F1, F5: 0.2 max.	*Do not apply	to GRM02.		c constant type	ł	
4	to Saldaring	I.R.	More than $50\Omega \cdot F$				10℃ for one ho	our and	
	Soldering Heat			Perform the in	om temperature itial measurem	ient.	z nours.		
		Dielectric	No defects	*Preheating fo			T		
		Strength		Step 1	•	erature o 120℃		me min.	
				2		5 120 ℃		min.	
				Z	170 (J 200 C			
		Appearance	No defects or abnormalities	 Fix the capacitor to the supporting jig in the same manner at under the same conditions as (10). Perform the five cycles according to the four heat treatments shown in the following table. Set for 24±2 hours at room temperature, then measure. 					
		Capacitance Change	B1, B3, R1, R6, R7, C6, C7, C8, D7, D8: Within ±7.5% E7: Within ±30% F1, F5: Within ±20%						
			B1, B3, R1, R6*2, R7*3, C7, C8, E7, D7, D8*2: 0.1 max.			•			
	Temperature	D.F.	C6: 0.125 max.	Step	1	2	3	4	
5	Sudden		F1, F5: 0.2 max.	Temp. (°C)	Min. Operating	Room	Max. Operating	Room	
	Change	I.R.	More than 50Ω · F		Temp. +0/-3	Temp.	Temp. +3/-0	Temp.	
		Dielectric Strength	No defects	Initial measu Perform a hea then set at roo	Time (min.) 30 ± 3 $2 \text{ to } 3$ 30 ± 3 $2 \text{ to } 3$ itial measurement for high dielectric constant typerform a heat treatment at $150+0/-10^{\circ}$ C for one hour and en set at room temperature for 24 ± 2 hours.rform the initial measurement.				
		Appearance	No defects or abnormalities	Apply the rated voltage at 40±2℃ and 90 to 95% humidity					
	High Temperature High	Capacitance Change	B1, B3, R1, R6, R7, C6, C7, C8, E7, D7, D8: Within ±12.5% F1, F5: Within ±30%	 500±12 hours. The charge/discharge current is less than 50 Initial measurement Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. 				than 50m	
16		D.F.	B1, B3, R1, R6, R7, C6, C7, C8, E7, D7, D8: 0.2 max. F1, F5: 0.4 max.						
	Humidity (Steady)	I.R.	More than 12.5 Ω · F	•Measuremen Perform a hea	t after test It treatment at		10℃ for one ho nperature, ther	than 50m our and form the	
		Appearance	No defects or abnormalities	Apply 150% o	Apply 150% of the rated voltage for 1000±12 hours at the			at the	
		Capacitance Change	B1, B3, R1, R6, R7, C6, C7, C8, E7, D7, D8: Within ±12.5% F1, F5: Within ±30%	 maximum operating temperature ±3℃. Let sit for 24±2 hours room temperature, then measure. The charge/discharge current is less than 50mA. 					
		D.F.	B1, B3, R1, R6, R7, C6, C7, C8, E7, D7, D8: 0.2 max. F1, F5: 0.4 max.	 Initial measurement Perform a heat treatment at 150+0/-10°C for one hour and 					
7	Durability	I.R.	More than $25\Omega \cdot F$		24±2 hours at		10℃ for one ho nperature. Perf		
					at treatment at		10℃ for one ho nperature, ther		

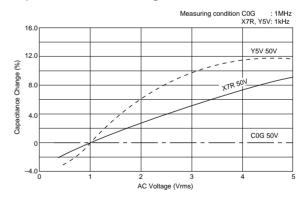
*2: GRM31CR60J107, GRM31CD80G107: 0.15 max.


*3: GRM31CR71E106: 0.125 max.

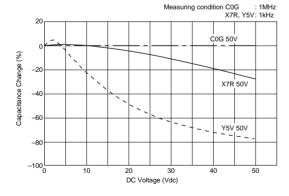

*4: GRM153R60G105, GRM188R60J106: Within $\pm 12.5\%$


GRM Series Data


■ Capacitance - Temperature Characteristics



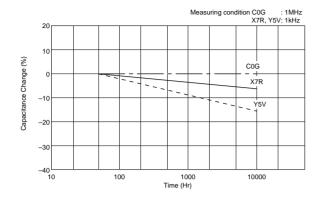
■ Impedance - Frequency Characteristics

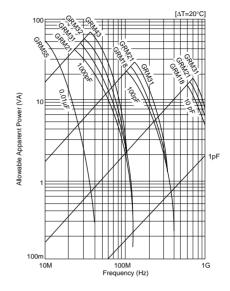


■ Capacitance - AC Voltage Characteristics

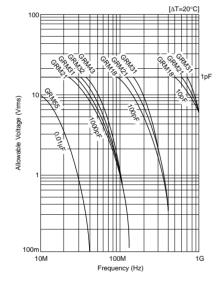
Continued on the following page.

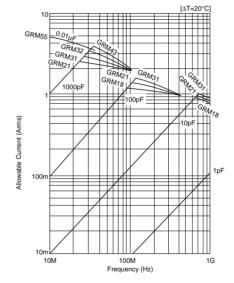
■ Capacitance - DC Voltage Characteristics




GRM Series Data

Continued from the preceding page.


■ Capacitance Change - Aging

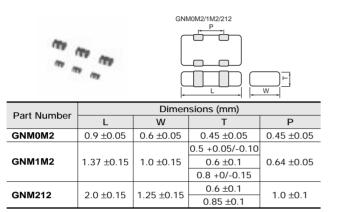

Allowable Apparent Power - Frequency

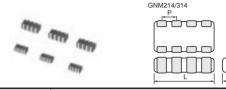
■ Allowable Voltage - Frequency

■ Allowable Current - Frequency

Chip Monolithic Ceramic Capacitors

-


Capacitor Array GNM Series


Features

- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

Applications

General electronic equipment

Part Number					
Part Number	L	W	Т	Р	
GNM214	2.0 +0.15	1.25 ±0.15	0.6 ±0.1	0.5 +0.05	
GINIWIZ 14	2.0 ±0.15	1.25 ±0.15	0.85 ±0.1	0.5 ±0.05	
			0.8 ±0.1		
CNIM244	3.2 +0.15	1.6 +0.15	0.85 ±0.1	0.0.10.1	
GNM314	3.2 ±0.15	1.0 ±0.15	1.0 ±0.1	0.8 ±0.1	
			1.15 ±0.1		

Temperature Compensating Type C0G(5C) Characteristics

Part Number		GNM1M	GNM21	GNM31		
L x W [EIA] Rated Volt. TC		1.37x1.0 [0504] 2.0x1.25 [0805] 50 (1H) 50 (1H) COG (5C) COG (5C)	2.0x1.25 [0805]	3.2x1.6 [1206]		
				100 (2A)	50 (1H) COG (5C)	
				C0G (5C)		
Capacitance, Ca	pacitand	e Tolerance and T Dimension			I	
10pF(100)	К	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
15pF(150)	К	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
22pF(220)	К	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
33pF(330)	К	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
47pF(470)	К	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
68pF(680)	К	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
100pF(101)	К	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
150pF(151)	К	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
220pF(221)	К	0.6(2)	0.6(4)		0.8(4)	
330pF(331)	к				0.8(4)	

The part numbering code is shown in each (). The (2) & (4) code in T (mm) means number of elements (two) & (four).

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type X5R(R6) Characteristics

Part Number			GNM0M				GNM1M				GNM21		GN	M31
L x W [EIA]		0.9	9x0.6 [030	02]		1.3	7x1.0 [05	04]		2.0	x1.25 [08	05]	3.2x1.6	[1206]
Rated Volt.		16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	16 (1C)	10 (1A)	6.3 (0J)	16 (1C)	10 (1A)
тс		X5R (R6)												
Capacitance, Ca	pacitand	e Toleran	ice and T	Dimensio	n			1	1	1	1			
1000pF(102)	М				0.6(2)									
2200pF(222)	М					0.6(2)								
4700pF(472)	М					0.6(2)								
10000pF(103)	М	0.45*(2)	0.45*(2)	0.45*(2)		0.6(2)								
22000pF(223)	М	0.45*(2)	0.45*(2)	0.45*(2)			0.6(2)	0.6(2)						
47000pF(473)	М	0.45*(2)	0.45*(2)	0.45*(2)			0.6(2)	0.6(2)						
0.10μF(104)	М	0.45*(2)	0.45*(2)	0.45*(2)				0.6(2)						
0.22µF(224)	М						0.8*(2)							
0.47µF(474)	М									0.85(2)				
1.0μF(105)	М						0.8*(2)	0.5*(2)	0.8*(2)	0.85(2)	0.85*(4)	0.85*(4)	0.85(4)	0.85(4)
2.2μF(225)	м							0.8*(2)	0.8*(2)		0.85*(2)	0.85*(2)		

The part numbering code is shown in each (). The (2) & (4) code in T (mm) means number of elements (two) & (four).

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GNM Series Specifications and Test Methods (2)(P.40)

High Dielectric Constant Type X7R/7S(R7/C7) Characteristics

Part Number				GNM1M				GNM21			GN	M31	
L x W [EIA]			1.3	37x1.0 [05	04]		2.0	0x1.25 [08	05]		3.2x1.6	6 [1206]	
Rated Volt.		50 (1H)	25 (1E)	16 (1C)	10 (1A)		50 (1H)	25 (1E)	16 (1C)	50 (1H)	25 (1E)	16 (1C)	6.3 (0J)
тс		X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7S (C7)	X7R (R7)						
Capacitance, Ca	pacitan	ce Toleran	ce and T D	imension							1	1	1
470pF(471)	М						0.6(4)						
1000pF(102)	М	0.6(2)					0.6(4)						
2200pF(222)	М		0.6(2)					0.6(4)					
4700pF(472)	М		0.6(2)					0.6(4)					
10000pF(103)	М		0.6(2)					0.6(4)					
22000pF(223)	М			0.6(2)	0.6(2)				0.85(4)				
47000pF(473)	М			0.6(2)	0.6(2)				0.85(4)	0.85(4)		1.0(4)	
0.10μF(104)	М			0.6(2)		0.6(2)			0.85(4)	0.85(4)	0.85(4)	1.0(4)	
1.0μF(105)	М												1.15(4)

The part numbering code is shown in each (). The (2) & (4) code in T (mm) means number of elements (two) & (four). Dimensions are shown in mm and Rated Voltage in Vdc.

35

GNM Series Specifications and Test Methods (1)

Specifications

Below GNM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GNM Series Specifications and Test Methods (2) (P.40).

	No. Item											
	NO.	ne		Temperature Compensating Type		High Di	electrio					
3	1	Operating Tempera Range		5C:55 to +125°C		–55 to +1 to +85°C	25°C					
	2	Rated Vo	Itage	See the previous pag	ges.							
	3	Appearar	nce	No defects or abnormalities								
	4	Dimensio	ns	Within the specified	dimensior	IS						
	5	Dielectric	: Strength	No defects or abnorr	nalities							
	6	Insulatior Resistanc		More than 10,000M Ω or 500 $\Omega \cdot F$ (Whichever is smaller)								
	7 0	Capacita	nce	Within the specified	tolerance							
	8	Q/ Dissipatio (D.F.)	on Factor	30pF min.: Q≥1000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF)	Char. R7, R6, C7	25V min. 0.025 max.	16V 0.035 max.					
			Capacitance Change	Within the specified tolerance (Table A)	Char. R7 R6 C7	Temp. Range -55°C to +125°C to +85°C -55°C to +125°C to +125°C	25					
	9	Capacitance Temperature Characteristics	Temperature Coefficent	Within the specified tolerance (Table A)								
				Within ±0.2%			/					

	Specifications								
Temperature Compensating Type	High Dielectric Type	- Test Method							
5C: -55 to +125°C	R7, C7: –55 to +125°C R6: –55 to +85°C								
See the previous par	ges.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, $V^{\text{p.p}}$ or $V^{\text{o.p}}$, whichever is larger, should be maintained within the rated voltage range.							
No defects or abnorr	nalities	Visual inspection							
Within the specified	dimensions	Using calipers							
No defects or abnorr	nalities	No failure should be observed when 300% of the rated voltage (5C) or 250% of the rated voltage (R7) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.							
		The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.							
Within the specified	tolerance	The capacitance/Q/D.F. should be measured at 25°C at the							
30pF min.: Q≥1000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF)	Char. 25V min. 16V 10V 6.3V R7, R6, 0.025 0.035 0.035 0.05 C7 max. max. max. max.	frequency and voltage shown in the table. Char. 5C R7 Item 1±0.1MHz 1±0.1kHz Voltage 0.5 to 5Vrms 1.0±0.2Vrms							
Within the specified tolerance (Table A) Within the specified tolerance (Table A) Within ±0.2%	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	The capacitance change should be measured after 5 min. at each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determined using the capaci- tance measured in step 3 as a reference. When cycling the temperature sequentially from step1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the steps 1, 3 and 5 by the cap. value in step 3. $$tep Temperature (°C) \\ 1 & 25\pm 2 \\ \hline 2 & -55\pm 3 (for 5C/R7/C7), -30\pm 3 (for F5) \\ \hline 3 & 25\pm 2 \\ \hline 4 & 125\pm 3 (for 5C/R7/C7), 85\pm 3 (for F5) \\ \hline 5 & 20\pm 2 \\ \hline \hline$							
	GNM 2 GNM 2 Solder resist Solder resist	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\boxed{\frac{\text{Type} a b c d}{\text{GNM1M2} 0.5 1.6 0.32 0.32}}_{\begin{array}{c} \text{GNM212} 0.6 1.8 0.5 0.5 \\ \hline{\text{GNM214} 0.6 2.0 0.25 0.25 \\ \hline{\text{GNM314} 0.8 2.5 0.4 0.4 \\ \hline \end{array}}_{\begin{array}{c} \text{Fig. 1} \end{array}}$							
	Compensating Type 5C: -55 to +125°C See the previous page No defects or abnorn Within the specified of More than 10,000Ms (Whichever is smalled) Within the specified of 30pF min:: Q≥1000 30pF max:: Q≥400+20C C: Nominal Capacitance (pF) e Within the specified tolerance (Table A) Within ±0.2% or ±0.05pF (Whichever is larger.) No removal of the te GNMI	Temperature Compensating TypeHigh Dielectric Type5C: -55 to +125°CR7, C7: -55 to +125°C R6: -55 to +85°CSee the previous pages.No defects or abnormalitiesWithin the specified dimensionsNo defects or abnormalitiesWithin the specified dolerance30pF max: Q≥400+20CQ≥400+20CChar.Temperature (Table A)Within the specified toleranceWithin the specified tolerance (Table A)Within ±0.2% or ±0.05pF (Whichever is larger.)No removal of the terminations or other defect should occur.No removal of the terminations or other defect should occur.No removal of the terminations or other defect should occur.No removal of the terminations or other defect should occur.No removal of the terminations or other defect should occur.No removal of the terminations or other defect should occur.No removal of the terminations or other defect should occur.							

10

			GNM Series S	pecifications and Test Methods (1)					
	Continued fr	om the prec	Below GNM Series Specifications and Tes	st Methods (1) are applied to Non "*" PNs in capacitance table. efer to GNM Series Specifications and Test Methods (2) (P.40).					
			Specifications						
No.	lte	em	Temperature Compensating Type High Dielectric Type	- Test Method					
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the					
		Capacitance	Within the specified tolerance	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion					
11	Vibration Resistance	Q/D.F.	30pF min.: Q≥1000 Char. 25V min. 16V 10V 6.3V Q≥400+20C R7, R6, 0.025 0.035 0.035 0.05 C: Nominal Capacitance (pF) C max. max. max. max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendic- ular directions (total of 6 hours).					
			No cracking or marking defects should occur.	Solder the capacitor on the test jig (glass epoxy board) shown					
	Deflection			in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3 for 5 ± 1 sec. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.					
12				R230 R230 R230 R230 R230 R230 R230 R230					
			Type a b c d GNM1M2 2.0±0.05 0.5±0.05 0.32±0.05 0.32±0.05 GNM212 2.0±0.05 0.6±0.05 0.5±0.05 0.5±0.05 GNM214 2.0±0.05 0.7±0.05 0.3±0.05 0.2±0.05 GNM314 2.5±0.05 0.8±0.05 0.4±0.05 0.4±0.05	Capacitance meter 45 + 45 +					
			(in mm) Fig. 2	Fig. 3					
13	Solderabi Terminati	5	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2 ± 0.5 seconds at $230\pm5^{\circ}$ C or Sn-3.0Ag-0.5Cu solder solution for 2 ± 0.5 seconds at $245\pm5^{\circ}$ C.					
	Resistanc Soldering		The measured and observed characteristics should satisfy the specifications in the following table.						
		Appearance	No marking defects	-					
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Preheat the capacitor at 120 to 150° C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at $270\pm5^{\circ}$ C for 10 ± 0.5 seconds. Let sit at room					
14		Q/D.F.	30pF min.: Q≥1000 Char. 25V min. 16V 10V 6.3V 30pF max.: Q≥400+20C Char. 25V min. 16V 0.035 0.035 0.05 C: Nominal Capacitance (pF) max. max. max. max. max.	 temperature for 24±2 hours, then measure. Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. 					
		I.R.	More than 10,000M Ω or 500 Ω · F (Whichever is smaller)						
		Dielectric Strength	No failure						

Continued on the following page. \square

muRata

GNM Series Specifications and Test Methods (1)

Below GNM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table.

				Speci	ifications	;				-				
No.	Ite	em	Temperature Compensating Type		High D	ielectric	: Туре			les	st Metho	d		
	Tempera Cycle	ture	The measured and o specifications in the f			istics sh	ould sati	sfy the			0.0	in the same m		
		Appearance	No marking defects								. ,	erform the five		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7, R6,	C7: With	in ±7.5%	6		 according to the four heat treatments listed in the following table. Let sit for 24±2 hours (temperature compensating typ or 48±4 hours (high dielectric constant type) at room temperature, then measure. 					
15			30pF min.: Q≧1000						Step	1 Min.	2	3 Max.	4	
15		Q/D.F.	30pF max.: Q≧400+20C	Char. 25V min. 16V 10V 6.3V R7, R6, 0.025 0.035 0.035 0.05			Temp. (°C)	Operating Temp. +0/-3	Room Temp.	Operating Temp. +3/–0	Room Temp.			
			C:Nominal	C7	max.	max.	max.	max.	Time (min.)	30±3	2 to 3	30±3	2 to 3	
			Capacitance (pF)									ic constant typ		
		I.R.	More than 10,000M	2 or 500Ω	· F (Whi	chever is	s smalle	.)		at treatment a r 24±2 hours a		10°C for one h emperature.	our and	
		Dielectric Strength	No failure							nitial measure		- F		
	Humidity Steady State		The measured and o specifications in the f			istics sh	ould sati							
	Capar	Appearance	No marking defects											
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	R7, R6,	C7: With	in ±12.5	5%		Sit the capacit	or at 40±2°C a	and 90 to	95% humidity	for 500±12	
16			30pF and over: Q≧350 10pF and over,						hours. Remove and let sit for 24±2 hours at room temperature, the measure.				ure, then	
		Q/D.F.	30pF and below: Q≧275+5C/2	Char. R7, R6,	25V mir 0.05	n. 16V		//6.3V).05						
		Q/D.F.	Q≧275+5C/2 10pF and below: Q≧200+10C C: Nominal Capacitance (pF)	<u>C7</u>	max.	max		nax.	-					
		I.R.	More than 1,000M Ω	or 50Ω · F	F (Whiche	ever is s	maller)		_					
	Humidity	Load	The measured and o specifications in the f			istics sh	ould sati	sfy the						
		Appearance	No marking defects											
	7	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R7, R6,	C7: With	in ±12.5	5%		Apply the rated voltage at $40\pm2^{\circ}$ C and 90 to 95% humidity for 500±12 hours.					
17		Q/D.F.	30pF and over: Q≥200 30pF and below: Q≥100+10C/3 C: Nominal	Char. R7, R6, C7	25V min 0.05 max.	n. 16V 0.05 max	0	//6.3V 0.05 nax.	 Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. 					
			Capacitance (pF)											

Continued on the following page. \nearrow

GNM Series Specifications and Test Methods (1)

Below GNM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table.

N.				Specifications	TestMalled
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
	High Tem Load	perature	The measured and o specifications in the	bserved characteristics should satisfy the following table.	
		Appearance	No marking defects		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R7, R6, C7: Within ±12.5%	Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
18		Q/D.F.	30pF and over: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	Char.25V min.16V10V/6.3VR7, R6,0.040.050.05C7max.max.max.	 Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature. Perform initial measurement.
		I.R.	More than 1,000M Ω	or $50\Omega \cdot F$ (Whichever is smaller)	

Table A

	Norse a Malara	Capacitance Change from 25°C (%)										
Char.	Nominal Values (ppm/℃) Note 1	-5	5℃	-3	ර ී	–10℃						
		Max.	Min.	Max.	Min.	Max.	Min.					
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11					

Note 1: Nominal values denote the temperature coefficient within a range of 25 to 125°C.

GNM Series Specifications and Test Methods (2)

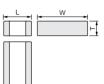
Below GNM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. In case "*" is not added in capacitance table, please refer to GNM Series Specifications and Test Methods (1) (P.36).

		• •	e refer to GNM Series Specifications and Test Methods (1) (P.36).						
No.	Item	Specifications	Test Method						
1	Operating Temperature Range	R6:55°C to +85°C							
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, ^{VP.P} or V ^{O.P} , whichever is larger, should be maintained within the rated voltage range.						
3	Appearance	No defects or abnormalities	Visual inspection						
4	Dimensions	Within the specified dimension	Using calipers						
5	Dielectric Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.						
6	Insulation Resistance	50Ω · F min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 1 minute of charging.						
7	Capacitance	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the frequency and voltage shown in the table.						
8	Dissipation Factor (D.F.)	0.1 max.*3 Table 3 GNM0M2 R6 103/223/473/104 GNM1M2 R6 0J 105/225 GNM1M2 R6 1A 225 GNM212 R6 0J 225 GNM212 R6 1A 225 *3 However 0.125 max. about Table 3 items on the left side.	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
9	Capacitance Temperature Characteristics	Char.Temp. RangeReference Temp.Cap. ChangeR6-55 to +85°C25°CWithin ±15%	The capacitance change should be measured affter 5 min.at each specified temperature stage. $\begin{array}{r c c c c c c c c c c c c c c c c c c c$						
		No removal of the terminations or other defects should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in						
10	Adhesive Strength of Termination	GNM 4 GNM 2	Fig. 1 using a eutectic solder. Then apply 5N (GNM0M2: 2N) force in parallel with the test jig for 10 ± 1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\begin{array}{c c c c c c c c c c c c c c c c c c c $						
		Solder resist	GNM212 0.0 1.0 0.0 0.0 GNM214 0.6 2.0 0.25 0.25						
		Copper foil	GNM314 0.8 2.5 0.4 0.4						
		Fig. 1	(in mm)						
11	Appearance Capacitance Vibration D.F.	No defects or abnormalities Within the specified tolerance 0.1 max.*3 *3 However 0.125 max. about Table 3 items on the left side.	 Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motior having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). 						

			GNM Series S	pecifications and Test Methods (2)							
	Continued fr	om the prec		and Test Methods (2) are applied to "*" PNs in capacitance table. a refer to GNM Series Specifications and Test Methods (1) (P.36).							
No.	Ite	m	Specifications	Test Method							
12	Deflection Solderability of Termination		No cracking or marking defects should occur. •GNM 4 •GNM 2 •GNM 100 •GNM	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.							
13			75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2 ± 0.5 seconds at $230\pm5^{\circ}$ C or Sn-3.0Ag-0.5Cu solder solution for 2 ± 0.5 seconds at $245\pm5^{\circ}$ C.							
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse							
	Resistance to Soldering D Heat I.	Capacitance Change	R6: Within ±7.5%	the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270 \pm 5°C for 10 \pm 0.5 seconds. Let sit at room temperature for 24 \pm 2 hours, then measure.							
14		D.F.	*3 However 0.125 max. about Table 3 items on the left side.	Initial measurement							
		I.R.	50Ω · F min.	Perform a heat treatment at $150 + 0/-10^{\circ}$ C for one hour and then let sit for 24 ± 2 hours at room temperature. Perform							
		Dielectric Strength	No failure	the initial measurement.							
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and							
		Capacitance Change	R6: Within ±12.5%	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table.							
		D.F.	0.1 max. * ³ * ³ However 0.125 max. about Table 3 items on the left side.	Let sit for 24 ± 2 hours at room temperature, then measure.							
15	Temperature	I.R.	$50\Omega \cdot F$ min.	Step 1 2 3 4 Tame (2) Min. Operating Room Max. Operating Room							
	Cycle			Temp. (C) Temp. Temp. Temp. Temp.							
		Dielectric Strength	No failure	Time (min.) 30±3 2 to 3 30±3 2 to 3 • Initial measurement Perform a heat treatment at 150 +0/-10 °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.							
		Appearance	No marking defects	Apply the rated voltage at 40±2°C and 90 to 95% humidity for							
	High	Capacitance Change	R6: Within ±12.5%	 500±12 hours. The charge/discharge current is less than 50mA. Initial measurement 							
16	Temperature High	D.F.	0.2 max.	Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature.							
10	Humidity (Steady)	I.R.	12.5Ω · F min.	 Perform the initial measurement. Measurement after test Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure. 							
		Appearance	No marking defects	Apply 150% (GNM1M2R61A225/1C105: 125% of the rated							
		Capacitance Change	R6: Within ±12.5%	voltage) of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours							
		D.F.	0.2 max.	at room temperature, then measure. The charge/discharge current is less than 50mA.							
17	Durability	I.R.	25Ω - F min.	 Initial measurement Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. Measurement after test Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure. 							

Chip Monolithic Ceramic Capacitors

Low ESL LLL/LLA/LLM Series


Features (Reversed Geometry Low ESL Type)

- 1. Low ESL, good for noise reduction for high
- frequency
- 2. Small, high cap

Applications

- 1. High speed micro processor
- 2. High frequency digital equipment

Part Number	Dimensions (mm)									
Part Number	L	W	Т							
LLL153	0.5 ±0.05	1.0 ±0.05	0.3 ±0.05							
LLL185	0.8 ±0.1	1.6 ±0.1	0.6 max.							
LLL215			0.5 +0/-0.15							
LLL216	1.25 ±0.1	2.0 ±0.1	0.6 ±0.1							
LLL219			0.85 ±0.1							
LLL315			0.5 +0/-0.15							
LLL317	1.6 ±0.15	3.2 ±0.15	0.7 ±0.1							
LLL31M			1.15 ±0.1							

Reversed Geometry Low ESL Type

Part Number		LLL15			LLL18					LLI	L21					LL	L31		
L x W [EIA]		0.5x1.0 [0204]		0.8	(1.6 [0	306]			1	.25x2.	0 [0508	8]				1.6x3.2	2 [0612]	
Rated Volt.		6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6 (0	0.3)J)
тс		X6S (C8)	X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7S (C7)	X7R (R7)	X7S (C7)						X5R (R6)				
Capacitance, Ca	pacitan	ce Tole	rance a	nd T D	imensi	on													
2200pF (222)	м		0.5 (5)																
4700pF (472)	м		0.5 (5)																
10000pF (103)	м			0.5 (5)				0.6 (6)						0.7 (7)					
22000pF (223)	м			0.5 (5)				0.6 (6)						0.7 (7)					
47000pF (473)	м				0.5 (5)				0.6 (6)					0.7 (7)					
0.10μF (104)	М	0.3* (3)				0.5 (5)			0.6 (6)					1.15 (M)	0.7 (7)				
0.22µF (224)	м	0.3* (3)				0.5 (5)				0.85 (9)	0.6 (6)				1.15 (M)	0.7 (7)			
0.47µF (474)	м						0.5 (5)				0.85 (9)				1.15 (M)	0.7 (7)			
1.0μF (105)	М						0.5* (5)					0.85 (9)				1.15 (M)	0.7 (7)		
2.2µF (225)	М						0.5* (5)						0.85 (9)				1.15 (M)	0.7 (7)	
4.7μF (475)	м																	1.15 (M)	
10μF (106)	м																		1.15* (M)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

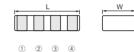
*: Please refer to LLL/LLA/LLM Series Specifications and Test Method (2)(P.47).

4

Reversed Geometry Low ESL Type Low Profile

Part Number			LLI	_18		LLL21			LLL31						
L x W [EIA]			0.8x1.6	[0306]		1.25x2.0 [0508] 1.6x3.2 [0612]									
Rated Volt.		25 (1E)	16 (1C)	10 (1A)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
тс	X7R (R7)	X7R (R7)	X7R (R7)	X7S (C7)	X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7S (C7)	X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	
Capacitance, Ca	pacitan	ce Tolera	nce and [·]	T Dimens	sion										
10000pF(103)	М	0.5(5)				0.5(5)						0.5 (5)			
22000pF(223)	М		0.5(5)				0.5(5)					0.5(5)			
47000pF(473)	М		0.5(5)					0.5 (5)					0.5(5)		
0.10μF(104)	М			0.5(5)				0.5 (5)					0.5(5)		
0.22μF(224)	М				0.5(5)				0.5(5)					0.5(5)	
0.47µF(474)	М									0.5(5)					0.5(5)
1.0μF(105)	м										0.5(5)				

The part numbering code is shown in ().


Dimensions are shown in mm and Rated Voltage in Vdc.

■ Features (Eight Terminals Low ESL Type)

- 1. Low ESL (100pH) , suitable to decoupling capacitor for 1GHz clock speed IC.
- 2. Small, large cap

Applications

- 1. High speed micro processor
- 2. High frequency digital equipment

Part Number	Dimensions (mm)						
Fait Number	L	W	Т	Р			
LLA185	1.6 ±0.1	0.8 ±0.1	0.5 +0.05/-0.1	0.4 ±0.1			
LLA215	2.0 ±0.1	1.25 ±0.1	0.5 +0.05/-0.1	0.5 ±0.05			
LLA219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.5 ±0.05			
LLA315	3.2 ±0.15	1.6 ±0.15	0.5 +0.05/-0.1	0.8 ±0.1			
LLA319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.8 ±0.1			
LLA31M	3.2 ±0.15	1.6 ±0.15	1.15 ±0.1	0.8 ±0.1			

Eight Terminals Low ESL Type

Part Number		LLA18			LLA21			LLA31		
L x W [EIA]		1.6x0.8 [0603]	2.0x1.25 [0805]					3.2x1.6 [1206]		
Rated Volt.		4 (0G)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	4 (0G)
тс		X7S (C7)	X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7S (C7)	X7R (R7)	X7R (R7)	X7R (R7)
Capacitance, Ca	pacitant	ce Tolerance a	nd T Dimensi	on						
10000pF(103)	М		0.85(9)							
22000pF(223)	М		0.85(9)							
47000pF(473)	М		0.85(9)							
0.10μF(104)	М	0.5(5)		0.85(9)				0.85(9)		
0.22µF(224)	М	0.5(5)		0.85(9)				0.85(9)		
0.47µF(474)	М	0.5(5)			0.85(9)			0.85(9)		
1.0μF(105)	м	0.5*(5)				0.85(9)		1.15(M)	0.85(9)	
2.2µF(225)	м	0.5*(5)					0.85(9)		1.15(M)	0.85(9)
4.7μF(475)	м						0.85*(9)			

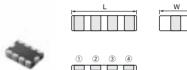
The part numbering code is shown in $% \left({\left. {{{\bf{n}}_{\rm{s}}}} \right)_{\rm{s}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to LLL/LLA/LLM Series Specifications and Test Method (2)(P.47).

Eight Terminals Low ESL Type Low Profile

Part Number		LLA21						LLA31	
L x W [EIA]				2.0x1.25 [0805]			3.2x1.6 [1206]	
Rated Volt.		25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)
тс		X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X7S (C7)	X7R (R7)	X7R (R7)	X7R (R7)
Capacitance, Ca	pacitanc	e Tolerance ar	nd T Dimension			1		L	L
10000pF(103)	М	0.5(5)							
22000pF(223)	М	0.5(5)							
47000pF(473)	М		0.5(5)						
0.10μF(104)	М		0.5(5)						
0.22µF(224)	М			0.5(5)			0.5 (5)		
0.47µF(474)	М				0.5(5)			0.5(5)	
1.0μF(105)	М					0.5(5)			0.5(5)
2.2μF(225)	М					0.5*(5)			0.5(5)
4.7μF(475)	м					0.5*(5)			


The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to LLL/LLA/LLM Series Specifications and Test Method (2)(P.47).

■ Features (Ten Terminals Low ESL Type)

- 1. Low ESL (45pH), suitable to decoupling capacitor for 2GHz clock speed IC.
- 2. Small, large cap
- Applications
- 1. High speed micro processor
- 2. High frequency digital equipment

E	quiva	lent	Circ	uit
1	3	⑤ 	7	(
		\pm		
2	4	6	8	(

Part Number	Dimensions (mm)						
Part Nulliber	L	W	Т	Р			
LLM215	2.0 ±0.1	1.25 ±0.1	0.5 +0.05/-0.1	0.5 ±0.05			
LLM315	3.2 ±0.15	1.6 ±0.15	0.5 +0.05/-0.1	0.8 ±0.1			

Ten Terminals Low ESL Type Low Profile

Part Number			LLN	/121	LLM31			
L x W [EIA]			2.0x1.2	2.0x1.25 [0805] 3.2x1.6 [1206]				
Rated Volt.		25 (1E)	16 (1C)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)
тс		X7R (R7)	X7R (R7)	X7R (R7)	X7S (C7)	X7R (R7)	X7R (R7)	X7R (R7)
Capacitance, Ca	pacitanc	e Tolerance and	T Dimension		4	1	1	
10000pF(103)	м	0.5(5)						
22000pF(223)	м	0.5(5)						
47000pF(473)	м		0.5 (5)					
0.10μF(104)	м		0.5 (5)			0.5(5)		
0.22µF(224)	м			0.5 (5)		0.5(5)		
0.47µF(474)	М			0.5(5)			0.5(5)	
1.0μF(105)	М				0.5(5)			
2.2μF(225)	м				0.5*(5)			0.5(5)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to LLL/LLA/LLM Series Specifications and Test Method (2)(P.47).

LLL/LLA/LLM Series Specifications and Test Methods (1)

Below LLL/LLA/LLM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to LLL/LLA/LLM Series Specifications and Test Methods (2) (P.47).

No.	Ite	em	Specifications	Test Method
1	Operating Temperat Range		R7, C7: −55 to +125°C	
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{0,p} , whichever is larger, should be maintained within the rated voltage range.
3	Appearar	nce	No defects or abnormalities	Visual inspection
4	Dimensio	ns	Within the specified dimension	Using calipers
5	Dielectric Strength No defects or abnormalities		No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulation Resistance		C≦0.047μF: More than 10,000MΩ C>0.047μF: More than 500Ω · F C: Normal Capacitance	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the
8	Dissipation Factor (D.F.)		W.V.: 25V min.; 0.025 max. W.V.: 16V/10V max.; 0.035 max. W.V.: 6.3V max.; 0.05 max.	frequency and voltage shown in the table. Frequency: 1±0.1kHz Voltage: 1±0.2Vrms *However the voltage is 0.5±0.1Vrms about LLA185C70G474.
	Capacitance Temperature Characteristics			The capacitance change should be measured after 5 min. at each specified temperature stage.
9			Char. Temp. Range (°C) Reference Temp. Cap.Change R7 -55 to +125 25°C Within ±15%	$\begin{tabular}{ c c c c c c } \hline Step & Temperature (°C) \\ \hline 1 & 25\pm 2 \\ \hline 2 & -55\pm 3 \\ \hline 3 & 25\pm 2 \\ \hline 4 & 125\pm 3 \\ \hline 5 & 25\pm 2 \\ \hline \end{tabular}$
			C7 -55 to +125 25°C Within ±22%	The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges.
10	Adhesive of Termin	Strength ation	No removal of the terminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) using a eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *LLL18 and LLA/LLM Series: 5N
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in
		Capacitance	Within the specified tolerance	the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion
11	Vibration Resistance	D.F.	W.V.: 25V min.; 0.025 max. W.V.: 16V/10V max.; 0.035 max. W.V.: 6.3V max.; 0.05 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).
12	Solderab Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C, or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.
		Appearance	No marking defects	
		Capacitance Change	Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Let sit at room
13	Resistance W.V.: 25V min.; 0.025 max. to Soldering D.F. W.V.: 16V/10V max.; 0.035 max. Heat W.V.: 6.3V max.; 0.05 max.		W.V.: 16V/10V max.; 0.035 max.	temperature for 24±2 hours, then measure.Initial measurement.
		I.R.	More than 10,000M Ω or 500 $\Omega \cdot F$ (Whichever is smaller)	Perform a heat treatment at 150^{+0}_{-10} °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial
		I.R. More than 10,000MΩ or 500Ω · F (Whichever is smaller) Dielectric Strength No failure		measurement.

Continued on the following page.

LLL/LLA/LLM Series Specifications and Test Methods (1)

Below LLL/LLA/LLM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to LLL/LLA/LLM Series Specifications and Test Methods (2) (P.47).

	7	1
Z	4	ļ
		1

No.	lte	em	Specifications	Test Method					
		Appearance Capacitance Change	No marking defects Within ±7.5%	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room					
14	Temperature	D.F.	W.V.: 25V min.; 0.025 max. W.V.: 16V/10V max.; 0.035 max. W.V.: 6.3V max.; 0.05 max.	temperature, then measure. Step 1 2 3 4					
	Cycle	I.R.	More than 10,000M\Omega or 500 $\Omega\cdot\text{F}$ (Whichever is smaller)	$\frac{\text{Temp. } (^{\circ}\text{C})}{\text{Temp. } + \frac{9}{3}} \frac{\text{Temp. } + \frac{1}{3}}{\text{Temp. } + \frac{1}{3}} \frac{\text{Temp. } + \frac{1}{3}}{\text{Temp. } + \frac{1}{3}} \frac{\text{Temp. } + \frac{1}{3}}{\text{Temp. } + \frac{1}{3}}$					
		Dielectric Strength	No failure	Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3• Initial measurement.Perform a heat treatment at $150\pm9_{0}$ °C for one hour and tlet sit for 24 ± 2 hours at room temperature. Perform the in measurement.					
		Appearance	No marking defects						
15	Humidity (Steady State)	Capacitance Change	Within ±12.5%	Sit the capacitor at $40\pm2^{\circ}$ C and 90 to 95% humidity for 500 ± 12					
15		D.F.	W.V.: 10V min.; 0.05 max. W.V.: 6.3V max.; 0.075 max.	hours. Remove and let sit for 24±2 hours at room temperature, then measure.					
		I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$ (Whichever is smaller)						
		Appearance	No marking defects						
	t to one i alita o	Capacitance Change	Within ±12.5%	Apply the rated voltage at $40\pm2^{\circ}$ C and 90 to 95% humidity for					
16	Humidity Load	D.F.	W.V.: 10V min.; 0.05 max. W.V.: 6.3V max.; 0.075 max.	500±12 hours. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.					
		I.R.	More than 500M Ω or 25 $\Omega \cdot F$ (Whichever is smaller)						
		Appearance	No marking defects	Apply 200% of the rated voltage for 1000±12 hours at the					
		Capacitance Change	Within ±12.5%	maximum operating temperature $\pm 3^{\circ}$ C. Let sit for 24 \pm 2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.					
17	High Temperature Load	D.F.	W.V.: 10V min.; 0.05 max. W.V.: 6.3V max.; 0.075 max.	 Initial measurement. 					
	LUdu	I.R. More than 1,000MΩ or $50\Omega \cdot F$ (Whichever is smaller)		Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature. Perform initial measurement.					

LLL/LLA/LLM Series Specifications and Test Methods (2)

Below LLL/LLA/LLM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. In case "*" is not added in capacitance table, please refer to LLL/LLA/LLM Series Specifications and Test Methods (1) (P.45).

No.	Ite	em	Specifications	Test Method		
1	Operating Temperat Range	5	R6: -55 to +85°C R7, C7: -55 to +125°C C8: -55 to +105°C			
2	Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{0.p} , whichever is larger, should be maintained within the rated voltage range.		
3	Appearar	nce	No defects or abnormalities	Visual inspection		
4	Dimensio	ons	Within the specified dimension	Using calipers		
5	Dielectric	c Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.		
6	Insulatior Resistanc		50Ω · F min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 1 minute of charging.		
7	Capacitance		Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the frequency and voltage shown in the table.		
8	Dissipation Factor (D.F.) R6, R7, C7, C8: 0.120 max.		R6, R7, C7, C8: 0.120 max.	Capacitance Frequency Voltage C≤10μF (10V min.) 1±0.1kHz 1.0±0.2Vrms C≤10μF (6.3V max.) 1±0.1kHz 0.5±0.1Vrms C>10μF 120±24Hz 0.5±0.1Vrms		
9	Capacitar Temperat Character	ure	Char. Temp. Range (°C) Reference Temp. Cap.Change R6 -55 to +85 Within ±15% R7 -55 to +125 25°C C7 -55 to +125 25°C C8 -55 to +105 Within ±22%	The capacitance change should be measured after 5 min. at each specified temperature stage. The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges.		
10	Adhesive of Termin	Strength nation	No removal of the terminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) using a eutectic solder. Then apply $10N^*$ force in parallel with the test jig for 10 ± 1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $*5N$ (LLL15, LLL18, LLA,LLM Series)		
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in		
		Capacitance	Within the specified tolerance	the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion		
11	Vibration	D.F.	R6, R7, C7, C8: 0.120 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).		
12	Solderab Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C, or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.		
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse		
	Resistance	Capacitance Change	R6, R7, C7, C8: Within ±7.5%	 the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours, then measure. 		
13	to Soldering Heat	D.F.	R6, R7, C7, C8: 0.120 max.	Initial measurement.		
	ricat	I.R.	50Ω · F min.	Perform a heat treatment at 150^{+0}_{-10} °C for one hour and then		
		Dielectric Strength	No failure	let sit for 24±2 hours at room temperature. Perform the initial measurement.		

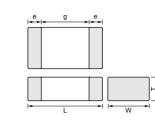
Continued on the following page. \square

LLL/LLA/LLM Series Specifications and Test Methods (2)

Below LLL/LLA/LLM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table.

No.	lt∈	em	Specifications	Test Method					
		Appearance Capacitance Change D.F.	No marking defects R6, R7, C7, C8: Within ±12.5% R6, R7, C7, C8: 0.120 max.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10).Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.					
	Temperature	I.R.	$50\Omega \cdot F$ min.	Step 1 2 3 4					
14	Sudden Change	1.K.		Temp. (°C) Min. Operating Temp. ±3 Room Temp. ±3 Max. Operating Temp. ±3 Room Temp. ±3 Time (min.) 30±3 2 to 3 30±3 2 to 3					
		Dielectric Strength	No failure	• Initial measurement Perform a heat treatment at $150\pm 9_0$ °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.					
		Appearance	No marking defects	Apply the rated voltage at 40±2°C and 90 to 95% humidity for					
		Capacitance Change	R6, R7, C7, C8: Within ±12.5%	500±12 hours. The charge/discharge current is less than 50mA. Apply the rated DC voltage.					
	High Temperatue	D.F.	R6, R7, C7, C8: 0.2 max.						
15	High Humidity (Steady State)	I.R.	12.5Ω · F min.	 Initial measurement Perform a heat treatment at 150⁺⁰/₋₁₀ °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. Measurement after test Perform a heat treatment at 150⁺⁰/₋₀ °C for one hour and then let sit for 24±2 hours at room temperature, then measure. 					
		Appearance	No marking defects	Apply 150% of the rated voltage for 1000±12 hours at the					
		Capacitance Change	R6, R7, C7, C8: Within ±12.5%	maximum operating temperature ±3°C. The charge/discharge current is less than 50mA.					
		D.F.	R6, R7, C7, C8: 0.2 max.	Initial measurement					
16	Durability	I.R.	25Ω · F min.	 Perform a heat treatment at 150 ± 0° °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. •Measurement after test Perform a heat treatment at 150 ± 0° °C for one hour and then let sit for 24±2 hours at room temperature, then measure. 					

Chip Monolithic Ceramic Capacitors


High-Q Type GJM Series

- Features
- 1. Mobile Telecommunication and RF module, mainly
- 2. Quality improvement of telephone call, Low power Consumption, yield ratio improvement

Applications

VCO, PA, Mobile Telecommunication

	_
	Ù

Part Number	Dimensions (mm)						
	L	W	Т	е	g min.		
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2		
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4		

Part Number			GJM15		
L x W [EIA]			0.6x0.3 [0201]		1.0x0.5 [0402]
Rated Volt.		25 (1E)		6.3 (0J)	50 (1H)
тс		C0G (5C)	C0H (6C)	C0G (5C)	C0G (5C)
Capacitance, C	apacitance Tole	erance and T Dimension			
0.10pF(R10)	W, B				0.5 (5)
0.20pF(R20)	W, B	0.3 (3)			0.5 (5)
0.30pF(R30)	W, B	0.3 (3)			0.5 (5)
0.40pF(R40)	W, B	0.3 (3)			0.5 (5)
0.50pF(R50)	W, B	0.3 (3)			0.5 (5)
0.60pF(R60)	W, B	0.3 (3)			0.5 (5)
0.70pF(R70)	W, B	0.3 (3)			0.5(5)
0.80pF(R80)	W, B	0.3 (3)			0.5 (5)
0.90pF(R90)	W, B	0.3 (3)			0.5 (5)
1.0pF(1R0)	W, B, C	0.3 (3)			0.5 (5)
1.1pF(1R1)	W, B, C	0.3 (3)			0.5 (5)
1.2pF(1R2)	W, B, C	0.3 (3)			0.5 (5)
1.3pF(1R3)	W, B, C	0.3 (3)			0.5 (5)
1.4pF(1R4)	W, B, C	0.3 (3)			0.5 (5)
1.5pF(1R5)	W, B, C	0.3 (3)			0.5 (5)
1.6pF(1R6)	W, B, C	0.3 (3)			0.5 (5)
1.7pF(1R7)	W, B, C	0.3 (3)			0.5 (5)
1.8pF(1R8)	W, B, C	0.3 (3)			0.5 (5)
1.9pF(1R9)	W, B, C	0.3 (3)			0.5 (5)
2.0pF(2R0)	W, B, C	0.3 (3)			0.5 (5)
2.1pF(2R1)	W, B, C	0.3 (3)			0.5 (5)
2.2pF(2R2)	W, B, C	0.3 (3)			0.5 (5)
2.3pF(2R3)	W, B, C	0.3 (3)			0.5(5)
2.4pF(2R4)	W, B, C	0.3 (3)			0.5(5)
2.5pF(2R5)	W, B, C	0.3 (3)			0.5(5)
2.6pF(2R6)	W, B, C	0.3 (3)			0.5(5)
2.7pF(2R7)	W, B, C	0.3 (3)			0.5 (5)
2.8pF(2R8)	W, B, C	0.3 (3)			0.5(5)
2.9pF(2R9)	W, B, C	0.3 (3)			0.5 (5)
3.0pF(3R0)	W, B, C	0.3 (3)			0.5(5)
3.1pF(3R1)	W, B, C	0.3 (3)			0.5(5)

The part numbering code is shown in ().

Continued from the preceding page.

Part Number			GJM03 0.6x0.3 [0201]		GJM15
L x W [EIA]			1.0x0.5 [0402]		
Rated Volt.		25 (1E)		6.3 (0J)	50 (1H)
тс		C0G (5C)	C0H (6C)	C0G (5C)	C0G (5C)
Capacitance, Ca	apacitance To	lerance and T Dimension			
3.2pF(3R2)	W, B, C	0.3 (3)			0.5(5)
3.3pF(3R3)	W, B, C	0.3 (3)			0.5 (5)
3.4pF(3R4)	W, B, C	0.3 (3)			0.5 (5)
3.5pF(3R5)	W, B, C	0.3(3)			0.5 (5)
3.6pF(3R6)	W, B, C	0.3 (3)			0.5 (5)
3.7pF(3R7)	W, B, C	0.3 (3)			0.5 (5)
3.8pF(3R8)	W, B, C	0.3 (3)			0.5 (5)
3.9pF(3R9)	W, B, C	0.3 (3)			0.5 (5)
4.0pF(4R0)	W, B, C	0.3 (3)			0.5 (5)
4.1pF(4R1)	W, B, C	0.3 (3)			0.5 (5)
4.2pF(4R2)	W, B, C	0.3 (3)			0.5(5)
4.3pF(4R3)	W, B, C	0.3 (3)			0.5(5)
4.4pF(4R4)	W, B, C	0.3 (3)			0.5(5)
4.5pF(4R5)	W, B, C	0.3(3)			0.5 (5)
4.6pF(4R6)	W, B, C	0.3(3)			0.5 (5)
4.7pF(4R7)	W, B, C	0.3(3)			0.5 (5)
4.8pF(4R8)	W, B, C	0.3(3)			0.5 (5)
4.9pF(4R9)	W, B, C	0.3(3)			0.5 (5)
5.0pF(5R0)	W, B, C	0.3(3)			0.5 (5)
5.1pF(5R1)	W, B, C, D	0.3(3)			0.5(5)
5.2pF(5R2)	W, B, C, D	0.3(3)			0.5(5)
5.3pF(5R3)	W, B, C, D	0.3(3)			0.5(5)
5.4pF(5R4)	W, B, C, D	0.3(3)			0.5(5)
5.5pF(5R5)	W, B, C, D	0.3(3)			0.5(5)
5.6pF(5R6)	W, B, C, D	0.3(3)			0.5(5)
5.7pF(5R7)	W, B, C, D	0.3(3)			0.5 (5)
5.8pF(5R8)	W, B, C, D	0.3(3)			0.5 (5)
5.9pF(5R9)	W, B, C, D	0.3(3)			0.5(5)
6.0pF(6R0)	W, B, C, D	0.3(3)			0.5(5)
6.1pF(6R1)	W, B, C, D	0.3(3)			0.5(5)
6.2pF(6R2)	W, B, C, D	0.3(3)			0.5(5)
6.3pF(6R3)	W, B, C, D	0.3(3)			0.5(5)
6.4pF(6R4)	W, B, C, D	0.3(3)			0.5(5)
6.5pF(6R5)	W, B, C, D	0.3(3)			0.5(5)
6.6pF(6R6)	W, B, C, D	0.3(3)			0.5(5)
6.7pF(6R7)	W, B, C, D	0.3(3)			0.5(5)
6.8pF(6R8)	W, B, C, D	0.3(3)			0.5(5)
6.9pF(6R9)	W, B, C, D		0.3(3)		0.5(5)
7.0pF(7R0)	W, B, C, D		0.3(3)		0.5(5)
7.1pF(7R1)	W, B, C, D		0.3(3)		0.5(5)
7.2pF(7R2)	W, B, C, D		0.3(3)		0.5(5)
7.3pF(7R3)	W, B, C, D		0.3(3)		0.5(5)
7.4pF(7R4)	W, B, C, D		0.3(3)		0.5(5)
7.5pF(7R5)	W, B, C, D		0.3(3)		0.5(5)
7.6pF(7R6)	W, B, C, D		0.3(3)		0.5(5)
7.7pF(7R7)	W, B, C, D		0.3(3)		0.5(5)
7.8pF(7R8)	W, B, C, D		0.3(3)		0.5(5)
7.9pF(7R9)	W, B, C, D		0.3(3)		0.5(5)
8.0pF(8R0)	W, B, C, D		0.3(3)		0.5(5)
8.1pF(8R1)	W, B, C, D		0.3(3)		0.5(5)

The part numbering code is shown in ().

C02E.pdf

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. 08.9.1

Part Number			GJM03		GJM15
L x W [EIA]		0.6x0.3 [0201]			1.0x0.5 [0402]
Rated Volt.		(1	25 E)	6.3 (0J)	50 (1H)
тс		C0G (5C)	C0H (6C)	C0G (5C)	C0G (5C)
Capacitance, C	apacitance Tole	rance and T Dimension			
8.2pF(8R2)	W, B, C, D		0.3(3)		0.5 (5)
8.3pF(8R3)	W, B, C, D		0.3(3)		0.5(5)
8.4pF(8R4)	W, B, C, D		0.3(3)		0.5(5)
8.5pF(8R5)	W, B, C, D		0.3 (3)		0.5 (5)
8.6pF(8R6)	W, B, C, D		0.3 (3)		0.5 (5)
8.7pF(8R7)	W, B, C, D		0.3 (3)		0.5 (5)
8.8pF(8R8)	W, B, C, D		0.3(3)		0.5 (5)
8.9pF(8R9)	W, B, C, D		0.3(3)		0.5 (5)
9.0pF(9R0)	W, B, C, D		0.3(3)		0.5 (5)
9.1pF(9R1)	W, B, C, D		0.3(3)		0.5(5)
9.2pF(9R2)	W, B, C, D		0.3(3)		0.5(5)
9.3pF(9R3)	W, B, C, D		0.3(3)		0.5(5)
9.4pF(9R4)	W, B, C, D		0.3(3)		0.5(5)
9.5pF(9R5)	W, B, C, D		0.3(3)		0.5(5)
9.6pF(9R6)	W, B, C, D		0.3(3)		0.5(5)
9.7pF(9R7)	W, B, C, D		0.3(3)		0.5(5)
9.8pF(9R8)	W, B, C, D		0.3(3)		0.5(5)
9.9pF(9R9)	W, B, C, D		0.3(3)		0.5 (5)
10pF(100)	G, J		0.3(3)		0.5 (5)
11pF(110)	G, J		0.3(3)		0.5(5)
12pF(120)	G, J		0.3(3)		0.5(5)
13pF(130)	G, J		0.3(3)		0.5(5)
15pF(150)	G, J		0.3 (3)		0.5 (5)
16pF(160)	G, J		0.3 (3)		0.5(5)
18pF(180)	G, J		0.3 (3)		0.5 (5)
20pF(200)	G, J		0.3 (3)		0.5(5)
22pF(220)	G, J			0.3 (3)	
24pF(240)	G, J			0.3 (3)	
27pF(270)	G, J			0.3 (3)	
30pF(300)	G, J			0.3 (3)	
33pF(330)	G, J			0.3(3)	

The part numbering code is shown in ().

GJM Series Specifications and Test Methods(1)

			Specifications		T		
No.	Ite	em	Temperature Compensating Type	Test Method			
1	Operating Temperati	ure Range	−55 to +125℃	Reference Tempera (2C, 3C, 4C: 20°C)	ature: 25°C		
2	2 Rated Voltage		See the previous pages.	may be applied cont When AC voltage is	defined as the maximum voltage which tinuously to the capacitor. superimposed on DC voltage, $V^{p,p}$ or $V^{o,p}$, should be maintained within the rated		
3	Appeara	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	ons	Within the specified dimensions	Using calipers			
5	Dielectric	c Strength	No defects or abnormalities	is applied between t	e observed when 300% of the rated voltage the terminations for 1 to 5 seconds, //discharge current is less than 50mA.		
6	Insulation (I.R.)	Resistance	10,000M Ω min. or 500 Ω · F min. (Whichever is smaller)		tance should be measured with a DC ng the rated voltage at 25℃ and 75%RH inutes of charging.		
7	Capacita	nce	Within the specified tolerance		should be measured at 25℃ at the		
			30pF and over: Q≧1000	frequency and voltage	ge shown in the table.		
8			30pF and over: Q≥1000 30pF and below: Q≥400+20C		1±0.1MHz		
		C: Nominal Capacitance (pF)		Voltage	0.5 to 5Vrms		
9	Capacitance Temperature Characteristics	Temperature Coefficient Capacitance Drift	Within the specified tolerance (Table A) Within ±0.2% or ±0.05pF (Whichever is larger.)	each specified temp Temperature Compo The temperature con- capacitance measur When cycling the ter 5, (5C: +25 to 125°C capacitance should temperature coeffici The capacitance dri between the maximu 1, 3 and 5 by the ca <u>Step</u> 1 2 3 4 5	ensating Type efficient is determined using the red in step 3 as a reference. mperature sequentially from step 1 through : other temp. coeffs.: ± 20 to 125°) the be within the specified tolerance for the ient and capacitance change as Table A. ft is calculated by dividing the differences um and minimum measured values in step pacitance value in step 3. Temperature (°C) Reference Temp. ± 2 -55 ± 3 Reference Temp. ± 2 125 ± 3 Reference Temp. ± 2		
10	Adhesive of Termir	e Strength nation	No removal of the terminations or other defect should occur.	Fig. 1 using a eutecti with the test jig for 10 with an iron or using	to the test jig (glass epoxy board) shown in ic solder. Then apply a 5N* force in parallel D±1 sec. The soldering should be done either the reflow method and should be conducted soldering is uniform and free of defects such *2N (GJM03 +C+ 		

Continued on the following page.

52

GJM Series Specifications and Test Methods(1)

Continued from the preceding page.

0.	Item		Specifications	- Test Method				
0.	nem		Temperature Compensating Type	rest welliou				
	Ap	opearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the				
Vibration	Ca	apacitance	Within the specified tolerance	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motic				
Vibration Resistance Q		2	30pF and over: Q≧1000 30pF and below: Q≧400+20C C: Nominal Capacitance (pF)	having a total amount of outpleter to a simple minimum mone marked uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).				
			No cracking or marking defects should occur.	Solder the capacitor to the test jig (glass epoxy boards) showr in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and shoul be conducted with care so that the soldering is uniform and fre of defects such as heat shock.				
2 Deflec	Deflection		Type a b c GJM03 0.3 0.9 0.3 GJM15 0.4 1.5 0.5 (in mm) Fig. 2	20 50 Pressurizing speed : 1.0mm/sec. Pressurize Flexure : ≤1 Capacitance meter 45 45 (in mm) Fig. 3				
	erability ination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°c for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5° or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C				
			The measured and observed characteristics should satisfy the specifications in the following table.					
	Ap	opearance	No marking defects	_				
Resistance		apacitance nange	Within ±2.5% or ±0.25pF (Whichever is larger)	Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu				
to Solder Heat	ering Q	2	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	solder solution at 270±5℃ for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.				
	1.	R.	More than 10,000M\Omega or $500\Omega \cdot F$ (Whichever is smaller)					
		ielectric trength	No failure					
			The measured and observed characteristics should satisfy the specifications in the following table.					
	Ap	opearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles				
	Ch	apacitance nange	Within ±2.5% or ±0.25pF (Whichever is larger)	according to the four heat treatments listed in the following table Let sit for 24±2 hours at room temperature, then measure.				
Temperate Cycle	iture	-	30pF and over: Q≧1000	Step 1 2 3 4				
	0	2	30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	Temp. (℃)Min. Operating Temp. ±3Room Temp.Max. Operating Temp. ±3Room Temp.Temp. ±3Temp.±3Temp.Temp.				
		R.	More than 10,000M\Omega or 500 $\Omega \cdot F$ (Whichever is smaller)	Time (min.) 30±3 2 to 3 30±3 2 to 3				
		ielectric trength	No failure					
			The measured and observed characteristics should satisfy the specifications in the following table.					
	Ap	opearance	No marking defects					
Humidit Steady	ity, _{CH}	apacitance nange	Within ±5% or ±0.5pF (Whichever is larger)	Let the capacitor sit at 40 ± 2 °C and 90 to 95% humidity for 500±12 hours.				
State	α α	2	30pF and below: Q≥350 10pF and over, 30pF and below: Q≥275+ ½ C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF) C	Remove and let sit for 24±2 hours (temperature compensatin type) at room temperature, then measure.				
	1.	R.	More than 10,000M Ω or 500 $\Omega \cdot F$ (Whichever is smaller)					

Continued on the following page.

GJM Series Specifications and Test Methods(1)

Continued from the preceding page.

		-				
No.	1+2	em	Specifications	Test Method		
NO.	ne		Temperature Compensating Type	restimethou		
			The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
17	Humidity Load	Capacitance Change	Within $\pm 7.5\%$ or ± 0.75 pF (Whichever is larger)	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room temperature, then		
	Loud	٥	30pF and over: Q≧200 30pF and below: Q≧100+ 10/3 C C: Nominal Capacitance (pF)	measure. The charge/discharge current is less than 50mA.		
		I.R.	More than 500M Ω or 25 $\Omega \cdot F$ (Whichever is smaller)			
		Appearance No marking defects				
18	High Temperature	Capacitance Change	Within $\pm 3\%$ or ± 0.3 pF (Whichever is larger)	Apply 200% of the rated voltage for 1000 ± 12 hours at the maximum operating temperature ±3 °C. Let sit for 24 ± 2 hours (temperature compensating type) at room temperature, then		
10	Load	Q	30pF and over: Q≥350 10pF and over, 30pF and below: Q≥275+ 5/2 C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF) C	measure. The charge/discharge current is less than 50mA.		
		I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$ (Whichever is smaller)			
19	ESR		0.1pF≤C≤1pF: $350m\Omega \cdot pF$ below 1pF <c≤5pf: <math="">300m\Omega below 5pF<c≤10pf: <math="">250m\Omega below</c≤10pf:></c≤5pf:>	The ESR should be measured at room temperature, and frequency 1 ± 0.2 GHz with the equivalent of BOONTON Model 34A.		
			10pF <c≦33pf: 400mω="" below<="" td=""><td>The ESR should be measured at room temperature, and frequency 500±50MHz with the equivalent of HP8753B.</td></c≦33pf:>	The ESR should be measured at room temperature, and frequency 500±50MHz with the equivalent of HP8753B.		

Table A

(1) Capacitance Change from 25°C Value (%) Temp. Coeff. Char. Code -55℃ -30℃ -10℃ (ppm/℃) *1 Max. Min. Max. Min. Max. Min. 0±30 5C 0.58 -0.24 0.40 -0.170.25 -0.11 6C 0±60 0.87 -0.48 0.60 -0.33 0.38 -0.21

*1: Nominal values denote the temperature coefficient within a range of 25 to 125°C.

(2)

		Capacitance Change from 20°C Value (%)							
Char.	Nominal Values (ppm/℃) *2	-5	5℃	-25°C		-1	0°C		
	(ppm/ c) · 2	Max.	Min.	Max.	Min.	Max.	Min.		
2C	0±60	0.82	-0.45	0.49	-0.27	0.33	-0.18		
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36		
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75		

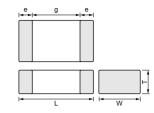
*2: Nominal values denote the temperature coefficient within a range of 20 to 125°C.

5

Chip Monolithic Ceramic Capacitors

muRata

High Frequency GQM Series


Features

- 1. HiQ and low ESR at VHF, UHF, Microwave
- 2. Feature improvement, low power consumption for mobile telecommunication. (Base station, terminal, etc.)

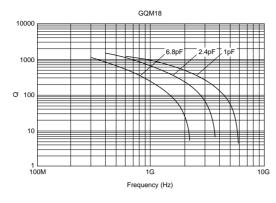
Applications

High frequency circuit (Mobile telecommunication, etc.)

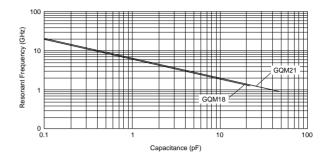
Part Number	Dimensions (mm)						
Part Number	L	W	Т	е	g min.		
GQM187	1.6 ±0.15	0.8 ±0.15	0.7 ±0.1	0.2 to 0.5	0.5		
GQM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5		
GQM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7		

Part Number L x W [EIA]			GQM18	GQI	M21	
			1.6x0.8 [0603]	2.0x1.25 [0805]		
Rated Volt.		250 (2E)	100 (2A)	50 (1H)	100 (2A)	50 (1H)
тс		COG (5C)	C0G (5C)	C0G (5C)	C0G (5C)	C0G (5C)
Capacitance, Ca	pacitance	Tolerance and T Dimen	sion			
0.10pF(R10)	В	0.7(7)				
0.20pF(R20)	В	0.7(7)				
0.30pF(R30)	B, C	0.7(7)				
0.40pF(R40)	B, C	0.7(7)				
0.50pF(R50)	B, C	0.7(7)	0.8 (8)		0.85(9)	
0.75pF(R75)	B, C	0.7(7)	0.8 (8)		0.85(9)	
1.0pF(1R0)	B, C	0.7(7)	0.8 (8)		0.85(9)	
1.1pF(1R1)	B, C	0.7(7)	0.8 (8)		0.85(9)	
1.2pF(1R2)	B, C	0.7(7)	0.8 (8)		0.85(9)	
1.3pF(1R3)	B, C	0.7(7)	0.8 (8)		0.85(9)	
1.5pF(1R5)	B, C	0.7(7)	0.8 (8)		0.85(9)	
1.6pF(1R6)	B, C	0.7(7)	0.8 (8)		0.85(9)	
1.8pF(1R8)	B, C	0.7(7)	0.8(8)		0.85(9)	
2.0pF(2R0)	B, C	0.7(7)	0.8(8)		0.85(9)	
2.2pF(2R2)	B, C	0.7(7)	0.8(8)		0.85(9)	
2.4pF(2R4)	B, C	0.7(7)	0.8(8)		0.85(9)	
2.7pF(2R7)	B, C	0.7(7)	0.8(8)		0.85(9)	
3.0pF(3R0)	B, C	0.7(7)	0.8(8)		0.85(9)	
3.3pF(3R3)	B, C	0.7(7)	0.8(8)		0.85(9)	
3.6pF(3R6)	B, C	0.7(7)	0.8(8)		0.85(9)	
3.9pF(3R9)	B, C	0.7(7)	0.8(8)		0.85(9)	
4.0pF(4R0)	B, C	0.7(7)	0.8(8)		0.85(9)	
4.3pF(4R3)	B, C	0.7(7)	0.8(8)		0.85(9)	
4.7pF(4R7)	B, C	0.7(7)	0.8 (8)		0.85(9)	
5.0pF(5R0)	B, C	0.7(7)	0.8 (8)		0.85(9)	
5.1pF(5R1)	C, D	0.7(7)	0.8 (8)		0.85(9)	
5.6pF(5R6)	C, D	0.7(7)	0.8 (8)		0.85(9)	
6.0pF(6R0)	C, D	0.7(7)	0.8 (8)		0.85(9)	
6.2pF(6R2)	C, D	0.7(7)	0.8 (8)		0.85(9)	
6.8pF(6R8)	C, D	0.7(7)	0.8 (8)		0.85(9)	
7.0pF(7R0)	C, D	0.7(7)		0.8(8)	0.85(9)	

The part numbering code is shown in $\ ($).


Continued from the preceding page.

Part Number L x W [EIA]			GQM18		GQI	M21
			1.6x0.8 [0603]		2.0x1.25 [0805]	
Rated Volt.		250 (2E)	100 (2A)	50 (1H)	100 (2A)	50 (1H)
тс		C0G (5C)				
Capacitance, Ca	pacitance T	olerance and T Dimer	nsion			
7.5pF(7R5)	C, D	0.7(7)		0.8 (8)	0.85 (9)	
8.0pF(8R0)	C, D	0.7(7)		0.8 (8)	0.85(9)	
8.2pF(8R2)	C, D	0.7(7)		0.8 (8)	0.85(9)	
9.0pF(9R0)	C, D	0.7(7)		0.8 (8)	0.85(9)	
9.1pF(9R1)	C, D	0.7(7)		0.8 (8)	0.85(9)	
10pF(100)	G, J	0.7(7)		0.8 (8)	0.85(9)	
11pF(110)	G, J	0.7(7)		0.8 (8)	0.85(9)	
12pF(120)	G, J	0.7(7)		0.8(8)	0.85(9)	
13pF(130)	G, J	0.7(7)		0.8(8)	0.85(9)	
15pF(150)	G, J	0.7(7)		0.8(8)	0.85(9)	
16pF(160)	G, J	0.7(7)		0.8(8)	0.85(9)	
18pF(180)	G, J	0.7(7)		0.8(8)	0.85(9)	
20pF(200)	G, J	0.7(7)		0.8(8)		0.85(9)
22pF(220)	G, J	0.7(7)		0.8(8)		0.85(9)
24pF(240)	G, J	0.7(7)		0.8(8)		0.85(9)
27pF(270)	G, J	0.7(7)		0.8(8)		0.85(9)
30pF(300)	G, J	0.7(7)		0.8(8)		0.85(9)
33pF(330)	G, J	0.7(7)		0.8(8)		0.85(9)
36pF(360)	G, J	0.7(7)		0.8(8)		0.85(9)
39pF(390)	G, J	0.7(7)		0.8(8)		0.85(9)
43pF(430)	G, J	0.7(7)		0.8(8)		0.85(9)
47pF(470)	G, J	0.7(7)		0.8(8)		0.85(9)
51pF(510)	G, J			0.8(8)		0.85(9)
56pF(560)	G, J			0.8(8)		0.85(9)
62pF(620)	G, J			0.8(8)		0.85(9)
68pF(680)	G, J			0.8(8)		0.85(9)
75pF(750)	G, J			0.8(8)		0.85(9)
82pF(820)	G, J			0.8(8)		0.85(9)
91pF(910)	G, J			0.8(8)		0.85(9)
100pF(101)	G, J			0.8(8)		0.85(9)


The part numbering code is shown in ().

GQM Series Data

■ Q - Frequency Characteristics

■ Resonant Frequency - Capacitance

GQM Series Specifications and Test Methods

ecifications	Test Method
	Reference Temperature: 25℃
	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated voltage range.
;	Visual inspection
sions	Using calipers
	No failure should be observed when 300%* of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *250V only 250%
	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.
се	The capacitance/Q should be measured at 25°C at the
	frequency and voltage shown in the table.
	Frequency 1±0.1MHz
F)	Voltage 0.5 to 5Vrms
ce (Table A)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference.
ce (Table A)	When cycling the temperature sequentially from step 1 through 5 the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as in Table A.
	between the maximum and minimum measured values in the steps 1, 3 and 5 by the capacitance value in step 3. Step Temperature (°C) 1 Reference Temp. ±2 2 -55±3 3 Reference Temp. ±2 4 125±3 5 Reference Temp. ±2
ons or other defect should occur	Solder the capacitor to the test jig (glass epoxy board) shown in
	Fig. 1 using a eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *5N (GQM188) Type a b c GQM18 1.0 3.0 1.2
Solder resist Baked electrode or copper foil	GQM21 1.2 4.0 1.65 (in mm) Fig. 1
;	Solder the capacitor to the test jig (glass epoxy board) in the
ce	 same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of
	=)

Continued on the following page. \fbox

58

GQM Series Specifications and Test Methods

Continued	from the	preceding	0000

lo.	Ite	em	Specifications	Test Method				
			No crack or marked defect should occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.				
2	Deflectio	n	t: 1.6mm	R230 R230 R230 R230 R230 R230 R230 R230				
			Type a b c GQM18 1.0 3.0 1.2	Flexure : ≤1				
			GQM21 1.2 4.0 1.65	Capacitance meter				
			(in m	$\frac{-}{45}$				
			Fig. 2	Fig. 3				
13	Solderab Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) an rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat a 80 to 120°c for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°c or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C				
			The measured and observed characteristics should satisfy specifications in the following table.	he				
		Appearance	No marking defects					
		Capacitance	Within ±2.5% or ±0.25 pF					
	Resistance	Change	(Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the				
4	to Soldering Heat	Q	30pF min.: Q≥1400 30pF max.: Q≥800+20C	capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solutio at 270±5℃ for 10±0.5 seconds. Let sit at room temperature fo 24±2 hours.				
			C: Nominal Capacitance (pF)					
		I.R.	More than 10,000MΩ					
		Dielectric Strength	No failure					
			The measured and observed characteristics should satisfy specifications in the following table.	ne				
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10).				
		Capacitance	Within ±2.5% or ±0.25pF	Perform the five cycles according to the four heat treatments				
	Tomorea	Change	(Whichever is larger)	listed in the following table.				
5	Temperature Cycle		30pF min.: Q≧1400 30pF max.: Q≧800+20C	Let sit for 24±2 hours at room temperature, then measure. Step 1 2 3 4				
		Q	C: Nominal Capacitance (pF)	Temp. (°C) Min. Operating Temp. +0/-3 Room Temp. Max. Operating Temp. +3/-0 Room Temp.				
		I.R.	More than 10,000M Ω	Time (min.) 30±3 2 to 3 30±3 2 to 3				
		Dielectric Strength	No failure					
		j	The measured and observed characteristics should satisfy specifications in the following table.	he				
		Appearance	No marking defects					
		Capacitance	Within $\pm 5\%$ or ± 0.5 pF					
	Humidity	Change	(Whichever is larger)	Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours.				
6	Steady State	Q	30pF min.: Q≧350 10pF and over, 30pF and below: Q≧275+5C/2 10pF max.: Q≧200+10C	Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure.				
			C: Nominal Capacitance (pF)					

Continued on the following page.

GQM Series Specifications and Test Methods

Continued from the preceding page.

No.	Item		Specifications	Test Method
			The measured and observed characteristics should satisfy the specifications in the following table.	
		Appearance	No marking defects	
17	Humidity Load	Capacitance Change	Within \pm 7.5% or \pm 0.75pF (Whichever is larger)	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room
.,		Q	30pF min.: Q≥200 30pF max.: Q≥100+10C/3	temperature then measure. The charge/discharge current is less than 50mA.
			C: Nominal Capacitance (pF)	_
		I.R.	More than $500M\Omega$	
			The measured and observed characteristics should satisfy the specifications in the following table.	
		Appearance	No marking defects	
	High	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000 ± 12 hours at the maximum operating temperature ±3 °C.
18	Temperature Load	Q	30pF min.: Q≧350 10pF and over, 30pF and below: Q≧275+5C/2 10pF max.: Q≧200+10C	Let sit for 24±2 hours (temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.
			C: Nominal Capacitance (pF)	
		I.R.	More than 1,000M Ω	

Table A

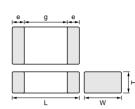
Char.	Nominal Values (ppm/℃) *1	Capacitance Change from 25°C (%)						
		_55℃		-30°C		_10℃		
		Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

*1: Nominal values denote the temperature coefficient within a range of 25 to 125°C.

Chip Monolithic Ceramic Capacitors

muRata

High Frequency Type ERB Series


■ Features (ERB Series)

- 1. Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz.
- 2. Nickel barriered terminations of ERB series improve solderability and decrease solder leaching.
- ERB18/21 series are designed for both flow and reflow soldering and ERB32 series are designed for reflow soldering.

Applications

High frequency and high-power circuits

Part Number	Dimensions (mm)								
Part Number	L	W	T max.	e min.	g min.				
ERB188	1.6±0.1	0.8±0.1	0.9	0.2	0.5				
ERB21B	2.0±0.3	1.25±0.3	1.35	0.25	0.7				
ERB32Q	3.2±0.3	2.5±0.3	1.7	0.3	1.0				

Part Number	Part Number			ERB21				ERB32		
L x W [EIA]		1.6x0.8 [0603]	2.	0x1.25 [080	5]			3.2x2.5 [1210)]	
Rated Volt.	Rated Volt.		250 (2E)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	250 (2E)	100 (2A)	50 (1H)
тс		C0G (5C)								
Capacitance, Ca	apacitand	ce Tolerance a	nd T Dimensio	on						
0.50pF(R50)	В, С	0.9 (8)	1.35(B)							
0.75pF(R75)	В, С	0.9 (8)	1.35(B)							
1.0pF(1R0)	В, С	0.9 (8)	1.35(B)							
1.1pF(1R1)	B, C	0.9 (8)	1.35(B)							
1.2pF(1R2)	B, C	0.9 (8)	1.35(B)							
1.3pF(1R3)	B, C	0.9 (8)	1.35(B)							
1.5pF(1R5)	B, C	0.9 (8)	1.35(B)							
1.6pF(1R6)	B, C	0.9 (8)	1.35(B)							
1.8pF(1R8)	B, C	0.9 (8)	1.35(B)							
2.0pF(2R0)	B, C	0.9 (8)	1.35(B)							
2.2pF(2R2)	B, C	0.9 (8)	1.35(B)							
2.4pF(2R4)	B, C	0.9 (8)	1.35(B)							
2.7pF(2R7)	B, C	0.9(8)	1.35(B)							
3.0pF(3R0)	B, C	0.9(8)	1.35(B)							
3.3pF(3R3)	B, C	0.9 (8)	1.35(B)			1.7(Q)				
3.6pF(3R6)	B, C	0.9 (8)	1.35(B)			1.7(Q)				
3.9pF(3R9)	B, C	0.9 (8)	1.35(B)			1.7(Q)				
4.0pF(4R0)	B, C	0.9 (8)	1.35(B)			1.7(Q)				
4.3pF(4R3)	B, C	0.9 (8)	1.35(B)			1.7(Q)				
4.7pF(4R7)	В, С	0.9 (8)	1.35(B)			1.7(Q)				
5.0pF(5R0)	В, С	0.9 (8)	1.35(B)			1.7(Q)				
5.1pF(5R1)	B, C, D	0.9 (8)	1.35(B)			1.7(Q)				
5.6pF(5R6)	B, C, D	0.9(8)	1.35(B)			1.7(Q)				
6.0pF(6R0)	B, C, D	0.9 (8)	1.35(B)			1.7(Q)				
6.2pF(6R2)	B, C, D	0.9(8)	1.35(B)			1.7(Q)				
6.8pF(6R8)	B, C, D	0.9(8)	1.35(B)			1.7(Q)				
7.0pF(7R0)	B, C, D	0.9(8)	1.35(B)			1.7(Q)				
7.5pF(7R5)	B, C, D	0.9(8)	1.35(B)			1.7(Q)				
8.0pF(8R0)	B, C, D	0.9(8)	1.35(B)			1.7(Q)				
8.2pF(8R2)	B, C, D	0.9(8)	1.35(B)			1.7(Q)				

The part numbering code is shown in ().

Continued from the preceding page.

Part Number		ERB18	-	ERB21	-1			ERB32	1	
L x W [EIA]		1.6x0.8 [0603]	2	2.0x1.25 [0805	5]		1	3.2x2.5 [1210]	
Rated Volt.		250 (2E)	250 (2E)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	250 (2E)	100 (2A)	50 (1H)
тс		C0G (5C)								
Capacitance, Ca	apacitanc	ce Tolerance a	nd T Dimens	ion	-					
9.0pF(9R0)	B, C, D	0.9 (8)	1.35(B)			1.7(Q)				
9.1pF(9R1)	B, C, D	0.9 (8)	1.35(B)			1.7(Q)				
10pF(100)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
11pF(110)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
12pF(120)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
13pF(130)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
15pF(150)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
16pF(160)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
18pF(180)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
20pF(200)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
22pF(220)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
24pF(240)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
27pF(270)	G, J	0.9(8)	1.35(B)			1.7(Q)				
30pF(300)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
33pF(330)	G, J	0.9(8)	1.35(B)			1.7(Q)				
36pF(360)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
39pF(390)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
43pF(430)	G, J	0.9(8)	1.35(B)			1.7(Q)				
47pF(470)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
51pF(510)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
56pF(560)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
62pF(620)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
68pF(680)	G, J	0.9(8)	1.35(B)			1.7(Q)				
75pF(750)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
82pF(820)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
91pF(910)	G, J	0.9 (8)	1.35(B)			1.7(Q)				
100pF(101)	G, J	0.9(8)	1.35(B)			1.7(Q)				
110pF(111)	G, J			1.35(B)		1.7(Q)				
120pF(121)	G, J			1.35(B)		1.7(Q)				
130pF(131)	G, J			1.35(B)			1.7(Q)			
150pF(151)	G, J				1.35(B)		1.7(Q)			
160pF(161)	G, J				1.35(B)			1.7(Q)		
180pF(181)	G, J							1.7(Q)		
200pF(201)	G, J							1.7(Q)		
220pF(221)	G, J							1.7(Q)	1 7/2	
240pF(241)	G, J								1.7(Q)	
270pF(271)	G, J								1.7(Q)	
300pF(301)	G, J								1.7(Q)	
330pF(331)	G, J								1.7(Q)	
360pF(361)	G, J								1.7(Q)	
390pF(391)	G, J								1.7(Q)	
430pF(431)	G, J								1.7(Q)	
470pF(471)	G, J								1.7(Q)	1 7/8
510pF(511)	G, J									1.7(Q
560pF(561)	G, J									1.7(C
620pF(621)	G, J									1.7(C
680pF(681)	G, J									1.7(C
750pF(751)	G, J									1.7(C
820pF(821)	G, J									1.7(C
910pF(911)	G, J									1.7(C
1000pF(102)	G, J									1.7(Q

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

7

ERB Series Specifications and Test Methods

No.	lte	em	Specifications			Test Meth	nod		
1	Operating Temperatu	ure Range	−55 to +125℃		Reference Temperatur	re: 25°C			
2	Rated Vo	ltage	tage See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearar	nce	No defects or abnormalities		Visual inspection				
4	Dimensio	ns	Within the specified dimension		Using calipers				
5	Dielectric Strength		No defects or abnormalities		No failure should be ol age is applied betweer provided the charge/di (*) 300V: 250%, 500V:	n the termina scharge curr	tions for 1 to	5 seconds,	
6	Insulation (I.R.)	Resistance	1,000,000MΩ min. (C≦470pF) 100,000MΩ min. (C>470pF)		The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and stan humidity and within 2 minutes of charging.				
7	Capacita	nce	Within the specified tolerance		The capacitance/Q sho	ould be meas	sured at 25℃	at the	
8	Q		C≤ 220pF : Q≥10,000 220pF <c≤ 470pf="" 5,000<br="" :="" q≥="">470pF<c≤1,000pf 3,000<br="" :="" q≥="">C: Nominal Capacitance (pF)</c≤1,000pf></c≤>		frequency and voltage Frequency Voltage	ge shown in the table. 1±0.1MHz 1±0.2Vrms			
		Capacitance Change Temperature	Within the specified tolerance (Table A-6) Within the specified tolerance (Table A-6)		The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the				
9	Capacitance Temperature	Coefficent			 temperature coefficien The capacitance drift is between the maximum 1, 3 and 5 by the capa 	s calculated b and minimu	by dividing the m measured	e differences	
,	Characteristics				Step	Ter	mperature (°C)	
		Capacitance	Within $\pm 0.2\%$ or ± 0.05 pF		1		25±2		
		Drift	(Whichever is larger)		2		-55±3		
					3		25±2		
					4		125±3		
					5		25±2		
			No removal of the terminations or other defe	cts should occur.	Solder the capacitor of in Fig. 1 using an eute	ctic solder.		·	
	Adhesive	Strength		+	Then apply 10N* force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.				
10	of Termination		<u>v</u>	Туре	а	b	С		
					ERB18	1.0	3.0	1.2	
				Solder Resist	ERB21	1.2	4.0	1.65	
			Fig.1	Baked Electrode or Copper Foil	ERB32	2.2	5.0	2.9	
			ту. т	FF "				(in mm) N (ERB188)	

Continued on the following page.

<u>muRata</u>

ERB Series Specifications and Test Methods

\square Continued from the preceding page.

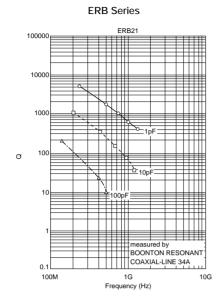
L	Continued from th	le prece	eding page.						
No.	Item		S	pecifications		Tes	st Metho	d	
		earance	No defects or abnormalitie					ass epoxy boar onditions as (10	
11	Vibration Resistance Q		Within the specified tolera Satisfies the initial value. $C \le 220 pF : Q \ge 1$ $220 pF < C \le 470 pF : Q \ge$ $470 pF < C \le 1,000 pF : Q \ge$ C: Nominal Capacitance (The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).					
12	Deflection		No crack or marked defect	zing 1.0mm/sec.	in Fig. 2a usin direction show the reflow met	g an eutectic s n in Fig. 3a. T hod and shoul s uniform and 8 a 1. 1 1.	solder. The solded be confirmed of definition of the solded be confirmed of definition of the solded be confirmed of the solded be confirmed of the solded be confirmed on the solded be confirmed by the solded by the sold by the solded by the sold by the s	ass epoxy boa hen apply a for ering should be ducted with car efects such as b 3.0 4.0 5.0 (in	ce in the done by re so that
13	Solderability of Termination	of	95% of the terminations are continuously.	rosin (25% ros Preheat at 80 After preheatir	sin in weight pr to 120℃ for 10 ng, immerse in	oportion) to 30 se an euteo	conds.		
14	4 Resistance to Soldering Heat		The measured and obser specifications in the follow Item Appearance Capacitance Change Q Dielectric Strength	ved characteristics should satisfy the ing table. $\begin{array}{r} \hline Specifications \\ \hline No marked defect \\ \hline Within \pm 2.5\% \text{ or } \pm 0.25pF \\ \hline (Whichever is larger) \\ \hline C \leq 220pF : Q \geq 10,000 \\ 220pF < C \leq 470pF : Q \geq 5,000 \\ 470pF < C \leq 1,000pF : Q \geq 3,000 \\ \hline No failure \\ \hline C: Nominal Capacitance (pF) \\ \end{array}$	Preheat according to the conditions listed in the table below. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.5C solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours. <u>Chip Size Preheat Condition</u> 2.0×1.25mm max. 1minute at 120 to 150°C 3.2×2.5mm Each 1 minute at 100 to 120°C and then 170 to 200°C				
15	Temperature Cycle		The measured and obser specifications in the follow Item Appearance Capacitance Change Q I.R. Dielectric Strength	ved characteristics should satisfy the ing table. Specifications No marked defect Within $\pm 5\%$ or ± 0.5 pF (Whichever is larger) C ≥ 30 pF : Q ≥ 350 10pF $\leq C < 30$ pF : Q $\geq 275 + \frac{5}{2}$ C C < 10 pF : Q $\geq 200 + 10$ C 1,000M Ω min. No failure	under the sam according to the	e conditions as ne four heat tre	s (10). Pe atments I n tempera 2 Room	n the same ma erform the five of isted in the follo ature, then mea Max. Operating Temp. +3/-0 30±3	cycles owing table. sure. 4 Room
16	Humidity		The measured and obser specifications in the follow Item Appearance Capacitance Change Q I.R.	C: Nominal Capacitance (pF) ved characteristics should satisfy the ing table. Specifications No marked defect Within $\pm 5\%$ or $\pm 0.5pF$ (Whichever is larger) C $\geq 30pF$: Q ≥ 350 10pF $\leq C < 30pF$: Q $\geq 275 \pm \frac{5}{2}$ C C $< 10pF$: Q $\geq 200 \pm 10C$ 1,000M Ω min. C: Nominal Capacitance (pF)	treatment shov 24±2 hours at	vn below, 10 cc room temperal Humidity 80–98% 20–98%	Humidity 90-98% - 90-98% - 70 - 98% - 70 - 70% - 70%	Humidity 80–98% Humidity Humid	20-98%

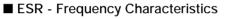
Continued on the following page.

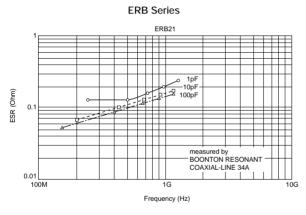
ERB Series Specifications and Test Methods

Continued from the preceding page.

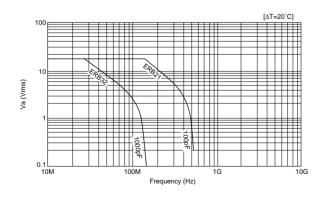
No.	Item	S	pecifications	Test Method
		The measured and obsersections in the follow	rved characteristics should satisfy the ving table.	
17	High Temperature	Appearance Capacitance Change	No marked defect Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% (500V only 150%) of the rated voltage for 1,000±12 hours at 125±3°C.
	Load	Q	C≥30pF : Q≥350 10pF≦C<30pF : Q≥275+ 5/2 C C<10pF : Q≥200+10C	Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	1,000MΩ min.	
			C: Nominal Capacitance (pF)	

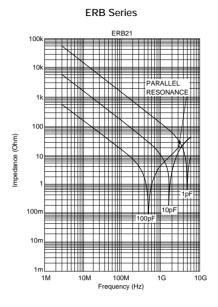

Table A-6

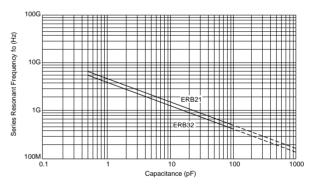

	Nominal Values (ppm/℃) Note 1		Capacitance Change from 25°C (%)						
Char.		-55		-30		-10			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		


Note 1: Nominal values denote the temperature coefficient within a range of 25 to 125°C (for 5C)

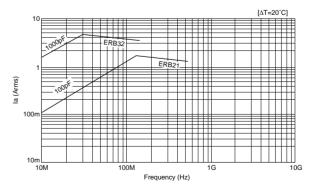
ERB Series Data


Q - Frequency Characteristics





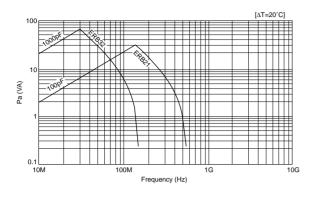
■ Impedance - Frequency Characteristics

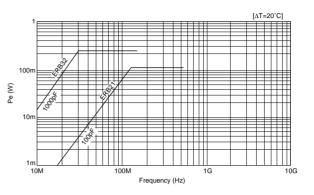


Resonant Frequency - Capacitance

ERB Series

■ Allowable Current - Frequency


Continued on the following page.


ERB Series Data

Continued from the preceding page.

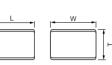
■ Allowable Apparent Power - Frequency

■ Allowable Effective Power - Frequency

Chip Monolithic Ceramic Capacitors

muRata

Monolithic Microchip GMA Series


Features

- 1. Better micro wave characteristics
- 2. Suitable for by-passing
- 3. High density mounting

Applications

- 1. Optical device for telecommunication
- 2. IC, IC packaging built-in
- 3. Measuring equipment

Outer electrode: Au plated

Part Number	Dimensions (mm)			
Part Number	L	W	Т	
GMA0D3	0.38 ±0.05	0.38 ±0.05	0.3 ±0.05	
GMA05X	0.5 ±0.05	0.5 ±0.05	0.35 ±0.05	
GMA085	0.8 ±0.05	0.8 ±0.05	0.5 ±0.1	

Part Number		GMA0D GMA05				GMA08				
L x W [EIA]		0.38x0.38 [015015]	0.5x0.5 [0202]		0.8x0.8 [0303]					
Rated Volt.		10 (1A)	100 (2A)	25 (1E)	10 (1A)	6.3 (0J)	100 (2A)	25 (1E)	10 (1A)	6.3 (0J)
тс		X7R (R7)	X7R (R7)	X7R (R7)	X7R (R7)	X5R (R6)	X7R (R7)	X7R (R7)	X7R (R7)	X5R (R6)
Capacitance, Ca	pacitanc	e Tolerance a	nd T Dimensi	on	1			1	1	1
100pF(101)	м		0.35(X)							
150pF(151)	м		0.35(X)							
220pF(221)	М		0.35(X)							
330pF(331)	м		0.35(X)							
470pF(471)	м		0.35(X)							
680pF(681)	м		0.35(X)							
1000pF(102)	М		0.35(X)							
1500pF(152)	м			0.35(X)			0.5(5)			
2200pF(222)	м			0.35(X)			0.5(5)			
3300pF(332)	м			0.35(X)			0.5(5)			
4700pF(472)	м			0.35(X)			0.5(5)			
6800pF(682)	м				0.35(X)		0.5(5)			
10000pF(103)	м	0.3(3)			0.35(X)			0.5 (5)		
15000pF(153)	м				0.35(X)			0.5 (5)		
22000pF(223)	м				0.35(X)			0.5 (5)		
33000pF(333)	м								0.5(5)	
47000pF(473)	М								0.5(5)	
68000pF(683)	м								0.5(5)	
0.10μF(104)	М					0.35*(X)			0.5(5)	
0.47μF(474)	м									0.5*(5)

The part numbering code is shown in $\$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GMA Series Specification and Test Methods(2)(P.71)

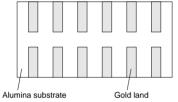
GMA Series Specifications and Test Methods(1)

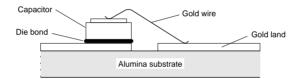
Below GMA Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GMA Series Specifications and Test Methods (2) (P.71).

No.	Ite	Item Specifications		Test Method
1	Operating Temperat Range	•	R7: -55 to +125℃	Reference Temperature: 25℃
2	2 Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated voltage range.
3	Appearar	nce	No defects or abnormalities	Visual inspection
4	Dimensio	ns	Within the specified dimersions	Using calipers
5	Dielectric Strength		No defects or abnormalities	No failure should be observed when a voltage of 250% of the rated voltage is applied between the both terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulation Resistance		More than 10,000M Ω or 500 Ω F (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at normal temperature and humidity and within 2 minutes of charging.
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at reference temperature at the frequency and voltage shown in the table.
	Dissipatio	n Factor	R7: W.V.: 25V min.; 0.025 max.	
8	(D.F.)		W.V.: 16V/10V; 0.035 max.	Frequency1±0.1kHzVoltage1±0.2Vrms
9	Capacitance Temperature Characteristics	No bias	R7: Within +/–15% (–55 to +125°C)	The capacitance change should be measured after 5min. at each specified temp. stage. • The ranges of capacitance change compared with the Reference Temperature value over the temperature ranges shown in the table should be within the specified ranges.* \$tep\$ Temperature (°C)\$ 1 25±2 2 -55±3 3 25±2 4 125±3 *Initial measurement for high dielectric constant typePerform a heat treatment at 150 +0/-10°C for one hour andthen let sit for 24±2 hours at room temperature.Perform the initial measurement.
10	Mechanical Strength	Bond Strength	Pull force: 0.03N min.	MIL-STD-883 Method 2011 Condition D Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20) and bond a 25µm (0.001 inch) gold wire to the capacitor terminal using an ultrasonic ball bond. Then, pull wire.
	Strength	Die Shear Strength	Die Shear force: 2N min.	MIL-STD-883 Method 2019 Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20). Apply the force parallel to the substrate.
		Appearance	No defects or abnormalities	Ramp frequency from 10 to 55Hz then return to 10Hz all within
11	Vibration Resistance	Capacitance	Within the specified tolerance	1 minute. Amplitude: 1.5 mm (0.06 inch) max. total excursion.
		D.F.	R7: W.V.: 25V min.; 0.025 max. W.V.: 16V/10V; 0.035 max.	Apply this motion for a period of 2 hours in each of 3 mutually perpendicular directions (total 6 hours).
		Appearance	No defects or abnormalities	The capacitor should be set for 24±2 hours at room
		Capacitance Change	R7: Within ±7.5%	temperature after one hour heat of treatment at 150+0/-10°C, then measure for the initial measurement. Fix the capacitor to
	Temperature _ Cycle	D.F.	R7: W.V.: 25V min.; 0.025 max. W.V.: 16V/10V; 0.035 max.	the supporting jig in the same manner and under the same conditions as (11) and conduct the five cycles according to the temperatures and time shown in the following table. Set it for
12		I.R.	More than 10,000M Ω or 500 Ω F	24 ± 2 hours at room temperature, then measure.
			(Whichever is smaller)	Step 1 2 3 4
		Dielectric	No detects	Temp. (°C)Min. Operating Temp. +0/-3Room Temp.Max. Operating Temp. +3/-0Room Temp.
		Strength	NO GENECIS	Time (min.) 30±3 2 to 3 30±3 2 to 3

Mounting for testing: The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No.11 to 15 are performed.

Continued on the following page.




GMA Series Specifications and Test Methods(1)

Below GMA Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. Continued from the preceding page. In case "*" is added in capacitance table, please refer to GMA Series Specifications and Test Methods (2) (P.71).

No.	Ite	em	Specifications	Test Method		
		Appearance	No defects or abnormalities			
13	Humidity (Steady State)	Capacitance Change	R7: Within ±12.5%	Set the capacitor for 500±12 hours at 40±20℃, in 90 to 95% humidity.		
13		D.F.	R7: W.V.: 10V min.; 0.05 max.	Take it out and set it for 24±2 hours at room temperature, the		
		I.R.	More than 1,000M Ω or 50 Ω F (Whichever is smaller)	measure.		
		Appearance	No defects or abnormalities			
	Humidity Load	Capacitance Change	R7: Within ±12.5%	Apply the rated voltage for 500 ± 12 hours at $40\pm2^{\circ}$ C, in 90 to 95% humidity and set it for 24±2 hours at room		
14		D.F.	R7: W.V.: 10V min.; 0.05 max.	temperature, then measure. The charge/discharge current is		
		I.R.	More than $500M\Omega$ or 25Ω F (Whichever is smaller)	less than 50mA.		
	High Temperature Load	Appearance	No defects or abnormalities	A voltage treatment should be given to the capacitor, in which a		
		Capacitance Change	R7: Within ±12.5%	DC voltage of 200% the rated voltage is applied for one hour at the maximum operating temperature ±3℃ then it should be set for 24±2 hours at room temperature and the initial measurement		
15		D.F.	R7: W.V.: 10V min.; 0.05 max.	should be conducted.		
		I.R.	More than 1,000M Ω or 50 Ω F (Whichever is smaller)	Then apply the above mentioned voltage continuously for 1000±12 hours at the same temperature, remove it from the bath, and set it for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.		

Mounting for testing: The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No.11 to 15 are performed.

muRata

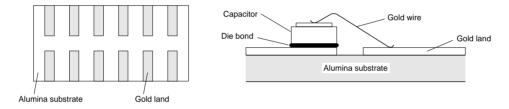
GMA Series Specifications and Test Methods(2)

Below GMA Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. In case "*" is not added in capacitance table, please refer to GMA Series Specifications and Test Methods (1) (P.69).

				refer to GMA Series Specifications and Test Methods (1) (P.69).			
No.	lte	em	Specifications	Test Method			
1	Operating Temperat Range		R6 : -55°C to 85°C	Reference Temperature : 25°C			
2	Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, $V^{\text{p.p}}$ or $V^{\text{o.p}}$, whichever is larger, should be maintained within the rated volt- age range.			
3	Appearar	nce	No defects or abnormalities.	Visual inspection.			
4	Dimensio	ons	Within the specified dimensions.	Using calipers.			
5	Dielectric	: Strength	No defects or abnormalities.	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulatior Resistanc		More than $50\Omega \cdot F$	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at normal temperature and humidity and within 1 minutes of charging.			
7	Capacita	nce	Within the specified tolerance.	The capacitance/D.F. should be measured at reference			
8	Dissipatio Factor (D.		R6 : 0.1 max.	temperature at the frequency and voltage shown in the table. Capacitance Frequency Voltage C≦10µF (6.3Vmax.) 1±0.1kHz 0.5±0.1Vrms			
9	Capacitance Temperature Characteristics	No bias	R6 : Within ±15% (–55°C to +85°C)	The capacitance change should be measured after 5min. at each specified temp. stage. The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges.* $\underbrace{\frac{\text{Step} \qquad \text{Temperature (°C)}}{1 \qquad \text{Reference temperature } \pm 2 \qquad -55\pm 3 \qquad 3 \qquad \text{Reference temperature } \pm 2 \qquad 4 \qquad 85\pm 3 \qquad \text{*Initial measurement for high dielectric constant type} \\ \hline \text{Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24\pm 2 hours at room temperature.} \\ \hline \text{Perform the initial measurement.} \\ \hline \hline \end{tabular}$			
10	Mechanical	Bond Strength	Pull force : 0.03N min.	MIL-STD-883 Method 2011 Condition D Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20) and bond a $25\mu m$ (0.001 inch) gold wire to the capacitor terminal using an ultrasonic ball bond. Then, pull wire.			
	Strength	Die Shear Strength	Die Shear force : 2N min.	MIL-STD-883 Method 2019 Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20). Apply the force parallel to the substrate.			
		Appearance	No defects or abnormalities.				
	Vibration	Capacitance	Within the specified tolerance.	Ramp frequency from 10 to 55Hz then return to 10Hz all within 1 minute. Amplitude : 1.5 mm (0.06 inch) max. total excursion.			
11	Resistance	D.F.	R6 : 0.1 max.	Apply this motion for a period of 2 hours in each of 3 mutually perpendicular directions (total 6 hours).			
		Appearance	No defects or abnormalities.	The capacitor should be set for 24 ± 2 hours at room			
		Capacitance Change	R6 : Within ±7.5%	temperature after one hour heat of treatment at 150+0/-10°C, then measure for the initial measurement. Fix the capacitor to the supporting jig in the same manner and under the same			
		D.F.	R6 : 0.1 max.	conditions as (11) and conduct the five cycles according to the			
12	Temperature Sudden	I.R.	More than 50Ω · F	temperatures and time shown in the following table. Set it for 48±4 hours at room temperature, then measure.			
12	Change			$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	Change	Dielectric Strength	No defects	StepI234Temp. (°C)Min. Operating Temp.+0/-3Room Temp.Max. Operating Temp.Room Temp.			
				Time (min.) 30±3 2 to 3 30±3 2 to 3			

Mounting for testing : The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No.11 to 14 are performed.

Continued on the following page. \square



GMA Series Specifications and Test Methods(2)

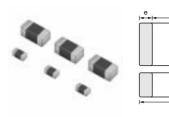
Below GMA Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table.

No.	Ite	m	Specifications	Test Method
		Appearance	No defects or abnormalities.	Apply the rated voltage for 500±12 hours at 40±2°C, in 90 to
13		Capacitance Change	R6 : Within ±12.5%	95% humidity and set it for 24±2 hours at room temprature, then muasure. The charge/discharge current is less than 50mA.
	High	D.F.	R6 : 0.2 max.	
	Temperature High Humidity (Steady)	I.R.	More than 12.5Ω · F	 Initial measurement Perform a heat treatment at 150+0/–10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.
				 Measurement after test Perform a heat treatment at 150+0/–10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.
		Appearance	No defects or abnormalities.	Apply 150% of the rated voltage for 1000±12 hours at the
		Capacitance Change	R6 : Within ±12.5%	maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure. The charge/ discharge current is less than 50mA.
		D.F.	R6 : 0.2 max.	
14	Durability	I.R.	More than $25\Omega \cdot F$	 Initial measurement Perform a heat treatment at 150+0/–10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.
				• Measurement after test Perform a heat treatment at 150+0/–10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.

Mounting for testing : The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No.11 to 14 are performed.

Chip Monolithic Ceramic Capacitors

muRata


for Bonding GMD Series

Features


- 1. Small chip size (LxWxT: 0.6x0.3x0.3, 1.0x0.5x0.5mm)
- 2. Available for Wire/Die bonding due to Gold termination.
- 3. Suitable for Optical device for telecommunication, IC packaging built-in.

■ Applcation

- 1. Optical device for telecommunication
- 2. IC, IC packaging built-in

Outer electrode: Au

Part Number	Dimensions (mm)						
Fait Number	L	W	T e	е	g min.		
GMD033	0.6±0.03	0.3±0.03	0.3±0.03	0.12 to 0.22	0.16		
GMD155	1.0±0.05	0.5±0.05	0.5±0.05	0.15 to 0.35	0.3		

High Dielectric Constant Type X5R(R6) Characteristics

Part Number		GMD03	GMI	D15
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]	
Rated Volt.		6.3 (0J)	10 (1A)	6.3 (0J)
тс		X5R (R6)	X5R (R6)	X5R (R6)
Capacitance, Ca	pacitance	e Tolerance and T Dimension		
56000pF(563)	к	0.3*(3)		
68000pF(683)	к	0.3*(3)		
82000pF(823)	к	0.3*(3)		
0.10μF(104)	к	0.3*(3)		
0.12µF(124)	к		0.5*(5)	
0.15µF(154)	к		0.5*(5)	
0.18µF(184)	к		0.5*(5)	
0.22µF(224)	к		0.5*(5)	
0.27µF(274)	к		0.5*(5)	
0.33µF(334)	к		0.5*(5)	
0.39µF(394)	к		0.5*(5)	
0.47µF(474)	к		0.5*(5)	
1.0μF(105)	к			0.5* (5)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GMD Series Specifications and Test Method (2)(P.77).

High Dielectric Constant Type X7R(R7) Characteristics

Part Number		GMD03			GMD15		
L x W [EIA]			0.6x0.3 [0201]			1.0x0.5 [0402]	
Rated Volt.		25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)
тс		X7R (R7)					
Capacitance, Ca	pacitanc	e Tolerance and T D	imension	1	L	1	
100pF(101)	к	0.3 (3)					
120pF(121)	к	0.3(3)					

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Note
• This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Note
This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page. C02E.pdf 08.9.1

Part Number L x W [EIA] Rated Volt.			GMD03			GMD15		
			0.6x0.3 [0201]		1.0x0.5 [0402]			
		25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	
тс		X7R (R7)						
Capacitance, Ca	pacitance	Tolerance and T D	imension				1	
150pF(151)	к	0.3(3)						
180pF(181)	к	0.3(3)						
220pF(221)	к	0.3(3)			0.5(5)			
270pF(271)	к	0.3(3)			0.5 (5)			
330pF(331)	к	0.3(3)			0.5 (5)			
390pF(391)	к	0.3(3)			0.5 (5)			
470pF(471)	к	0.3 (3)			0.5 (5)			
560pF(561)	к	0.3 (3)			0.5 (5)			
680pF(681)	к	0.3 (3)			0.5 (5)			
820pF(821)	к	0.3 (3)			0.5 (5)			
1000pF(102)	к	0.3 (3)			0.5 (5)			
1200pF(122)	к	0.3(3)			0.5 (5)			
1500pF(152)	к	0.3(3)			0.5 (5)			
1800pF(182)	к		0.3 (3)		0.5 (5)			
2200pF(222)	к		0.3 (3)		0.5 (5)			
2700pF(272)	к		0.3 (3)		0.5 (5)			
3300pF(332)	к		0.3 (3)		0.5 (5)			
3900pF(392)	к			0.3(3)	0.5 (5)			
4700pF(472)	к			0.3(3)	0.5 (5)			
5600pF(562)	к			0.3(3)		0.5(5)		
6800pF(682)	к			0.3(3)		0.5(5)		
8200pF(822)	к			0.3(3)		0.5(5)		
10000pF(103)	к			0.3(3)		0.5(5)		
12000pF(123)	к					0.5 (5)		
15000pF(153)	к					0.5 (5)		
18000pF(183)	к					0.5 (5)		
22000pF(223)	к					0.5 (5)		
27000pF(273)	к					0.5 (5)		
33000pF(333)	к					0.5 (5)		
39000pF(393)	к					0.5 (5)		
47000pF(473)	к					0.5 (5)		
56000pF(563)	к						0.5(5)	
68000pF(683)	к						0.5(5)	
82000pF(823)	к						0.5(5)	
0.10μF(104)	к						0.5(5)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

9

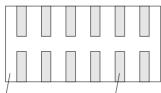
GMD Series Specifications and Test Methods (1)

Below GMD Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GMD Series Specifications and Test Methods (2) (P.77).

No.	lte	em	Specifications	Test Method
1	Operating Temperat Range		R7 : –55°C to 125°C	Reference Temperature : 25°C
2	Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, $V^{p,p}$ or $V^{o,p}$, whichever is larger, should be maintained within the rated volt- age range.
3	Appearar	nce	No defects or abnormalities.	Visual inspection.
4	Dimensio	ons	Within the specified dimensions.	Using calipers.
5	Dielectric	: Strength	No defects or abnormality.	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulatior Resistanc		More than 10,000M Ω or 500 $\Omega \cdot F$ (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at normal temperature and humidity and within 2 minutes of charging.
7	Capacita	nce	Within the specified tolerance.	The capacitance/D.F. should be measured at reference temperature at the frequency and voltage shown in the table.
8	Dissipatio Factor (D.		R7 : W.V. 25Vmin. : 0.025 max. W.V. 16/10V : 0.035 max.	Frequency 1±0.1kHz Voltage 1±0.2Vrms
9	Capacitance Temperature Characteristics	No bias	R7 : Within ±15% (–55°C to +125°C)	The capacitance change should be measured after 5min. at each specified temp. stage. The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges.* $\underbrace{\frac{\text{Step} \qquad \text{Temperature (°C)}}{1 \qquad \text{Reference temperature } \pm 2 \qquad -55 \pm 3 \qquad 3 \qquad \text{Reference temperature } \pm 2 \qquad 4 \qquad 125 \pm 3 \qquad \text{*Initial measurement for high dielectric constant type} \\ Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24 \pm 2 hours at room temperature. \\ Perform the initial measurement. \\ \hline \end{tabular}$
10	Mechanical	Bond Strength	Pull force : 0.03N min.	MIL-STD-883 Method 2011 Condition D Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20) and bond a $25\mu m$ (0.001 inch) gold wire to the capacitor terminal using an ultrasonic ball bond. Then, pull wire.
	Strength	Die Shear Strength	Die Shear force : 2N min.	MIL-STD-883 Method 2019 Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20). Apply the force parallel to the substrate.
		Appearance	No defects or abnormalities.	Ramp frequency from 10 to 55Hz then return to 10Hz all within
11	Vibration	Capacitance	Within the specified tolerance.	1 minute. Amplitude : 1.5 mm (0.06 inch) max. total excursion.
11	Resistance	D.F.	R7 : W.V. 25Vmin. : 0.025 max. W.V. 16/10V : 0.035 max.	Apply this motion for a period of 2 hours in each of 3 mutually perpendicular directions (total 6 hours).
		Appearance	No defects or abnormalities.	The capacitor should be set for 24±2 hours at room
		Capacitance Change	R7 : Within ±7.5%	temperature after one hour heat of treatment at 150+0/-10°C, then measure for the initial measurement. Fix the capacitor to the currenting line the came meaner and under the came
12	Temperature Cycle	D.F.	R7 : W.V. 25Vmin. : 0.025 max. W.V. 16/10V : 0.035 max.	the supporting jig in the same manner and under the same conditions as (11) and conduct the five cycles according to the temperatures and time shown in the following table. Set it for 24±2 hours at room temperature, then measure.
	5,00	I.R.	More than 10,000M Ω or 500 $\Omega \cdot F$	Step 1 2 3 4
		Dielectric	(Whichever is smaller)	Temp. (°C) Min. Operating Temp.+0/-3 Temp. 40/-3 Temp. Temp.+3/-0 Operating Temp.+3/-0 Operating
		Strength	1	Time (min.) 30+/-3 2 to 3 30+/-3 2 to 3

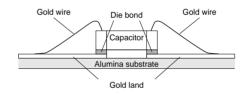
Mounting for testing : The capacitors should be mounted on the substrate as shown below using die bonding. when tests No.11 to 15 are performed.

Continued on the following page.


9

GMD Series Specifications and Test Methods (1)

Below GMD Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. Continued from the preceding page. In case "*" is added in capacitance table, please refer to GMD Series Specifications and Test Methods (2) (P.77).


No.	Ite	m	Specifications	Test Method
		Appearance	No defects or abnormalities.	
		Capacitance Change	R7 : Within ±12.5%	Set the capacitor for 500±12 hours at 40±2°C, in 90 to 95%
13	Humidity (Steady State)	D.F.	R7 : W.V. 25Vmin. : 0.05 max. W.V. 16/10V : 0.05 max.	humidity. Take it out and set it for 24±2 hours at room temperature, then measure.
		I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$ (Whichever is smaller)	
		Appearance	No defects or abnormalities.	
		Capacitance Change	R7 : Within ±12.5%	Apply the rated voltage for 500±12 hours at 40±2℃, in 90 to
14	Humidity Load	D.F.	R7 : W.V. 25Vmin. : 0.05 max. W.V. 16/10V : 0.05 max.	95% humidity and set it for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	More than 500M Ω or 25 Ω \cdot F (Whichever is smaller)	
		Appearance	No defects or abnormalities.	A voltage treatment should be given to the capacitor, in which a
		Capacitance Change	R7 : Within ±12.5%	DC voltage of 200% the rated voltage is applied for one hour at the maximum operating temperature $\pm 3^{\circ}$ then it should be set
15	High Temperature Load	D.F.	R7 : W.V. 25Vmin. : 0.05 max. W.V. 16/10V : 0.05 max.	 for 24±2 hours at room temperature and the initial measurement should be conducted. Then apply the above mentioned voltage continuously for 1000±12 hours at the same temperature, remove it from the
	-	I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$ (Whichever is smaller)	bath, and set it for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.

Mounting for testing : The capacitors should be mounted on the substrate as shown below using die bonding. when tests No.11 to 15 are performed.

Alumina substrate

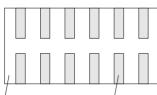
Gold land

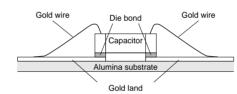
GMD Series Specifications and Test Methods (2)

Below GMD Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. In case "*" is not added in capacitance table, please refer to GMD Series Specifications and Test Methods (1) (P.75).

No.	lte	em	Specifications	Test Method
1	Operating Temperat Range	•	R6 : –55°C to 85°C	Reference Temperature : 25°C
2	Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated volt- age range.
3	Appearar	nce	No defects or abnormalities.	Visual inspection.
4	Dimensions		Within the specified dimensions.	Using calipers.
5	Dielectric	Strength	No defects or abnormalities.	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provid- ed the charge/discharge current is less than 50mA.
6	Insulation Resistanc		More than $50\Omega \cdot F$	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at normal temperature and humidity and within 1 minutes of charging.
7	Capacita	nce	Within the specified tolerance.	The capacitance/D.F. should be measured at reference
8	Dissipatio Factor (D.		R6 : 0.1 max.	$\label{eq:constraint} \begin{array}{c c c c c c c c c c c c c c c c c c c $
9	Capacitance Temperature Characteristics	No bias	R6 : Within ±15% (–55°C to +85°C)	each specified temp. stage. The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges.* Step Temperature (°C) 1 Reference temperature ±2 2 -55±3 3 Reference temperature ±2 4 85±3 *Initial measurement for high dielectric constant type Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.
10	Mechanical Strength	Bond Strength	Pull force : 0.03N min.	MIL-STD-883 Method 2011 Condition D Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20) and bond a 25μ m (0.001 inch) gold wire to the capacitor terminal using an ultrasonic ball bond. Then, pull wire.
	Suchytt	Die Shear Strength	Die Shear force : 2N min.	MIL-STD-883 Method 2019 Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20). Apply the force parallel to the substrate.
		Appearance	No defects or abnormalities.	
	Vibration	Capacitance	Within the specified tolerance.	Ramp frequency from 10 to 55Hz then return to 10Hz all within 1 minute. Amplitude : 1.5 mm (0.06 inch) max. total excursion.
11	Resistance	D.F.	R6 : 0.1 max.	Apply this motion for a period of 2 hours in each of 3 mutually perpendicular directions (total 6 hours).
		Appearance	No defects or abnormalities.	The capacitor should be set for 24 ± 2 hours at room
		Capacitance Change	R6 : Within ±7.5%	temperature after one hour heat of treatment at $150+0/-10$ °C, then measure for the initial measurement. Fix the capacitor to the supporting jig in the same manner and under the same
		D.F.	R6 : 0.1 max.	conditions as (11) and conduct the five cycles according to the
10	Temperature Suddon	I.R.	More than 50Ω · F	temperatures and time shown in the following table. Set it for
12	Sudden Change			24±2 hours at room temperature, then measure. Step 1 2 3 4
	Ū	Dielectric Strength	No defects	StepIZS4Temp. (°C)Min. Operating Temp.+0/-3Room Temp.Max. Operating Temp.+3/-0Room Temp.Time (min.)30±32 to 330±32 to 3

Mounting for testing : The capacitors should be mounted on the substrate as shown below using die bonding. when tests No.11 to 14 are performed.




GMD Series Specifications and Test Methods (2)

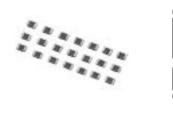
Below GMD Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table.

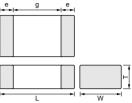
No.	Ite	m	Specifications	Test Method		
		Appearance	No defects or abnormalities.	Apply the rated voltage for 500±12 hours at 40±2°C, in 90 to		
13		Capacitance Change	R6 : Within ±12.5%	95% humidity and set it for 24±2 hours at room temprature, then muasure. The charge/discharge current is less than 50mA.		
	High	D.F.	R6 : 0.2 max.			
13	Temperature High Humidity (Steady)	I.R.	More than 12.5Ω · F	 Initial measurement Perform a heat treatment at 150+0/–10°C for one hour and let sit for 24±2 hours at room temperature. Perform the i measurement. Measurement after test Perform a heat treatment at 150+0/–10°C for one hour and let sit for 24±2 hours at room temperature, then measure. 		
		Appearance	No defects or abnormalities.	Apply 150%*2 of the rated voltage for 1000±12 hours at the		
		Capacitance Change	R6 : Within ±12.5%	maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure. The charge/ discharge current is less than 50mA.		
		D.F.	R6 : 0.2 max.			
14	Durability	I.R.	More than $25\Omega \cdot F$	 *2 GMD155 R6 1A 274 to 474 are applied to 120%. Initial measurement Perform a heat treatment at 150+0/–10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. Measurement after test Perform a heat treatment at 150+0/–10°C for one hour and then let sit for 24±2 hours at room temperature, then measure. 		

Mounting for testing : The capacitors should be mounted on the substrate as shown below using die bonding, when tests No.11 to 14 are performed.

Alumina substrate

Chip Monolithic Ceramic Capacitors


for Ultrasonic Sensors GRM Series


Features

- 1. Proper to compensate for ultrasonic sensor
- 2. Small chip size and high cap. value

Applications

Ultrasonic sensor (Back sonar, Corner sonar and etc.)

Part Number	Dimensions (mm)						
Fait Number	L	W	Т	е	g min.		
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7		

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM2199E2A102KD42	ZLM (Murata)	100	1000 ±10%	2.0	1.25	0.85
GRM2199E2A152KD42	ZLM (Murata)	100	1500 ±10%	2.0	1.25	0.85

for Ultrasonic Sensors GRM Series Specifications and Test Methods

No.	Item	Specifications	Test Method		
1	Operating Temperature	-25 to +85℃	Reference Temperature: 20°C		
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated volt age range.		
3	Appearance	No defects or abnormalities	Visual inspection		
4	Dimensions	Within the specified dimensions	Using calipers		
5	Dielectric Strength	No defects or abnormalities	No failure should be observed when 300% of the rated voltage is applied between the terminations for 1 to 5 seconds, provid- ed the charge/discharge current is less than 50mA.		
6	Insulation Resistance (I.R.)	More than 10,000MΩ	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20° C and 75° RH max. and within 2 minutes of charging.		
7	Capacitance	Within the specified tolerance	− The capacitance/D.F. should be measured at 20°C with		
8	Dissipation Factor (D.F.)	0.01 max.	1 The capacitance/D.F. should be measured at 20 C with 1 ± 0.1 kHz in frequency and 1 ± 0.2 Vrms in voltage.		
	Capacitance Temperature	Within $-4,700 \pm 1.888 \text{ ppm/°C}$ (at $-25 \text{ to } \pm 20^{\circ}\text{C}$)	The temperature coefficient is determined using the capacitance measured in step 1 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient. The capacitance change should be measured after 5 min. at each specified temperature stage.		
9	Characteristics	$V_{1}(1)(1) = 4.700 = 1.000 \text{ DU(1)} < (a_1 + 20.10 + 0.05)$	Step Temperature (°C)		
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
			$-\frac{2}{3}$ $-\frac{25\pm3}{20\pm2}$		
			4 85±3		
			5 20±2		
10	Adhesive Strength of Termination	No removal of the terminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
		Na dafaata ay ahaanna 2015 -	Fig. 1		
	Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10).		
11	Vibration Resistance D.F.	Within the specified tolerance 0.01 max.	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).		

Continued on the following page.

10

for Ultrasonic Sensors GRM Series Specifications and Test Methods

Continued from the preceding page.

No.	o. Item Specifications			Test Method			
NO.	ite		Specifications				
			No cracking or marking defects should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
12	Deflection	n	Type a b c GRM21 1.2 4.0 1.65 (in mm) Fig. 2 Fig. 2	Pressurizing speed: 1.0mm/sec. Pressurize Flexure: ≤1 Capacitance meter 45 Fig.3			
			5	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and			
13Solderability of Termination75% of the terminations are to be soldered evenly and continuously.rosin 80 to eute			-	rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5℃ or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5℃.			
		Appearance	No defects or abnormalities				
	Resistance to Soldering Heat	Capacitance Change	Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the			
14		D.F.	0.01 max.	capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at $270\pm5^{\circ}$ for 10 ± 0.5 seconds. Let sit at room temperature for			
		I.R.	More than 10,000MΩ	24±2 hours, then measure.			
		Dielectric Strength	No failure				
		Appearance	No defects or abnormalities	Fix the capacitor to the supporting jig in the same manner and			
	T	Capacitance Change	Within ±7.5%	under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room tem-			
15	Temperature Cycle	D.F.	0.01 max.	perature, then measure.			
		I.R.	More than 10,000MΩ	Step 1 2 3 4 Temp. (°C) -25 + 3/- 3 Room Temp. 85 + 3/- 3 Room Temp.			
		Dielectric Strength	No failure	Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 30 ± 3 2 to 3			
		Appearance	No defects or abnormalities				
16	Humidity, Steady	Capacitance Change	Within ±12.5%	Sit the capacitor at $40\pm2^{\circ}$ and 90 to 95% humidity for 500±12 hours.			
	State	D.F.	0.02 max.	Remove and let sit for 24±2 hours at room temperature, then measure.			
		I.R.	More than 1,000MΩ				
		Appearance	No defects or abnormalities				
17	Humidity Load	Capacitance Change	Within ±12.5%	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room tem-			
	Loau	D.F.	0.02 max.	perature, then measure. The charge/discharge current is less than 50mA.			
		I.R.	More than $500M\Omega$				
		Appearance	No defects or abnormalities				
18	High Temperature	Capacitance Change	Within ±12.5%	Apply 200% of the rated voltage for $1,000\pm12$ hours at 85 ± 3 °C. Let sit for 24 ± 2 hours at room temperature, then measure.			
	Load	D.F.	0.02 max.	The charge/discharge current is less than 50mA.			
		I.R.	More than 1,000M Ω				

Package

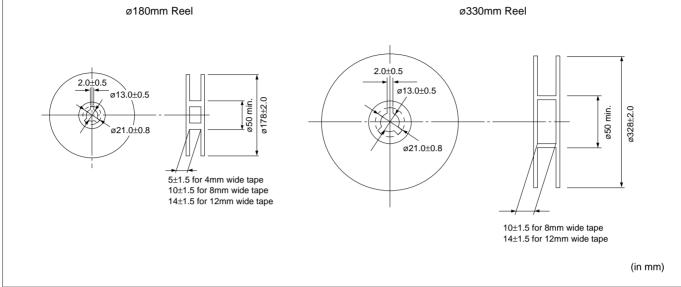
■ Minimum Quantity Guide

Part Number		Dimensions (mm)		(mm)	Quantity (pcs.) ø180mm Reel ø330mm Reel					
Part Nu	mbei			T	Ø180m Paper Tape	Embossed Tape	Ø330m Paper Tape	Embossed Tape	Bulk Case	Bulk Bag
		L	VV	I	•			•		Bulk : B
Packaging	g Code				D	L	J	к	С	Tray : T
	GRM02	0.4	0.2	0.2	20,000 1)	40,000 1)	-	-	-	1,000
	GRM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
	00045	4.0	0.5	0.25	10,000	-	50,000	-	-	1,000
	GRM15	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
	GRM18	1.6	0.8	0.5	4,000	-	10,000	-	-	1,000
	GRIVITO	1.6	0.8	0.8	4,000	-	10,000	-	15,000 2)	1,000
				0.6	4,000	-	10,000	-	10,000	1,000
	GRM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
				1.0/1.25	-	3,000	-	10,000	5,000 ³⁾	1,000
				0.6/0.85	4,000	-	10,000	-	-	1,000
	GRM31	3.2	1.6	1.15	-	3,000	-	10,000	-	1,000
For General				1.6	-	2,000	-	6,000	-	1,000
Purpose				0.85	4,000	-	10,000	-	-	1,000
			_	1.15	-	3,000	-	10,000	-	1,000
	GRM32	3.2	2.5	1.35	-	2,000	-	8,000	-	1,000
				1.6	-	2,000	-	6,000	-	1,000
				1.8/2.0	-	1,000	-	4,000	-	1,000
				1.15	-	1,000	-	5,000	-	1,000
	GRM43	4.5	3.2	1.35/1.6	-	1,000	-	4,000	-	1,000
				2.5	-	500	-	2,000	-	1,000
				2.8	-	500	-	1,500	-	500
		5.7		1.15 1.35/1.6 1.8/2.0	-	1,000	-	5,000	-	1,000
	GRM55		5.0		-	1,000	-	4,000	-	1,000
				2.5 3.2	-	500 300	-	2,000 1,500	-	500 500
	GJM03	0.6	0.3	0.3	- 15,000	-	- 50,000	-	-	1,000
ligh Power Type	GJM05 GJM15	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
	GQM15	1.6	0.5	0.5	4,000	-	10,000	-	50,000	1,000
	GQM10 GQM21	2.0	1.25	0.770.8	4,000	-	10,000	-	-	1,000
ligh Frequency	ERB18	1.6	0.8	0.9 max.	4,000	-	10,000	-	-	1,000
ightroquency	ERB21	2.0	1.25	1.35 max.	-	3,000	-	10,000	-	1,000
	ERB32	3.2	2.5	1.7 max.	-	2,000	-	8,000	-	1,000
For Ultrasonic	GRM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
	GMA0D	0.38	0.38	0.3	-	-	-	-	-	400 4)
	GMA05	0.5	0.5	0.35	-	-	-	-	-	400 4)
Microchip	GMA08	0.8	0.8	0.5	-	-	-	-	-	400 4)
·	GMD03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
	GMD15	1.0	0.5	0.5	10,000	-	50,000	-	-	1,000
	GNM0M	0.9	0.6	0.45	10,000	-	50,000	-	-	1,000
	GNM1M	1.37	1.0	0.5/0.6/0.8	4,000	-	10,000	-	-	1,000
Array	GNM21	2.0	1.25	0.6/0.85	4,000	-	10,000	-	-	1,000
	GNM31	3.2	1.6	0.8/0.85	4,000	-	10,000	-	-	1,000
	GININI31	3.2	1.6	1.0/1.15	-	3,000	-	10,000	-	1,000
	LLL15	0.5	1.0	0.3	10,000 5)	-	50,000 ⁵⁾	-	-	1,000
	LLL18	0.8	1.6	0.5	-	4,000	-	10,000	-	1,000
	LLL21	1.25	2.0	0.5/0.6	-	4,000	-	10,000	-	1,000
		1.20	2.0	0.85	-	3,000	-	10,000	-	1,000
	LLL31	1.6	3.2	0.5/0.7	-	4,000	-	10,000	-	1,000
			3.2	1.15	-	3,000	-	10,000	-	1,000
Low ESL	LLA18	1.6	0.8	0.5	-	4,000	-	10,000	-	1,000
LOW ESL	LLA21	2.0	1.25	0.5	-	4,000	-	10,000	-	1,000
		2.0	1.20	0.85	-	3,000	-	10,000	-	1,000
				0.5	-	4,000	-	10,000	-	1,000
	LLA31	3.2	1.6	0.85	-	3,000	-	10,000	-	1,000
				1.15	-	3,000	-	10,000	-	1,000
	LLM21	2.0	1.25	0.5	-	4,000	-	10,000	-	1,000
	LLM31	3.2	1.6	0.5	-	4,000	-	10,000	-	1,000

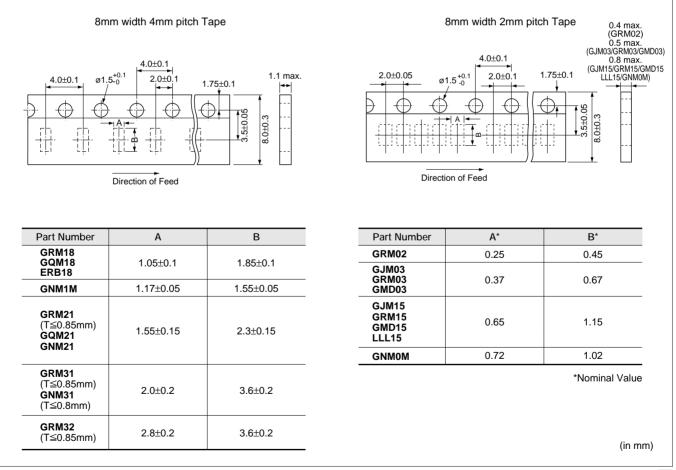
1) 8mm width 2mm pitch Paper Taping. 4mm width 1mm pitch Embossed Taping.

2) There are parts number without bulk case.

3) Dimension tolerance $\pm 0.15 \text{mm}$ rated are not available by bulk case.


4) Tray

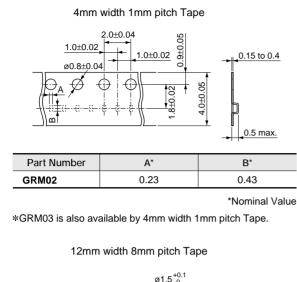
5) LLL15: ø180mm Reel Paper Taping Packaging Code: E, ø330mm Reel Paper Taping Packaging Code: F

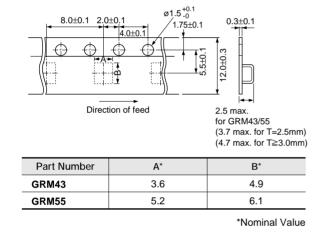


Package

❑ Continued from the preceding page. ■ Tape Carrier Packaging (1) Dimensions of Reel Ø180mm Reel Ø330mm Reel

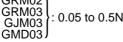
(2) Dimensions of Paper Tape

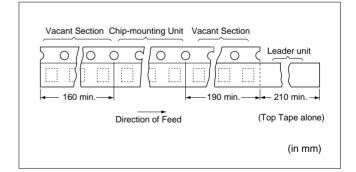




Package

Continued from the preceding page.

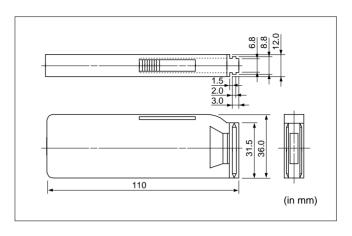

(3) Dimensions of Embossed Tape





	idth 4mm pitch Tape	0.2±0.1 (LL□) 0.25±0.1 (T≤2.0mm) 0.3±0.1 (T=2.5mm)
Part Number	А	В
LLL18, LLA18	1.05±0.1	1.85±0.1
GRM21 (T≧1.0mm) LLL21 LLA21, LLM21	1.45±0.2	2.25±0.2
ERB21	1.55±0.2	2.3±0.2
GRM31 (T≧1.15mm) LLL31 LLA31, LLM31 GNM31 (T≧1.0mm)	1.9±0.2	3.5±0.2
GRM32, ERB32 (T≧1.0mm)	2.8±0.2	3.5±0.2
		(in mm)

- (4) Taping Method
 - Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
 - ② Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
 - ③ The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
 - ④ Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
 - (5) The top tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
 - (f) Cumulative tolerance of sprocket holes, 10 pitches: ± 0.3 mm.
 - ⑦ Peeling off force: 0.1 to 0.6N* in the direction shown below. *GRM02)



Package

Continued from the preceding page.

Dimensions of Bulk Case Packaging

The bulk case uses antistatic materials. Please contact Murata for details.

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications.

■ ① Caution (storage and operation condition) Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases.

Storage environment must be at an ambient temperature of 5-40 degree C and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have elapsed, check solderability before use. Insulation Resistance should be deteriorated on specific

condition of high humidity or incorrosion gas such as hydrogen sulfide, sulfurous acid gas, chlorine. Those condition are not suitable for use.

Handling

1. Inspection

Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.

- 2. Board Separation (or depanalization)
- (1) Board flexing at the time of separation causes cracked chips or broken solder.
- (2) Severity of stresses imposed on the chip at the time of board break is in the order of: Pushback<Slitter<V Slot<Perforator.
- (3) Board separation must be performed using special jigs, not with hands.

Use of Sn-Zn based solder will deteriorate reliability of MLCC. Please contact murata factory for the use of Sn-Zn based solder in advance.

Do not use under the condition that causes condensation. Use damp proof countermeasure if using under the condition that causes condensation.

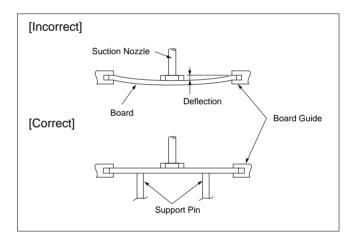
FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Reel and bulk case
 In the handling of reel and case, please be careful
 and do not drop it.
 Do not use chips from a case which has been dropped.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCTS IS USED.

■ △Caution (Soldering and Mounting)

1. Mounting Position


Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

(Reference Data 2. Board bending strength for solder fillet height) (Reference Data 3. Temperature cycling for solder fillet height) (Reference Data 4. Board bending strength for board material)

2. Chip Placing

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically. (Reference Data 5. Break strength)

[Component Direction] Locate chip horizontal to the direction in which stress acts [Chip Mounting Close to Board Separation Point] C Chip arrangement Perforation В Worst A-C-(B_D) Best 00 А Slit

Continued from the preceding page.

- 3. Reflow Soldering
- When sudden heat is applied to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity inside components. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in table 1. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the table 1.

Та	ble	1
···	210	

Part Number	Temperature Differential				
GRM02/03/15/18/21/31					
GJM03/15					
LLL15/18/21/31	∆T≦190℃				
ERB18/21					
GQM18/21					
GRM32/43/55					
LLA18/21/31					
LLM21/31	∆T≦130℃				
GNM					
ERB32					

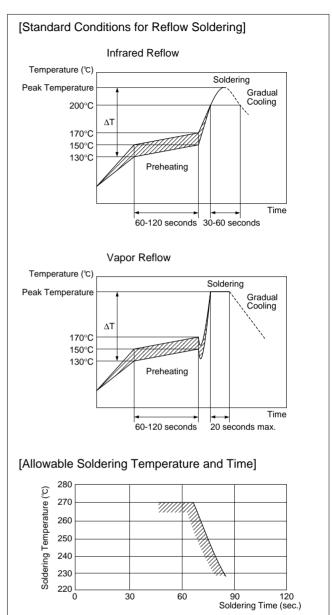
Recommended Conditions

	Pb-Sn S	Lead Free Solder	
	Infrared Reflow	Vapor Reflow	Lead Free Solder
Peak Temperature	230-250°C	230-240°C	240-260°C
Atmosphere	Air	Air	Air or N2

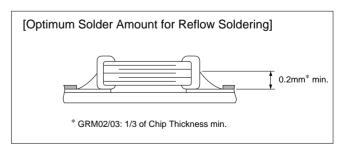
Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

• Optimum Solder Amount for Reflow Soldering


 Overly thick application of solder paste results in excessive fillet height solder.
 This makes the chip more susceptible to mechanics

This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.


- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm* min.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

Caution

Continued from the preceding page.

4. Leaded Component Insertion

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

5. Flow Soldering

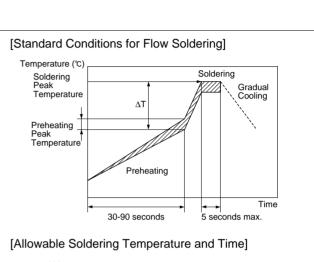
- When sudden heat is applied to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity inside components. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- In order to prevent mechanical damage in the components, preheating shoud be required for the both components and the PCB board. Preheating conditions are shown in table 2. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.

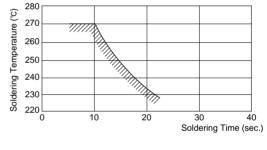
When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 2.

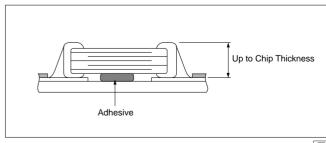
Table 2

Part Number	Temperature Differential	
GRM18/21/31		
LLL21/31	17-150%	
ERB18/21	∆T≦150℃	
GQM18/21		


Recommended Conditions


	Pb-Sn Solder	Lead Free Solder
Preheating Peak Temperature	90-110°C	100-120°C
Soldering Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N2

Pb-Sn Solder: Sn-37Pb


Lead Free Solder: Sn-3.0Ag-0.5Cu

 Optimum Solder Amount for Flow Soldering The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions.

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

Continued from the preceding page.

6. Correction with a Soldering Iron

- (1) For Chip Type Capacitors
- When sudden heat is applied to the components by soldering iron, the mechanical strength of the components should go down because remarkable temperature change causes deformity inside components. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in table 3. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible. After soldering, it is not allowed to cool it down rapidly.
- Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions. Soldering iron ø3mm or smaller should be required. And it is necessary to keep a distance between the soldering iron and the components without direct touch. Thread solder with ø0.5mm or smaller is required for soldering.

7. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

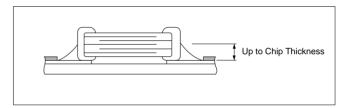

Table 3

Table 3						
Part Number	Temperature Differential	Peak Temperature	Atmosphere			
GRM03/15/18/21/31						
GJM03/15		300°C max.	Air			
LLL15/18/21/31	∆T≦190℃	3 seconds max.				
GQM18/21		/ termination				
ERB18/21						
GRM32/43/55						
GNM		270°C max.				
LLA18/21/31	∆T≦130℃	3 seconds max.	Air			
LLM21/31		/ termination				
ERB32						

*Applicable for both Pb-Sn and Lead Free Solder.

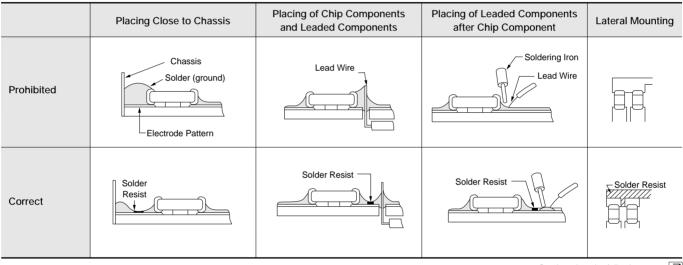
Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

Notice

■ Notice (Soldering and Mounting)

1. PCB Design


(1) Notice for Pattern Forms

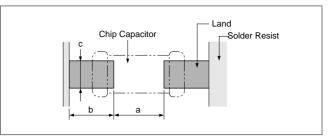
Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height. It has a possibility to happen the chip crack by the expansion and shrinkage of metal board. Please contact us if you want to use the ceramic capacitor on metal board such as Aluminum.

Pattern Forms

Continued on the following page. \square


Notice

Continued from the preceding page.

(2) Land Dimensions

 Chip capacitor could be cracked due to the stress of PCB bending / etc if the land area is larger having excess amount of solder.

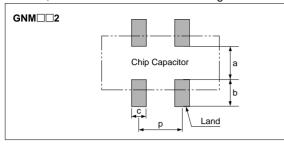
Please refer to land dimension of table 1 for flow soldering, table 2 for reflow soldering, table 3 for GNM & LLA, and table 4 for LLM.

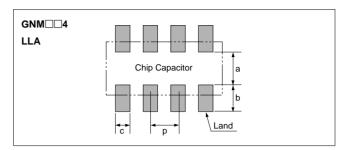
Table 1 Flow Soldering Method

Dimensions Part Number	Chip (L×W)	а	b	С		
GRM18 GQM18	1.6×0.8	0.6—1.0	0.8-0.9	0.6-0.8		
GRM21 GQM21	2.0×1.25	1.0-1.2	0.9—1.0	0.8-1.1		
GRM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4		
LLL21	1.25×2.0	0.4—0.7	0.5-0.7	1.4—1.8		
LLL31	1.6×3.2	0.6-1.0	0.8-0.9	2.6-2.8		
ERB18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8		
ERB21	2.0×1.25	1.0-1.2	0.9-1.0	0.8—1.1		

(in mm)

Table 2 Reflow Soldering Method


Dimensions Part Number	Chip (L×W)	а	b	с
GRM02	0.4×0.2	0.16-0.2	0.12-0.18	0.2-0.23
GRM03 GJM03	0.6×0.3	0.2—0.3	0.2-0.35	0.2-0.4
GRM15 GJM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4—0.6
GRM18 GQM18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8
GRM21 GQM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1
GRM31	3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4
GRM32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3
GRM43	4.5×3.2	3.0-3.5	1.2-1.4	2.3-3.0
GRM55	5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8
LLL15	0.5×1.0	0.15-0.2	0.2-0.3	0.7—1.0
LLL18	0.8×1.6	0.2-0.3	0.3-0.4	1.4—1.6
LLL21	1.25×2.0	0.4-0.6	0.4-0.5	1.4—1.8
LLL31	1.6×3.2	0.6-0.8	0.6-0.7	2.6-2.8
ERB18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8
ERB21	2.0×1.25	1.0-1.2	0.6-0.7	0.8—1.1
ERB32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3


(in mm)

Continued from the preceding page.

GNM, LLA Series for Reflow Soldering Method

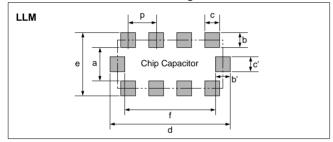


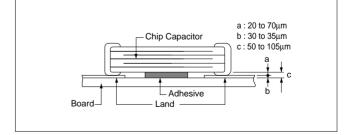
Table 3 GNM, LLA Series for Reflow Soldering Land Dimensions

Part Number	Dimensions (mm)						
Fait Number	L	W	а	b	С	р	
GNM0M2	0.9	0.6	0.12 to 0.20*	0.35 to 0.40*	0.3	0.45	
GNM1M2	1.37	1.0	0.4 to 0.5	0.35 to 0.45	0.3 to 0.35	0.64	
GNM212	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.4 to 0.5	1.0	
GNM214	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.25 to 0.35	0.5	
GNM314	3.2	1.6	0.8 to 1.0	0.7 to 0.9	0.3 to 0.4	0.8	
LLA18	1.6	0.8	0.3 to 0.4	0.25 to 0.35	0.15 to 0.25	0.4	
LLA21	2.0	1.25	0.5 to 0.7	0.35 to 0.6	0.2 to 0.3	0.5	
LLA31	3.2	1.6	0.7 to 0.9	0.4 to 0.7	0.3 to 0.4	0.8	

* 0.82≦a+2b≦1.00

• LLM Series for Reflow Soldering Method

Table 4 LLM Series for Reflow Soldering Land Dimensions


Part Number	Dimensions (mm)							
	а	b, b'	c, c'	d	е	f	р	
LLM21	0.6 to 0.8	(0.3 to 0.5)	0.3	2.0 to 2.6	1.3 to 1.8	1.4 to 1.6	0.5	
LLM31	1.0	(0.3 to 0.5)	0.4	3.2 to 3.6	1.6 to 2.0	2.6	0.8	

b=(c-e)/2, b'=(d-f)/2

2. Adhesive Application

- Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension c shown in the drawing at right to obtain enough bonding strength. The chip's electrode thickness and land thickness must be taken into consideration.
- Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000Pa ⋅s (500ps) min. (at 25°C)
- Adhesive Coverage*

Part Number	Adhesive Coverage*	
GRM18, GQM18	0.05mg min.	
GRM21, LLL21, GQM21	0.1mg min.	
GRM31, LLL31	0.15mg min.	
Siting 1, EEE01	0.15119 1111.	

Continued on the following page. \square

*Nominal Value

Notice

Continued from the preceding page.

3. Adhesive Curing

Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

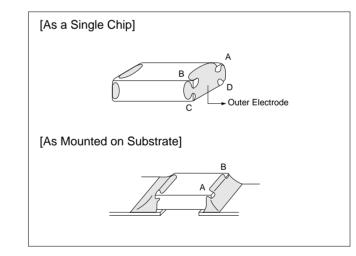
Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

4. Flux Application

5. Flow Soldering


mounted on substrate.

 An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).

• Set temperature and time to ensure that leaching of the

outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown right) and 25% of the length A-B shown below as

- Flux containing too high percentage of halide may cause corrosion of the outer electrodes unless sufficient cleaning. Use flux with a halide content of 0.2% max.
- Do not use strong acidic flux.
- Do not use water-soluble flux.
 (*Water-soluble flux can be defined as non resin type flux including wash-type flux and non-wash-type flux.)

(Reference Data 6. Thermal shock)

(Reference Data 7. Solder heat resistance)

Die Bonding/Wire Bonding (GMA or GMD Series)

- 1. Die Bonding of Capacitors
- •Use the following materials Brazing alloy:
- Au-Sn (80/20) 300 to 320 degree C in N2 atmosphere •Mounting
- Control the temperature of the substrate so that it matches the temperature of the brazing alloy.
- (2) Place brazing alloy on substrate and place the capacitor on the alloy. Hold the capacitor and gently apply the load. Be sure to complete the operation in 1 minute.

2. Wire Bonding

•Wire

Gold wire: 25 micro m (0.001 inch) diameter

Bonding

- (1) Thermocompression, ultrasonic ball bonding.
- (2) Required stage temperature : 150 to 200 degree C
- (3) Required wedge or capillary weight : 0.2N to 0.5N
- (4) Bond the capacitor and base substrate or other devices with gold wire.

Continued from the preceding page.

Others

- 1. Resin Coating When selecting resin materials, select those with low contraction.
- 2. Circuit Design

GRM, GCM, GMA/D, LLL/A/M, ERB, GQM, GJM, GNM Series capacitors in this catalog are not safety recognized products. 3. Remarks

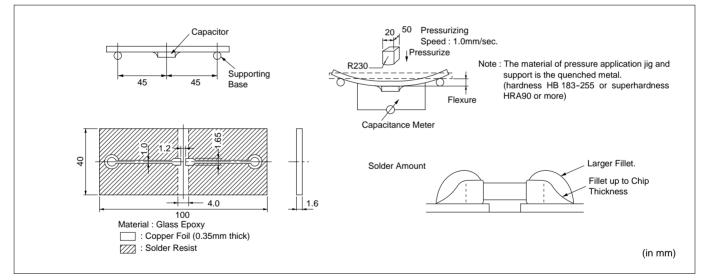
The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not guaranteed ratings.

- 1. Solderability
- (1) Test Method

Subject the chip capacitor to the following conditions. Then apply flux (an ethanol solution of 25% rosin) to the chip and dip it in 230°C eutectic solder for 2 seconds. Conditions:

Expose prepared at room temperature (for 6 months and 12 months, respectively)

Prepared at high temperature (for 100 hours at 85°C) Prepared left at high humidity (for 100 hours under 90%RH to 95%RH at 40°C)


Table 1

Sampla	Initial State	Prepared at Room Temperature		Prepared at High Temperature for	Prepared at High Humidity for 100 Hours at 90 to	
Sample		6 months	12 months	100 Hours at 85℃	95% RH and 40°C	
GRM21 for flow/reflow soldering	95 to 100%	95 to 100%	95%	90 to 95%	95%	

2. Board Bending Strength for Solder Fillet Height

(1) Test Method

Solder the chip capacitor to the test PCB with the amount of solder paste necessary to achieve the fillet heights. Then bend the PCB using the method illustrated and measure capacitance.

(2) Test Samples

GRM21: 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

Products should be determined to be defective if the change in capacitance has exceeded the values specified in Table 2.

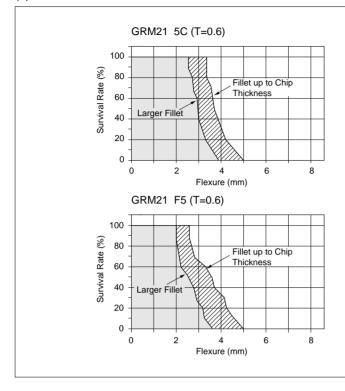
Characteristics	Change in Capacitance		
5C	Within $\pm 5\%$ or $\pm 0.5 \text{pF}$, whichever is greater		
R7	Within ±12.5%		
F5	Within ±20%		

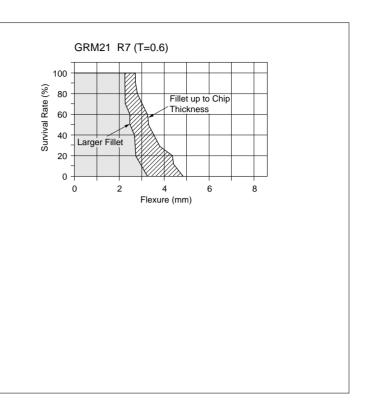
(2) Test Samples

GRM21 : Products for flow/reflow soldering.

(3) Acceptance Criteria With a 60-power optical microscope, measure the surface area of the outer electrode that is covered with solder.

(4) Results

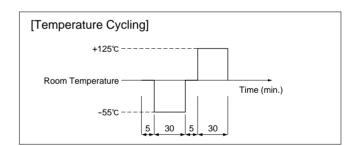

Refer to Table 1.



Reference Data

Continued from the preceding page.

(4) Results

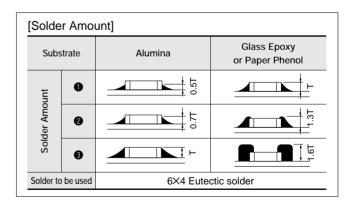


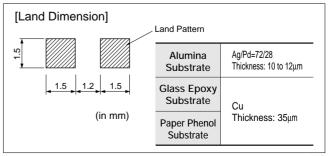
3. Temperature Cycling for Solder Fillet Height

(1) Test Method

Solder the chips to the substrate of various test fixtures using sufficient amounts of solder to achieve the required fillet height. Then subject the fixtures to the cycle illustrated below 200 times.

1 Solder Amount


Alumina substrates are typically designed for reflow soldering.


Glass epoxy or paper phenol substrates are typically used for flow soldering.

2 Material

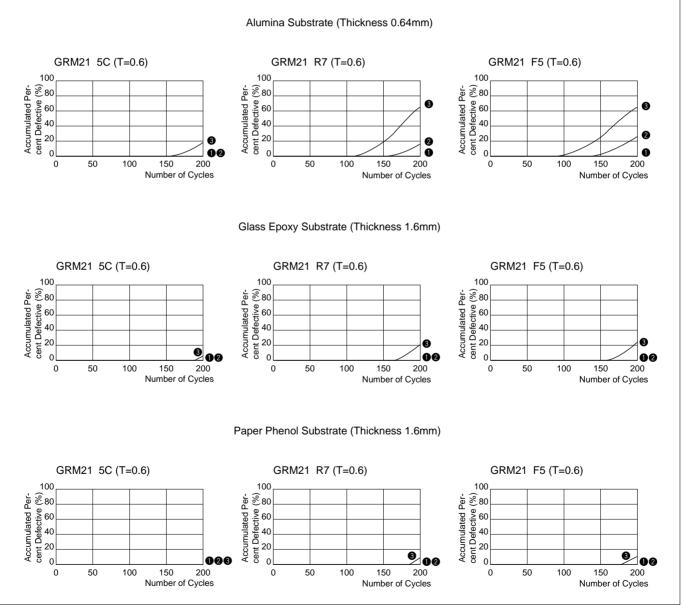
Alumina	(Thickness: 0.64mm)
Glass epoxy	(Thickness: 1.64mm)
Paper phenol	(Thickness: 1.64mm)

③ Land Dimension

Continued from the preceding page.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics T=0.6mm

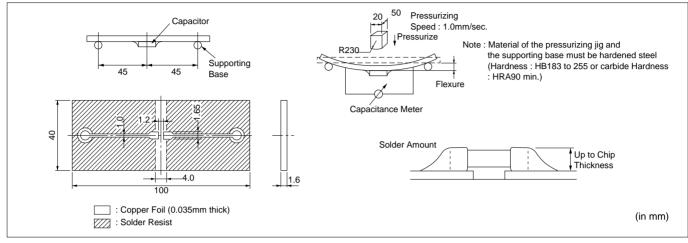

(3) Acceptance Criteria

Products are determined to be defective if the change in capacitance has exceeded the values specified in Table 3.


Table 3

Characteristics	Change in Capacitance		
5C	Within $\pm 2.5\%$ or ± 0.25 pF, whichever is greater		
R7	Within ±7.5%		
F5	Within ±20%		

(4) Results



Continued from the preceding page.

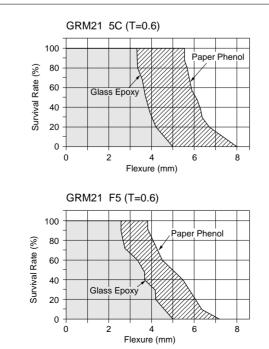
4. Board Bending Strength for Board Material

(1) Test Method

Solder the chip to the test board. Then bend the board using the method illustrated below, to measure capacitance.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics T=0.6mm typical


(3) Acceptance Criteria

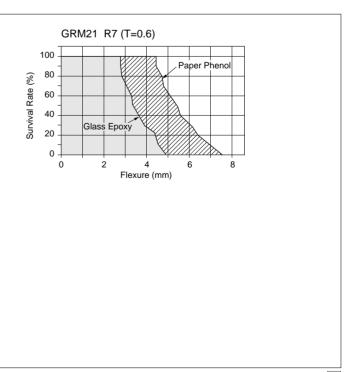

Products should be determined to be defective if the change in capacitance has exceeded the values specified in Table 4.

Table 4

Characteristics	Change in Capacitance
5C	Within $\pm 5\%$ or ± 0.5 pF, whichever is greater
R7	Within ±12.5%
F5	Within ±20%

(4) Results

Continued from the preceding page.

5. Break Strength

(1) Test Method

Place the chip on a steel plate as illustrated on the right. Increase load applied to a point near the center of the test sample.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics GRM31 5C/R7/F5 Characteristics

(3) Acceptance Criteria

Define the load that has caused the chip to break or crack, as the bending force.

(4) Explanation

Break strength, P, is proportionate to the square of the thickness of the ceramic element and is expressed as a curve of secondary degree.

F5

1.2

1.6

The formula is:

D	2γWT ²	(N)
F= 1	3L	(11)

140

120

100

80

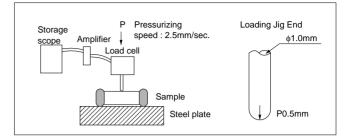
60

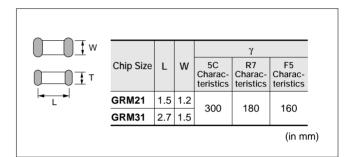
40

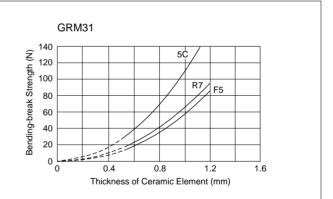
20

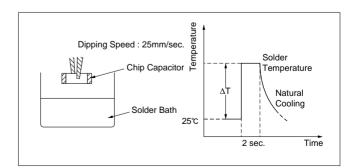
0

Bending-break Strength (N)


W : Width of ceramic element	(mm)
T : Thickness of element	(mm)


L : Distance between fulcrums (mm)


GRM21


 γ : Bending stress (N/mm²)

(5) Results

6. Thermal Shock

(1) Test method

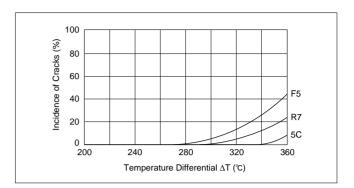
After applying flux (an ethanol solution of 25% rosin), dip the chip in a solder bath (6×4 eutectic solder) in accordance with the following conditions:

0.4

0.8

Thickness of Ceramic Element (mm)

(2) Test samples


GRM21 5C/R7/F5 Characteristics T=0.6mm typical

(3) Acceptance criteria

Visually inspect the test sample with a 60-power optical microscope. Chips exhibiting breaks or cracks should be determined to be defective.

- Continued from the preceding page.
- (4) Results

7. Solder Heat Resistance

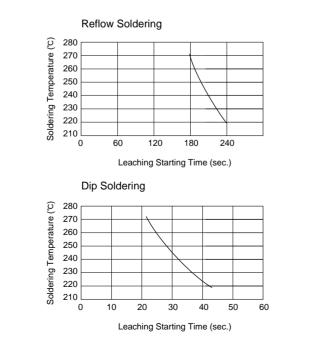
(1) Test Method

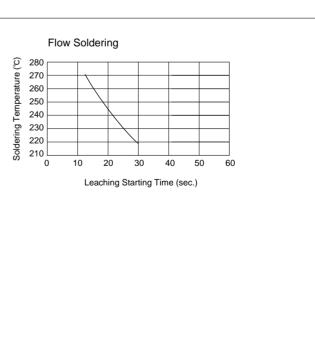
① Reflow soldering:

Apply about 300 μ m of solder paste over the alumina substrate. After reflow soldering, remove the chip and check for leaching that may have occurred on the outer electrode.

2 Flow soldering:

After dipping the test sample with a pair of tweezers in wave solder (eutectic solder), check for leaching that may have occurred on the outer electrode.


(2) Test samples


GRM21: For flow/reflow soldering T=0.6mm

(3) Acceptance criteria

The starting time of leaching should be defined as the time when the outer electrode has lost 25% of the total edge length of A-B-C-D as illustrated:

(4) Results

Outer Electrode

③ Dip soldering:

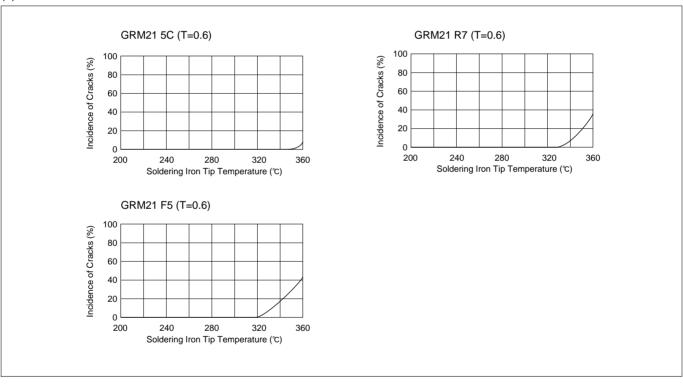
- After dipping the test sample with a pair of tweezers in static solder (eutectic solder), check for leaching that may have occurred on the outer electrode.
- ④ Flux to be used: An ethanol solution of 25% rosin.

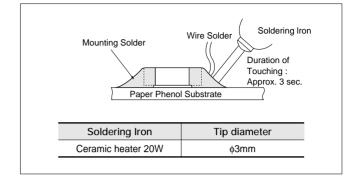
Continued from the preceding page.

8. Thermal Shock when Making Corrections with a Soldering Iron

(1) Test Method

Apply a soldering iron meeting the conditions below to the soldered joint of a chip that has been soldered to a paper phenol board, while supplying wire solder. (Note: the soldering iron tip should not directly touch the ceramic element of the chip.)


(2) Test Samples


GRM21 5C/R7/F5 Characteristics T=0.6mm

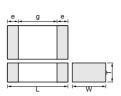
(3) Acceptance Criteria for Defects

Observe the appearance of the test sample with a 60-power optical microscope. Those units displaying any breaks or cracks are determined to be defective.

Chip Monolithic Ceramic Capacitors

muRata

Medium Voltage Low Dissipation Factor


Features

- 1. Low-loss and suitable for high frequency circuits
- 2. Murata's original internal electrode structure realizes high flash-over voltage.
- 3. A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels
- 4. Sn-plated external electrodes realize good solderability.
- 5. Use the GRM21/31 type with flow or reflow soldering, and other types with reflow soldering only.

Applications

Ideal for use on high frequency pulse circuits such as snubber circuits for switching power supplies, DC-DC converters, ballasts (inverter fluorescent lamps), etc.

Part Number		Dim	ensions (mm))	
Part Number	L	W	Т	e min.	g min.
GRM21A	2.0 ±0.2	1.25 ±0.2	1.0 +00.3		0.7
GRM31A	3.2 +0.2	1.6 +0.2	1.0 +0,-0.3		
GRM31B	3.2 ±0.2	1.0 ±0.2	1.25 +0,-0.3		1.5*
GRM32A	3.2 +0.2	2.5 +0.2	1.0 +0,-0.3	0.3	1.5
GRM32B	3.Z <u>1</u> 0.Z	2.5 <u>1</u> 0.2	1.25 +0,-0.3		
GRM42A	4.5 ±0.3	2.0 ±0.2	1.0 +0,-0.3		2.9

* GRM31A7U3D, GRM32A7U3D, GRM32B7U3D : 1.8mm min.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM21A7U2E101JW31D	DC250	U2J (EIA)	100 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E151JW31D	DC250	U2J (EIA)	150 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E221JW31D	DC250	U2J (EIA)	220 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E331JW31D	DC250	U2J (EIA)	330 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E471JW31D	DC250	U2J (EIA)	470 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E681JW31D	DC250	U2J (EIA)	680 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E102JW31D	DC250	U2J (EIA)	1000 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E152JW31D	DC250	U2J (EIA)	1500 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E222JW31D	DC250	U2J (EIA)	2200 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM31A7U2E332JW31D	DC250	U2J (EIA)	3300 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2E472JW31D	DC250	U2J (EIA)	4700 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31B7U2E682JW31L	DC250	U2J (EIA)	6800 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31B7U2E103JW31L	DC250	U2J (EIA)	10000 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31A7U2J100JW31D	DC630	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J150JW31D	DC630	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J220JW31D	DC630	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J330JW31D	DC630	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J470JW31D	DC630	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J680JW31D	DC630	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J101JW31D	DC630	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J151JW31D	DC630	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J221JW31D	DC630	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J331JW31D	DC630	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J471JW31D	DC630	U2J (EIA)	470 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J681JW31D	DC630	U2J (EIA)	680 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J102JW31D	DC630	U2J (EIA)	1000 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM32A7U2J152JW31D	DC630	U2J (EIA)	1500 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM32A7U2J222JW31D	DC630	U2J (EIA)	2200 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM31A7U3A100JW31D	DC1000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A150JW31D	DC1000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A220JW31D	DC1000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A330JW31D	DC1000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.

103

Continued from the preceding	g page.							
Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
RM31A7U3A470JW31D	DC1000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
RM31A7U3A680JW31D	DC1000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
RM31A7U3A101JW31D	DC1000	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
RM31A7U3A151JW31D	DC1000	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
RM31A7U3A221JW31D	DC1000	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
RM31A7U3A331JW31D	DC1000	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
RM31B7U3A471JW31L	DC1000	U2J (EIA)	470 ±5%	3.2	1.6	1.25	1.5	0.3 min.
RM31A7U3D100JW31D	DC2000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM31A7U3D120JW31D	DC2000	U2J (EIA)	12 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM31A7U3D150JW31D	DC2000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM31A7U3D180JW31D	DC2000	U2J (EIA)	18 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM31A7U3D220JW31D	DC2000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM31A7U3D270JW31D	DC2000	U2J (EIA)	27 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM31A7U3D330JW31D	DC2000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM31A7U3D390JW31D	DC2000	U2J (EIA)	39 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM31A7U3D470JW31D	DC2000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM31A7U3D560JW31D	DC2000	U2J (EIA)	56 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM31A7U3D680JW31D	DC2000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.8	0.3 min.
RM32A7U3D820JW31D	DC2000	U2J (EIA)	82 ±5%	3.2	2.5	1.0	1.8	0.3 min.
RM32A7U3D101JW31D	DC2000	U2J (EIA)	100 ±5%	3.2	2.5	1.0	1.8	0.3 min.
RM32A7U3D121JW31D	DC2000	U2J (EIA)	120 ±5%	3.2	2.5	1.0	1.8	0.3 min.
RM32A7U3D151JW31D	DC2000	U2J (EIA)	150 ±5%	3.2	2.5	1.0	1.8	0.3 min.
RM32B7U3D181JW31L	DC2000	U2J (EIA)	180 ±5%	3.2	2.5	1.25	1.8	0.3 min.
RM32B7U3D221JW31L	DC2000	U2J (EIA)	220 ±5%	3.2	2.5	1.25	1.8	0.3 min.
RM42A7U3F270JW31L	DC3150	U2J (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
RM42A7U3F330JW31L	DC3150	U2J (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
RM42A7U3F390JW31L	DC3150	U2J (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
RM42A7U3F470JW31L	DC3150	U2J (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.
RM42A7U3F560JW31L	DC3150	U2J (EIA)	56 ±5%	4.5	2.0	1.0	2.9	0.3 min.
RM42A7U3F680JW31L	DC3150	U2J (EIA)	68 ±5%	4.5	2.0	1.0	2.9	0.3 min.
RM42A7U3F820JW31L	DC3150	U2J (EIA)	82 ±5%	4.5	2.0	1.0	2.9	0.3 min.
RM42A7U3F101JW31L	DC3150	U2J (EIA)	100 ±5%	4.5	2.0	1.0	2.9	0.3 min.

Specifications and Test Methods

No.	lte	em	Specifications	1	Test Method		
1	Operating Temperatu	ire Range	_55 to +125℃		_		
2	Appearar	nce	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimension	Using calipers			
4	Dielectric	Strength	No defects or abnormalities		ved when voltage in Table is applied or 1 to 5 sec., provided the charge/ tan 50mA. <u>Test Voltage</u> 200% of the rated voltage 150% of the rated voltage 120% of the rated voltage DC4095V		
5	Insulation I (I.R.)	Resistance	More than 10,000MΩ		hould be measured with DC500 \pm 50V ted voltage: DC250V) and within 60 \pm 5		
6	Capacita	nce	Within the specified tolerance	The capacitance/Q should voltage shown as follows.	be measured at the frequency and		
7	Q		1,000 min.	Capacitance C<1,000pF C≥1,000pF	Frequency Voltage 1±0.2MHz AC0.5 to 5V(r.m.s.) 1±0.2kHz AC1±0.2V(r.m.s.)		
8	Capacitar Temperat Character	ure	Temp. Coefficient —750±120 ppm/℃ (Temp. Range : +25 to +125℃) —750+120, —347 ppm/℃ (Temp. Range : -55 to +25℃)	The capacitance measurer specified in Table. Step 1 2 3 4 5	nent should be made at each step Temperature (°C) 25±2 Min. Operating Temp.±3 25±2 Max. Operating Temp.±2 25±2		
9	Adhesive of Termin		No removal of the terminations or other defect should occur.	in Fig. 1. Then apply 10N force in th The soldering should be do	one using the reflow method and care so that the soldering is uniform		
		Appearance	No defects or abnormalities	Solder the capacitor to the	test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance		ubjected to a simple harmonic motion		
10	Vibration Resistance	Q	1,000 min.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).			
					Continued on the following page.		

Specifications and Test Methods

Continued from the preceding page.

10.	lte	em		Spe	ecifications				Test Method		
1	Solderability of		L×W Dimension (mm) (mm) a b c d 2.0×1.25 1.2 4.0 1.65 3.2×1.6 2.2 5.0 2.0 3.2×2.5 2.2 5.0 2.9 1.0 4.5×2.0 3.5 7.0 2.4 Fig. 2			 Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. ⁰⁰ Pressurizing speed : 1.0mm/s speed : 1.0mm/s ¹⁰ Pressurize ¹⁰ Pressurize					
									235±5°C H60A or H63A E	utectic Solder	
	Decistance	Appearance No marking defects Capacitance Change Within ±2.5%						Preheat the capacitor at 120 to 150°C* for 1 min. Immerse the capacitor in solder solution at 260±5°C for 10±1 sec Let sit at room condition* for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s			
3	Resistance to Soldering	Q	1,000 min. More than 10,000MΩ					*Preheating for more than 3.2×2.5mm			
	Heat	I.R.						_		The	
		Dielectric Strength	In accordance with item No.4					<u>Step</u> 1 2	Temperature 100 to 120℃ 170 to 200℃	<u>Time</u> 1 min. 1 min.	
		A	No marking defects					Fix the capacitor to the supporting jig (glass epoxy board) shown			
		Appearance	No marking defe	ects				Fix the capac	itor to the supporting jig (glass	epoxy board) shown	
		Capacitance Change	Within ±2.5%	ects				in Fig. 4. Perform the 5 the following	cycles according to the 4 heat table.	t treatments listed in	
		Capacitance Change Q	Within ±2.5%					in Fig. 4. Perform the 5 the following Let sit for 24	cycles according to the 4 heat table. ±2 hrs. at room condition*, ther	t treatments listed in measure.	
4	Temperature	Capacitance Change	Within ±2.5%					in Fig. 4. Perform the 5 the following Let sit for 24- <u>Step</u> 1 2 3	i cycles according to the 4 heat table. L2 hrs. at room condition*, ther Temperature (°C) Min. Operating Temp.±3 Room Temp. Max. Operating Temp.±2	t treatments listed in n measure. Time (min.) 30 ± 3 2 to 3 30 ± 3	
4	Temperature Cycle	Capacitance Change Q	Within ±2.5%	00ΜΩ	4			in Fig. 4. Perform the 5 the following Let sit for 24- <u>Step</u> 1 2	is cycles according to the 4 heat table. ±2 hrs. at room condition*, then Temperature (°C) Min. Operating Temp.±3 Room Temp. Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. La table table table table Room Temp. Max. Operating Temp.±2 Room Temp.	t treatments listed in n measure. Time (min.) 30±3 2 to 3	
4		Capacitance Change Q I.R. Dielectric	Within ±2.5% 500 min. More than 10,00	DOMΩ vith item No.4	4			in Fig. 4. Perform the 5 the following Let sit for 24- <u>Step</u> 1 2 3	is cycles according to the 4 hear table. ±2 hrs. at room condition*, then Temperature (°C) Min. Operating Temp.±3 Room Temp. Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. Solde E2 E2 Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. Glass Epoxy Board	t treatments listed in measure. Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 2 to 3	
4		Capacitance Change Q I.R. Dielectric Strength	Within ±2.5% 500 min. More than 10,00	DOMΩ vith item No.4	4			in Fig. 4. Perform the 5 the following Let sit for 24- <u>Step</u> <u>1</u> <u>2</u> <u>3</u> <u>4</u> Let the capac	i cycles according to the 4 heat table. 2 hrs. at room condition*, then Temperature (°C) Min. Operating Temp.±3 Room Temp. Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. Solder Glass Epoxy Board Fig. 4	t treatments listed in measure. Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 2 to 3 2 to 3	
	Cycle Humidity (Steady	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance	Within ±2.5% 500 min. More than 10,00 In accordance v	DOMΩ vith item No.4	4			in Fig. 4. Perform the 5 the following Let sit for 24- 3 4 Let the capace for $500 + \frac{2}{6}h$	i cycles according to the 4 heat table. 2 hrs. at room condition*, then Temperature (°C) Min. Operating Temp.±3 Room Temp. Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. Solder Glass Epoxy Board Fig. 4	t treatments listed in measure. Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 2 to 3 30 ± 3 2 to 3	
	Cycle	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change	Within ±2.5% 500 min. More than 10,00 In accordance v No marking defe	DOMΩ vith item No.4 ects	4			in Fig. 4. Perform the 5 the following Let sit for 24- 3 4 Let the capace for $500 + \frac{2}{6}h$	ictor sit at 40±2°C and relative h	t treatments listed in measure. Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 2 to 3 30 ± 3 2 to 3	
	Cycle Humidity (Steady	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q	Within ±2.5% 500 min. More than 10,00 In accordance v No marking defe Within ±5.0% 350 min.	DOMΩ vith item No.4 ects				in Fig. 4. Perform the 5 the following Let sit for 24- <u>Step</u> 1 2 3 4 Let the capac for 500 ⁺² % h Remove and	ictor sit at 40±2°C and relative h	t treatments listed in measure. Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 2 to 3 30 ± 3 2 to 3	
	Cycle Humidity (Steady	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q I.R. Dielectric	Within ±2.5% 500 min. More than 10,00 In accordance v No marking defe Within ±5.0% 350 min. More than 1,000	DOMΩ vith item No.4 ects DMΩ vith item No.4				in Fig. 4. Perform the 5 the following Let sit for 24- <u>Step</u> 1 2 3 4 Let the capac for 500 ⁺² % h Remove and	ictor sit at 40±2°C and relative h	t treatments listed in measure. Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 2 to 3 30 ± 3 2 to 3	
	Cycle Humidity (Steady State)	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change	Within ±2.5% 500 min. More than 10,00 In accordance v No marking defe Within ±5.0% 350 min. More than 1,000 In accordance v	DOMΩ vith item No.4 ects DMΩ vith item No.4				in Fig. 4. Perform the 5 the following Let sit for 24- <u>Step</u> <u>1</u> <u>2</u> <u>3</u> <u>4</u> Let the capace for 500 ⁺² % h Remove and measure. Apply 120% c operating tem	is cycles according to the 4 heat table. ±2 hrs. at room condition*, then Temperature (°C) Min. Operating Temp.±3 Room Temp. Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. Gass Epoxy Board Fig. 4	t treatments listed in a measure. Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 30 ± 3 2 to 3 ar resist ar resist aution*, then 4 8 hrs. at maximum	
5	Cycle Humidity (Steady	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q Q	Within ±2.5% 500 min. More than 10,00 In accordance v No marking defe Within ±5.0% 350 min. More than 1,000 In accordance v No marking defe Within ±3.0% 350 min.	DOMΩ vith item No.4 ects DMΩ vith item No.4 ects				in Fig. 4. Perform the 5 the following 1 Let sit for 244 3 4 Let the capace for 500 ⁺²⁴ Remove and measure.	i cycles according to the 4 heat table. E2 hrs. at room condition*, then Temperature (°C) Min. Operating Temp.±3 Room Temp. Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. Solde E2 E2 E2 E2 F3 E3 F3 E2 F3 E3 F3 E3	t treatments listed in Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 30 ± 3 2 to 3 30 ± 3 2 to 3 er resist	
5	Cycle Humidity (Steady State)	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change	Within ±2.5% 500 min. More than 10,00 In accordance v No marking defe Within ±5.0% 350 min. More than 1,000 In accordance v No marking defe Within ±3.0%	DOMΩ vith item No.4 ects DMΩ vith item No.4 ects				in Fig. 4. Perform the 5 the following Let sit for 24d <u>Step</u> 1 2 3 4 4 Let the capace for 500 ⁺²⁴ 0 Remove and measure.	is cycles according to the 4 heat table. ±2 hrs. at room condition*, then Temperature (°C) Min. Operating Temp.±3 Room Temp. Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. Gass Epoxy Board Fig. 4	t treatments listed in Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 2 to 3 2 to 3 er resist numidity of 90 to 95% indition*, then 4 8 hrs. at maximum indition*, then	
14	Cycle Humidity (Steady State)	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q Q	Within ±2.5% 500 min. More than 10,00 In accordance v No marking defe Within ±5.0% 350 min. More than 1,000 In accordance v No marking defe Within ±3.0% 350 min.	DOMΩ vith item No.4 ects DMΩ vith item No.4 ects DMΩ	4			in Fig. 4. Perform the 5 the following Let sit for 24d <u>Step</u> 1 2 3 4 4 Let the capace for 500 ⁺²⁴ 0 Remove and measure.	is cycles according to the 4 heat table. E2 hrs. at room condition*, ther Temperature (°C) Min. Operating Temp.±3 Room Temp. Max. Operating Temp.±2 Room Temp. Max. Operating Temp.±2 Room Temp. Solde E22 E22 E22 E22 E22 E22 E22 E22 E22 E22 E22 E22 E22 E22 E22 Cu Glass Epoxy Board Fig. 4 Solde Fig. 4 S	t treatments listed in a measure. Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3 2 to 3 er resist numidity of 90 to 95% indition*, then a^{4} 8 hrs. at maximum indition*, then	

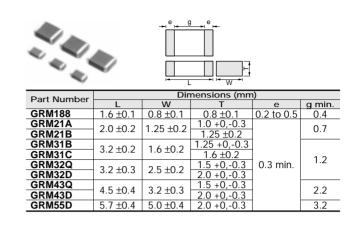
* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

106

11

Mote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 • Other Subject Content of the specification of the spe

Chip Monolithic Ceramic Capacitors


Medium Voltage High Capacitance for General Use

Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 2. Sn-plated external electrodes realizes good solderability.
- Use the GRM18/21/31 types with flow or reflow soldering, and other types with reflow soldering only.

Applications

- 1. Ideal for use on diode-snubber circuits for switching power supplies.
- 2. Ideal for use as primary-secondary coupling for DC-DC converter.
- 3. Ideal for use on line filters and ringer detectors for telephones, facsimiles and modems.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM188R72E221KW07D	DC250	X7R (EIA)	220pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E331KW07D	DC250	X7R (EIA)	330pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E471KW07D	DC250	X7R (EIA)	470pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E681KW07D	DC250	X7R (EIA)	680pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E102KW07D	DC250	X7R (EIA)	1000pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E102KW01D	DC250	X7R (EIA)	1000pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E152KW07D	DC250	X7R (EIA)	1500pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E152KW01D	DC250	X7R (EIA)	1500pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E222KW07D	DC250	X7R (EIA)	2200pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E222KW01D	DC250	X7R (EIA)	2200pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E332KW01D	DC250	X7R (EIA)	3300pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E472KW01D	DC250	X7R (EIA)	4700pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E682KW01D	DC250	X7R (EIA)	6800pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21BR72E103KW03L	DC250	X7R (EIA)	10000pF ±10%	2.0	1.25	1.25	0.7	0.3 min.
GRM31BR72E153KW01L	DC250	X7R (EIA)	15000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72E223KW01L	DC250	X7R (EIA)	22000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72E333KW03L	DC250	X7R (EIA)	33000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31CR72E473KW03L	DC250	X7R (EIA)	47000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31BR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM31CR72E104KW03L	DC250	X7R (EIA)	0.10µF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32DR72E104KW01L	DC250	X7R (EIA)	0.10µF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72E154KW01L	DC250	X7R (EIA)	0.15μF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM32DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM43DR72E474KW01L	DC250	X7R (EIA)	0.47µF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E474KW01L	DC250	X7R (EIA)	0.47µF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72E105KW01L	DC250	X7R (EIA)	1.0μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR72J102KW01L	DC630	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J152KW01L	DC630	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.

107

 ▲Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. C02E.pdf 08.9.1 Continued from the preceding page. Electrode g Rated Voltage Length L Width W Thickness T TC Code Electrode e Part Number Capacitance min. (mm) (Standard) (mm) (V) (mm) (mm) (mm)

	(-)	(()	· · /		(mm)	()
GRM31BR72J222KW01L	DC630	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J332KW01L	DC630	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J472KW01L	DC630	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J682KW01L	DC630	X7R (EIA)	6800pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J103KW01L	DC630	X7R (EIA)	10000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72J153KW03L	DC630	X7R (EIA)	15000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32QR72J223KW01L	DC630	X7R (EIA)	22000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR72J333KW01L	DC630	X7R (EIA)	33000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR72J473KW01L	DC630	X7R (EIA)	47000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72J683KW01L	DC630	X7R (EIA)	68000pF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM43DR72J104KW01L	DC630	X7R (EIA)	0.10μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72J154KW01L	DC630	X7R (EIA)	0.15µF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72J224KW01L	DC630	X7R (EIA)	0.22μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR73A471KW01L	DC1000	X7R (EIA)	470pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A102KW01L	DC1000	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A152KW01L	DC1000	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A222KW01L	DC1000	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A332KW01L	DC1000	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A472KW01L	DC1000	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR73A682KW01L	DC1000	X7R (EIA)	6800pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32QR73A103KW01L	DC1000	X7R (EIA)	10000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR73A153KW01L	DC1000	X7R (EIA)	15000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR73A223KW01L	DC1000	X7R (EIA)	22000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR73A333KW01L	DC1000	X7R (EIA)	33000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR73A473KW01L	DC1000	X7R (EIA)	47000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR73A104KW01L	DC1000	X7R (EIA)	0.10μF ±10%	5.7	5.0	2.0	3.2	0.3 min.

No.	b. Item Specifications		Specifications	Test Method		
1	Operating Temperatu	re Range	-55 to +125℃	-		
2	Appearan	се	No defects or abnormalities	Visual inspection		
3	Dimensio	ns	Within the specified dimensions	Using calipers		
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when 150% of the rated voltage (200% of the rated voltage in case of rated voltage: DC250V, 120% of the rated voltage in case of rated voltage: DC1kV) is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.		
5	Insulation Resistance (I.R.)		C≧0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	The insulation resistance should be measured with DC500±50V (DC250±25V in case of rated voltage: DC250V) and within 60±5 sec. of charging.		
6	Capacitar	nce	Within the specified tolerance			
7	Dissipatio Factor (D.		0.025 max.	 The capacitance/D.F. should be measured at a frequency of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.) 		
8	Capacitan Temperatu Characteri	ure	Cap. Change Within ±15% (Temp. Range: −55 to +125℃)	The capacitance measurement should be made at each step specified in Table. Step Temperature (°C) 1 25 ± 2 2 Min. Operating Temp. ± 3 3 25 ± 2 4 Max. Operating Temp. ± 2 5 25 ± 2 • Pretreatment Perform a heat treatment at $150 \pm 9_{\circ} \circ c$ for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at room condition*.		
9	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N (5N : Size 1.6×0.8mm only), 10±1s Glass Epoxy Board Fig. 1		
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion		
10	Vibration Resistance	n		having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).		

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued from the preceding page.

Z	Continued fr	om the prec	eding page.				
No.	lte	em	Specifications	Test Method			
11	Deflection	n	No cracking or marking defects should occur. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\underbrace{\begin{array}{c} 20 & \text{Pressurizing}\\ \text{Speed} : 1.0\text{mm/s}\\ \text{Fressurize}\\ \text{Gapacitance meter}\\ \text{(in mm)}\\ \text{Fig. 3}\\ \end{array}}$			
12	Solderab Terminati		5.7×5.0 4.5 8.0 5.6 Fig. 2 75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder			
13	Resistance to Soldering	Appearance Capacitance Change D.F. I.R.	No marking defects Within ±10% 0.025 max. C≥0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	 235±5°C H60A of H63A EUtectic Solder Preheat the capacitor at 120 to 150°C* for 1 min. Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at room condition* for 24±2 hrs., then measure. Immersing speed: 25±2.5mm/s Pretreatment Perform a heat treatment at 150[±]₁8°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*. 			
	Heat	Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.			
		Appearance Capacitance Change D.F.	No marking defects Within ±7.5%	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure.			
		I.R.	C≥0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	StepTemperature (°C)Time (min.)1Min. Operating Temp.±330±32Room Temp.2 to 3			
14	Temperature Cycle	Dielectric Strength	In accordance with item No.4	3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 • Pretreatment Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*. Image: Solider resist Image: Solider resist <			
		Appearance	No marking defects	, , , , , , , , , , , , , , , , , , ,			
		Capacitance Change	Within ±15%	Let the capacitor sit at 40 \pm 2°C and relative humidity of 90 to 95% for 500 $^{+29}_{-20}$ hrs.			
	Humidity	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then			
15	(Steady State)	I.R.	C≥0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	 measure. Pretreatment Perform a heat treatment at 150[±]₁8[°]C for 60±5 min. and then let sit for 24±2 hrs. at room condition*. 			
		Dielectric Strength	In accordance with item No.4				
* "							

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Specifications and Test Methods

Continued from the preceding page.

No.	lte	em	Specifications	Test Method
		Appearance	No marking defects	Apply 120% of the rated voltage (150% of the rated voltage in
		Capacitance Change	Within ±15% (rated voltage: DC250V, DC630V) Within ±20% (rated voltage: DC1kV)	case of rated voltage: DC250V, 110% of the rated voltage in case of rated voltage: DC1kV) for $1,000^{\pm48}$ hrs. at maximum
16	Life	D.F.	0.05 max.	operating temperature $\pm 3^{\circ}$ C. Remove and let sit for 24 ± 2 hrs. at room condition*, then measure.
		I.R.	C≧0.01µF: More than $10M\Omega \bullet \mu F$ C<0.01µF: More than 1,000MΩ	The charge/discharge current is less than 50mA. •Pretreatment
		Dielectric Strength	In accordance with item No.4	Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at room condition*.
		Appearance	No marking defects	
	Humidity Loading	Capacitance Change	Within ±15%	Apply the rated voltage at $40\pm2^{\circ}$ and relative humidity of 90 to 95% for $500\pm^{20}_{-0}$ hrs.
17	(Application:	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then measure.
.,	DC250V, DC630V	250V, 630V I.R. C≧0.01μF: More than 10MΩ • μF C<0.01μF: More than 1.000MΩ		Pretreatment Apply test voltage for 60±5 min. at test temperature.
	item)	Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition*.

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Mote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 • Other Subject Content of the specification of the spe

Chip Monolithic Ceramic Capacitors

Only for LCD Backlight Inverter Circuit

Features

- 1. Low-loss and suitable for high frequency circuits
- 2. Murata's original internal electrode structure realizes high flash-over voltage.
- 3. A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels.
- 4. Sn-plated external electrodes realize good solderability.
- 5. Only for reflow soldering
- The capacitors less than 22pF can be applied maximum 4.0kV peak to peak at 100kHz or less only for the ballast or the resonance usage in the LCD backlight inverter circuit.

Applications

Ideal for use as the ballast in LCD backlight inverter.

e I↔	<u>و</u>		e	
-	L	-	-	W

Part Number	Dimensions (mm)						
Fait Number	L	W	Т	e min.	g min.		
GRM42A	4.5 ±0.3	2.0 ±0.2	1.0 +0, -0.3	0.3	2.9		

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM42A5C3F050DW01L	DC3150	COG (EIA)	5.0 ±0.5pF	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F100JW01L	DC3150	COG (EIA)	10 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F120JW01L	DC3150	COG (EIA)	12 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F150JW01L	DC3150	COG (EIA)	15 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F180JW01L	DC3150	COG (EIA)	18 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F220JW01L	DC3150	COG (EIA)	22 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F270JW01L	DC3150	COG (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F330JW01L	DC3150	COG (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F390JW01L	DC3150	COG (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F470JW01L	DC3150	COG (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.

Visual inspectionUsing calipersNo failure should be observed when DC4095V is applied between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA.The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.The capacitance/Q should be measured at a frequency of 1±0.2MHz and a voltage of AC0.5 to 5V(r.m.s.)The capacitance measurement should be made at each step specified in Table.		
Using calipersNo failure should be observed when DC4095V is applied between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA.The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.The capacitance/Q should be measured at a frequency of 1±0.2MHz and a voltage of AC0.5 to 5V(r.m.s.)The capacitance measurement should be made at each step specified in Table.		
No failure should be observed when DC4095V is applied between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA.The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.The capacitance/Q should be measured at a frequency of 1±0.2MHz and a voltage of AC0.5 to 5V(r.m.s.)The capacitance measurement should be made at each step specified in Table.StepTemperature (°C)125±22Min. Operating Temp.±3325±24Max. Operating Temp.±2525±2Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1.Then apply 10N force in the direction of the arrow.		
between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA. The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging. The capacitance/Q should be measured at a frequency of 1±0.2MHz and a voltage of AC0.5 to 5V(r.m.s.) The capacitance measurement should be made at each step specified in Table. $\boxed{\frac{$ Step $ Temperature (°C)$}{1$ $ 25±2$ $ 2$ $ Min. Operating Temp.±3$ $ 3$ $ 25±2$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $		
and within 60±5 sec. of charging. The capacitance/Q should be measured at a frequency of 1±0.2MHz and a voltage of AC0.5 to 5V(r.m.s.) The capacitance measurement should be made at each step specified in Table. $\begin{array}{r c c c c c c c c c c c c c c c c c c c$		
1±0.2MHz and a voltage of AC0.5 to 5V(r.m.s.)The capacitance measurement should be made at each step specified in Table.Step Temperature (°C)125±22Min. Operating Temp.±3325±24Max. Operating Temp.±2525±2Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1.Then apply 10N force in the direction of the arrow.		
The capacitance measurement should be made at each stepspecified in Table. $\boxed{ 1 25\pm 2 }$ 2 Min. Operating Temp. $\pm 3 $ 3 25\pm 2 4 Max. Operating Temp. $\pm 2 $ 5 25\pm 2 Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1.Then apply 10N force in the direction of the arrow.		
specified in Table. $\begin{array}{c c c c c c c c c c c c c c c c c c c $		
in Fig. 1. Then apply 10N force in the direction of the arrow.		
in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Implies the soldering is uniform and free of defects such as heat shock. Glass Epoxy Board		
Fig. 1 Solder the capacitor to the test jig (glass epoxy board).		
The capacitor should be subjected to a simple harmonic motion		
having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).		
Solder the capacitor to the testing jig (glass epoxy board) shown		
in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\begin{array}{c} 20 & 50 \\ \text{Pressurizing} \\ \text{Speed : 1.0mm/s} \\ \text{Flexure=1} \\ \text{(in mm)} \end{array}$		
Fig. 3		
F I I I I I I I I I I I I I I I I I I I		

lo.	lt∈	em	Specifications	Test Method				
12	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder				
		Appearance	No marking defects	Preheat the capacitor as table.				
		Capacitance Change	Within ±2.5%	Immerse the capacitor in solder solution at 260±5°C for 10±1 se Let sit at room condition* for 24±2 hrs., then measure. Immersing speed: 25±2.5mm/s				
13	Resistance to Soldering	Q	1,000 min.					
15	Heat	I.R.	More than 10,000M Ω	*Preheating				
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.				
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) show				
		Capacitance Change	Within ±2.5%	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table.				
		Q	1,000 min.	Let sit for 24 ± 2 hrs. at room condition [*] , then measure.				
14	Temperature Cycle	I.R.	More than 10,000M Ω	Step Temperature (°C) Time (min.)				
		Dielectric Strength	In accordance with item No.4	1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 4 Room Temp. 2 to 3 2 Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist Image: Solider resist <t< td=""></t<>				
		Appearance	No marking defects					
	Humidity	Capacitance Change	Within ±5.0%	Let the capacitor sit at $40\pm2^{\circ}$ C and relative humidity of 90 to 95%				
15	(Steady	Q	350 min.	for $500 \pm 20^{\circ}$ hrs. Remove and let sit for 24±2 hrs. at room condition*, then				
	State)	I.R.	More than 1,000M Ω	measure.				
		Dielectric Strength	In accordance with item No.4					
		Appearance	No marking defects					
		Capacitance Change	Within ±3.0%	Apply 120% of the rated voltage for $1,000 \stackrel{+}{=} \stackrel{a}{=} \stackrel{a}{=} hrs.$ at maximum operating temperature ± 3 °C.				
16	Life	Q	350 min.	Remove and let sit for 24 ± 2 hrs. at room condition*, then				
		I.R.	More than 1,000M Ω	measure. The charge/discharge current is less than 50mA.				
		Dielectric Strength	In accordance with item No.4					

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Chip Monolithic Ceramic Capacitors

muRata

Only for Information Devices/Tip & Ring

Features

- These items are designed specifically for telecommunications devices (IEEE802.3) in Ethernet LAN and primary-secondary coupling for DC-DC converter.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering
- 5. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- 1. Ideal for use on telecommunications devices in Ethernet LAN
- Ideal for use as primary-secondary coupling for DC-DC converter

0.3 min. ►I I◄	g 0.	.3 min.	⊷	
-	L		W	-

	Dimens	sions (mm)	
L	W	Т	g min.
4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3	
4 5 +0 4	22402	2.0 +0, -0.3	2.5
4.5 ±0.4	3.2 <u>±</u> 0.3	1.5 +0, -0.3	
5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3	3.2
	4.5 ±0.4	L W 4.5 ±0.3 2.0 ±0.2 4.5 ±0.4 3.2 ±0.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR442QR73D101KW01L	DC2000	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D121KW01L	DC2000	X7R (EIA)	120 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D151KW01L	DC2000	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D181KW01L	DC2000	X7R (EIA)	180 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D221KW01L	DC2000	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D271KW01L	DC2000	X7R (EIA)	270 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D331KW01L	DC2000	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D391KW01L	DC2000	X7R (EIA)	390 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D471KW01L	DC2000	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D561KW01L	DC2000	X7R (EIA)	560 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D681KW01L	DC2000	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D821KW01L	DC2000	X7R (EIA)	820 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D102KW01L	DC2000	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D122KW01L	DC2000	X7R (EIA)	1200 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D152KW01L	DC2000	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR443QR73D182KW01L	DC2000	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D222KW01L	DC2000	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D272KW01L	DC2000	X7R (EIA)	2700 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D332KW01L	DC2000	X7R (EIA)	3300 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D392KW01L	DC2000	X7R (EIA)	3900 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443DR73D472KW01L	DC2000	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.
GR455DR73D103KW01L	DC2000	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	3.2	0.3 min.

No.	lte	em	Specifications	Test Method	
1	Operating Temperatu		-55 to +125℃	-	
2	Appearar	nce	No defects or abnormalities	Visual inspection	
3	Dimensio	ns	Within the specified dimensions	Using calipers	
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is ap between the terminations, provided the charge/discharge is less than 50mA. Rated Voltage Test Voltage Time 120% of the rated voltage 60±1	
				DC2kV AC1500V(r.m.s.) 60±1	
5	Pulse Vol	tage	No self healing breakdowns or flash-overs have taken place in the capacitor.	10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage: 2.5kV zero to peak	
6	Insulation F (I.R.)	Resistance	More than $6,000M\Omega$	The insulation resistance should be measured with DC500 and within 60 ± 5 sec. of charging.	0±50V
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at a frequency	of
8	Dissipatio Factor (D		0.025 max.	1 ± 0.2 kHz and a voltage of AC1 ± 0.2 V(r.m.s.)	OI
				The capacitance measurement should be made at each s specified in Table.	step
				Step Temperature (°C) 1 25±2	
	Capacitar	ice	Cap. Change	2 Min. Operating Temp.±3	
9	Temperat		within ±15%	3 25±2	
	Character	ristics	(Temp. Range: −55 to +125°C)	4 Max. Operating Temp.±2 5 25+2	
				5 25 ± 2 •PretreatmentPerform a heat treatment at $150 \pm 20^{\circ}$ for 60 ± 5 min. an let sit for 24 ± 2 hrs. at room condition*.	d then
10	Adhesive of Termin		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method an should be conducted with care so that the soldering is uni and free of defects such as heat shock.	d
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).	
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic n	
11	11 Vibration Resistance	D.F.	0.025 max.	having a total amplitude of 1.5mm, the frequency being va uniformly between the approximate limits of 10 and 55Hz. frequency range, from 10 to 55Hz and return to 10Hz, sho traversed in approximately 1 min. This motion should be a for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).	The ould be
				Izza Izza Izza Izza Izza Izza Izza Izza Izza Solder resist Izza Izza Izza Izza Izza Izza Izza Cu Glass Epoxy Board Cu Izza Izza <td< td=""><td></td></td<>	

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

lo.	lt∈	em	Specifications	Test Method		
2	2 Deflection		No cracking or marking defects should occur. $\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	Solder the capacitor to the testing jig (glass epoxy board) sho in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniforr and free of defects such as heat shock. $\underbrace{20^{50}_{\text{Pressurizing}}_{\text{Pressurize}}_{\text{Flexure=1}}_{\text{Flexure=1}}_{\text{(in mm)}}_{\text{Fig. 3}}$		
13	Solderab Terminati	•	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder		
	Appear Capacit Change		No marking defects Within ±10%	Preheat the capacitor as table. Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at room condition* for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s		
	Devlatores	D.F.	0.025 max.	•Pretreatment		
4	Resistance to Soldering	I.R.	More than 1,000MΩ	Perform a heat treatment at $150 \pm_{10}^{\circ}$ °C for 60±5 min. and ther let sit for 24±2 hrs. at room condition*.		
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120℃ 1 min. 2 170 to 200℃ 1 min.		
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4.		
		Capacitance Change	Within ±15%	Perform the 5 cycles according to the 4 heat treatments listed in the following table.		
		D.F.	0.05 max.	Let sit for 24±2 hrs. at room condition*, then measure.		
		I.R.	More than 3,000MΩ	Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3		
				2 Room Temp. 2 to 3		
				3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3		
15	Temperature Cycle	Dielectric Strength	In accordance with item No.4	•Pretreatment Perform a heat treatment at 150 [±] ₁ 8°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*.		
		Appearance	No marking defects			
				Let the capacitor sit at 40±2°C and relative humidity of 90 to 95%		
	11	Capacitance Change	Within ±15%	for 500 ± 20 hrs.		
	Humidity (Steady	Change		for 500 ^{±2} ₀ hrs. Remove and let sit for 24±2 hrs. at room condition*, then measure.		
16	Humidity (Steady State)		Within ±15% 0.05 max. More than 1,000ΜΩ	Remove and let sit for 24 ± 2 hrs. at room condition*, then		

Continued on the following page. \square

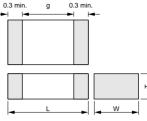
Specifications and Test Methods

	Continued fr	ontinued from the preceding page.						
No.	lte	Item Specifications		Test Method				
		Appearance	No marking defects					
		Capacitance Change	Within ±20%	Apply 110% of the rated voltage for $1,000 \pm 48$ hrs. at maximum operating temperature $\pm 3^{\circ}$ C. Remove and let sit for 24 ± 2 hrs. at room condition*, then measure.				
17	Life	D.F.	0.05 max.	The charge/discharge current is less than 50mA.				
		I.R.	More than 2,000M Ω	Pretreatment Apply test voltage for 60±5 min. at test temperature.				
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24 ± 2 hrs. at room condition*.				

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Chip Monolithic Ceramic Capacitors

Only for Camera Flash Circuit


Features

- 1. Suitable for the trigger of the flash circuit, because real capacitance is stable during operating voltage.
- 2. The thin type fit for thinner camera.
- 3. Sn-plated external electrodes realizes good solderability.
- 4. For flow and reflow soldering

Applications

For strobe circuit

Dont Numebox		Dimens	sions (mm)		
Part Number	L	W	Т	g min.	
GR731A			1.0 +0, -0.3		
GR731B	3.2 ±0.2	1.6 ±0.2	1.25 +0, -0.3	1.2	
GR731C			1.6 ±0.2		

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR731AW0BB103KW01D	DC350	-	10000 ±10%	3.2	1.6	1.0	1.2	0.3 min.
GR731AW0BB153KW01D	DC350	-	15000 ±10%	3.2	1.6	1.0	1.2	0.3 min.
GR731BW0BB223KW01L	DC350	-	22000 ±10%	3.2	1.6	1.25	1.2	0.3 min.
GR731BW0BB333KW01L	DC350	-	33000 ±10%	3.2	1.6	1.25	1.2	0.3 min.
GR731CW0BB473KW03L	DC350	-	47000 ±10%	3.2	1.6	1.6	1.2	0.3 min.

No.	Ite	em	Specifications	Test Method		
1	Operating Temperatu	ire Range	-55 to +125℃	_		
2	Appearan	nce	No defects or abnormalities	Visual inspection		
3	Dimensio	ns	Within the specified dimensions	Using calipers		
4	Dielectric	Strength	No defects or abnormalities	No failure should be observed when DC500V is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.		
5	Insulation F (I.R.)	Resistance	C≧0.01µF: More than 100MΩ • µF C<0.01µF: More than 10,000MΩ	The insulation resistance should be measured with DC250 \pm 50V and within 60 \pm 5 sec. of charging.		
6	Capacitar	nce	Within the specified tolerance	The conseitance/D.E. should be measured at a frequency of		
7	Dissipatio Factor (D		0.025 max.	 The capacitance/D.F. should be measured at a frequency of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.) 		
9	Capacitance Temperature Characteristics		Cap. Change Within ±10% (Apply DC350V bias) Within ±33% (No DC bias) (Temp. Range : -55 to +125°C)			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied		
10	Vibration Resistance	tion		uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).		

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Specifications and Test Methods

lo.	lte	em	Specifications	Test Method			
11	1 Deflection		No cracking or marking defects should occur. $\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\begin{array}{c} & & \\ & & $			
12	2 Solderability of Termination 75% of the terminations are to be soldered ev		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder			
		Appearance	No marking defects				
	Desistance	Capacitance Change	Within ±10%	Preheat the capacitor at 120 to $150^{\circ}C^{\circ}$ for 1 min. Immerse the capacitor in solder solution at $260\pm5^{\circ}C$ for 10 ± 1			
13	Resistance to Soldering - Heat	D.F.	0.025 max.	sec. Let sit at room condition* for 24±2 hrs., then measure. Immersing speed: 25±2.5mm/s			
-		I.R.	C≥0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	Pretreatment Perform a heat treatment at 150±₁8°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*.			
		Dielectric Strength	In accordance with item No.4				
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4.			
		Capacitance Change Within ±7.5%		Perform the 5 cycles according to the 4 heat treatments listed in the following table.			
		D.F.	0.025 max.	Let sit for 24±2 hrs. at room condition*, then measure.			
		I.R.	C≧0.01μF: More than 100MΩ • μF C<0.01μF: More than 10.000MΩ	Step Temperature (°c) Time (min.) 1 Min. Operating Temp.±3 30±3			
				2 Room Temp. 2 to 3			
				3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3			
14	Temperature Cycle	Dielectric Strength	In accordance with item No.4	4 Room Temp. 2 to 3 •Pretreatment Perform a heat treatment at 150±₁% ℃ for 60±5 min. and then let sit for 24±2 hrs. at room condition*. Image: Constraint of the second seco			
		Appearance	No marking defects				
		Capacitance Change	Within ±15%	Let the capacitor sit at $40\pm2^{\circ}$ and relative humidity of 90 to 95% for $500\pm^{23}$ hrs.			
15	Humidity (Steedy)	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then			
15	(Steady State)	I.R.	C≧0.01μF: More than 10MΩ ∙ μF C<0.01μF: More than 1,000MΩ	 measure. •Pretreatment Perform a heat treatment at 150[±]₁%^o℃ for 60±5 min. and then 			
		Dielectric Strength In accordance with item No.4		let sit for 24±2 hrs. at room condition*.			

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Specifications and Test Methods

Continued from the preceding page.

No.	Ite	m	Specifications	Test Method		
		Appearance No marking defects				
		Capacitance Change	Within ±15%	Apply DC350V for 1,000 \pm^{48} hrs. at maximum operating temperature \pm 3°C. Remove and let sit for 24 \pm 2 hrs. at room		
16	Life	D.F.	0.05 max.	condition*, then measure. The charge/discharge current is less than 50mA.		
10	Life	I.R.	C≧0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	•Pretreatment Apply test voltage for 60±5 min. at test temperature.		
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition*.		
		Appearance	No marking defects			
		Capacitance Change Within ±15%		Apply the rated voltage at $40\pm2^{\circ}$ and relative humidity of 90 to 95% for $500\pm^{29}$ hrs.		
17	Humidity	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then measure.		
.,	Loading	I.R.	C≥0.01µF: More than 10MΩ • µF C<0.01µF: More than 1,000MΩ	Pretreatment Apply test voltage for 60±5 min. at test temperature.		
	-	Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition*.		

* "Room condition" Temperature: 15 to 35°c, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Mote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 • Other Subject Content of the specification of the spe

Chip Monolithic Ceramic Capacitors

AC250V (r.m.s.) Type (Which Meet Japanese Law)

Features

- 1. Chip monolithic ceramic capacitor for AC lines.
- A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering
- 5. Capacitance 0.01 to 0.1uF for connecting lines and 470 to 4700pF for connecting lines to earth.

Applications

Noise suppression filters for switching power supplies, telephones, facsimiles, modems.

Reference standard

GA2 series obtains no safety approval. This series is based on the standards of the electrical appliance and material safety law of Japan (separated table 4).

		•	L	W	
Part Number		Dim	ensions (mm)		
Fait Number	L	W	Т	e min.	g min.
GA242Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3		
GA243D	45104	3.2 ±0.3	2.0 +0, -0.3	0.3	2.5
GA243Q	4.5 ±0.4	3.2 <u>±</u> 0.3	1.5 +0, -0.3	0.3	
GA255D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3		3.2

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA242QR7E2471MW01L	AC250 (r.m.s.)	X7R (EIA)	470pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA242QR7E2102MW01L	AC250 (r.m.s.)	X7R (EIA)	1000pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA243QR7E2222MW01L	AC250 (r.m.s.)	X7R (EIA)	2200pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2332MW01L	AC250 (r.m.s.)	X7R (EIA)	3300pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2472MW01L	AC250 (r.m.s.)	X7R (EIA)	4700pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA243QR7E2103MW01L	AC250 (r.m.s.)	X7R (EIA)	10000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2223MW01L	AC250 (r.m.s.)	X7R (EIA)	22000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2473MW01L	AC250 (r.m.s.)	X7R (EIA)	47000pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA255DR7E2104MW01L	AC250 (r.m.s.)	X7R (EIA)	0.10μF ±20%	5.7	5.0	2.0	3.2	0.3 min.

No.	lte	em	Specifications	Test Method			
1	Operating Temperatu	ire Range	−55 to +125℃	_			
2	Appearar	nce	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimensions	Using calipers			
4	Dielectric	Strength	No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Nominal Capacitance Test Voltage C≥10,000pF AC575V (r.m.s.) C<10,000pF			
5	Insulation F (I.R.)	Resistance	More than 2,000MΩ	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.			
6	Capacita	nce	Within the specified tolerance				
7	Dissipatio Factor (D	on	0.025 max.	The capacitance/D.F. should be measured at a frequency of 1 ± 0.2 kHz and a voltage of AC1 ±0.2 V (r.m.s.)			
	Capacitar	nce	Cap. Change	The capacitance measurement should be made at each step specified in Table. Step Temperature (°C) 1 25±2 2 Min. Operating Temp.±3			
8	Temperat Character		Within ±15% (Temp. Range: −55 to +125℃)	3 25±2 4 Max. Operating Temp.±2			
	Character	151105		5 25±2			
				•Pretreatment Perform a heat treatment at $150 \pm_{18}^{\circ}$ °c for 60 ± 5 min. and then let sit for 24±2 hrs. at room condition*.			
9	Discharge Test (Application: Nominal Capacitance C<10,000pF)	Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from the capacitor (Cd) charged at DC voltage of specified. $\begin{array}{c} R3 \\ \hline \\ $			
10	Adhesive of Termin		No removal of the terminations or other defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).			
	Vibration	Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular			
11	Resistance	D.F.	0.025 max.	directions (total of 6 hrs.).			

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Specifications and Test Methods

۷o.	Ite	em	Specifications	Test Method		
			No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering		
12	2 Deflection		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\underbrace{20 \ 50 \ Pressurizing speed: 1.0mm/s}_{Pressurize}$		
13	Solderability of Termination 75% of the terminations are to be soldered evenly and continuously.		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder		
		Appearance	No marking defects	-		
	Humidity	Capacitance Change	Within ±15%	The capacitor should be subjected to 40±2°C, relative humidit		
14	Insulation	D.F.	0.05 max.	90 to 98% for 8 hrs., and then removed in room condition* for 16 hrs. until 5 cycles.		
		I.R. Dielectric Strength	More than 1,000MΩ In accordance with item No.4			
		Appearance	No marking defects	Preheat the capacitor as table. Immerse the capacitor in solder solution at 260±5℃ for 10±1 sec. Let sit at room condition* for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s •Pretreatment		
		Capacitance Change	Within ±10%			
	Resistance	D.F.	0.025 max.			
15	to Soldering Heat	I.R.	More than 2,000MΩ	Perform a heat treatment at 150 [±] ₁ ° [°] C for 60±5 min. and then let sit for 24±2 hrs. at room condition*. *Preheating		
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.		
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown		
		Capacitance Change	Within ±15%	Perform the 5 cycles according to the 4 heat treatments listed in the following table.		
		D.F.	0.05 max.	Let sit for 24 ± 2 hrs. at room condition*, then measure.		
		I.R.	More than 2,000MΩ	Step Temperature (℃) Time (min.) 1 Min. Operating Temp.±3 30±3		
	T			2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3		
16	Temperature Cycle			•Pretreatment Perform a heat treatment at 150 ⁺ ₁₀ °C for 60±5 min. and then let sit for 24±2 hrs. at room condition*.		

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Specifications and Test Methods

Continued from the preceding page.

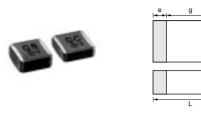
No.	Ite	em	Specifications	Test Method
		Appearance	No marking defects	
17	Humidity	Capacitance Change	Within ±15%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500 ^{±2} ⁴ hrs. Remove and let sit for 24±2 hrs. at room condition*, then
	(Steady	D.F.	0.05 max.	measure.
	State)	I.R.	More than 1,000MΩ	•Pretreatment Perform a heat treatment at $150 \pm 10^{\circ}$ c for 60 ± 5 min. and then
		Dielectric Strength	In accordance with item No.4	let sit for 24 ± 2 hrs. at room condition*.
		Appearance	No marking defects	Apply voltage and time as Table at maximum operating temperatur
		Capacitance Change	Within ±20%	±3°C. Remove and let sit for 24±2 hrs. at room condition*, then measure. The charge / discharge current is less than 50mA.
		D.F.	0.05 max.	Nominal Capacitance Test Time Test Voltage C≧10,000pF 1,000 ^{±4} 8 hrs. AC300V (r.m.s.)
18	Life	I.R.	More than 1,000M Ω	C<10,000pF 1,500 ⁺⁴ o hrs. AC500V (r.m.s.)*
	Life	Dielectric Strength	In accordance with item No.4	 * Except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. • Pretreatment Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at room condition*.
		Appearance	No marking defects	
		Capacitance Change	Within ±15%	Apply the rated voltage at 40 ± 2 °C and relative humidity of 90 to 95% for $500\pm^{22}$ ° hrs. Remove and let sit for 24±2 hrs. at room condition*, then
9	Humidity Loading	D.F.	0.05 max.	measure.
	Loading	I.R.	More than 1,000MΩ	•Pretreatment Apply test voltage for 60±5 min. at test temperature.
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24 ± 2 hrs. at room condition*.

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

16

Mote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 • Other Subject Content of the specification of the spe

Chip Monolithic Ceramic Capacitors


Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)

Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GC can be used as an X1-class and Y2-class capacitor, line-by-pass capacitor of UL1414.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

Applications

- 1. Ideal for use as Y capacitor or X capacitor for various switching power supplies
- 2. Ideal for modem applications

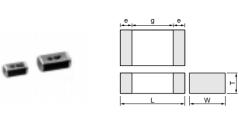
Part Number	Dimensions (mm)					
Part Number	L	W	Т	e min.	g min.	
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0	

Standard Recognition

	Standard No.	Class	Rated Voltage	
UL	UL1414	Line By-pass		
VDE	IEC 60384-14 EN 60384-14			
BSI	EN 60065 (14.2) IEC 60384-14 EN 60384-14	X1, Y2	AC250V (r.m.s.)	
SEMKO	IEC 60384-14 EN 60384-14			
ESTI	EN 60065 IEC 60384-14			

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GC101KY02L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC151KY02L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC221KY02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC331KY02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	5.7	5.0	2.0	4.0	0.3 min.

Chip Monolithic Ceramic Capacitors


Safety Standard Recognized Type GD (IEC60384-14 Class Y3)

Features

- 1. Available for equipment based on IEC/EN60950 and UL1950
- 2. The type GD can be used as a Y3-class capacitor.
- 3. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 4. +125 degree C guaranteed
- 5. Only for reflow soldering
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers
- 2. Ideal for use on line filters for information equipment

Part Number	Dimensions (mm)						
Part Number	L	W	Т	e min.	g min.		
GA342A			1.0 +0, -0.3				
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.3				
GA342Q			1.5 +0, -0.3	0.3	2.5		
GA343D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3				
GA343Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3				

Standard Recognition

	Standard No.	Class	Rated Voltage
UL	UL 60950-1		
SEMKO	IEC 60384-14 EN 60384-14	Y3	AC250V(r.m.s.)

Applications

Size	Switching power supplies	Communication network devices such as a modem
4.5×3.2mm and under	_	O

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGD100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342A1XGD270JW31L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD330JW31L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD390JW31L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD470JW31L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD560JW31L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD680JW31L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD820JW31L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342QR7GD101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD221KW01L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD331KW01L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA343QR7GD182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343QR7GD222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343DR7GD472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.

128

Mote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 • Other Subject Content of the specification of the spe

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)

Features

- 1. Available for equipment based on IEC/EN60950 and UL1950. Besides, the GA352/355 types are available for equipment based on IEC/EN60065, UL1492, and UL6500
- 2. The type GF can be used as a Y2-class capacitor.
- A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 4. +125 degree C guaranteed
- 5. Only for reflow soldering
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers
- 2. Ideal for use on line filters for information equipment
- Ideal for use as Y capacitor or X capacitor for various switching power supplies (GA352/355 types only)

Part Number	Dimensions (mm)				
Part Number	L	W	Т	e min.	g min.
GA342A			1.0 +0, -0.3		
GA342A GA342D	4.5 ±0.3	2.0 ±0.2	1.0 +0, -0.3 2.0 ±0.2*		2.5
	4.5 ±0.3	2.0 ±0.2	, , , , , , , , , , , , , , , , , , , ,	0.2	2.5
GA342D	4.5 ±0.3	2.0 ±0.2 2.8 ±0.3	2.0 ±0.2*	0.3	2.5
GA342D GA342Q	4.5 ±0.3 5.7 ±0.4	2.8 ±0.3	2.0 ±0.2* 1.5 +0, -0.3	0.3	2.5
GA342D GA342Q GA352Q			2.0 ±0.2* 1.5 +0, -0.3 1.5 +0, -0.3	0.3	

Standard Recognition

	Standard		Status of R	Rated	
	No.	Class	Size : 4.5×2.0mm	Size : 5.7×2.8mm and over	Voltage
UL	UL1414	X1, Y2	-	0	
UL	UL 60950-1	—	0	_	AC250V
SEMKO	IEC 60384-14 EN 60384-14	Y2	O	O	(r.m.s.)

Applications

Size	Switching power supplies	Communication network devices such as a modem	
4.5×2.0mm	_	0	
5.7×2.8mm and over	O	0	

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGF100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342A1XGF270JW31L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF330JW31L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF390JW31L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF470JW31L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF560JW31L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF680JW31L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF820JW31L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342QR7GF101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GF151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342DR7GF221KW02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA342DR7GF331KW02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GF471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA352QR7GF471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA342QR7GF681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA352QR7GF681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA342DR7GF102KW02L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA352QR7GF102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	5.7	2.8	1.5	4.0	0.3 min.

129

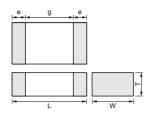
Continued on the following page. \square

08.9.1 Continued from the preceding page

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)	
GA355QR7GF182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	5.7	5.0	1.5	4.0	0.3 min.	
GA355QR7GF222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	5.7	5.0	1.5	4.0	0.3 min.	
GA355QR7GF332KW01L	AC250 (r.m.s.)	X7R (EIA)	3300 ±10%	5.7	5.0	1.5	4.0	0.3 min.	
GA355DR7GF472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	5.7	5.0	2.0	4.0	0.3 min.	

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GB (IEC60384-14 Class X2)


Features

- 1. The type GB can be used as an X2-class capacitor.
- 2. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines
- 3. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 4. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

Applications

Ideal for use as X capacitor for various switching power supplies

Part Number	Dimensions (mm)							
Part Number	L	W	Т	e min.	g min.			
GA355D	5.7 +0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0			
GA355X	5.7 ±0.4		2.7 ±0.3	0.3				

Standard Recognition

	Standard No.	Class	Rated Voltage
VDE			
SEMKO	IEC 60384-14 EN 60384-14	X2	AC250V (r.m.s.)
ESTI			

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GB103KY02L	AC250 (r.m.s.)	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB153KY02L	AC250 (r.m.s.)	X7R (EIA)	15000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB223KY02L	AC250 (r.m.s.)	X7R (EIA)	22000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355XR7GB333KY06L	AC250 (r.m.s.)	X7R (EIA)	33000 ±10%	5.7	5.0	2.7	4.0	0.3 min.

131

20

GA3 Series Specifications and Test Methods

No.	Ite	em	Specifications	Test Method			
1	Operating Temperatu		-55 to +125℃ -				
2	Appearar	nce	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimensions	Using calipers			
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Image: Constraint of the termination of termination of the termination of the termination of terminatin of termination of termination of termination of termination of			
5	Pulse Vol (Applicati GD/GF)		No self healing breakdowns or flash-overs have taken place in the capacitor.	10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage: 2.5kV zero to peak			
6	Insulation F (I.R.)	Resistance	More than 6,000MΩ	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.			
7	Capacita	nce	Within the specified tolerance				
8	Dissipation		$\begin{tabular}{ c c c c c } \hline Char. & Specification \\ \hline X7R & D.F. \le 0.025 \\ \hline SL & Q \ge 400+20C^{*2} \ (C < 30 pF) \\ \hline Q \ge 1000 & (C \ge 30 pF) \\ \hline \end{tabular}$	The capacitance/Q/D.F. should be measured at a frequency of 1 ± 0.2 kHz (SL char.: 1 ± 0.2 MHz) and a voltage of AC1 ±0.2 V (r.m.s.)			
9	Capacitance Temperature Characteristics		Char. Capacitance Change X7R Within ±15% Temperature characteristic guarantee is -55 to +125°C Char. Temperature Coefficient SL +350 to -1000ppm/°C Temperature characteristic guarantee is +20 to +85°C	The capacitance measurement should be made at each step specified in Table. Step Temperature (°C) 1 25 ± 2 (20 ± 2 for SL char.) 2 Min. Operating Temp. ± 3 3 25 ± 2 (20 ± 2 for SL char.) 4 Max. Operating Temp. ± 2 5 25 ± 2 (20 ± 2 for SL char.) SL char. : The capacitance should be measured at even 85° C between step 3 and step 4. •Pretreatment for X7R char. Perform a heat treatment at $150\pm 10^\circ$ C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at room condition*1.			
		Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from			
10	Discharge Test (Application: Type GC)	I.R. Dielectric Strength	More than 1,000MΩ In accordance with item No.4	the capacitor (Cd) charged at DC voltage of specified.			
11	Adhesive Strength of Termination		No removal of the terminations or other defect should occur. Derature: 15 to 35℃, Relative humidity: 45 to 75%, Atmospheric p	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\qquad \qquad $			

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

GA3 Series Specifications and Test Methods

Continued from the preceding page.

۷o.	Ite	em	Specifications	Test Method		
12	Vibration Resistance	Appearance Capacitance D.F. Q	No defects or abnormalitiesWithin the specified toleranceChar.SpecificationX7RD.F. ≤ 0.025 X7RQ \geq 400+20C*2 (C<30pF)	Solder the capacitor to the test jig (glass epoxy board). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).		
13	Deflection	n	No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\underbrace{20_{\text{pressurize}}^{50_{\text{pressurize}}}_{\text{pressurize}}_{\text{flexure=1}}_{\text{flexure=1}}_{\text{flexure=1}}_{\text{(in mm)}}_{\text{Fig. 3}}$		
14	Solderab Terminati		75% of the terminations are to be soldered evenly and continuously	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder		
		Appearance	No marking defects	Preheat the capacitor as table. Immerse the capacitor in solder		
15 1	Resistance to Soldering Heat	Capacitance Change	Char. Capacitance Change X7R Within ±10% SL Within ±2.5% or ±0.25pF (Whichever is larger)	 solution at 260±5°C for 10±1 sec. Let sit at room condition*¹ fo 24±2 hrs., then measure. Immersing speed: 25±2.5mm/s Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*¹. 		
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120°c 1 min. 2 170 to 200°c 1 min.		

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

GA3 Series Specifications and Test Methods

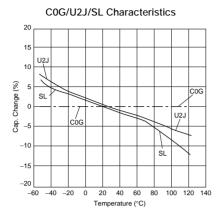
Continued from the preceding page Specifications No Item Test Method Appearance No marking defects Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4. Char Capacitance Change Perform the 5 cycles according to the 4 heat treatments listed in the following table. Capacitance X7R Within ±15% Change Within ±2.5% or ±0.25pF Let sit for 24±2 hrs. at room condition*1, then measure SI (Whichever is larger) Step Temperature (°C) Time (min.) Min. Operating Temp.±3 30±3 1 Char. 2 Room Temp. 2 to 3 Specification 3 Max. Operating Temp.±2 30±3 D.F. X7R D.F.≦0.05 4 Room Temp 2 to 3 Q≥400+20C*2 (C<30pF) Q Temperature SL 16 Q≧1000 (C≥30pF) Cycle Pretreatment for X7R char. Perform a heat treatment at 150⁺_{−10} °C for 60±5 min. and then I.R. More than 3.000MΩ let sit for 24±2 hrs. at room condition*1. <u>1</u>27 Dielectric Strength In accordance with item No.4 Solder resist -Cu Glass Epoxy Board Fig. 4 Appearance No marking defects Char Capacitance Change Before this test, the test shown in the following is performed. Capacitance X7R Within ±15% Item 11 Adhesive Strength of Termination (applied force is 5N) Within ±5.0% or ±0.5pF Change ·Item 13 Deflection SI (Whichever is larger) Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% Humidity (Steady for 500^{+24}_{-20} hrs. Char Specification 17 State) D.F. X7R D.F.≦0.05 Remove and let sit for 24±2 hrs. at room condition*1, then Q≥275+5/2C*2 (C<30pF) 0 measure SL Q≧350 (C≧30pF) Pretreatment for X7R char. Perform a heat treatment at $150 \pm 18^{\circ}$ C for 60 ± 5 min, and then I.R. More than 3,000MΩ let sit for 24±2 hrs. at room condition*1. Dielectric In accordance with item No.4 Strenath Before this test, the test shown in the following is performed. Appearance No marking defects Item 11 Adhesive Strength of Termination (apply force is 5N) Item 13 Deflection Char. **Capacitance Change** Capacitance Within ±20% X7R Front time (T1)=1.2µs=1.67T Impulse Voltage Change Within ±3.0% or ±0.3pF Time to half-value (T2)=50us SI Each individual capacitor should (Whichever is larger) be subjected to a 2.5kV (Type 50 GC/GF: 5kV) Impulse (the Char. Specification 30 voltage value means zero to D.F. D.F.≦0.05 X7R peak) for three times. Then the Q≥275+5/2C*2 (C<30pF) Q T1 capacitors are applied to life test. SL T2 Q≧350 (C≧30pF) Apply voltage as Table for 1,000 hrs. at 125 ±2 ℃, relative Life 18 humidity 50% max. I.R. More than 3,000MΩ Туре Applied Voltage AC312.5V (r.m.s.), except that once each hour the GB voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. GC AC425V (r.m.s.), except that once each hour the GD Dielectric voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. In accordance with item No.4 GF Strength Let sit for 24±2 hrs. at room condition*1, then measure. Pretreatment for X7R char. Perform a heat treatment at 150[±]₁8℃ for 60±5 min. and then let sit for 24±2 hrs. at room condition*1.

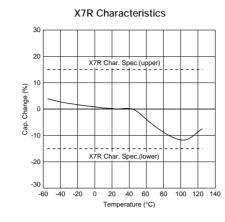
*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

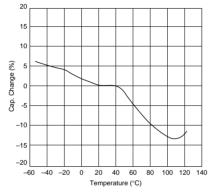
*2 "C" expresses nominal capacitance value (pF).

GA3 Series Specifications and Test Methods

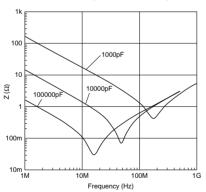
	Continued fr	om the prec	eding page.			
No.	lte	m	Specifications	Test Method		
		Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger)	Before this test, the test shown in the following is performed. -Item 11 Adhesive Strength of Termination (apply force is 5N) -Item 13 Deflection		
19	Humidity Loading	D.F. Q	$\begin{tabular}{ c c c c c } \hline Char. & Specification \\ \hline X7R & D.F. \le 0.05 \\ \hline SL & Q \ge 275 + 5/2C^{*2} (C < 30 pF) \\ \hline Q \ge 350 & (C \ge 30 pF) \\ \hline \end{tabular}$	 Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±2°C hrs. Remove and let sit for 24±2 hrs. at room condition*i, then measure. Pretreatment for X7R char. Perform a heat treatment at 150±1°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*i. 		
		I.R. Dielectric	More than 3,000MΩ In accordance with item No.4			
20	Active		The cheesecloth should not be on fire.	The capacitor should be individually wrapped in at least one but not more than two complete layers of cheesecloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 min. after the last discharge. $\underbrace{I_{1} = \underbrace{I_{1} = \underbrace{I_{2} = \underbrace{I_{2} = \underbrace{I_{3} = \underbrace{I_{4} = \underbrace{I_{5} = \underbrace{I_{4} = \underbrace$		
21	21 Passive Flammability		The burning time should not exceed 30 sec. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec. Length of flame : 12±1mm Gas burner : Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas : Butane gas Purity 95% min.		

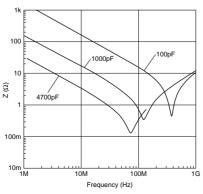

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa


*2 "C" expresses nominal capacitance value (pF).

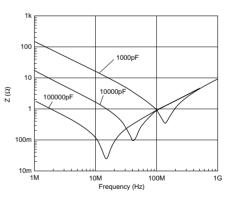

GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

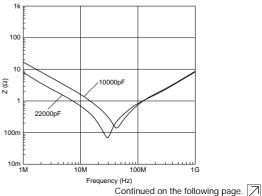
■ Capacitance - Temperature Characteristics



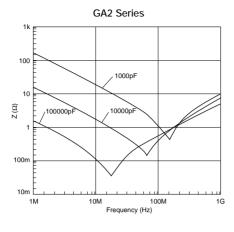


■ Impedance - Frequency Characteristics

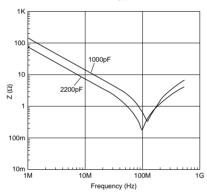

GRM Series (X7R Char. 250V)



GRM Series (X7R Char. 630V)

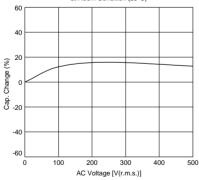

Conti

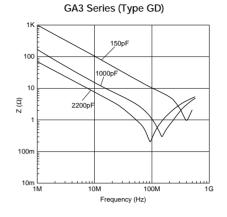
muRata

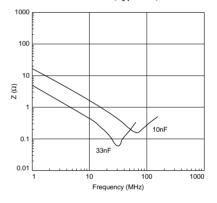

GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

Continued from the preceding page.

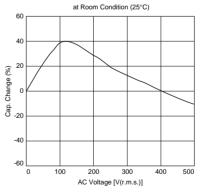
■ Impedance - Frequency Characteristics






■ Capacitance - AC Voltage Characteristics

GA3 Series (Type GD/GF, X7R char.) at Room Condition (25°C)

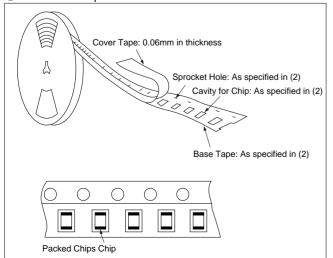


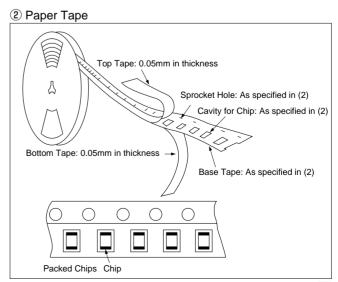
GA3 Series (Type GB)

GA3 Series (Type GB)

Package

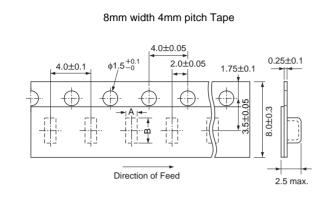
Taping is standard packaging method.


Minimum Quantity Guide


			Dimensions (mm	ı)	Quantity (pcs.)			
Part Nur	mber				ø180mm Reel			
	GRM18		W	Т	Paper Tape	Embossed Tape		
	GRM18	1.6	0.8	0.8	4,000	-		
	GRM21	2.0	1.25	1.0	4,000	-		
	GRIMZT	2.0	1.25	1.25	-	3,000		
				1.0	4,000	-		
	GRM31/GR731	3.2	1.6	1.25	-	3,000		
				1.6	-	2,000		
				1.0	4,000	-		
	GRM32	2.0		1.25	-	3,000		
Medium Voltage	GRIVIJZ	3.2	2.5	1.5	-	2,000		
				2.0	-	1,000		
	GRM42/GR442	4.5	2.0	1.0	-	3,000		
				1.5	-	2,000		
				2.0	-	2,000		
	GRM43/GR443	4.5	3.2	1.5	-	1,000		
				2.0	-	1,000		
				2.5	-	500		
	GRM55/GR455	5.7	5.0	2.0	-	1,000		
	GA242	4.5	2.0	1.5	-	2,000		
102501/	0.1.0.10	4.5	3.2	1.5	-	1,000		
AC250V	GA243	4.5		2.0	-	1,000		
	GA255	5.7	5.0	2.0	-	1,000		
				1.0	-	3,000		
	GA342	4.5	2.0	1.5	-	2,000		
				2.0	-	2,000		
Safety Std.		4.5		1.5	-	1,000		
Recognition	GA343	4.5	3.2	2.0	-	1,000		
	GA352	5.7	2.8	1.5	-	1,000		
				1.5	-	1,000		
	GA355	5.7	5.0	2.0	-	1,000		
				2.7	-	500		

■ Tape Carrier Packaging

(1) Appearance of Taping



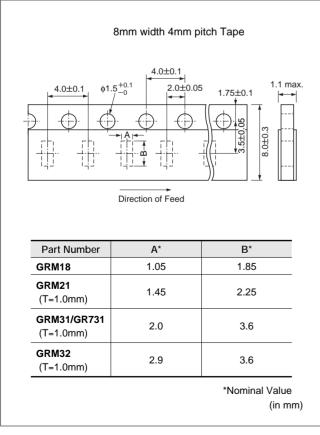
Package

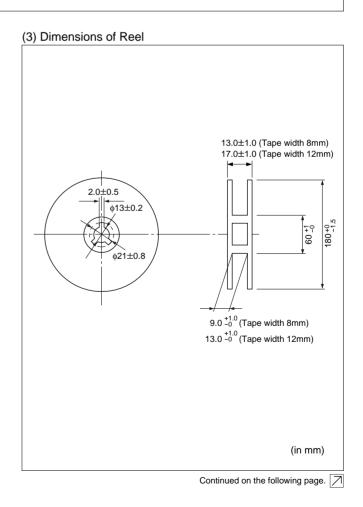
Continued from the preceding page.

(2) Dimensions of Tape

① Embossed Tape

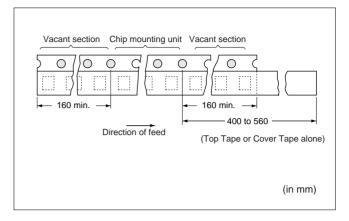
Part Number	A*	B*	
GRM21 (T≧1.25mm)	1.45	2.25	
GRM31/GR731 (T≧1.25mm)	2.0	3.6	
GRM32 (T≧1.25mm)	2.9	3.6	
		*Nominal Value	

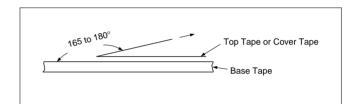

12mm width 8mm/4mm pitch Tape						
01.5 ^{+0.1} 01.5 ^{+0.1} 01.5 ^{+0.1} 1.75±0.1 000 01.5 ^{+0.1} 1.75±0.1 000 01.5 ^{+0.1} 000 01.5 ^{+0.1} 000 01.5 ^{+0.1} 000 01.5 ^{+0.1} 000 01.5 ^{+0.1} 000 000 000 000 000 000 000 0	0.3±0.1					
Direction of Feed	∢⊳ 3.7 max.					


Part Number	A*	B*
GRM42/GR442/GA242/GA342	2.5	5.1
GRM43/GR443/GA243/GA343	3.6	4.9
GA352	3.2	6.1
GRM55/GR455/GA255/GA355	5.4	6.1

*1 4.0±0.1mm in case of GRM42/GR442/GA242/GA342 *Nominal Value

(in mm)





Package

Continued from the preceding page.

- (4) Taping Method
 - Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
 - ② Part of the leader and part of the empty tape should be attached to the end of the tape as shown at right.
 - ③ The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
 - ④ Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
 - (5) The top tape or cover tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
 - ⑥ Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
 - $\ensuremath{\overline{\mathcal{O}}}$ Peeling off force: 0.1 to 0.6N in the direction shown at right.

Storage and Operating Conditions

Operating and storage environment Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%.

Handling

- 1. Vibration and impact
- Do not expose a capacitor to excessive shock or vibration during use.
- 2. Do not directly touch the chip capacitor, especially the ceramic body. Residue from hands/fingers may create a short circuit environment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED. Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

- Operating Temperature, Self-generated Heat, and Load Reduction at High-frequency Voltage Condition Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency voltage, pulse voltage, it may self-generate heat due to dielectric loss.
- (1) In case of X7R char.

Applied voltage should be the load such as selfgenerated heat is within 20°C on the condition of <u>atmosphere temperature 25°C</u>. When measuring, use a thermocouple of small thermal capacity -K of ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

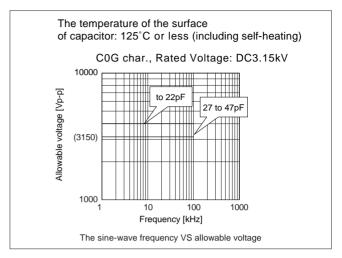
Continued from the preceding page.

(2) In case of C0G, U2J char.

Due to the low self-heating characteristics of lowdissipation capacitors, the allowable electric power of these capacitors is generally much higher than that of X7R characteristic capacitors.

When a high frequency voltage which cause 20°C self heating to the capacitor is applied, it will exceed capacitor's allowable electric power.

<C0G char.>

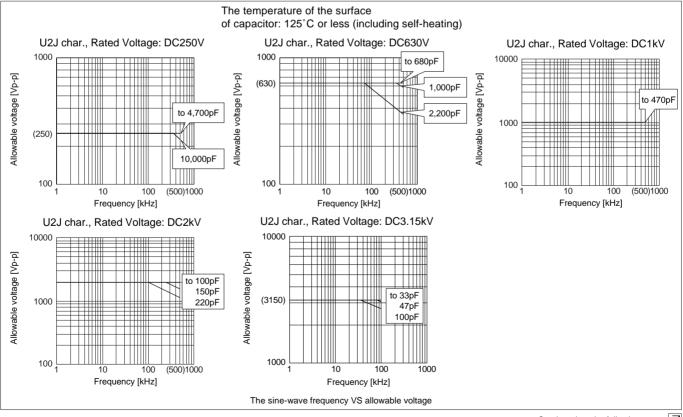

Therefore, in case of COG char., the frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage should be less than the value shown in figure at right. The capacitors less than 22pF can be applied maximum 4.0kV peak to peak at 100kHz or less only for the ballast or the resonance usage in the LCD backlight inverter circuit.

<U2J char.>

In case of U2J char., the frequency of the applied sine wave voltage should be less than 500kHz (less than 100kHz in case of rated voltage: DC3.15kV). The applied voltage should be less than the value shown in figure below.

<Capacitor selection tool>

We are also offering free software the "capacitor selection tool: Murata Medium Voltage Capacitors Selection Tool by Voltage Form (*)" which will assist you in selecting a suitable capacitor.



The software can be downloaded from Murata's Internet Website.

(http://www.murata.com/designlib/mmcsv_e.html). By inputting capacitance values and applied voltage waveform of the specific capacitor series, this software will calculate the capacitor's power consumption and list suitable capacitors (non-sine wave is also available).

* As of Jul. 2006, subject series are below.

· Temperature Characteristics C0G, U2J

Continued on the following page.

Continued from the preceding page.

3. Fail-safe

Failure of a capacitor may result in a short circuit. Be sure to provide an appropriate fail-safe function such as a fuse on your product to help eliminate possible electric shock, fire, or fumes.

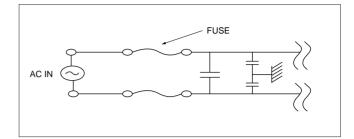
Please consider using fuses on each AC line if the capacitors are used between the AC input lines and earth (line bypass capacitors), to prepare for the worst case, such as a short circuit.

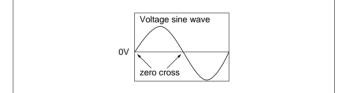
4. Test Condition for AC Withstanding Voltage

(1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.


(2) Voltage Applied Method


The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied directly to the capacitor without raising it from near zero, it should be applied with the zero cross*. At the end of the test time, the test voltage should be reduced to near zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the capacitor without raising it from near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the figure at right -

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Caution

Caution (Soldering and Mounting)

1. Vibration and Impact

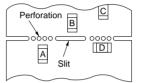
Do not expose a capacitor to excessive shock or vibration during use.

2. Circuit Board Material

In case that ceramic chip capacitor is soldered on the metal board, such as Aluminum board, the stress of heat expansion and contraction might cause the crack of ceramic capacitor, due to the difference of thermal expansion coefficient between metal board and ceramic chip.

3. Land Layout for Cropping PC Board

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.


[Component Direction]

<Example to be avoided> direction in which
stress acts.
<Examples
of improvements>

Locate chip

horizontal to the

[Chip Mounting Close to Board Separation Point]

Chip arrangement Worst A>C>B~D Best

Continued on the following page.

Continued from the preceding page.

- 4. Reflow Soldering
- When sudden heat is given to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 1. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the Table 1.

Table 1

Part Number	Temperature Differential	
G□□18/21/31	∆T≦190℃	
G32/42/43/52/55	∆T≦130℃	

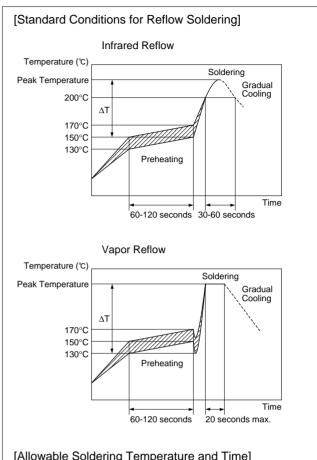
Recommended Conditions

	Pb-Sn S	Lood Free Colder	
	Infrared Reflow	Vapor Reflow	Lead Free Solder
Peak Temperature	230-250°C	230-240°C	240-260°C
Atmosphere	Air	Air	Air or N2

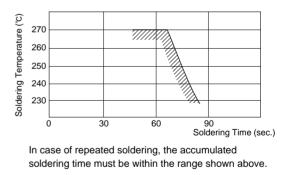
Pb-Sn Solder: Sn-37Pb

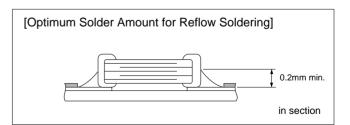
Lead Free Solder: Sn-3.0Ag-0.5Cu

Optimum Solder Amount for Reflow Soldering


• Overly thick application of solder paste results in excessive fillet height solder.

This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.


- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.


Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

[Allowable Soldering Temperature and Time]

Continued from the preceding page.

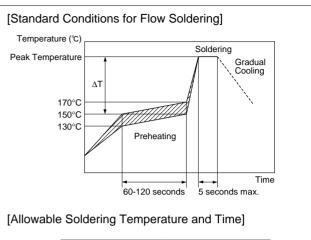
- 5. Flow Soldering
- When sudden heat is given to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. And an excessively long soldering time or high soldering temperature results in leaching by the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 2. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

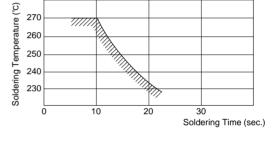
Do not apply flow soldering to chips not listed in Table 2.

Table 2

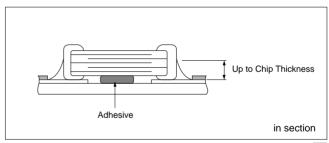
Part Number	Temperature Differential
G□□18/21/31	∆T≦150℃

Recommended Conditions


	Pb-Sn Solder	Lead Free Solder
Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N2


Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu


Optimum Solder Amount for Flow Soldering

The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions.

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

Continued on the following page.

All Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

- 6. Correction with a Soldering Iron
- When sudden heat is applied to the components by soldering iron, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 3. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible. After soldering, it should not be allowed to cool down rapidly.

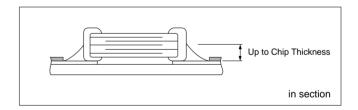
Table 3

Part Number	Temperature Differential	Peak Temperature	Atmosphere
G□□18/21/31	∆T≦190℃	300°C max. 3 sec. max. / termination (both sides total 6 sec. max.)	Air
G⊒32/42/43/ 52/55	∆T≦130℃	270°C max. 3 sec. max. / termination (both sides total 6 sec. max.)	Air

*Applicable for both Pb-Sn and Lead Free Solder

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

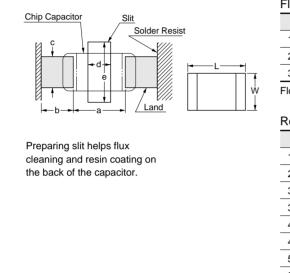

 Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions. Soldering iron ø3mm or smaller should be required. And it is necessary to keep a distance between the soldering iron and the components without direct touch. Thread solder with ø0.5mm or smaller is required for soldering.

7. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

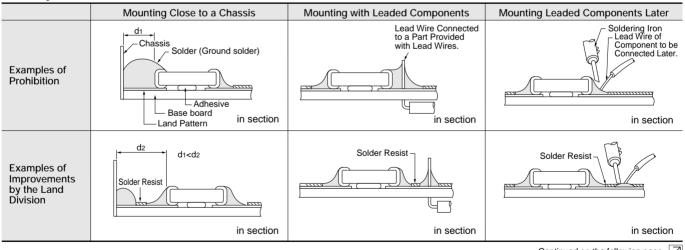


Notice

Notice (Soldering and Mounting)

 Construction of Board Pattern After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

Construction and Dimensions of Pattern (Example)


L×W	а	b	с
1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4

Flow soldering : 3.2×1.6 or less available.

Reflow Soldering

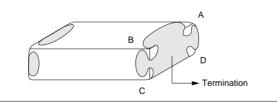
	Johng				
L×W	а	b	С	d	е
1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	-	-
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	-	-
3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	1.0-2.0	3.2-3.7
3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	1.0-2.0	4.1-4.6
4.5×2.0	2.8-3.4	1.2-1.4	1.4-1.8	1.0-2.8	3.6-4.1
4.5×3.2	2.8-3.4	1.2-1.4	2.3-3.0	1.0-2.8	4.8-5.3
5.7×2.8	4.0-4.6	1.4-1.6	2.1-2.6	1.0-4.0	4.4-4.9
5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	1.0-4.0	6.6-7.1
					(in m

Land Layout to Prevent Excessive Solder

Continued on the following page. $\boxed{}$

Notice

Continued from the preceding page.


- 2. Mounting of Chips
- Thickness of adhesives applied Keep thickness of adhesives applied (50-105μm or more) to reinforce the adhesive contact considering the thickness of the termination or capacitor (20-70μm) and the land pattern (30-35μm).
- Mechanical shock of the chip placer
 When the positioning claws and pick-up nozzle are worn, the load is applied to the chip while positioning is concentrated in one position, thus causing cracks, breakage, faulty positioning accuracy, etc.
 Careful checking and maintenance are necessary to prevent unexpected trouble.

An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.

- 3. Soldering
- (1) Limit of losing effective area of the terminations and conditions needed for soldering.

Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain at a maximum of 25% on all edge length A-B-C-D-A of part with A, B, C, D, shown in the Figure below.

- (2) Flux Application
- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering.)
- Flux containing too high percentage of halide may cause corrosion of the outer electrodes unless sufficient cleaning. Use flux with a halide content of 0.2% max.
- Do not use strong acidic flux.
- Do not use water-soluble flux*.
 (*Water-soluble flux can be defined as non resin type flux including wash-type flux and non-wash-type flux.)

Notice

Continued from the preceding page.

4. Cleaning

Please confirm there is no problem in the reliability of the product beforehand when cleaning it with the intended equipment.

The residue after cleaning it might cause the decrease in the surface resistance of the chip and the corrosion of the electrode part, etc. As a result it might cause reliability to deteriorate. Please confirm beforehand that there is no problem with the intended equipment in ultrasonic cleansing.

5. Resin Coating

Please use it after confirming there is no influence on the product with a intended equipment beforehand when the resin coating and molding.

A cracked chip might be caused at the cooling/heating cycle by the amount of resin spreading and/or bias thickness.

The resin for coating and molding must be selected as the stress is small when stiffening and the hygroscopic is low as possible.

Rating

1. Capacitance change of capacitor

- (1) In case of X7R char.
 - Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit.
- Please contact us if you need detailed information. (2) In case of any char. except X7R

Capacitance might change a little depending on the surrounding temperature or an applied voltage. Please contact us if you intend to use this product in a strict time constant circuit. Performance check by equipment Before using a capacitor, check that there is no problem in the equipment's performance and the

specifications. Generally speaking, CLASS 2 (X7R char.) ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in the equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristics. Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 08.9.1

ISO 9001 Certifications

Qualified Standards

The products listed here have been produced by ISO 9001 certified factory.

Plant
Fukui Murata Mfg. Co., Ltd.
Izumo Murata Mfg. Co., Ltd.
Okayama Murata Mfg. Co., Ltd.
Murata Electronics Singapore (Pte.) Ltd.
Murata Amazonia Industria E Comercio Ltda.
Suzhou Murata Electronics Co., Ltd.
Beijing Murata Electronics Co., Ltd.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our C02E.pdf sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. 08.9.1

△Note:

1. Export Control

<For customers outside Japan> No muRata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

<For customers in Japan>

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog. 2 Aerospace equipment
 - (1) Aircraft equipment
 - 3 Undersea equipment (5) Medical equipment

(7) Traffic signal equipment

- $(\underline{\check{4}})$ Power plant equipment
 - (6) Transportation equipment (vehicles, trains, ships, etc.)
 - (8) Disaster prevention / crime prevention equipment
- 9 Data-processing equipment (0) Application of similar complexity and/or reliability requirements to the applications listed above
- 3. Product specifications in this catalog are as of July 2008. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers
- 4. Please read rating and A CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

<u>muRata</u> Murata Manufacturing Co., Ltd.

http://www.murata.com/

Head Office 1-10-1, Higashi Kotari, Nagaokakyo-shi, Kyoto 617-8555, Japan Phone: 81-75-951-9111

International Division 3-29-12, Shibuya, Shibuya-ku, Tokyo 150-0002, Japan Phone: 81-3-5469-6123 Fax: 81-3-5469-6155 E-mail: intl@murata.co.jp

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.