APDS-9309

Data Sheet

Description

The APDS-9309 is a low-voltage Digital Ambient Light Photo Sensor that converts light intensity to digital signal output capable of direct $I^{2} \mathrm{C}$-bus interface. Each device consists of one broadband photodiode (visible plus infrared) and one infrared photodiode. Two integrating ADCs convert the photodiode currents to a digital output that represents the irradiance measured on each channel. This digital output can be input to a microprocessor where illuminance (ambient light level) in lux is derived using an empirical formula to approximate the human-eye response.

Applications

- Detection of ambient light to control display backlighting
o Mobile devices - Cell phones, PDAs, PMP
o Computing devices - Notebooks, Tablet PC, Key board
o Consumer devices - LCD Monitor, Flat-panel TVs, Video Cameras, Digital Still Camera
- Automatic Residential and Commercial Lighting Management
- Automotive instrumentation clusters.
- Electronic Signs and Signals

Features

- Approximate the human-eye response
- Precise Illuminance measurement under diverse lighting conditions
- Programmable Interrupt Function with User-Defined Upper and Lower Threshold Settings
- 16-Bit Digital Output with $I^{2} \mathrm{C}$ Fast-Mode at 400 kHz
- Programmable Analog Gain and Integration Time
- Miniature ChipLED Package
o Height -0.65 mm
o Length -2.00 mm
o Width -2.00 mm
- $50 / 60 \mathrm{~Hz}$ Lighting Ripple Rejection
- Low 2.5 V Input Voltage and 1.8 V Digital Output
- Low Active Power (0.6 mW Typical) with Power Down Mode
- RoHS Compliant

Application Support Information

The Application Engineering Group is available to assist you with the application design associated with APDS-9309 ambient light photo sensor module. You can contact them through your local sales representatives for additional details.

Ordering Information

Part Number	Packaging Type	Package	Quantity
APDS-9309	Tape and Reel	6-pins Chipled package	5000 per reel

Functional Block Diagram

10 Pins Configuration Table

Pin	Symbol	Description
1	SCL	Serial Clock
2	INT	Interrupt
3	SDA	Serial Data
4	VDD	Voltage Supply
5	ADDR SEL	Address Select
6	GND	Ground

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply voltage	V_{DD}	-	3.8	V
Digital output voltage range	V_{O}	-0.5	3.8	V
Digital output current	I_{O}	-1	20	mA
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-40	85	${ }^{\circ} \mathrm{C}$
ESD tolerance	human body model	-	2000	V

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit	Condition
Supply Voltage	V_{DD}	2.4	2.5	3.0	V	
Operating Temperature	Ta	-30	-	85	${ }^{\circ} \mathrm{C}$	
SCL, SDA input low voltage	V_{IL}	-0.5	-	0.58	V	
SCL, SDA input high voltage	V_{IH}	1.13	-	3.6	V	$2.4 \leq \mathrm{V}_{\mathrm{DD}} \leq 2.6$
		1.25	-	3.6	V	$2.4 \leq \mathrm{V}_{\mathrm{DD}} \leq 3.0$

Electrical Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Supply current	IDD	-	0.24	0.6	mA	Active
		-	3.2	15	$\mu \mathrm{~A}$	Power down
INT, SDA output low voltage	V_{OL}	0	-	0.4	V	3 mA sink current
		0	-	0.6	V	6 mA sink current
Leakage current	ILEAK	-5	-	5	$\mu \mathrm{~A}$	

Operating Characteristics, High Gain (16X), $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, (unless otherwise noted) (see Notes $1,2,3,4$)

Parameter	Symbol	Channel	Min	Typ	Max	Unit	Conditions
Oscillator frequency	fosc		690	735	780	kHz	
Dark ADC count value		Ch0	0		4	counts	$\mathrm{Ee}=0, \mathrm{Tint}=402 \mathrm{~ms}$
		Ch1	0		4		
Full scale ADC count value		Ch0			65535	counts	Tint > 178 ms
		Ch1			65535		
		Ch0			37177		Tint $=101 \mathrm{~ms}$
		Ch1			37177		
		Ch0			5047		Tint $=13.7 \mathrm{~ms}$
		Ch1			5047		
ADC count value		Ch0	750	1000	1250	counts	$\lambda \mathrm{p}=640 \mathrm{~nm}$, Tint $=101 \mathrm{~ms}$
		Ch1		200			$\mathrm{Ee}=36.3 \mu \mathrm{~W} / \mathrm{cm}^{2}$
		Ch0	700	1000	1300		$\lambda \mathrm{p}=850 \mathrm{~nm}$, Tint $=101 \mathrm{~ms}$
		Ch1		820			$\mathrm{Ee}=60.2 \mu \mathrm{~W} / \mathrm{cm}^{2}$

Notes

1. Integration time Tint, is dependent on internal oscillator frequency (fosc) and on the integration field value in the timing register as described in the Register Set section. For nominal fosc $=735 \mathrm{kHz}$, nominal Tint $=$ (number of clock cycles)/fosc.

Field value 00: Tint $=(11 \bullet 918) /$ fosc $=13.7 \mathrm{~ms}$
Field value 01:Tint $=(81 \bullet 918) /$ fosc $=101 \mathrm{~ms}$
Field value 10: Tint $=(322 \bullet 918) /$ fosc $=402 \mathrm{~ms}$
Scaling between integration times vary proportionally as follows
$11 / 322=0.034$ (field value 00), $81 / 322=0.252$ (field value 01), and $322 / 322=1$ (field value 10).
2. Full scale ADC count value is limited by the fact that there is a maximum of one count per two oscillator frequency periods and also by a 2 -count offset.

Full scale ADC count value $=(($ number of clock cycles $) / 2-2)$
Field value 00: Full scale ADC count value $=((11 \bullet 918) / 2-2)=5047$
Field value 01: Full scale ADC count value $=((81 \bullet 918) / 2-2)=37177$
Field value 10: Full scale ADC count value $=65535$, which is limited by 16 bit register. This full scale ADC count value is reached for 131074 clock cycles, which occurs for Tint $=178 \mathrm{~ms}$ for nominal fosc $=735 \mathrm{kHz}$.
3. Low gain mode has $16 x$ lower gain than high gain mode: $(1 / 16=0.0625)$.
4. In open air (no window) above the sensor condition, the Lux value can be computed from the CH 0 and Ch 1 ADC values per below: In Incandescent light source:

Computed Lux $=\frac{C H 0}{(G A I N \times I n t e g r a t i o n ~ T i m e)} \times$ Lux_factor_Incan
When $\frac{\mathrm{CH} 1}{\mathrm{CHO}}>$ Lightsource_Ratio
In Non-Incandescent light source:
Computed Lux $=\frac{C H 0}{(\text { GAIN } \times \text { Integration Time })} \times$ Lux_factor_Non_Incan
When $\frac{\mathrm{CH} 1}{\mathrm{CHO}} \leq$ Lightsource_Ratio
where
Lighsource_Ratio=0.55
Lux_factor_Incan=24.01
Lux_factor_Non_Incan=170.18
Integration Time $=13.7 \mathrm{~ms}, 101 \mathrm{~ms}$ or 402 ms
GAIN = 1 or 16

AC Electrical Characteristics ($\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter ${ }^{\dagger}$		Min.	Typ.	Max.	Unit
t(CONV)	Conversion time	12	100	400	ms
$\mathrm{f}_{(\mathrm{SCL})}$	Clock frequency	-	-	400	kHz
$\mathrm{t}_{\text {(BUF) }}$	Bus free time between start and stop condition	1.3	-	-	$\mu \mathrm{s}$
$t_{\text {(HDSTA) }}$	Hold time after (repeated) start condition. After this period, the first clock is generated.	0.6	-	-	$\mu \mathrm{S}$
$\mathrm{t}_{\text {(SUSTA) }}$	Repeated start condition setup time	0.6	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {(SUSTO) }}$	Stop condition setup time	0.6	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {(HDDAT) }}$	Data hold time	0	-	0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\text {(SUDAT) }}$	Data setup time	100	-	-	ns
$\mathrm{t}_{\text {(LOW) }}$	SCL clock low period	1.3	-	-	$\mu \mathrm{s}$
${ }^{\text {t (HIGH) }}$	SCL clock high period	0.6	-	-	$\mu \mathrm{s}$
t_{F}	Clock/data fall time	-	-	300	ns
t_{R}	Clock/data rise time	-	-	300	ns
C_{j}	Input pin capacitance	-	-	10	pF

[^0]
Parameter Measurement Information

Figure 1. Timing Diagrams

Figure 2. Example Timing Diagram for I^{2} C Send Byte Format

Figure 3. Example Timing Diagram for I^{2} C Receive Byte Format

Typical Characteristics

Figure 4. Normalized Responsivity vs. Spectral Responsivity

Figure 6. Sensor LUX vs. Meter LUX in white light

Principles of Operation

Analog-to-Digital Converter

The APDS-9309 contains two integrating analog-to-digital converters (ADC) that integrate the currents from the channel 0 and channel 1 photodiodes. Integration of both channels occurs simultaneously, and upon completion of the conversion cycle the conversion result is transferred to the channel 0 and channel 1 data registers, respectively. The transfers are double buffered to ensure that invalid data is not read during the transfer. After the transfer, the device automatically begins the next integration cycle.

Figure 5. Normalized Responsivity vs. Angular Displacement

Figure 7. Sensor LUX vs. Meter LUX in Incandescent light

Digital Interface

Interface and control of the APDS-9309 is accomplished through a two-wire serial interface to a set of registers that provide access to device control functions and output data. The serial interface is compatible to $I^{2} \mathrm{C}$ bus FastMode. The APDS-9309 offers three slave addresses that are selectable via an external pin (ADDR SEL). The slave address options are shown in Table 1.

Table 1. Slave Address Selection

ADDR SEL Terminal Level	Slave Address
GND	0101001
Float	0111001
VDD $_{\text {DD }}$	1001001
Note: The Slave Addresses are 7 bits and please note the I 2 C protocols. A read/ write bit should be appended to the slave address by the master device to properly communicate with the APDS-9309 device.	

1^{2} C Protocols

Each Send and Write protocol is, essentially, a series of bytes. A byte sent to the APDS-9309 with the most significant bit (MSB) equal to 1 will be interpreted as a COMMAND byte. The lower four bits of the COMMAND byte form the register select address (see Table 2), which is used to select the destination for the subsequent byte(s) received. The APDS-9309 responds to any Receive Byte requests with the contents of the register specified by the stored register select address.

The APDS-9309 implements the following protocols of the Philips Semiconductor ${ }^{2} \mathrm{C}$ specification:

- I^{2} C Write Protocol
- I2C Read Protocol

For a complete description of $I^{2} \mathrm{C}$ protocols, please review the $I^{2} C$ Specification athttp://www.semiconductors. philips.com

1	7	1	1	8	1	
S	Slave Address	Wr	A	Data Byte	A	P
	X				X	
A	Acknowledge (this bit position may be 0 for an ACK or 1 for a NACK)					
P	Stop Condition					
Rd	Read (bit value of 1)					
S	Start Condition					
Sr	Repeated Start Condition					
Wr	Write (bit value of 0)					
X	Shown under a field indicates that that field is required to have a value of X					
..*	Continuation of protocol					
	Master -to-Slave					
	Slave -to-Master					

Figure 8. 1^{2} C Packet Protocol Element Key

1	7	1	1	8	1		8	1
S	Slave Address	Wr	A	Command Code	A	Data Byte	A	P

Figure 9. ${ }^{12}$ C Write Protocols

1	7	11		8	1	1	7	1	1	8	11	
S	Slave Address	Wr	A	Command Code	A	Sr	Slave Address	Rd	A	Data Byte	A	P

1
Figure 10. 1^{2} C Read (Combined Format) Protocols

1	7	1	1	8	1	8	1	8	1	1
S	Slave Address	Wr	A	Command Code	A	Data Byte Low	A	Data Byte High	A	P

Figure 11. 1^{2} C Write Word Protocols

Register Set

The APDS-9309 is controlled and monitored by sixteen registers (three are reserved) and a command register accessed through the serial interface. These registers provide for a variety of control functions and can be read to determine results of the ADC conversions. The register set is summarized in Table 2.
Table 2. Register Address

Address	Register Name	Register Function
-	COMMAND	Specifies register address
Oh	CONTROL	Control of basic functions
1 h	TIMING	Integration time/gain control
2 h	THRESHLOWLOW	Low byte of low interrupt threshold
3 h	THRESHLOWHIGH	High byte of low interrupt threshold
4 h	THRESHHIGHLOW	Low byte of high interrupt threshold
5 h	THRESHHIGHHIGH	High byte of high interrupt threshold
6 h	INTERRUPT	Interrupt control
7 h	-	Reserved
8 h	-	Factory test - not a user register
9 h	ID	Reserved
Ah	DATAOLOW	Part number/ Rev ID
Bh	DATAOHIGH	Reserved
Ch	DATA1LOW	High byte of ADC channel 0 byte of ADC channel 0
Dh	DATA1HIGH	Low byte of ADC channel 1
Eh		High byte of ADC channel 1
Fh		

The mechanics of accessing a specific register depends on the specific $1^{2} C$ protocol used. Refer to the section on $I^{2} C$ protocols. In general, the COMMAND register is written first to specify the specific control/status register for following read/write operations.

Command Register

The command register specifies the address of the target register for subsequent read and write operations. The Send Byte protocol is used to configure the COMMAND register. The command register contains eight bits as described in Table 3. The command register defaults to 00 h at power on.

Table 3. Command Register

	7		6	5	4	3	2	1	0	COMMAND
	CMD		CLEAR	WORD	Reserved	ADDRESS				
Reset Value:	0	0		0	0	0	0	0	0	
Field	BIT		Description							
CMD	7		Select command register. Must write as 1.							
CLEAR	6		Interrupt clear. Clears any pending interrupt. This bit is a write-one-to-clear bit. It is self clearing.							
WORD	5		${ }^{2} \mathrm{C}$ Write/Read Word Protocol.				1 indicates that this $\mathrm{I}^{2} \mathrm{C}$ transaction is using either the $\mathrm{I}^{2} \mathrm{C}$ Write Word or Read Word protocol.			
Reserved	4		Reserved. Write as 0.							
ADDRESS	3:0		This field selects the specific control or status register for following write and read commands according to Table 2.							

Control Register (Oh)

The CONTROL register contains two bits and is primarily used to power the APDS-9309 device up and down as shown in Table 4.

Table 4. Control Register

Field	BIT	Description
Reserved	$7: 2$	Reserved. Write as 0.
POWER	$1: 0$	Power up/power down. By writing a 03h to this register, the device is powered up. By writing a 00h to this register, the device is powered down.

Note: If a value of 03h is written, the value returned during a read cycle will be 03h. This feature can be used to verify that the device is communicating properly.

Timing Register (1 h)

The TIMING register controls both the integration time and the gain of the ADC channels. A common set of control bits is provided that controls both ADC channels. The TIMING register defaults to 02 h at power on.

Table 5. Timing Register

Integration time is dependent on the INTEG FIELD VALUE and the internal clock frequency. Nominal integration times and respective scaling between integration times scale proportionally as shown in Table 6. See Note 5 and Note 6 on page 4 for detailed information regarding how the scale values were obtained.

Table 6. Integration Time

Integ Field Value	Scale	Nominal Integration Time
00	0.034	13.7 ms
01	0.252	101 ms
10	1	402 ms
11	-	N/A

The manual timing control feature is used to manually start and stop the integration time period. If a particular integration time period is required that is not listed in Table 6, then this feature can be used. For example, the manual timing control can be used to synchronize the APDS-9309 device with an external light source (e.g. LED). A start command to begin integration can be initiated by writing a 1 to this bit field. Correspondingly, the integration can be stopped by simply writing a 0 to the same bit field.

Interrupt Threshold Register (2h-5h)

The interrupt threshold registers store the values to be used as the high and low trigger points for the comparison function for interrupt generation. If the value generated by channel 0 crosses below or is equal to the low threshold specified, an interrupt is asserted on the interrupt pin. If the value generated by channel 0 crosses above the high threshold specified, an interrupt is asserted on the interrupt pin. Registers THRESHLOWLOW and THRESHLOWHIGH provide the low byte and high byte, respectively, of the lower interrupt threshold. Registers THRESHHIGHLOW and THRESHHIGHHIGH provide the low and high bytes, respectively, of the upper interrupt threshold. The high and low bytes from each set of registers are combined to form a 16-bit threshold value. The interrupt threshold registers default to 00h on power up.

Table 7. Interrupt Threshold Register

Register	Address	Bits	Description
THRESHLOWLOW	2 h	$7: 0$	ADC channel 0 lower byte of the low threshold
THRESHLOWHIGH	3 h	$7: 0$	ADC channel 0 upper byte of the low threshold
THRESHHIGHLOW	4 h	$7: 0$	ADC channel 0 lower byte of the high threshold
THRESHHIGHHIGH	5 h	$7: 0$	ADC channel 0 upper byte of the high threshold

Note: Since two 8-bit values are combined for a single 16-bit value for each of the high and low interrupt thresholds, the Send Byte protocol should not be used to write to these registers. Any values transferred by the Send Byte protocol with the MSB set would be interpreted as the COMMAND field and stored as an address for subsequent read/write operations and not as the interrupt threshold information as desired. The Write Word protocol should be used to write byte-paired registers. For example, the THRESHLOWLOW and THRESHLOWHIGH registers (as well as the THRESHHIGHLOW and THRESHHIGHHIGH registers) can be written together to set the 16-bit ADC value in a single transaction.

Interrupt Control Register (6h)

The INTERRUPT register controls the extensive interrupt capabilities of the APDS-9309. The APDS-9309 permits traditional level-style interrupts. The interrupt persist bit field (PERSIST) provides control over when interrupts occur. A value of 0 causes an interrupt to occur after every integration cycle regardless of the threshold settings. A value of 1 results in an interrupt after one integration time period outside the threshold window. A value of N (where N is 2 through 15) results in an interrupt only if the value remains outside the threshold window for N consecutive integration cycles. For example, if N is equal to 10 and the integration time is 402 ms , then the total time is approximately 4 seconds.

When a level Interrupt is selected, an interrupt is generated whenever the last conversion results in a value outside of the programmed threshold window. The interrupt is active-low and remains asserted until cleared by writing the COMMAND register with the CLEAR bit set.
Note: Interrupts are based on the value of Channel 0 only.
Table 8. Interrupt Control Register

Table 9. Interrupt Control Select

Intr Field Value	Read Value
00	Interrupt output disabled
01	Level Interrupt

Table 10. Interrupt Persistence Select

Persist Field Value	Interrupt Persist Function
0000	Every ADC cycle generates interrupt
0001	Any value outside of threshold range
0010	2 integration time periods out of range
0011	3 integration time periods out of range
0100	4 integration time periods out of range
0101	5 integration time periods out of range
0110	6 integration time periods out of range
0111	7 integration time periods out of range
1000	8 integration time periods out of range
1001	9 integration time periods out of range
1010	10 integration time periods out of range
1011	11 integration time periods out of range
1100	12 integration time periods out of range
1101	13 integration time periods out of range
1110	14 integration time periods out of range
1111	15 integration time periods out of range

ID Register (Ah)

The ID register provides the value for both the part number and silicon revision number for that part number. It is a read-only register, whose value never changes.
Table 11. ID Register

ADC Channel Data Registers (Ch - Fh)

The ADC channel data are expressed as 16 -bit values spread across two registers. The ADC channel 0 data registers, DATAOLOW and DATAOHIGH provide the lower and upper bytes, respectively, of the ADC value of channel 0 . Registers DATA1LOW and DATA1HIGH provide the lower and upper bytes, respectively, of the ADC value of channel 1. All channel data registers are read-only and default to 00 h on power up.

Table 12. ADC Channel Data Registers

Register	Address	Bits	Description
DATAOLOW	Ch	$7: 0$	ADC channel 0 lower byte
DATA0HIGH	Dh	$7: 0$	ADC channel 0 upper byte
DATA1LOW	Eh	$7: 0$	ADC channel 1 lower byte
DATA1HIGH	Fh	$7: 0$	ADC channel 1 upper byte

The upper byte data registers can only be read following a read to the corresponding lower byte register. When the lower byte register is read, the upper eight bits are strobed into a shadow register, which is read by a subsequent read to the upper byte. The upper register will read the correct value even if additional ADC integration cycles end between the reading of the lower and upper registers.

Note: The Read Word protocol can be used to read byte-paired registers. For example, the DATAOLOW and DATAOHIGH registers (as well as the DATA1LOW and DATA1HIGH registers) may be read together to obtain the 16-bit ADC value in a single transaction

Package Outline - APDS-9309

Note:

1. All dimensions are in millimeters.

PCB Pad Layout

Note:

1. All linear dimensions are in millimeters.

Tape Dimensions

Reel Dimensions

Moisture Proof Packaging Chart

All APDS-9309 options are shipped in moisture proof package. Once opened, moisture absorption begins.
This part is compliant to JEDEC Level 3.

Recommended Storage Conditions

Storage Temperature	$10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$
Relative Humidity	Below $60 \% \mathrm{RH}$

Time from Unsealing to Soldering

After removal from the bag, the parts should be soldered within seven days if stored at the recommended storage conditions. When MBB (Moisture Barrier Bag) is opened and the parts are exposed to the recommended storage conditions more than seven days the parts must be baked before reflow to prevent damage to the parts.

Baking conditions

If the parts are not stored per the recommended storage conditions they must be baked before reflow to prevent damage to the parts.

Package	Temp.	Time
In Reels	$60^{\circ} \mathrm{C}$	48 hours
In Bulk	$100^{\circ} \mathrm{C}$	4 hours

Note: Baking should only be done once.

Recommended Reflow Profile

The reflow profile is a straight-line representation of a nominal temperature profile for a convective reflow solder process. The temperature profile is divided into four process zones, each with different $\Delta \mathrm{T} / \Delta$ time temperature change rates or duration. The $\Delta \mathrm{T} / \Delta$ time rates or duration are detailed in the above table. The temperatures are measured at the component to printed circuit board connections.

In process zone P1, the PC board and component pins are heated to a temperature of $150^{\circ} \mathrm{C}$ to activate the flux in the solder paste. The temperature ramp up rate, R 1 , is limited to $3^{\circ} \mathrm{C}$ per second to allow for even heating of both the PC board and component pins.

Process zone P2 should be of sufficient time duration (100 to 180 seconds) to dry the solder paste. The temperature is raised to a level just below the liquidus point of the solder.

Process zone P3 is the solder reflow zone. In zone P3, the temperature is quickly raised above the liquidus point of solder to $260^{\circ} \mathrm{C}\left(500^{\circ} \mathrm{F}\right)$ for optimum results. The dwell
time above the liquidus point of solder should be between 60 and 90 seconds. This is to assure proper coalescing of the solder paste into liquid solder and the formation of good solder connections. Beyond the recommended dwell time the intermetallic growth within the solder connections becomes excessive, resulting in the formation of weak and unreliable connections. The temperature is then rapidly reduced to a point below the solidus temperature of the solder to allow the solder within the connections to freeze solid.

Process zone P4 is the cool down after solder freeze. The cool down rate, R5, from the liquidus point of the solder to $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ should not exceed $6^{\circ} \mathrm{C}$ per second maximum. This limitation is necessary to allow the PC board and component pins to change dimensions evenly, putting minimal stresses on the component.

It is recommended to perform reflow soldering no more than twice.

Appendix A: Application circuit

Figure A1. Application circuit for APDS-9309

The power supply lines must be decoupled with a $0.1 \mu \mathrm{~F}$ capacitor placed as close to the device package as possible, as shown in Figure B1. The bypass capacitor should have low effective series resistance (ESR) and low effective series inductance (ESI), such as the common ceramic types, which provide a low impedance path to ground at high frequencies to handle transient currents caused by internal logic switching.

Pull-up resistors, R1 and R2, maintain the SDA and SCL lines at a high level when the bus is free and ensure the signals are pulled up from a low to a high level within the required rise time. For a complete description of $I^{2} \mathrm{C}$ maximum and minimum R1 and R2 values, please review the I^{2} C Specification at http://www.semiconductors.philips.com.

A pull-up resistor, R3, is also required for the interrupt (INT), which functions as a wired-AND signal in a similar fashion to the SCL and SDA lines. A typical impedance value between $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ can be used.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

[^0]: \dagger Specified by design and characterization; not production tested.

